
May 3, 1997 1

Middleware Enabled Fault Management for
Commercial Operating Systems

April 29, 1997

for submission to: Software Reliability and Fault Tolerance Track of the Computer Science Division at the
15th Annual International Conference of the AOM/IAOM

Author Information:

Charlotte A. Rekiere

Carnegie Mellon University
5000 Forbes Ave.
2201 Hamburgh Hall
Pittsburgh, PA 15232

PH: (412) 621-9406

Fax: (412) 268-5229

email: crekiere@cs.cmu.edu

Daniel P. Siewiorek

Professor CS/ECE
Carnegie Mellon University
5000 Forbes Ave.
1201 Hamburgh Hall
Pittsburgh, PA 15232

PH: (412)268-2570

Fax: (412) 268-5229

email: dps@cs.cmu.edu

May 3, 1997

Middleware Enabled Fault Management for

Commercial Operating Systems

Charlotte A. Rekiere
Daniel P. Siewiorek
Carnegie Mellon University

Abstract: Commercial computer systems have escaped the scrutiny for fault-tolerance typ-

ically reserved for mission critical systems. As computer systems become an integral part

of daily activities people are beginning to depend on and expect fault-free behavior. The

implementation of a fault-management middleware layer to an existing operating system

can prove to be an effective way to quickly add fault-management features to commercial

computer systems.

This paper evaluates and defines a taxonomy of the implementations of four fault-man-

agement middleware layers in three commercial off-the-shelf Operating Systems: pSOS

(embedded), Mach 3.0 (micro-kernel) and HP-UX (monolithic kernel).

The middleware development process for HP-UX is described and analyzed for perfor-

mance and system overhead. Adding assertions shows the ease of implementing fault-

management features to the HP-UX middleware. As a demonstration, assertions are used

to protect an application from incorrect kernel behavior exposed in the unmodified operat-

ing system through running Robustness Benchmarks [Dingman96].

May 3, 1997 3

1.0 Introduction

Typically, the expectation and motivation for developing fault management techniques has

focused on highly-specialized mission-critical systems. Commercial systems have

escaped similar scrutiny and usually do not provide any type of fault management in the

general computing environment. Computer systems have become an integral part of daily

activities and people are beginning to depend on and expect fault-free behavior. One

method to provide fault management policies on commercial systems is the implementa-

tion of a middleware layer with the necessary visibility and control for adding fault man-

agement techniques. A middleware layer can be described simply as software placed

between two existing systems to facilitate their communication and interoperability.

[Lee95].

This paper evaluates the implementation of four system call monitor middleware layers in

three commercial off-the-shelf Operating Systems. Specifically, pSOS (embedded), Mach

3.0 (micro-kernel) and HP-UX (monolithic kernel). The middleware layers evaluated

reside between the operating system and an application. The evaluation has produced a

taxonomy of the architectural aspects that facilitate implementation of a fault management

middleware layer.

The HPLR (HP Library Replace) middleware development process is described and ana-

lyzed for performance overhead. An assertion policy is evaluated on HP-UX with the

execution of Robustness Benchmarks [Dingman96]. It is expected that the results of this

work will provide a framework for understanding how middleware fault-management

techniques can be applied within current operating system architectures. The attributes

May 3, 1997 4

that are important to maximize the performance and capabilities of the mechanism defined

can be applied to the development of future architectures.

2.0 Taxonomy

System calls provide the interface between a process and the operating system. A mecha-

nism for monitoring system call requests can be developed when the method defined to

service a system call for a particular operating system is understood. A log of system calls

generated can be used to debug application or operating system behavior, analyze system

performance and trend analysis. Three operating systems with monitoring mechanisms

were evaluated to develop a taxonomy of operating systems features that facilitate system

call monitoring: Mach 3.0 [Rashid89], pSOS [Integrated95] and HP-UX [HPa95].

The taxonomy begins with Figure 1 which defines a simple control flow model of a sys-

tem call request in a generic operating system. Control switches from the application to

the kernel when the system call is executed. This switch is defined by the enter path of

Figure 1. After the system call is completed, control returns to the application as defined

by the exit path of Figure 1. A middleware layer is added in Figure 2 that provides the sys-

tem call monitor function.

May 3, 1997 5

How the middleware layer is implemented for a specific operating system depends on the

mechanism defined to switch control between an application and the kernel. The next set

of figures will show three operating systems and four mechanisms to enable system call

monitoring following the model established in Figures 1 and 2. A summary of the

attributes of each middleware implementation is provided in Tables 1 and 2.

 The control flow of the pSOS operating system is represented in Figure 3. pSOS handles

system calls through a single software interrupt. When the system is booting an entry in

Kernel Application1

2

syscallenter

exit

FIGURE 1. Generic Operating System Model

Kernel Application
1

2
Middleware

3 4

syscallenter

exit

FIGURE 2. Generic Operating System model with Middleware

May 3, 1997 6

the interrupt vector table is set to point to the location within the kernel to execute the sys-

tem call requested by an application. To execute a system call, the user application exe-

cutes an interrupt instruction, and the processor jumps to the location specified in the

interrupt vector table [Integrated95].

A middleware layer is added by mapping the entry in the interrupt vector table during the

boot sequence to point to a routine in the middleware. This change forces all the system

calls made by the user application to pass through the middleware prior to entering the

kernel. Once control is passed to the kernel the system call is executed and the kernel

returns control to the application as shown by the exit path of Figure 4.

Application
1

2

Interrupt
Vector
Table

Kernel
pSOS

syscallenter

exit

FIGURE 3. pSOS Operating System model

Application1

Kernel

pSOS
syscall

Middleware

3

2
enter

exit

Interrupt
Vector
Table

FIGURE 4. pSOS Operating System model with Middleware

May 3, 1997 7

Figure 5 shows the control flow of the Mach 3.0 microkernel. In microkernel operating

systems, system services are divided between a user-level server, which provides much of

the visible operating system interface, and a supervisor-level microkernel that implements

low-level resource management. The microkernel provides enough low-level support so

that various servers can be implemented to run on top of it [Russinovich94]. The server

implemented for the system call monitor evaluation is UNIX 4.3 (UX) [Bach86].

When a system call trap is made, Mach switches control into the emulation library. This

library takes the system call parameters and number, and packages a message which is

sent to UX. In UX, threads wait for incoming requests and after decoding the message,

call the appropriate function. After the request has been serviced, UX packages a reply

message and sends it to the application. The emulation library unpackages the reply

parameters from the message and control is returned to the instruction following the trap

[Russinovich94].

Mach 3.0

Application
1

2

4

Emulation
Library 5

Micro-KernelUX syscall

3

enter

exit

FIGURE 5. Mach Operating System Model

May 3, 1997 8

The middleware layer implemented for Mach 3.0 introduces the concept of a sentry mech-

anism. The central idea behind the sentry concept is that operating system entry and exit

points provide sufficient visibility and control to support the majority of standard fault

detection and tolerance techniques. These points, called sentry points, allow the encapsu-

lation of operating system calls [Russinovich94]. This encapsulation of a system call is

represented in Figure 6. The same path as in a standard system call is followed until the

UX thread receives a system call request message. At that time, the thread checks to see if

a monitoring policy is enabled for the requesting process for that system call. If any are

enabled, their entry sentries are executed. The entry sentry passes control to UX to execute

the system call and control returns to the application through the execution of an exit sen-

try.

Figure 7 represents the control flow for the execution of system calls in HP-UX. HP-UX is

categorized as a monolithic kernel in which all system service and low-level control is

Middleware

Mach 3.0
Application1

2

Emulation
Library

Micro-Kernel syscall

entry sentry

4

3
5

UX
enter

exit
exit sentry

3a

3b

FIGURE 6. Mach Operating System Model with Middleware

May 3, 1997 9

contained in the kernel. All system calls are funneled through a single entry point in the

system space, which is identified by space register 7 (sr7) [HPb95].

 To enable middleware for a system call, a custom library containing objects with middle-

ware functions is linked with the application. This method is called HP Library Replace

(HPLR). The control flow for HPLR is shown in Figure 8. Details of how code objects are

linked to the application are provided in section 3.0.

Application1

Kernel
HP-UX

2

sr7

enter

exit

syscall

FIGURE 7. HP-UX Operating System model

Middleware

Application
1

Kernel
HP-UX

syscall

2

sr7

enter

exit

FIGURE 8. HP-UX Operating System model with Middleware (HPLR)

May 3, 1997 10

The last method investigated to build the taxonomy is represented in Figure 9. HP-UX is

built with Kernel Instrumentation (KI) capabilities that are not enabled unless specifically

requested by a user program. A shareware program called trace1.6 was developed by

Kartik Subbarao <Kartik_Subbarao@hp.com> which enables KI for the purpose of moni-

toring system and kernel calls.

KI resides within the kernel and is enabled with code from a custom library provided with

the trace program. When KI is enabled, data structures defined in the system are updated

with the argument information and made available for the trace program to capture.

2.1 Middleware Attributes

Tables 1 and 2 summarize the main features of each middleware implementation evaluated

for the taxonomy. The tables are split between implementation and fault-management

attributes with the preferred attributes in bold-face type. Each attribute is described in

detail in [Rekiere97]. Mach3.0 sentry and HP Trace are designed with all the preferred

Application
1

Kernel

HP-UX

syscall

2

sr7

enter

exit

Middleware
Kernel

Instrumentation

1a 1b

FIGURE 9. HP-UX Operating System model with Middleware (KI)

May 3, 1997 11

implementation attributes. HPLR is designed with all the preferred fault-management

attributes. Overall, the Mach 3.0 sentry implementation meets the most preferred

attributes defined in both tables.

TABLE 1. Middleware Implementation Attributes

Attribute pSOS
Mach3.0
 sentry HPLR

HP
Trace

Application

(T-Transparent, D-Dependent)

T T D T

Middleware Enable

(K-Kernel Boot, U-User Program, L-Library Link)

K U L U

Libraries Required

(S-Standard, C-Custom)

S S,C S,C S,C

Attach to running process

(Y-Yes, N-No)

N Y N Y

TABLE 2. Middleware Fault-Management Attributes

Attribute pSOS Mach3.0
sentry

HPLR HP
Trace

System Call Visibility

(E-Enter, X-Exit)

E E,X E,X X

Log System Call

(N-Name, A-Arguments, R-Return Value, E-Error
Codes)

N N,A,R N,A,R,E N,A,R,E

Roll-back Visibility

(Y-Yes, N-No)

N Y Y N

Assertion Visibility

(Y-Yes, N-No)

Y Y Y N

May 3, 1997 12

3.0 HP Library Replace (HPLR) Middleware Implementation

The development platform for the HPLR implementation is an HPPA RISC processor

HP9000 series 750 workstation running the HP-UX 10.10 operating system. HP-UX is

based on the UNIX System V Release 4 operating system[HPa95]. HPLR middleware is

designed with two main objectives. First, to generate a log file of monitored system calls,

arguments, return values and error codes. Second, to provide sufficient visibility for the

implementation of assertions and roll-back recovery fault management features. The

application and operating system features involved in executing a system call that are

modifiable must be understood to achieve these objectives.

Three areas were considered for implementation of the middleware: kernel source, appli-

cation binary, and the system library. The system library was selected and is reflected in

the name of the method we chose, HP Library Replace (HPLR). The HPLR implementa-

tion creates a middleware-enabled application by linking a custom library to an applica-

tion. This is similar to hard coding middleware into an application binary but with the

added benefit of machine independence. Machine independence is achieved because the

binary is built at the link level rather than at the machine code level. The following four

sections provide an overview of system library and linking on HP-UX, a detailed descrip-

tion of the middleware layer implementation, an overview of system call execution on HP-

UX and an analysis of HPLR’s impact on system performance.

May 3, 1997 13

3.1 System libraries and the linker

System call code is located in the system library libc. System libraries contain object

files generated by compilers and assemblers. System call code is linked to an application

to create an application executable during the link-edit phase of compilation. The compila-

tion phases of HP-UX are shown in Figure 10. The compiler (cc) produces an object file

(main.o) from the application source (main.c). An object file contains definitions of code

and data in a format the linker uses to build the application executable (a.out). The defi-

nitions can be local, global or external.

A local definition of a routine or data indicates that it is accessible only within the object

file in which it is defined. Global definitions contain the code for a named function, data

or procedure. An external reference is the request for a local or global definition of a

function, data or procedure in a program [HPc95]. System call code in libc is a global def-

inition that an application requests with an external reference. Status information for the

local, global and external definitions contained in object files is maintained by a symbol

table. Each object file can contain multiple definitions of any or all types. Object file con-

tents is determined by the source code it was created from.

application
source

(main.c)
cc

object file
(main.o) ld

application
executable

(a.out)
link-edit phaselanguage compile phase

FIGURE 10. HP-UX Compiler Phases

May 3, 1997 14

Figure 11 shows an example of the symbol information for writecall.o, t_write.o and

write.o. Writecall is a C program that executes a single write system call. Object files

t_write.o and write.o contain the definitions to execute the write system call. The first col-

umn of the symbol table is the address of each symbol or reference. The second column

denotes the symbol type. The last column shows the symbol name.

A representation of how the linker matches external references and global definitions dur-

ing the link-edit phase is shown for standard archive libraries in Figure 12. The write-

call.o object file contains an external reference to write. The linker matches this external

reference to the global definition of write in t_write.o. The three symbols contained in

t_write.o are: _write, _write_sys, and write. The write and _write symbols are different

names representing the same function to support compiler external reference naming con-

ventions.

[writecall.o]:
0000000003 T main
0000000000 U write

/usr/lib/libc.a[t_write.o]:
0000000003 T _write
0000000000 U _write_sys
0000000003 TS write

/usr/lib/libc.a[write.o]:
0000000003 T _write_sys

 T indicates a global definition
 U indicates an external reference
 d indicates a local definition of data
 S secondary reference

Symbol Types:Object file symbols:

FIGURE 11. Symbols defined for dwrite.o, t_write.o, write.o

May 3, 1997 15

The _write_sys global definition contains code to enter the kernel and execute the actual

system call. Using symbol table information, the linker generates the writecall binary exe-

cutable file by matching external references to global definitions. When an application is

linked to archive libraries, all code referenced by the application program is copied into

the binary executable.

3.2 Creation of Middleware-Enabled libc

The middleware-enabled libc is created by replacing the global definition of system calls

with middleware-enabled global definitions. The middleware enabled objects must have

identical global definition names to the ones replaced so the linker will match them to the

writecall.o writecall

global definition

external reference

 call to write

 write defined

/usr/lib/libc.a

linker (ld)
 call to write

 write defined

match external reference
to definition in libc; copy
that portion of libc into
a.out

key

t_write.o

write.o

 call to _write_sys

 _write_sys defined

 call to _write_sys

 _write_sys defined

FIGURE 12. Matching external reference for write system call using standard libc.a

May 3, 1997 16

correct external references. When an application is linked with the custom libc, the mid-

dleware becomes part of the executable for the application. The application unknowingly

enables the middleware by making an external reference to the middleware-enabled sys-

tem call. Figure 13 shows an executable created with the modified libc for the write call.

The main difference between Figure 12 and Figure 13 is the addition of spy_t_write.o and

log.o object files. spy_t_write.o and log.o contain the middleware functions to perform

writecall.o

 call to write

 write defined

/usr/lib/libc.a

linker (ld)

match external ref-
erence to definition
in libc; copy that
portion of libc into
a.out

 call to log

 call to _write_sys

 log defined

 _write_sys defined

spy_t_write.o

log.o

write.o

writecall

 call to write

 write defined

 call to log

 call to _write_sys

 log defined

 _write_sys defined

global definition

external reference

key

middleware enabled global definition

FIGURE 13. Matching external reference for write system call using middleware enabled libc.a

May 3, 1997 17

monitoring. The middleware-enabled object files for system calls were given unique

names of the form spy_t_syscall.o to prevent writing over the original default definitions

contained in libc. The log.o object code defines the log function used by all middleware-

enabled system calls to create the log file. Each monitored system call must have the glo-

bal definition for the system call replaced with a middleware-enabled version. The HPLR

middleware is invoked when the application executes a system call.

3.3 HP-UX System Call Execution

When the HPLR middleware is enabled, two symbols must be available in libc. One that

matches the external reference made by an application that contains the middleware log-

ging code. The second to execute the actual system call. Approximately 40% of the sys-

tem calls in libc already have a separate symbol and code for the actual system call. In the

cases where a separate symbol was not available one was created. Following the conven-

tion in libc, the actual system call symbols are of the form _syscall_sys.

Code for an actual system call is dependent on the target operating system’s mechanism

for entering system space, executing the call and returning control to the application. All

system calls on HP-UX are funneled through a single entry point in the system space,

which is identified by space register 7 (%sr7). System space is a portion of the virtual

memory space in HP-UX where the kernel executes system calls and performs low-level

system services. A system call is made on HP-UX by executing a BLE (branch and link

external) instruction to enter the system space and loading the unique system call number

into general register 22. A list of the system call numbers as well as the location of the sys-

tem call entry point is in the standard include file: /usr/include/sys/syscall.h.

May 3, 1997 18

3.4 Performance and Benchmarks

A set of benchmarks were run to verify the HPLR middleware implementation. Bench-

marks were used for verification rather than an application program to ensure a repeatable

test environment. Unlike an application, a benchmark executes a finite number of system

calls in a consistent order. Table 3 provides a breakdown of the type and frequency of each

system call used by the benchmarks selected. The benchmarks include the BYTE maga-

zine benchmarks (dwrite, dread, fcalla, fcalle, fibo, float, iofile, loop, pipes, scall, sieve,

bytesort), Usenet (iocall) and Dhrystone (dryr, drynr) benchmarks. The benchmarks were

compiled by Rick Richardson of PC Research Inc. and are available in a file called misc-

bench.tar.gz (http://src.doc.ic.ac.uk/public/public/packages/unix-c/benchmarks/).

May 3, 1997 19

Table 3 is separated into groups based on call frequency, diversity and the ratio of diver-

sity to frequency (RDF). Call frequency is the total number of calls for a given bench-

mark. Call diversity is a count of the number of unique call types for a given

benchmark. The groupings were established to determine which benchmarks most

closely represent a typical user program to use for performance analysis of HPLR. System

call diversity and frequency data for typical user programs from [Dingman96] is shown in

Table 4.

TABLE 3. Count of System Calls made by Benchmarks

System
Call fc

al
la

fc
al

le

lo
op

si
ev

e

fib
o

flo
at

dr
yr

dr
yn

r

by
te

so
rt

dw
rit

e

dr
ea

d

pi
pe

s

io
fil

e

io
ca

ll

sc
al

l

brk 1 1

close 2 2 2 1

creat 1 1 1

execve 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

exit 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1

fork 1

getpid 25000

ioctl 1 1 1 1 1 1

lseek 256 1000 2002

open 1 1 1 1

pipe 1

read 256 1025 500 4004

times 4 4

unlink 1 1

write 1 2 2 2 12 256 1024 631 1001

diversity

(d)

2 2 2 2 4 4 6 6 4 6 6 7 9 9 3

frequency

(f)

2 2 2 2 4 5 10 10 15 262 516 2056 2138 7013 25002

RDF [ratio: d/f] 1 1 1 1 1 .80 .60 .60 .267 .023 .012 .0034 .0042 .0013 .0001

Benchmark

a b a b

Group 1 Group 2

May 3, 1997 20

The order of magnitudes of RDF and frequency data in Table 4 were used to split Table 3

into Groups 1 and 2. The benchmarks in Group 2 of Table 3 have a similar range of mag-

nitudes for RDF and frequency as Table 4. Table 4 contains two distinct groups based on

the order of magnitudes of RDF and frequency between gdb and xv in the table. Using the

RDF value for xv as the dividing line, the split of Table 4 was applied to Group 2 of Table

3 to form sub-groups 2a and 2b. Benchmarks with an RDF higher then 0.0028 comprise

Group 2a and benchmarks with an RDF lower then .0028 comprise Group 2b.

Figures 14 and 15 show the execution time with logging enabled to libc.a execution time

ratio for selected buffer sizes. The ratio gives a representation of the overhead created by

the logging of system calls. As the buffer sizes increase the overhead decreases and the

ratio approaches one. When a buffer is full it writes the values to disk and proceeds to fill

and write data to disk until the benchmark finishes execution. The buf=all data value is the

execution time when the logged data is written only to main memory. In summary, when

logging is enabled to write to main memory only, there is a 1.5 times overhead compared

to the standard libc and writing to disk adds a 5 to 10 times overhead the standard libc.

TABLE 4. Typical Application Diversity to Frequency Ratios [Dingman96]

emacs gcc gdb xv bitmap

diversity (d) 23 20 23 26 18

frequency (f) 851 434 927 9140 13027

ratio (d/f) .0270 .0461 .0248 .0028 .0014

May 3, 1997 21

FIGURE 14. Group 2a benchmark execution time ratio: logging enabled to libc.a

0

1

2

3

4

5

6

7

8

9

10

buf =128 buf = 512 buf = all no log

Buffer Size

R
at

io
 (

lo
g

on
/li

bc
.a

)
dw rite

dread

pipes

iofile

FIGURE 15. Group 2b benchmark execution time ratio: logging enabled to libc.a

0

20

40

60

80

100

120

140

buf =128 buf = 512 buf = all no log

Buffer Size

R
at

io
 (

lo
g

on
/li

bc
.a

)

iocall

scall

May 3, 1997 22

The magnitude of the overhead is directly related to the number of log entries. Each log

entry represents the execution of one system call. While overhead is high when writing

logs to the disk, main-memory-only logging is effective. If the system call logging was

expanded to include a Roll-back recovery mechanism every system call executed by an

application would not be required to be logged1
. In Roll-back recovery, a process uses

information stored to restore a global consistent state and restart execution from that state,

instead of restarting the computation from the beginning [Elnozahy93]

3.5 HPLR Implementation Summary

The HPLR system call monitor mechanism has been shown to be an effective fault-man-

agement middleware layer for HP-UX and accomplishes the first goal for HPLR stated in

Section 3.0. The second goal, to provide sufficient visibility for the implementation of

assertions and roll-back recovery, is achieved based on the location of the middleware in

the execution process. [Russinovich94] defines two data sets necessary to perform roll-

back recovery: user inputs, and events leading to data request from users. User inputs are

visible to HPLR when the application makes a system call request and passes control to

HPLR. Capturing events leading to data request from users can be done by enabling the

system call monitor. Verifying argument parameters with assertions is possible when

HPLR is passed control from the application. If an invalid argument is found, HPLR can

1. [Russinovich94] describes a roll-back recovery mechanism that logs only user input and events leading to
user input. This reduces the number of system calls and arguments logged compared to the system call
monitor mechanism. The roll-back recovery mechanism was run with 9% total overhead.

May 3, 1997 23

return an error to the application rather than executing the system call. Section 4.0 dis-

cusses the implementation of assertions in HPLR middleware.

4.0 Assertions and Robust Benchmarks

Robust Benchmarks stress a system by invoking system calls containing both valid and

invalid parameter values. How the operating system handles those parameters is observed.

It is expected that the incorrect system calls are representative of one form of errors made

by application designers or corrupted data. The suite of Robust Benchmarks applied to

Mach 3.0 in [Dingman96] was ported and run on HP-UX. The suite tests the read, write,

open, close, stat, fstat, and select calls. These calls were selected because they were the

most frequent functions in traces of user sessions1 [Dingman96]. The robust test involving

the select call is used to show assertions in HPLR because it resulted in fails on HP-UX.

The Robustness Benchmark test is built from the list of values in Table 5. Each value is

passed as an argument to select until all the possible combinations of parameters have

been used resulting in 405 test cases. Table 6 represents the Class 2 failure mode2 argu-

ment combinations. The fails are considered in Class 2 because the select call exhibits the

correct behavior even though some arguments are invalid and should have resulted in a

return error message.

1. System calls were monitored for multiple user sessions running the following: emacs, gcc, gdb, bitmap,
xv [Dingman 96].

2. [Dingman96] defines a six-level classification system of Robust Benchmark fail modes. Class 2 failures
are defined as: system reports success when error should have been reported.

May 3, 1997 24

 When timeout is NULL, as it is for all the cases in Table 6, select is defined to wait for a

signal. The 27 fail cases were classified as Class 2 failures because the select call waits

even though other arguments are invalid. This is considered a silent error because the call

may or may not cause a failure when select gets a signal. In cases where timeout and nfds

are non-NULL, invalid parameters are correctly caught by the operating system and return

correct error codes.

 Monitoring middleware was generated for the select call using the HPLR method

described in Section 3.0. An assertion policy was added to the middleware to detect the

invalid arguments. The assertion checks if nfds and timeout are NULL and returns error to

the application. Since this case is always invalid (nfds must be greater than 1 because the

bit mask is built from 0 to nfds -1). The bit mask parameters are irrelevant to check for this

TABLE 5. Robust Benchmark Test Argument Combinations for the select call.

Number of file
descriptors
(nfds)

Read file
descriptors
(readfds)

Write file
descriptors
(writefds)

Except file
descriptors
(exceptfds)

Maximum interval to
wait for selection
(timeout)

0 NULL NULL NULL NULL pointer

5 Valid pointer Valid pointer Valid pointer Valid pointer

255 Bad pointer Bad pointer Bad pointer -1 (bad pointer)

15000

-1

TABLE 6. Select Class 2 Fail Argument Combinations

nfds readfds writefds exceptfds timeout Class 2 fail count

NULL ALL 3 ALL 3 ALL 3 NULL 27

May 3, 1997 25

assertion because the operating system correctly returns error for invalid readfds, writefds,

and execptfds if nfds is not NULL.

5.0 Summary

A taxonomy has been defined representing system call monitor fault management middle-

ware layers for three commercial off-the-shelf operating systems and four middleware

implementations: pSOS (embedded OS), Mach 3.0 (micro-kernel), and HP-UX (mono-

lithic kernel). The features of each implementation were compared and described. The

taxonomy provides a framework for understanding how fault-management middleware

can be applied to commercial operating systems.

The HPLR middleware implementation on HP-UX was described in detail. Benchmarks

run on the HPLR method showed the overhead and performance impact of system call

monitoring with various logging configurations. Logging to main memory rather than

any of the main memory/disk logging combinations added the smallest percentage over-

head per system call logged.

Robust Benchmarks [Dingman96] were run on HP-UX and results for the select call were

described. Assertions were added to the HPLR middleware for select to avoid incorrect

kernel behavior. The HPLR method proved to be an effective fault-management layer

without requiring modification to kernel or application source code. The implementation

of fault-management middleware by replacing system call object code in an archive for-

mat system library was introduced. This method can be applied to any UNIX-type operat-

May 3, 1997 26

ing system that provides the capability to modify or replace individual objects in system

libraries.

May 3, 1997 27

References May 3, 1997 28

References

[Bach86] M.J. Bach, “The Design of the Unix Operating System”, Prentice-Hall,
Englewood Cliffs, NJ, 1986.

[Dingman96] C. P. Dingman, “Robustness Benchmarking”, CMU Ph.D. Thesis,
August 1996.

[Elnozahy93] E. N. Elnozahy, “Manetho: Fault Tolerance in Distributed Systems
Using Rollback-Recovery and Process Replication”, Rice Technical
Report, Rice COMP TR93-212, October 1993.

[HPa95] Hewlett-Packard Company, “HP-UX Reference”, HP LaserROM HP-
UX Release 10.0, June1995

[HPb95] Hewlett-Packard Company, “HP-UX Memory Management White
Paper”, HP LaserROM HP-UX Release 10.0, June1995

[HPc95] Hewlett-Packard Company, “Programming on HP-UX”, HP Part No.
B2355-90652, Hewlett Packard Company, January1995

[Integrated95] Integrated Systems Inc., “pSOS System / 386 Release 2.0 Manual”,
March 1995

[Lee95] R.E. Lee, “Middleware on the HP3000”, Interact, August 1995,

[Rashid89] R. Rashid, R. Baron, A. Forin, D. Golub, M. Jones, D. Julin, D. Orr and
R. Sanzi, “Mach: a Foundation for Open Systems”, Proc. 2nd Work-
shop Workstation Operating Syst., Sept. 27-29, 1989.

[Rekiere97] C. Rekiere, “Middleware Enabled Fault Management for Commercial
Operating Systems”, CMU Master’s Thesis Report, April 1997.

[Russinovich94] M.E. Russinovich “Application-Transparent Fault Management”,
CMU Ph.D. Thesis, August 1994.

