
Ballista
®

Software Robustness Testing
Phil Koopman, Dan Siewiorek, Kobey DeVale

John DeVale, Kim Fernsler, Dave Guttendorf, Nathan Kropp, Jiantao Pan, Charles Shelton, Ying Shi

Ballista® automated robustness testing characterizes

the exception handling effectiveness of software

modules. For example, Ballista testing can find ways

to make operating systems crash in response to

exceptional parameters used for system calls, and can

find ways to make other software packages suffer

abnormal termination instead of gracefully returning

error indications. Ballista is a "black box" software

testing tool, and is works well on robustness testing the

APIs of Commercial Off-The-Shelf (COTS) software.

MEASURING SOFTWARE ROBUSTNESS

The success of many products depends on the

robustness of not only the product software, but also

operating systems and third party component libraries.

But, until now, there has been no way to quantitatively

measure robustness. Ballista changes this by providing

a simple, repeatable way to directly measure software

robustness without requiring source code or behavioral

specifications. As a result, product developers can use

robustness metrics to compare off-the-shelf software

components, and component developers can measure

their effectiveness at exception handling.

The Ballista testing approach is both scalable and

portable across a wide variety of application domains.

No behavior specification is required for testing − the

implicit specification of “doesn’t crash; doesn’t hang”

suffices. Additionally, tests are created based on the

data types of the parameter list rather than based on

module functionality, exploiting the fact that in most

APIs there are fewer data types than functions/calls.

Our research findings contradict some widely held

opinions about robustness. For example, we have

found one-line user programs

that crash commercial

operating systems without a

need for concurrency or

complex timing conditions.

Also, extensive parameter

checking to avoid such

vulnerabilities can be

provided at essentially no

run-time penalty by using

appropriate techniques.

BALLISTA APPROACH

Ballista testing begins by

identifying the data types

used by an API under test.

Application-specific data

types can inherit base test

cases from predefined data

types in the Ballista testing

tool set. Then, the Ballista test harness generator is

given the signature for a function to be tested in

terms of those data types, and generates a

customized testing harness. The test harness

composes combinations of test values for each

parameter, and reports robustness testing results.

Ballista uses a C++ testing harness, but can be used

with most interfaces that are C++ linkable. While

testing large databases this way is not a particularly

effective approach, Ballista has been demonstrated

to be effective and scalable when testing a variety of

APIs with small to moderate amounts of system

state that must be set before execution of an

individual test case.

ROBUSTNESS OF OPERATING SYSTEMS

Ballista testing can be performed on almost any

API that employs calls with parameter lists. The

POSIX (Unix) operating system API has been used

as the first example for robustness testing. As the

Figure below shows, many robustness failures were

observed (data from a 1999 study). Several

instances were found in which a single line of C

code crashed an operating system. Most events

found were abnormal task terminations (“Abort”

failures) or incorrect acceptance of invalid inputs.

AVAILABILITY

A Ballista testing toolkit is distributed at no

charge under the GNU Public License. It comes

pre-populated with data types and testing

information to exercise many operating system calls

and C-library functions.

Carnegie Mellon University

HH D-202

Pittsburgh, PA 15213

USA

ballista@ece.cmu.edu

www.ballista.org

ph: +1 412/268-5225

fax: +1 412/268-6353

Affiliated with:

Institute for Complex

Engineered Systems
http://www.ices.cmu.edu

Institute for Software

Research, International
http://www.isri.cs.cmu.edu

Electrical & Computer

Engineering Department
http://www.ece.cmu.edu

June 2002

Institute
for Complex

Engineered
Systems

&Electrical Computer

ENGINEERING

*

*

*

**

*

Normalized Failure Rate by Operating System

Normalized Failure Rate (after analysis)

0% 10% 20% 30% 40% 50%

SunOS 5.5

SunOS 4.13

QNX 4.24

QNX 4.22

OSF-1 4.0

OSF-1 3.2

NetBSD

Lynx

Linux

Irix 6.2

Irix 5.3

HPUX 10.20

HPUX 9.05

FreeBSD

AIX

Abort %
Silent %

Restart %

* Catastrophic

