
1

R E S O U R C E M A T E R I A L S

HiVal: A Simulation and Decision
Support System for AHS Concepts
Analysis

U.S. Department of Transportation
Federal Highway Administration

Publication No. FHWA-RD-95-104
February 1995

Precursor Systems Analyses of
Automated Highway

Systems

TASC Task R Page 1

2

FOREWORD

This report was a product of the Federal Highway Administration’s Automated Highway System
(AHS) Precursor Systems Analyses (PSA) studies. The AHS Program is part of the larger
Department of Transportation (DOT) Intelligent Transportation Systems (ITS) Program and is a
multi-year, multi-phase effort to develop the next major upgrade of our nation’s vehicle-highway
system.

The PSA studies were part of an initial Analysis Phase of the AHS Program and were initiated to identify
the high level issues and risks associated with automated highway systems. Fifteen interdisciplinary
contractor teams were selected to conduct these studies. The studies were structured around the
following 16 activity areas:

(A) Urban and Rural AHS Comparison, (B) Automated Check-In, (C) Automated Check-Out,
(D) Lateral and Longitudinal Control Analysis, (E) Malfunction Management and Analysis, (F)
Commercial and Transit AHS Analysis, (G) Comparable Systems Analysis, (H) AHS Roadway
Deployment Analysis, (I) Impact of AHS on Surrounding Non-AHS Roadways, (J) AHS
Entry/Exit Implementation, (K) AHS Roadway Operational Analysis, (L) Vehicle Operational
Analysis, (M) Alternative Propulsion Systems Impact, (N) AHS Safety Issues, (O) Institutional
and Societal Aspects, and (P) Preliminary Cost/Benefit Factors Analysis.

To provide diverse perspectives, each of these 16 activity areas was studied by at least three of the
contractor teams. Also, two of the contractor teams studied all 16 activity areas to provide a synergistic
approach to their analyses. The combination of the individual activity studies and additional study topics
resulted in a total of 69 studies. Individual reports, such as this one, have been prepared for each of these
studies. In addition, each of the eight contractor teams that studied more than one activity area produced
a report that summarized all their findings.

Lyle Saxton
Director, Office of Safety and Traffic Operations Research
and Development

NOTICE

This document is disseminated under the sponsorship of the Department of Transportation in the interest
of information exchange. The United States Government assumes no liability for its contents or use
thereof. This report does not constitute a standard, specification, or regulation.

The United States Government does not endorse products or manufacturers. Trade and manufacturers’
names appear in this report only because they are considered essential to the object of the document.

TASC Task R Page 2

TABLEOFCONTENTS

1. EXECUTIVE SUMMARY

2. INTRODUCTION

3. REPRESENTATIVE SYSTEM CONFIGURATION (RSC)

4. TECHNICAL DISCUSSION

4.1 General Functional Requirements Analysis

4.2 System Architecture Specification

4.2.1 Major Functional Elements

4.2.2 Distributed Computing Architecture

4.2.2.1 Client Server Computing

4.2.2.2 DIS Connections to HiVal

4.3 Standards and Interface Requirements

4.4 Prototype System Development

4.4.1 Hardware and Software in the Protoype

4.5 HiVal’s Ability to Grow

5. HiVal USER GUIDE

5.1 Requirements for Running HiVal

5.2 Accessing the HiVal System

5.3 Using HiVal for Analysis

5.3.1 Starting the HiVal System

5.3.2 Menu Options

5.3.3 Scenario Definition

5.3.4 Editing and Running A Scenario

5.3.5 Displaying Results

6. HiVal PROGRAMMING GUIDE

6.1 Adding a New Module to HiVal

6.2 Directories and Configuration files

6.3 Constructing Representative System Configurations (RSC)

6.4 Measures of Effectiveness

6.5 Software Wrappers and RPC

6.6 Linkage Functions
6.7 Suggested Programming Guidelines for New Software

to be Added to HiVal

1

4

7

8

9

14

14

18

18

21

23

23

23

25

27

27

28

29

29

30

31

31

32

44

44

44

49

47

54

56
69

111

TASC Task R Page 3

7. CONCLUSIONS

REFERENCES

TABLE OF CONTENTS (Cont.)

72

73

TASC Task R Page 4

LIST OF TABLES

Table 4-1: General Simulation and Decision Support System 10
Functional Requirements

Table 4-2: Specific Simulation and Decision Support System 11
Functional Requirements

Table 4-3: Design Requirements for an AHS Simulation and Decision 13
Support System

Table 4-4 Module Categories and Specific Models in the HiVal 16
Prototype

Table 4-5 Software Elements in the HiVal Prototype 24

Table 5-1 Minimum Requirements for Running HiVal Prototype 27

TASC Task R Page 5

LIST OF FIGURES

Figure 1-1

Figure 1-2

Figure 2-1

Figure 2-2

Figure 4-1

Figure 4-2

Figure 4-3

Figure 4-4

Figure 4-5

Figure 4-6

Figure 5-1

Figure 5-2

Figure 5-3

Figure 5-4

Figure 5-5

Figure 5-6

Figure 5-7

Figure 5-8

Figure 5-9

Figure 5-10

Figure 5-11

Figure 6-1

Figure 6-2

The Prototype HiVal System

DIS Visualization of FRESIM/AHS Platoon

HiVal Concept for Integration and Synthesis

The HiVal System for Concept Integration, Evaluation, and
Collaboration

HiVal Computing Architecture for Flexible Guided Analysis

HiVal Interface and Analysis Network

The Basic Client Server Architecture

HiVal’s Client Server Architecture

DIS-based Traffic and Infrastructure Visualization

Hardware Configuration for the HiVal Prototype and
Adjunct IVHSim Visualizer

Introductory Screen

HiVal Menu Options

Scenario Creation

Scenario Editor

Analysis Network

Parameter and Module Selection

Running a Network

Results Histogram

Tabular Results

Results Data Files

2-D Animation Output

Wrappers and RPC Relationship

Pre- and post-processing linkage fimctions in HiVal

v

2

3

5

6

14

15

19

20

22

24

34

30

35

36

37

38

39

40

41

42

43

54

57

TASC Task R Page 6

TASC Task R Page 7

3

1. EXECUTIVE SUMMARY

At the start of the AHS (Automated Highway Systems) PSA (Precursor Systems Analysis)

program, the need for computational tools that can

• Provide integrated, system-level analysis for alternative AHS system
concept evaluation that would incorporate and build on the PSA analysis of
issues and risks

• Preserve and make accessible the software and database products of PSA and
other AHS researchers to support future elements of the National AHS
research agenda, such as the NAHSC (National Automated Highway System
Consortia)

was recognized. In support of these needs, a prototype integrated modeling, simulation, and decision
support testbed, called HiVal, has been developed. HiVal provides simulation, decision support, and
database tools for evaluating alternative AHS concepts. HiVal accommodates a range of user
expertise and objectives, ranging from high-level, aggregate AHS performance metrics and tradeoffs,
to low-level, detailed simulation of individual AHS subsystem elements. HiVal is a computing
environment that integrates a variety of simulations, models, and databases from both PSA activities
and the broader AHS research community. More than a dozen simulations and models have been
incorporated into the prototype system, as illustrated in Figure 1-1. HiVal uses a modular, distributed
client-server computing architecture. Modern workstation technology (Unix & X-Motif, DOS/MS
Windows, DCE, TCP/IP) is used throughout to support a wide variety of modeling and simulation
needs, and allow for continued system growth. All of HiVal’s basic interfaces, protocols, and control
software uses COTS (Commercial Off The Shelf) technology.

The first important facet of HiVal is its ability to support AHS studies and analysis today

using the functionality and software modules now contained within the system. However, the HiVal

development concept recognizes that AHS simulation, modeling, and decision support elements are

continually evolving and improving. Any “static” software system would quickly be rendered

obsolete by the development of new analysis tools built after the system is completed. The HiVal

system addresses the problem in the second important facet of the system: its flexible, expandable

computing infrastructure. Using a distributed, client-server architecture, HiVal’s infrastructure

facilities the integration of new subsystem simulations, databases, and decision support

TASC Task R Page 8

4

■ FRESIM / AHS Traffic Model Fortan
■ Smartpath Traffic Model C
■ Mobile5a Emissions Fortran
■ Power-demand Emissions Matlab
■ Lat / Lon Control C
■ Platoon Lon Control Simulink
■ AHS Platoon Collision Matlab
■ Cost Estimation Matlab/L-123
■ 2D Traffic Animator C
■ 3D Visualizer link C++, DIS
■ System Configuration Files C
■ Stored Highway Geometries ASCII

Unix Workstation

• Client, Servers &
 Database

MS Windows PC

• Servers

IVHSim

Unix SGI

• Visualization
 Server(not part
 of baseline HiVal
 System)

HiVal

HiVal

IVHSim

 Figure 1-1 The Prototype HiVal System

modules. New elements can be added and combined with existing useful elements to allow the

software to develop incrementally and remain at the AHS analysis state-of-the art.

While new models to capture emerging aspects of AHS modeling will still need to be developed (e.g.

an improved operational effectiveness model), the HiVal architecture allows them to fit within its

existing computing infrastructure. By taking advantage of the HiVal infrastructure, it will not be

necessary to build a new system to use new models. HiVal integration infrastructure works on three

levels:

• Hardware level: TCP/IP ethernet LAN provides compatible low-level
communication protocols among different hardware platforms (e.g. PCs,
workstations, supercomputers

• Software level : Software wrappers allow existing (legacy) simulation and
modeling code, written in a variety of languages, to be seamlessly integrated.
Wrappers generally eliminate the need to rewrite existing code

• Analytic level : User-defined pre- and post-processing functions assure that
subsystem models and simulations are correctly connected to allow them to

function together. This assures that elements that were not explicitly designed to work
together are linked so that their inputs and outputs are compatible, and ensures that
models and simulations are connected in ways that are consistent with the theoretical
assumptions of each element.

TASC Task R Page 9

5

In addition to providing a framework for operational effectiveness, environmental, safety, and

cost analysis, the HiVal prototype has software “hooks” that can be used to provide sophisticated 3-D

interactive AHS concept visualization. These connections make use of DIS (Distributed Interactive

Simulation) technology, originally developed for US military applications. HiVal’s current uni-

directional DIS connections permit the AHS community to take advantage of powerful 3-D

visualization and animation tools available today within a large existing DIS software infrastructure.

In addition, expanded DIS connections can be used to directly link HiVal’s traffic modules to human-

operated driving simulators for concept evaluation and human factors studies. Figure 1-2 gives an

example of a DIS-based visualization of AHS platoons simulated by FHWA’s FRESIM/AHS traffic

simulator. These DIS connections to HiVal and visualization tools were developed under an activity

that was coordinated with, but separate from, the AHS PSA research project.

Figure 1-2 DIS Visualization of FRESIM/AHS Platoons

TASC Task R Page 10

6

2. INTRODUCTION

The HiVal prototype has been developed as one of the project in the PSA activity area

“other”, because of a scope that encompasses the outputs of most of the other activity areas. Building

on the PSA issues and risks analysis and products, HiVal provides simulation, decision support, and

database tools for evaluating alternative AHS concepts. HiVal development occurred in coordination

with studies in the other sixteen activity areas in FHWA’s Precursor Systems Analysis program. A

proof-of-concept development of the simulation and modeling testbed, called HiVal, is the output of

this initial research. An ultimate goal of HiVal is to provide a system which can integrate a variety of

inputs from AHS systems analysis activities (both PSA and others, past and future) and provide an

AHS-community-wide tool for issues, risks, tradeoff analyses, and analytic decision support as

FHWA progresses towards the Congressionally-mandated 1997 demonstration with the NAHSC, and

into the next century. The overall HiVal concept is illustrated in Figure 2-1.

As AHS development and evaluation expanded under PSA AHS activities, the number of

individual AHS-subsystem-level models, databases, and simulations developed by researchers and

available to HiVal increased significantly. In order to evaluate AHS system-level performance

metrics (such as throughput, or emissions, or cost) based on the combination of multiple system

components, there is a need to integrate individual analyses into a complete system evaluation. In

addition, unique or large-scale models, simulations, or databases that are of importance to the entire

AHS system analysis community can be made accessible through HiVal over an extended wide area

network. The models included in the HiVal system span the range from detailed low-level models

(e.g. lat/lon control, platooning scheme, entry/exit implementation), through traffic simulations of

selected AHS scenarios (e.g. shared vs. segregated highways; grouped vs. individual vehicles), to

system level measures (e.g. safety, environmental, productivity) to be used for analytic decision

support. The HiVal system demonstration focused on the integration of existing models to provide

system-level analyses and AHS performance metrics (MOEs). Modularity of system components and

standardization of simulation and database interfaces are important design requirements for the HiVal

system. Figure 2-2 summarizes the major functional elements that make up the HiVal system design.

TASC Task R Page 11

7

AHS System Evaluation
and Tradeoffs

m (y + V2/ρ) = 2(Cs +
Fx)

Fx = Kx V2 + fr mg

ys(t) = y(t) + d(ε(t) -εd(t))

1 program latdyn
2 paramter (lenint = 4,
3 integer cid, cnt
4 double precision
sum
5 di m = 2*lenint
6 call getforce(cid)
7 if (cnt =
8 sum = sum +

existing
new

Lane-mile costs

Covnent.
freeway
 55
 50
 40

AHS

Rural Urban

$85
6

765

713

665

$1356
 1265
 1113

 1065

velocity

1st

2nd Test 23-B

AHS Subsystem
 Modeling and
 Test results

LAN
HiVal

 Figure 2-1 HiVal Concept for Integration and Synthesis

TASC Task R Page 12

8

Vehicle
Control SafetyEnvironment Cost

Decision

Metr ics

Traff ic

Results

Animation

Entry/

Exit

Human

Factors

Databases

Simulation
Databases

HiVal

Field Test

Data

Configuration
Databases

Figure 2-2: The HiVal System for Concept Integration, Evaluation, and Collaboration

3. REPRESENTATIVE SYSTEM CONFIGURATION (RSC)

The scope of this PSA activity did not include development of an independent RSC set.

Instead, the thirteen RSC developed in Ref. 1 were used to define the database of system

configurations used by HiVal. These RSC were a widely-used, all-encompassing set that evolved

during the PSA program. They are defined in terms of infrastructure characteristics, vehicle

intelligence, and communications and control schemes. The description of this RSC set was

augmented based on related PSA Program work to include additional descriptors in order to help in

mapping it to alternative RSC sets under development.

4. TECHNICAL DISCUSSION

A key challenge faced in implementing HiVal is the task of integrating disparate models

which operate with varying levels of fidelity for different aspects of an AHS. HiVal takes advantage

of defense technology transfer in working these integration problems, in particular the extensive

work accomplished in distributed simulation of integrated military systems. The design elements of

the overall HiVal system include:

• Using an adaptively-structured hierarchy of linked, functional modules

• Developing an open architecture that allows “plug and play” of results (and
eventually full simulations themselves) for each module function

TASC Task R Page 13

9

• Specifying required parameters for the input / output links of each module and
developing interface and simulation standards for current and future elements

• Defining as possible “transfer functions” that describe simplified functional
relationships (e.g. composite MOE) between input and output parameters

of modules

• Providing networked, distributed access to simulations and databases,
including databases of field tests and demonstrations

• Offering connections for driving simulators and 3-D visualizat ion tools.

The objective of the HiVal proof-of-concept demo wass to prepare a demonstration of a

selected subset of the overall HiVal system, focusing on a selected set of models and/or functions.

While the demonstration concentrates on selected components (that in fact include most of the major

system elements) of the overall system, functional requirements analysis and high-level system

design for the complete system have been performed. This approach recognizes the constraints placed

on implementation by the fact that many PSA/AHS methods and resources were available only late in

the program. By pursuing two parallel paths of developing a thread of HiVal for existing AHS

models and databases, while at the same time using the insights gained from this process to begin the

high-level design of the overall HiVal system, maximum progress toward HiVal’s goals was

achieved. The design and implementation work was accomplished in four main task activities: 1)

General Functional Requirements Analysis; 2) Standards and Interface Requirements; 3) System

Architecture Specification; and 4) Prototype System Development.

4.1 General Functional Requirements Analysis

 This activity defined the scope of the HiVal system, analyzed the requirements for such a

system, and identified modeling and database resources to support these requirements. Consultations

with members of the broad AHS community took place to help in identifying simulation

requirements, modeling assets, and measures of effectiveness for use in decision support. As part of

the AHS PSA program, a report discussing general requirements for simulation and decision support

for AHS was prepared late in the program (Ref. 2). Using that framework, functional requirements

identified during the HiVal project and capabilities implemented in the HiVal prototype system are

described in Tables 4-1 through 4-3. As the charts illustrate, there is a wide range of functional

requirements for an AHS simulation and decision support system, and the current HiVal system

design meets nearly all these requirements.

TABLE 4-1: General Simulation and Decision Support System
 Functional Requirements

TASC Task R Page 14

10

GENERAL CHARACTERISTICS AND
FUNCTIONS

HiVal DESIGN AND IMPLEMENTATION

1. Well-structured approach to concepts
evaluation is needed

2. Decision support system for evaluation of
AHS concepts

3. NAHSC will be on a constrained schedule
and budget

4. Modify existing simulations and models
to meet needs

5. Required integration of models may be
complex

6. Use a phased implementation

7. Will become a design tool to support new
concept development and respond rapidly to
weakness of a concept and so form and
evaluate new concepts

1. HiVal system has been designed explicitly
to support structured, consistent, efficient
comparative evaluations

2. Provides decision support, MOEs, and
evaluation of alternative AHS concepts

3. HiVal prototype has already been
designed and built

4. HiVal incorporates existing models that
have been modified for AHS (e.g.
SMARTPATH, FRESIM/AHS,
2-D and 3-D Animators)

5. HiVal’s client server, remote procedure
call linkage paradigm provides an integration
method and architecture that has been
successfully applied to AHS

6. HiVal has implemented a flexible
architecture which is easily scalable and
facilitates phased development.

7. HiVal’s ability to “plug and play” multiple
models of any type (e.g., alternative control
models) provides “on-the-fly”
reconfiguration to evaluate new concepts.
Implemented HiVal architecture also makes
it easy to add new models needed to evaluate
new concepts

TASC Task R Page 15

11

TABLE 4-2: Specific Simulation and Decision Support System
 Functional Requirements

SPECIFIC CHARACTERISTICS AND
FUNCTIONS

HiVal DESIGN AND IMPLEMENTATION

1. Integrated models, simulations, analyses,
and prototype test data

2. Ensures that data regarding all alternative
concepts are objectively generated and
presented in manner to assure fair evaluation

3. Concept evaluation should be based on
specific system configurations

4. Performance profiles will be generated

5. Be objective and balanced and ensure
validity of data generated

6. Easily calibrated

7. Clear presentation of data -- easily
understood and comparable

1. HiVal architecture is designed to achieve
this integration from. Modular client/server
architecture allows test data and models to be
used interchangeably

2. HiVal system provides common access to
models and databases, and analysis results
are presented in consistent displays

3. HiVal incorporates selectable PSA
representative system configurations (RSC)
in its model network construction logic

4. HiVal produces the low-level results and
MOEs that are combined together to produce
aggregate performance profiles for different
needs

5. HiVal facilitates comparable, quantitative
analyses, uses already-validated simulations
and models, and allows easy cross-
comparison of MOEs computed using
different simulations

6. HiVal uses already-validated simulations
and models, and allows easy cross-
comparison of results at multiple levels of
detail

7. HiVal design stresses unified, consistent
displays of MOEs and simulation outputs,
including graphic, tabular, and 2-D/3-D
animation

TASC Task R Page 16

12

TABLE 4-2: Specific Simulation and Decision Support System
 Functional Requirements (Continued)

SPECIFIC CHARACTERISTICS AND
FUNCTIONS

HiVal DESIGN AND IMPLEMENTATION

8. Accommodates all viable concepts -- has
flexibility to blend/reconstitute concepts to form
and evaluate new ones

9. Use requirements-based evaluation criteria and
accommodate increasingly refined levels of
definition

10. Accommodate evaluation criteria metrics --
be flexible and accommodate sensitivity and
tradeoff analyses

11. Provides profiles for each user view

12. Develops data from varying sources,
including use of demonstration test data where
possible

13. System must be implementable under the
constrained NAHSC schedule. Desirable to
modify and use existing models and simulations
as much as possible

14. Ability to select most appropriate
modeling/simulation, analysis, or test data for
evaluating an alternative concept

15. Incorporate a wide range of modeling
categories

8. HiVal’s structure is designed to accommodate
multiple models, supporting different concepts,
that the analyst can “plug and play” for
evaluation. HiVal’s ability to interchange models
makes it easy to flexibly accommodate new
concepts

9. HiVal’s modular, hierarchical network
structure allows individual high-level modules to
be replacesd by sub-networks of increasingly
refined models as they are defined

10. HiVal and its central results database can
produce any evaluation metric the user specifies
with minimal development. HiVal provides full
access to all model input parameters and presents
unified graphic output formats for consistent
sensitivity and tradeoff analyses

11. Incorporated using HiVal’s post-processor
and MOE display functions

12. HiVal’s modular, distributed client/server
architecture makes it transparent to the user
whether the data is from a dynamic simulation or
a static database of test results

13. HiVal has been implemented. Its basic
design and implementation focuses on using
modified existing models, while allowing them to
be linked with newly-developed modules as well

14. HiVal has implemented decision logic, based
on user-selected MOEs and system
configurations, which automatically constructs
the correct linked network of simulations, data,
etc. for evaluating an alternative

15. HiVal currently includes traffic, vehicle
control, environmental, safety, and cost model
classes

TASC Task R Page 17

13

TABLE 4-3: Design Requirements for an AHS Simulation and
 Decision Support System

DESIGN GOALS HiVal DESIGN

1. It is realized that implementation should
involve modification/extension of existing
models (such as SMARTPATH) , and their
integration

2. Incorporation of evolving AHS
operational effectiveness models as they are
developed

3. Information used by a Driving Simulator
would be stored in the system database file

4. Provide data files for concepts, scenario
and system configuration databases

5. Provide data files -- weighted evaluation
criteria, results to evaluators

1. A fundamental premise of HiVal’s
implementation has always been the
incorporation of existing models. A general,
flexible computing structure to integrate
them has been demonstrated

2. It will be easy to incorporate such new
models into the HiVal computing hierarchy
as alternative “traffic” models

3. HiVal DIS (Distributed Interactive
Computing) connections allow linkages
between HiVal traffic modules interactive
driving simulators. The HiVal prototype has
a uni-directional DIS connection that allows
interactive 3-D visualization of traffic
scenes. With “DIS-enabling” of traffic
simulations and full-scale taffic simulators
(e.g. Iowa Driving Simulator), direct
interfaces between HiVal and driving
simulators can be achieved

4. HiVal incorporates similar files in its
concept evaluation decision logic, its storage
of pre-defined roadway geometries and
default parameter input files, and its storage
of files of representative system
configurations

5. HiVal stores MOE and evaluation output
data in its central database, and provides
unified graphical modules to display the
results extracted from these files to
evaluators

TASC Task R Page 18

14

4.2 System Architecture Specification

This activity defined both the functional and computational architectures for the HiVal

system. The functional architecture includes the topology of the overall HiVal hierarchy, how

modules are linked, how modules are implemented, what the interface standards between modules

are, and what level of fidelity a module operates at. These details have been developed for those

elements of HiVal that comprise the prototype demonstration (e.g. SmartPath, FRESIM/AHS,

Mobile5a), and are illustrated in Section 6. The requirements for developing “transfer functions” or

aggregate measures which combine detailed outputs of a low level module into a “lower fidelity”

input for a higher-level module have been defined for each module pair in HiVal. The computational

architecture includes a description of the hardware and software used to implement HiVal. This

includes the choice of computing paradigm as well, e.g. a client-server structure.

4.2.1 Major Functional Elements

The overall functional architecture of HiVal is given in Figure 4-1.

User
Questions

Executable Custom
Model Network

Performance
& Benefits

Results

HiVal Computing Infrastructure

“Smart” model library

Model linkage functions

Full model I/O access

Central Database

Guided decision analysis

Data visualization

 DCE model server network

Tools for add-ons

Figure 4-1 HiVal Computing Architecture for Flexible Guided Analysi s

The top part of the figure shows HiVal’s high-level operating principles. A series of analysis or

decision “questions” are posed by the user. These are a combination of scenario definitions and

TASC Task R Page 19

15

output measures of effectiveness the user wishes to evaluate. Based on these inputs, a custom

executable model network is built by HiVal. HiVal uses a small system of rules to define the right

network. Along with the analysis network, HiVal provides appropriate sets of default input

parameters need to run the network. Figure 4-2 presents one of HiVal’s interface screens showing a

simple analysis network.

 Figure 4-2 HiVal Interface and Analysis Network

Once the network had been run, analysis results are provided in consistent graphical, tabular, and

animation formats. Results are stored in a central database which can be accessed later for additional

analysis and comparisons. The lower portion of the figure summarizes the key elements of HiVal’s

computing infrastructure that provide simulation and decision support capabilities. The next sections

describe each of the computing infrastructure elements in more detail.

“Smart” Model Library -- HiVal’s model library is currently divided into five

categories of module types. With each module category, there are one or more models of that type.

For example, for the AHS “Traffic” module type, there are currently two specific models,

FRESIM/AHS and SmartPath. Table 4-4 lists the current HiVal module categories and models in the

library. Descriptions of these models can be found in the PSA final reports and other technical

produced by each of the appropriate organizations. The number and definition of model categories is

flexible and can be easily modified -- these were chosen as representative for the prototype.

Additional AHS models were evaluated for inclusion into HiVal, but were not included at this time

due to the constrained scope of the prototype development. The Simulink TM application, not

TASC Task R Page 20

16

originally planned for HiVal, is needed to run two late-arriving control models. These models are

included in HiVal and are ready-to-run once Simulink TM is acquired.

TABLE 4-4 Module Categories and Specific Models in the
 HiVal Prototype

MODULE CATEGORY MODEL DESCRIPTION AND CONTRIBUTOR
Vehicle Control • Lat/Lon Control -- California PATH

• Platoon Lon Control* -- Calspan
• Platoon Lon Control*-- Martin Marietta

AHS Traffic • FRESIM / AHS -- FHWA
• SmartPath -- California PATH

Safety • Platoon Collision -- Calspan
Emissions • Mobile5a -- EPA (Environmental Protection Agency)

• Power Demand Emissions -- UC Riverside

Cost • Cost Estimation -- Parsons Brinckerhoff
* Requires Simulink Application, not included in delivered prototype system

These models, along with additional RSC configuration files and stored highway geometries,

constitute the HiVal model library. When a HiVal user is defining an analysis scenario, he selects a

set of measures of effectiveness and a RSC. HiVal uses a small system of rules to select appropriate

models based on these inputs. Appropriateness is defined along several dimensions:

• Which models are appropriate for use with the selected RSC
(appropriateness means consistency of RSC and underlying modeling
assumptions)

• Which models are appropriate for the selected measures of effectiveness
(which models can compute these MOEs)

• Which models can be legitimately linked together to form an analysis network
that correctly accounts for dependenci es between models (which models can be

linked in a way that is compatible with the theoretical assumptions and algebraic
outputs of the models).

HiVal’s “smart” model library analyses the requests against these dimensions and automatically

selects an appropriate network. The system allows the user to override the automatic choices when

more than one option exists, but prevents the user from making incorrect or incompatible network

definitions.

DCE Wrappers and Network -- Client server technology is the primary element of HiVal’s

distributed computing architecture. The role of software “wrappers” in HiVal is to encapsulate

existing or legacy software, without the need to rewrite or extensively modify existing software, and

allows two previously incompatible elements to operate together in a common computing

TASC Task R Page 21

17

environment. This is extremely important for an AHS simulation and decision support environment

that can be adaptively expanded as new AHS elements, and the software to analyze them, are

continually developed as AHS concepts themselves evolve. For HiVal, that environment is provided

by DCE, Distributed Computing Environment, a commercial client server development and run-time

environment. DCE also provides full network management services for both local and distributed

networks, including communications management, management of dynamic network resources, file

service, time synchronization, and security services. Additional discussion of client server technology

is presented in section 4.2.3.

Model Linkage Functions -- While code wrappers permit models to be connected in a

software sense, linkage functions allow models to be connected in an analytic sense. They specify

how data from one model is exchanged between other models. The exchange can be a direct mapping

to account for differences in data formats, but is usually more elaborate, requiring transformation or

aggregation of data. An example of this is the conversion of time-domain vehicle time history data

from the SmartPath AHS traffic simulation into aggregate histograms for use as input to the Mobile5a

particulate emissions model. Linkage functions are also constructed to ensure that the analytic

connections made are compatible with the underlying theoretical assumptions of individual models.

Examples of linkage functions are provided in Section 6.

Guided Decision Analysis -- At the highest level, HiVal can operate as an automated

decision support tool, providing fully-guided decision analysis. Once the user has specified the

analysis questions and scenarios of interest, all the remaining steps of the analysis can take place

automatically. These steps include: formation of the analysis network; selection of default input

parameters for each model; execution of all models in the network; standardized graphical display of

all output results and measures of effectiveness. This process can proceed under the complete

guidance of HiVal.

Full Model I/O access -- HiVal is designed to allow the user to operate on multiple levels of

sophistication in order to serve a wide range of analysts and their needs.

While HiVal can operate as an automated, system-level decision support environment, the need to be

able to support “expert” users requiring detailed access to elements of the system is also provided in

the system architecture. Users can override the default analysis network by making alternative

selections of models within a module category (where HiVal will only allow the user to select options

that are consistent). For any model, the default input parameters can be accessed and edited. To

facilitate consistent analyses, HiVal provides the user with pre-defined graphic and numeric outputs

corresponding to selected output results. Recognizing that some users may want to see more

customized or traditional outputs from a single model, HiVal permits full on-screen access to the

TASC Task R Page 22

18

“raw” output files from any given simulation. These output files are also stored in HiVal’s database.

Thus any model within HiVal can be run on its own with all of the functionality that it would have if

run independent of HiVal. In addition, users can modify HiVal’s lists of pre-stored output types to

include any other results they wish to standardize.

Central Database -- In order to facilitate scalabilty of the system and simplify the explicit

connections required between models, HiVal uses a central database to store all system data. Both

dynamic (generated by a simulation) and static (pre-stored in the database) parameters are managed

by the database. Linkage functions connect models via the database, working as “pre-processing”

functions for model inputs, and as “post-processors” for model outputs. The central database in the

HiVal prototype is currently a flat file database maintained by the database server. However, HiVal’s

modular design and client server architecture make it easy to include a more powerful database

structure (such as a commercial SQL relational database) into HiVal as required.

Standardized Data Visualization -- Individual models developed independently over time

all present their outputs in different ways, usually textual rather than graphic. The analyst is required

to design compatible and consistent ways to compare outputs, and to manually process those outputs.

HiVal, however provides the analyst with standardized data visualizations that are automatically

selected, prepared, and displayed. Visualizations include histograms, x-y multiple line plots, tabular

displays, and 2-D animations and 3-D animations output data. These visualization routines are

written as reusable tools which can be applied to any suitable data within HiVal.

Tools for add-ons -- A key element of HiVal is its extensibility and flexibility -- the

architecture has been designed under the assumption that the models and databases within the system

will change. The client server paradigm, in conjunction with software wrappers, linkage functions,

and re-usable output prototypes have been implemented to facilitate adding new module categories,

models, and results displays. The procedures for adding new elements to HiVal are discussed further

in Section 6.

4.2.2 Distributed Computing Architecture

HiVal uses a general distributed computing environment to provide flexibility and

functionality. Distributed computing involves the cooperation of more than one computational engine

communicating over a network. The machines in the network can range from supercomputers to PC’s

to “virtual” machines resident in a single physical machine. The networks can be local, or can span

large geographic distances. Two types of distributed computing paradigms are implemented in HiVal:

client server-based simulation, and, in a secondary way, DIS (Distributed Interactive Simulation)

TASC Task R Page 23

19

protocol links for interactive 3-D visualization. The primary paradigm is client-server-based

simulation.

4.2.2.1 Client Server Computing

One architecture for implementing distributed simulations is the client server architecture (the

material in this section is adapted from Ref. 3). In this architecture, the distributed application is

divided into two parts, one on each of two computing elements (which are often, though not

necessarily, different computers). The two parts communicate over a network, either local or wide

area. Figure 4-3 illustrates the basic client server architecture.

Client Server

Request

Response

Figure 4-3 The Basic Client Server Architecture

The client portion of the application resides on the node that initiates the distributed request and

receives a “service” from another node. The server process receives and executes the distributed

request. The terms “client and server” are relative roles. They depend on which process is invoking a

request for service, and which is providing it. For example, client process may also act as a server

process if it receives a request for service from another client. Often, major clients in an application

are implemented as continuous processes, whereas the server is implemented as part of a library, i.e.

as a process which runs when called, returns a result, then awaits the next call to execute.

In HiVal, the client process is initiated from HiVal ’s graphical user interface, and includes the

selection of models, construction of the hierarchy, and management of input and output requirements.

Individual models, such as FRESIM/AHS or Mobile5a, are implemented as servers. Figure 4-4

illustrates the HiVal client server architecture, software wrappers, and linkage functions.

TASC Task R Page 24

20

Model
Server #1

Model
Server #2

Encapsulating Wrapper Encapsulating Wrapper

Linkage Linkage

Custom Model Network

“Smart” Model Library

Analysis Queries
HiVal Client #1

Central
DatabaseDCE / NFS DCE / NFS

--

Visualization
Server #1

Encapsulating Wrapper

Linkage

 Figure 4-4 HiVal’s Client Server Architecture

HiVal implements the client server architecture using the OSF ’s (Open Software Foundation)

DCE (Distributed Computing Environment). DCE is a layer between the operating system and

network on one side, and the distributed applications on the other. DCE provides the services that

allow a distributed application to interact with a collection of heterogeneous operating systems,

computers, and networks as if they were a single system. DCE is an open standard, meaning that

maximum compatibility with present and future commercial products is ensured. DCE supports

various specialized elements of the client server architecture, including the data sharing model and the

RPC (Remote Procedure Call) model. In HiVal, RPC’s are used to allow high-rate feedback loops

between connected models, in contrast to models that can run sequentially without feedback. Both

kinds of client server connections are supported by HiVal’s design. For example, a linkage between a

traffic model like SmartPath and an emissions model like Mobile5a requires no feedback. A linkage

between FRESIM / AHS and a Lat/Lon vehicle control model, on the other hand, will require high-

rate feedback, and the RPC model would be used in this case. RPC have been implemented in the

HiVal software architecture, but have not yet been implemented for any specific pair of models in

HiVal. This is due to the constraints on the scope of the HiVal prototype development weighed

against the extra analysis and software effort required to modify an existing traffic model to connect

with a sophisticated vehicle control model. The software infrastructure for this is in place within

HiVal, and there are no major theoretical obstacles to performing such a linkage. For additional

information on DCE, see Ref. 3.

TASC Task R Page 25

21

4.2.2.2 DIS Connections to HiVal

HiVal’s computing infrastructure has been designed to explicitly provide a flexible

architecture that can be expanded to integrate new analysis resources as they are developed. One

example of such a resource is HiVal’s connection to DIS (Distributed Interactive Simulation) tools.

This technology was originally developed for military applications under DoD sponsorship, and has

been adopted as an International simulation standard, IEEE-Std-1278-1993 (Ref. 4). The Principal

Investigator for HiVal serves on a DIS Standards Special Interest Group for ITS applications. As part

of a TASC internal R&D project to apply DIS technology for ITS, HiVal was used as a testbed for

linkage to a DIS -based tool called IVHSim. As a result of this synergistic work, HiVal has a linkage

to DIS visualization tools. This linkage allows outputs of conventional traffic simulations, such as

FRESIM / AHS, to be rendered and displayed in an interactive 3-D animated scene. 3-D vehicles

move down the highway, and the analyst can interactively move through the traffic scene, affix

himself to particular vehicle, and experience multi-directional views. Figure 4-5 is an example of this

DIS-based traffic visualization, showing different views available simultaneously in different display

windows.

 Figure 4-5 DIS-based Traffic and Infrastructure Visualization

Compatibility with DIS technology offers several advantages for an AHS simulation and

decision support environment. These include:

TASC Task R Page 26

22

• Multi-perspective 3-D views of traffic simulation outputs for qualitative
analysis and verification of simulation outputs

• Presentation of AHS concepts to stakeholders in a natural way that has high
visual impact and conveys concepts effectively and efficiently

• High-fidelity representations of traffic and infrastructure for selected AHS
human factors studies

• Linkage to DIS-enabled driving simulators that take advantage of DIS two-way
communications to allow drivers to interact directly with DIS-enabled AHS traffic

simulations.

The HiVal architecture and its IVHSim linkage provide a substantial foundation for continued

transfer of military DIS technology for AHS analysis needs.

4.3 Standards and Interface Requirements

This activity defined the hardware and software interface standards, as well as the data

interchange protocols for elements of the HiVal system. Standards appropriate for different

distributed computing environments were evaluated for their use in HiVal. Client server standards

based on the Open Software Foundation’s Distributed Computing Environment (DCE) was selected.

Technologies and concepts used in Distributed Interactive Simulations (DIS), and object-oriented

distributed simulation, such as the Common Object Broker Request Architecture (CORBA), are also

used as appropriate. Data interchange protocols are defined for specific modules that are derived from

PSA and related AHS studies. Some general standards and interface guidelines for those developing

software specifically for HiVal are included in Section 6.

4.4 Prototype System Development

The major output of this project is a working AHS simulation and decision support system: a

prototype of the HiVal system. Rapid prototyping and interactive software development strategies

were used to ensure that flexible, reusable software components resulted. In addition to validating the

HiVal concept, the prototype serves as a valuable, concrete “design tool” for development of overall

system requirements and architecture specification. A variety of models from both the PSA and

broader AHS research communities are included in HiVal. Modules operating at different levels of

fidelity are employed, and demonstrate the integration or “transfer” of outputs to inputs for disparate

module structures. Guidelines for procedures and techniques for developing software, interfaces and

protocols for new elements of the HiVal testbed that will be added in the future have also been

developed, and are presented in Section 6.

TASC Task R Page 27

23

4.4.1 Hardware and Software in the Prototype

The HiVal product has two dimensions: the extensible computing infrastructure it provides,

and the specific software and hardware within the system at any one time. The HiVal prototype

collects together the best existing AHS simulation and decision support software resources, and

modern computing hardware, to provide a useful tool for today’s AHS analysis. Table 4-5 lists the

software in the prototype, the language it is written in, and the organization that provided the software

for HiVal. The Table points out the wide range of different software languages that have been

seamlessly integrated together within the distributed client server architecture.

TABLE 4-5 Software Elements in the HiVal Prototype

FRESIM / AHS Traffic Model Fortan FHWA
SmartPath Traffic Model C PATH
Mobile5a Emissions Fortran EPA
Power-demand Emissions Matlab U.C. Riverside
Lat / Lon Control C PATH
Platoon Lon Control * Simulink Calspan
Platoon Lon Control * Simulink Martin Marietta
AHS Platoon Collision Matlab Calspan
Cost Estimation Matlab(Lotus 1-2-3) Parsons-Brinckerhoff
2D Traffic Animator C TASC
3D Visualizer link C++, DIS TASC
System Configuration Files C Calspan
Stored Highway Geometries ASCII TASC
* Requires Simulink, not included in delivered prototype system

 The HiVal prototype consists of three primary pieces of hardware: a Sun workstation running

Unix/X Windows, a 486-PC running MS Windows, and an ethernet connector hub for the HiVal

LAN. Although not part of the HiVal system itself, a Silicon Graphics workstation interfaces with

HiVal for DIS-based visualization. This hardware configuration is illustrated in Figure 4-6.

TASC Task R Page 28

24

Sun IPX
Unix / Motif

• Client, Servers &
 Database

PC 486/DX2-66
MS Windows

• Servers

Ethernet LAN

SGI
Unix / Motif

• 3-D DIS Visualization

HiVal HiVal

IVHSim

Figure 4-6 Hardware Configuration for the HiVal Prototype and
Adjunct IVHSim Visualizer

4.5 HiVal’s Ability to Grow

The HiVal system architecture has been specifically designed to be extensible. This is in

recognition of the fact that AHS modeling and simulation is not static -- it will continue to evolve and

improve as research continues. An AHS simulation and decision support tool must be able to adapt

and expand as well, without the need to “break” and rebuild the tool. HiVal’s software architecture

achieves this adaptibility by using distrubuted client server computing, software wrappers, analytic

linkage functions, a central database, and modular design principles.

Software Architecture -- HiVal’s software design puts no limit on the number of module

categories or specific simulation models that can be part of the system. Any number of models can be

added to any of the existing module categories. Any number of pre-selected MOE can be added to

HiVal. HiVal’s software architetcure facilitates such additions. Additional module categories can also

be easily added to the system. This would require minor modification of the HiVal client graphical

interface, which currently has five module category “slots” displayed. The underlying code for the

GUI is object-oriented and can easily be extended to add additional module categories. If a large

number of additonal module categories were added (more than ten total, for example), the current

GUI design might require some modification to ensure that it remains user-friendly.

Hardware Architecture -- HiVal’s general hardware architecture also puts no limit on the

number of models or databases that can be added to the system. Under the prototype hardware

configuration, simulation servers can be hosted on either the Unix workstation or the MS

WindowsTM PC. The ethernet hub on the HiVal prototype LAN has six unused ports, to which up to

TASC Task R Page 29

25

six additional computers that host servers can be added. This permits an easy, major expansion of

HiVal’s computing capability. While there is no limit to the number of simulation or database servers

that can be hosted on a single computer, performance of the system will be degarded if any single

computer is “overloaded” with servers. A computer is overloaded with servers if the amount of RAM

available for each server is low enough to require frequent paging / memory swaps, or if any single

server is computationally intensive enough to “block” the execution of other servers. In the prototype

HiVal configuration, up to five servers are available to run simultaneously on the PC hardware with

16 MB RAM. While several of these (using Matlab and Simulink) are computationally intensive,

system performance remains good. The HiVal prototype has approximately 1.5 GB total of hard disk

storage space available. Obviously, there are limitations on the size that the HiVal database can be

under this

configuration (after disk space has been allocated to operating system and application software).

However, there is no limit on how much additional hard disk storage can be added to HiVal.

TASC Task R Page 30

26

5. HiVal USER GUIDE

This section presents an informal user guide to the HiVal system. Since HiVal was

developed as an engineering prototype under the PSA activities, the software documentation

presented in the section and in Section 6 are informal.

5.1 Requirements for Running HiVal

HiVal uses a variety of specialized system and applications software to implement its

AHS simulation and decision support environment. It uses advanced, but relatively standard,

workstation and PC technology. All of the system software is commercially available. The

applications software was supplied for use in the HiVal project by the organizations identified in

Table 4-3 above. Table 5-1 lists the hardware and software that make up the HiVal system and are

required in order to run all of the applications listed in Table 4-3. Licenses to several commercial

products are required for HiVal.

TABLE 5-1 Minimum Requirements for Running HiVal Prototype

Hardware:

1 Sun workstation with 1 Gb disk space, minimum of 16 Mb memory, running

Solaris 2.3 (or Sun OS 5.3)

 1 RGB monitor, preferably 19"

 1 PC486-compatible with monitor and at least 500 Mb disk space, minimum
16 Mb physical memory, one 3.5" floppy drive, running DOS 5.1 or later

 1 PC-compatible ethernet card with an ethernet 10BaseT adapter

 1 Ethernet 10BaseT concentrator

 1 MicroMau Thicknet-to-10BaseT convert er for the Sun workstation

 2 Unshielded, twisted pair ethernet cables with 10BaseT connectors

TABLE 5-1 Minimum Requirements for Running HiVal Prototype (Continued)

TASC Task R Page 31

27

System Software:

 1 TransArcTM DCE 1.0.3 base services run-time license for the Sun workstation
(Solaris 2.3)

 1 OSF Motif libraries for the Sun

 1 Perl scripting environment

1 GradientTM DCE 1.0.2 license for the PC

 1 MS WindowsTM 3.1 or higher

 1 FTP Software run-time license for the PC

Applications Support Software:

1 LaheyTM Fortran Compiler

1 ANSI-C Compiler for Solaris 2.3

1 ANSI-C Compiler for DOS/MS Windows

1 MatlabTM with Control toolbox for PC

1 SimulinkTM for PC

Applications Software:

1 Each of the application models and databases listed in Table 4-5

5.2 Accessing the HiVal System

Inquiries about gaining access to the HiVal system should be directed to J. Richard

Bishop, FHWA Turner Fairbank Highway Research Center.

5.3 Using HiVal for Analysis

HiVal employs an interactive GUI (Graphical User Interface) developed using human factors

and man-machine interface design principles. The X / Motif - based GUI provides the use with access

to the full range of HiVal analysis products, from animations of traffic flow to MOE histograms to

ASCII files of output results. This section presents a sequence of screen images from a run of the

HiVal system that illustrate how the system is used.

TASC Task R Page 32

28

5.3.1 Starting the HiVal System

The first step in starting up the HiVal system is to initailize the server processes on their

respective hosts. The client server paradigm allows servers in the system to be registered either

statically or dynamically with respect to clients. The prototype HiVal system is static in this regard

and therefore requires all servers to be started and registered before launching the main client process,

which is the HiVal graphical interface. During the runtime initialization of a server process, the server

is automatically registered in the HiVal system database.

Windows-based Servers -- For the modules hosted on the PC platform the server is started

by opening an individual server window from its iconic state in the Gradient DCE group, and then

pressing the Start button. Two registration shells are automatically be spawned and reside on the

screen in iconic state. The server window posts a message that it has registered with the HiVal system

and is awaiting remote client requests. Once the captions of the registration shell icons indicate that

they are inactive, those shells may be closed.

Unix-based Servers -- Modules hosted on the Unix platform also have server processes that

must be started before the main client process. To start a Unix based server, open a new window,

change directories to the appropriate module directory and start the server process by entering the

executable name at the command line. The Unix server processes also automatically register the

server with the HiVal system.

 HiVal Client -- Once all servers have registered and are “listening” , the HiVal client

interface process can be started in the same fashion as any other Xwindow process. Since the system

is currently an engineering prototype, its directory structure does require that the interface be

launched from the directory ~hival/hival. Initialization messages describing which servers are

currently registered are posted by the client interface. At this point the user begins to build a HiVal

scenario, as described in Sections 5.3.2 ff.

 Stopping the Servers -- Servers can be left active for an arbitrary length of time over the

course of an arbitrary number of client lifetimes. However, when the server is halted it must remove

its registration from the HiVal system. PC-hosted servers should be terminated by pressing the

Cancel button on the server window, and Unix-based servers should receive the appropriate key

sequence, nominally 'q' , as directed on the screen. The server process must terminate NORMALLY

to have its registration removed automatically. In the case that a server terminates abnormally (i.e.

GPF on a PC or a fatal error such as SIGSEG on the Unix platform), it is recommended that the

server be started again and terminated correctly to accomplish the registration removal.

5.3.2 Menu Options

HiVal has a conventional set of pull-down menus as part of its interface, illustrated in Figure

5-1. These menus and the items they contain are illustrated in Figure 5-2. Underlined items are

TASC Task R Page 33

29

currently implemented in the HiVal prototype. Remaining items are part of the system design, but are

not yet implemented.

FILE PARAMETERS COMMANDS RESULTS
New Control Execute Control
Open Traffic Cancel Traffic
Save Scenario Safety Safety
Save Scenario As Emissions Emissions
Save Output Cost Cost
Save Output As All All
Print
Exit

 Figure 5-2 HiVal Menu Options

The functions of these commands are:

• New -- create a new analysis scenario

• Open -- open an existing scenario

• Save Scenario -- save to a file a newly create scenario not previously saved

• Save Scenario As -- save to a file an already-saved scenario under a new name

• Save Output -- save to a file the output created by a run

• Save Output As -- save to a file the an already-saved output under a new name

• Print -- print the contents of a window

• Exit -- exit HiVal

• Execute -- execute a scenario

• Cancel -- cancel an executing scenario

5.3.3 Scenario Definition

A HiVal session is started by selecting New from the file menu on HiVal’s opening screen. A

dialog box entitled HiVal: Create New Scenario appears, and the user types a name for the scenario

that is being started. Scenario is HiVal’s term for an analysis session. Figure 5-3 presents an example

of the dialog box for naming scenarios. Once a name has been entered, click OK to proceed or Cancel

to remove the dialog box.

After a scenario name is submitted, the Scenario Editor: Name screen appears, where Name

is the name given to HiVal in the Create New Scenario dialog box. This is illustrated in Figure 5-4.

The editor screen is divided into an upper and a lower half. In the lower half, the user can select one

of the 12 Calspan RSC. The Current RSC section of the lower panel is a mapping of the Calspan

RSC onto another set of descriptive parameters to provide another view of the RSC characteristics

and facilitate comparisons with other PSA RSC. In the upper half of the screen, the user can make

queries in any of the five module categories in the HiVal prototype (Control, Traffic, Safety,

Emissions, Cost). Selections in these categories can be made in either the Question or Module mode.

In Question mode (selected by means of diamond-shaped push buttons at the top of the screen), MOE

TASC Task R Page 34

30

(measures of effectiveness) choices appear under each of the five categories. For example, velocity

histogram is a traffic module MOE, while particulate emissions is an emissions module MOE. In

Module mode, names of the modules, rather than MOEchoices, appear in each category as selectable

items. This provides functionality for a range of users -- from those who wish to select models

directly, to those who prefer to work at the MOE / decision support level.

The selection of a RSC and MOE (or module) combinations triggers HiVal ’s “smart” model

library manager. Only those models in the library which are theoretically and functionally compatible

with both the choice of RSC and MOE can be accessed. HiVal prevents the user from making

incompatible choices by disabling (and showing in italic font) selection options which are not valid.

For example, Figure 5.3 shows that RSC#2 has been selected. Under the traffic module MOE listing,

this has caused the Aborted Lane Change MOE to be disabled, because there is no model in the

library which can simultaneously model RSC#2 and produce outputs to compute this MOE. Once the

user has defined the RSC and MOE desired, clicking OK begins HiVal’s analysis hierarchy

construction.

5.3.4 Editing and Running A Scenario

HiVal constructs an analysis hierarch y consistent with the RSC and MOEs selected, choosing

a default set of parameters and models (if more than one set is applicable). This construction is

represented by the network display of the analysis hierarchy, as shown in Figure 5-5. The upper

portion of the screen shows the selected module categories and specific modules chosen by HiVal,

for example FRESIM/AHS for Traffic, and Mobile5a for Emissions. Lines connecting modules show

data dependencies between analysis modules. The bottom segment of the screen summaries the RSC

and echoes the Questions (MOE) selected. There is a Modify Scenario button which allows the user

to return to the Scenario Editor screen.

Each of the boxes representing module categories has three push buttons on it. Two of these

boxes are enables at this stage of the HiVal analysis, Modules and Parameters. Pushing these buttons

brings up a dialog box, as illustrated in Figure 5-6. Clicking on Modules brings up a Modules List

box which indicates what module has been selected, what modules are in the library, and which of

them are compatible with the scenario the user has defined (incompatible items appear in italics and

are not selectable). The user can change the selected module in a category at this point. When the

Parameters button is pushed, a dialog box appears showing input parameters for the selected module

that can be edited as desired. Pre-stored values of the parameters derived from HiVal’s database

appear by default, including their units and ranges of acceptable values where applicable. The

parameters can be edited by pushing the associated buttons with three dots ([. . .]) in the

Parameter List window. For each of these buttons, another dialog box appears into which new

parameter values can be entered. Clicking OK closes the dialog box and applies the changes the user

has made.

TASC Task R Page 35

31

To now run the network that has been created and initialized, the user selects Execute from

the Commands menu. This initiates the analysis and the calls to the various servers that host the

different analysis modules. To help in monitoring the status of the run, the selected module name that

appears at the top of each of the module category boxes is highlighted in red when the module is

running. The entire top portion of the module category box is highlighted in red when execution of

that module has completed. When a module has completed its run and produced outputs required to

compute a selected MOE (or Answer to a Question in HiVal’s terminology), a push button appears

next to that MOE, as indicated in Figure 5-7. Pushing one of these buttons brings up an appropriate

display of the individual analysis result.

5.3.5 Displaying Results

HiVal provides a variety of pre-specified results displays for each MOE in the database.

When the Answers button next to each Question at the bottom of the screen is pressed, a new window

with an appropriate pre-selected output format appears. Answers can be viewed repeatedly, and in

any order. Figure 5-8 presents an example of velocity histograms for a scenario in which AHS lanes

and conventional lanes exist on the same highway. Figure 5-9 illustrates tabular output of particulate

emission concentrations for two vehicle classes. In addition to pre-selected MOE, the user has direct

access to complete raw outputs of a module run by clicking on the Results button on a module box in

the network. As appropriate, a dialog box appears when there are multiple output files to choose

from. For example, Figure 5-10 shows a selection made from the Results button in the Traffic

Module. It provides a scrollable window containing the standard ASCII text outputs of the FRESIM /

AHS run. In this way, the user has maximum flexibility to analyze results.

In addition to numerical outputs, the HiVal project developed two forms of animators than

can be used with HiVal. The first is a simple 2-D traffic vehicle animator which is contained within

HiVal as one of the traffic Question/MOE options. Figure 5-11 shows an example of the outputs,

where six manual and one automated highway lanes are simulated. The 2-D animator displays the

roadway in terms of links, rather than physical geometry, to simplify the presentation. It is designed

for quick “sanity checks” of simulations. Other more sophisticated 2-D animators, such as those

being developed under FHWA sponsorship for the CORSIM family of models, can be easily

integrated into HiVal. HiVal, when used in conjunction with the DIS-based animator IVHSim in a

post-processing mode, can produce high-fidelity 3-D interactive visualizations of dynamic traffic

scenes.

TASC Task R Page 36

T
A

S
C

T
ask R

P
age 37

T
A

S
C

T
ask R

P
age 38

T
A

S
C

T
ask R

P
age 39

T
A

S
C

T
ask R

P
age 40

T
A

S
C

T
ask R

P
age 41

T
A

S
C

T
ask R

P
age 42

T
A

S
C

T
ask R

P
age 43

T
A

S
C

T
ask R

P
age 44

T
A

S
C

T
ask R

P
age 45

T
A

S
C

T
ask R

P
age 46

42

6. HiVal PROGRAMMING GUIDE

This section provides a guide to the detailed software structures a nd elements underlying

HiVal. It describes the Unix directory structure of the HiVal prototype, presents lists of MOEs and

database elements, and provides information on how to add new elements to HiVal. This includes

suggested programming guidelines for new models being developed, and examples of linkage

functions and C-code “wrappers” for use as templates.

6.1 Adding a New Module to HiVal

HiVal has implemented a variety of formal software structures to modularize and faciltate the

addition of new modules. The steps that are required to add a new module or database element to

HiVal are :

• Specify new configuration file
• Define any new questions (MOE) and scripts to process them
• Define linkage functions (input and output)
• Specify software wrappers and/or RPC interfaces
• Modify module selection logic for the scenario editor.

The easist way to understadn this procedure for the HiVal prototype system is to review these

elements for an existing HiVal software module, such as FRESIM / AHS. The following sections

present examples of the elements needed to add a new software module to HiVal. Programmers can

review the HiVal source code for additional examples.

6.2 Directories and Configuration files

This section presents the Unix directory structure of the HiVal prototype, as well as a directory

of the configuration files specifying models, questions (MOEs), and RSC.

The directory structure specified below should be replicated by server platforms to the extent of the

server and application directories. The modules pre- and post-processors will read from and write to

the data base through database system calls. Servers should

mount to the directory:

 ~hival/hival

and put data in the directory $(CATEGORY)/$(MODULE)/io for local use and transfer.

Each module entered into the HiVal infrastructure must have a module configuration file.

The configuration files have a structured naming convention, $(CATEGORY).##.module, where ## is

the next number in sequence starting from 00 for the given module category. Configuration files

must reside in the directory:

~hival/hival/database/config/modules

Examples of module configuration files are provided below.

TASC Task R Page 47

43

The RPC servers for each module must register their string binding at each start up and

unregister when they are shut down. Scripts for performing the registration steps

are provided. All that need be changed in the script is the module name which must match the

module name in the configuration file.

Adding a new module to the HiVal infrast ructure currently requires a re-compilation of the

interface. At this time the server header file, $(MODULE).h, must be placed in the

~hival/hival/include directory and the client code body $(MODULE)_cstub.c must be added to

the hival makefile target $(CLIENTS) and copied into the directory

~hival/hival/interface/src. In version 1.0, the HiVal client file server_execution.c must

be edited. Add a new case for the module in the function CallServer, where the literal

"$(MODULE_NAME)" is identical to the title argument (the first word) in the module's configuration

file.

HiVal V1.0 Directory Structure

hival/include: \ database and gnuplot
hival/lib: / libraries

hival/interface: | HiVal client and user interface
 /interface/audio:
 /interface/uid:
 /interface/src:
 /src/uil:

hival/database:
 /database/bin: | db system calls and question pre-processor binaries
 /database/src:
 /database/config:
 /config/modules: \ dynamic configuration
 /config/questions: > files scanned by HiVal
 /config/rscs: / at launch

hival/matlab:

hival/control:
hival/control/Questions: #
 /control/cs_cont: | Calspan control models (MATLAB)
 /cs_cont/io: %
 /cs_cont/src:
 /control/ucbcontrol: | PATH control models (C)
 /ucbcontrol/io: %
 /ucbcontrol/src:
 /src/application:
 /src/client:
 /src/server:
 /control/mmccontrol: / pre- and post-processors, %
 /mmccontrol/io: < static, temporary, and local %
 /mmccontrol/src: \ data files %

hival/cost:
hival/cost/Questions: | Perl scripts for processing answers #

hival/emission:

TASC Task R Page 48

44

hival/emission/Questions: #
 /emission/mobile5a: | EPA emissions model (FORTRAN)
 /mobile5a/io: %
 /mobile5a/src:
 /src/client:
 /emission/pathemissions: | PATH emissions model (MATLAB)

hival/safety:
hival/safety/Questions:

hival/traffic:
hival/traffic/Questions: #
hival/traffic/animator: | 2D Animator (Xwindow,C)
 /animator/io: %
 /animator/src:
 /src/application:
 /src/client:
 /src/server:
 /traffic/fresim: | FHWA freeway simulator (FORTRAN)
 /fresim/io: %
 /fresim/src:
 /src/application:
 /src/client:
 /traffic/shahsam: | Stealth Animator (DIS,C++,C)
 /shahsam/io: %
 /shahsam/src:
 /src/application:
 /src/client:
 /src/server:
 /traffic/smartpath: | PATH traffic simulator (C)
 /smartpath/io: %
 /smartpath/src:
 /src/application:
 /src/client:
 /src/server:

HiVal V1.0 Configuration Files

hival/database/config/modules:

control.00.module Lat/Lon Control PATH (C)
control.01.module Hi-Rate Lon Control PATH (C)
control.02.module Hi-Rate Lat/Lon Control PATH (C)
control.03.module Platoon Lon Control Calspan (Simulink)
cost.00.module Time/Cost Calculation P-B (Matlab/Lotus

1-2-3)
emission.00.module Mobile5A EPA (Fortran)
emission.01.module Power Demand Emissions UCDavis (Matlab)
safety.00.module Platoon Collision Det. Calspan (Matlab)
traffic.00.module Fresim/AHS FHWA (Fortran)
traffic.01.module Smartpath PATH (C)
traffic.02.module 2D-Animator TASC (X,C)
traffic.03.module 3D-Animation Streamer TASC (DIS,C++)

hival/database/config/questions:

control.00.question Position Trace
control.01.question Velocity Trace
control.02.question Acceleration Trace
cost.00.question Dollars Saved
emission.00.question Particulate Table

TASC Task R Page 49

45

emission.01.question HC Exhaust Trace
emission.02.question CO Exhaust Trace
emission.03.question NOx Exhaust Trace
safety.00.question Delta-v Histo
traffic.00.question Trip Duration Histo
traffic.01.question Throughput Capacity Histo
traffic.02.question Average Speed per Lane
traffic.03.question Velocity Histogram
traffic.04.question Acceleration Histogram
traffic.05.question Exit Success Rate
traffic.06.question Lane Change Success Rate
traffic.07.question 2D-Animation
traffic.08.question 3D-Animation Stream

hival/database/config/rscs:

rsc01.rsc
rsc02.rsc
rsc03.rsc
rsc04.rsc
rsc05.rsc
rsc06.rsc
rsc07.rsc
rsc08.rsc
rsc09.rsc
rsc10.rsc
rsc11.rsc
rsc12.rsc
rsc13.rsc

6.3 Constructing Representative System Configurations (RSC)

HiVal currently implements the twelve RSC developed by Calspan under the AHS PSA

program. These RSC are defined in terms of three parameters: infrastructure impact, vehicle

intelligence, and communications. They have also been mapped to an additional set of descriptive

parameters, consistent with some of the global RSC consolidation work performed by MITRE during

the PSA project.

The RSC parameter file contains the current set of twelve representative

system configuration parameters and their possible values. If new parameters are added to this file,

each of the rscXX.rsc files must be structurally augmented with the new parameter and an

appropriate value. If new values are added to an existing parameter , modification of the

rscXX.rsc files is not necessary unless the new value supersedes a previous value.

To create a new representative system configuration, construct the file ` rscXX.rsc' where

"XX" is the next integer in the series of existing file names. The file must have a title on the first

non-comment line (a comment line is any line beginning with #). The file must then have a single

line entry consisting of a colon separated parameter name/value pair for every RSC parameter. The

parameter entries may be in any order and separated by an arbitrary number of comment lines.

TASC Task R Page 50

46

RSC Parameter File:

infrastructure_impact ::
 High :
 Low :
traffic_synchronization ::
 Asynchronous operation :
 Mixed synch/asynch :
 Highly synchronized :
instrumentation_dist ::
 Smart vehicle :
 Mixed vehicle/roadway :
 Smart roadway :
operating_speed ::
 Low :
 Variable :
 High :
vehicle_class ::
 Light :
 Heavy :
vehicle_road_interaction ::
 Rubber tire :
 Pallet :
power ::
 On-board :
 Roadway-provided electric :
headway_strategy ::
 Single vehicles only :
 Platoons possible :
lat_control_strategy ::
 Passive infrastructure :
 Active infrastructure :
long_control_strategy ::
 Passive infrastructure :
 Active infrastructure :
control_location ::
 Mostly vehicle :
 Vehicle & infrastructure :
 Mostly infrastructure :
ahs_lanes_and_access ::
 Ramps :
 Transition lanes :
 Mixed traffic :

6.4 Measures of Effectiveness

HiVal uses a variety of pre-specified MOEs that are used to support consistent, automated

analyses. It is easy to add additional specific MOEs to accommodate the needs of individual users. A

directory listing of the MOE function implementations is presented below, along with examples of

two types of implemented MOEs that can be used as templates for developing additional customized

MOEs.

HiVal V1.0 Measures of Effectiveness

hival/control/Questions:

TASC Task R Page 51

47

PlotAccelerationTrace*
PlotPositionTrace*
PlotVelocityTrace*

hival/cost/Questions:

PlotValueSaved*

hival/emission/Questions:

PlotCOExhaustTrace*
PlotHCExhaustTrace*
PlotNoxExhaustTrace*
ShowParticulateEmissions*

hival/safety/Questions:

PlotDeltaVelocityHistogram*

hival/traffic/Questions:

PlotAccelerationHistogram*
PlotExitPerformanceBarGraph*
PlotLaneChangePerformanceBarGraph*
PlotMeanVelocityBarGraphs*
PlotThroughputCapacityBarGraphs*
PlotTripDurationHistogram*
PlotVelocityHistogram*

Graphical Display -- An example of a MOE (i.e. Question) which displays its results as a

plot function. This example is for a CO (Carbon Monoxide) exhaust trace from an emissions model.

#!/usr/local/bin/perl
#---#
Title: PlotCOExhaustTrace
Date: 11/11/94
Revision History: None.

This perl script plots the Carbon Monoxide traces in response
to the HiVal question "CO Exhaust Trace"

COMMAND LINE PARAMETERS:
AnswerFileName - the name of the file to which output is written.
Format for AnswerFileName is dictated by the
single_plot_form.uil file which specifies the X/Motif
display for this question's answer. Format is as follows:
PlotFile - name of the file to which the GNUPLOT is written.
Title - title for the file in PlotFile.

ERROR HANDLING: Errors such as incorrect number of command line arguments
are trapped and diagnostic text is written to STDERR via the perl "die"
command.

HiVal DATABASE DEPENDENCIES: 1 record(s):
CoExhaustTrace
The database utilization defined above should be reflected in the
question configuration file emission.01.question.

TASC Task R Page 52

48

See "Programming Perl" by Larry Wall and Randall Schwartz
(O'Reilly copyright 1991) for complete perl syntax descriptions.
#---#

Check the number of input arguments: $#ARGV = 0 means 1 argument was
passed not counting the name of this script.
if ($#ARGV != 1)
{
 die "Incorrect number of arguments.\n" .
 "Stopped";
}

Initialize some default variables.
$DB = $ENV{'HOME'} . "/hival/database/hival.db";
$SEM = $ARGV[0];
$answerfile = $ARGV[1];

Determine unique name(s) for the plot file(s) using the Solaris tempnam
C library function - place file(s) in /tmp with a prefix of "hival."
$plotfile = `tempnam /tmp hival`;

Check the exit value of the `tempnam...` call.
Exit if it is nonzero.
if ($? != 0)
{
 die "Could not create a temporary plot file name.\n" .
 "Stopped";
}

Remove the newlines from the end of the plot file names:
chop $plotfile;
$datafile = $plotfile . ".dat";

Determine the location of the exhaust trace data file.
@tracefilenamerow = `val_db $DB CoExhaustTrace`;
Check the exit value of the `val_db...` call.
Exit if it is nonzero.
if ($? != 0)
{
 die "Could not determine file name of the CO exhaust trace: ".
 "Stopped";
}
$tracefilename = $tracefilenamerow[2];
chop ($tracefilename);

if (!open(INPUTFILE, $tracefilename))
{
 die "Could not open temporary input file.\n" .
 "Stopped";
}
Assuming we have not exited, INPUTFILE must be available.
Determine the time range and co range.
while (<INPUTFILE>)
{
 next if /^#/;
 next if /^$/;
 s/^\s+//;
 s/\s+/ /g;
 chop($exhaustrow = $_);
 ($time, $co) = split (/ /,$exhaustrow);
 if ($. == 1)
 {
 $timemin = $time;

TASC Task R Page 53

49

 $timemax = $time;
 $comin = $co;
 $comax = $co;
 }
 if ($time < $timemin)
 {
 $timemin = $time;
 }
 if ($time > $timemax)
 {
 $timemax = $time;
 }
 if ($co < $comin)
 {
 $comin = $co;
 }
 if ($co > $comax)
 {
 $comax = $co;
 }
}
close(INPUTFILE);
Put link the data to the place where plot_trace can find it.
`ln -s $tracefilename $datafile`;
if ($? != 0)
{
 die "Could not link the co exhaust data to GNUPLOT input.\n" .
 "Stopped";
}

Draw the graphs.
`plot_trace $timemin $timemax $comin $comax \"CO Exhaust\" \"Time (s)\" \"CO
(g/mile)\" $plotfile`;

Check the exit value of the `plot_trace...` call.
Exit if it is nonzero.
if ($? != 0)
{
 die "Could not GNUPLOT the co exhaust trace on emission output.\n" .
 "Stopped";
}

open ($answerhandle,">$answerfile") || die "Could not open the answer file.\n"
.
 "Stopped";
printf ($answerhandle "%s\n", $plotfile);
close ($answerhandle);

`touch $SEM`;
This perl script has run successfully.
exit (0);

Tabular Display -- Below is an example of a MOE (i.e. Question) which displays its results

in tabular form. This example is for an emissions model.

#!/usr/local/bin/perl
#---#
Title: ShowParticulateEmissions
Date: 9/30/94

TASC Task R Page 54

50

Revision History: None.

This perl script posts the particulate emissions in response
to the HiVal question "Particalate Emissions."

COMMAND LINE PARAMETERS:
AnswerFileName - the name of the file to which output is written.
Format for AnswerFileName is dictated by the
emission_form.uil file which specifies the X/Motif
display for this question's answer. Format is as follows:
NOxCarEmissions - total NOx emissions in grams from cars.
COCarEmissions - total CO emissions in grams from cars.
HCCarEmissions - total HC emissions in grams from cars.
NOxTruckEmissions - total NOx emissions in grams from trucks.
COTruckEmissions - total CO emissions in grams from trucks.
HCTruckEmissions - total HC emissions in grams from trucks.

ERROR HANDLING: Errors such as incorrect number of command line arguments
are trapped and diagnostic text is written to STDERR via the perl "die"
command.

HiVal DATABASE DEPENDENCIES: 2 record(s):
CarEmissions
TruckEmissions
The database utilization defined above should be reflected in the
question configuration file emission.00.question.

See "Programming Perl" by Larry Wall and Randall Schwartz
(O'Reilly copyright 1991) for complete perl syntax descriptions.
#--#

Check the number of input arguments: $#ARGV = 0 means 1 argument was
passed not counting the name of this script.
if ($#ARGV != 1)
{
 die "Incorrect number of arguments.\n" .
 "Stopped";
}

Initialize some default variables.
$DB = $ENV{'HOME'} . "/hival/database/hival.db";
$SEM = $ARGV[0];
$answerfile = $ARGV[1];

Retrieve the emissions data from the database:
@caremissions = `val_db $DB CarEmissions`;

Check the exit value of the `val_db...` call.
Exit if it is nonzero.
if ($? != 0)
{
 die "Could not determine value of CarEmissions " .
 "database record.\n" .
 "Stopped";
}

@truckemissions = `val_db $DB TruckEmissions`;

Check the exit value of the `val_db...` call.
Exit if it is nonzero.
if ($? != 0)
{
 die "Could not determine value of TruckEmissions " .

TASC Task R Page 55

51

 "database record.\n" .
 "Stopped";
}

Remove the newline characters from the car and truck emission variables.
chop $caremissions;
chop $truckemissions;;

open ($answerhandle,"> $answerfile") || die
 "Could not open specified answer file.\n" .
 "Stopped";
for ($i = 2; $i <= $#caremissions; $i++)
{
 printf ($answerhandle "%.3f\n", $caremissions[$i]);
}
for ($i = 2; $i <= $#truckemissions; $i++)
{
 printf ($answerhandle "%.3f\n", $truckemissions[$i]);
}
close ($answerhandle);

`touch $SEM`;
This perl script has run successfully.
exit (0);

6.5 Software Wrappers and RPC

Two important architectural elements of HiVal are RPC (Remote Procedure Call) and

software wrappers. RPC enable function-like calls between different software models in HiVal,

especially in the case of modules that work iteratively or with feedback. Software wrappers allow

code written in different languages and/or running on different hardware to communicate. Figure 6-1

illustrates the relationship of RPC and wrappers in HiVal.

Encapsulating
 Wrapper

Encapsulating
 Wrapper

RPCSoftware
 Module
 A

Software
 Module
 B

Figure 6-1 Wrappers and RPC Relationship

An example of key elements of HiVal ’s wrapper and RPC code for the FRESIM / AHS

traffic model is given below.

TASC Task R Page 56

52

HiVal FRESIM / AHS Wrapper Interface

/*
 * Copyright (c) 1991, 1992, 1993 by Gradient Technologies, Inc.
 * All rights reserved.
 *
 * fresim.c
 *
 * Implementation of Fresim/AHS interface in HiVal
 *
 */
#include <windows.h>
#include <stdlib.h>
#include <string.h>
#include "fresim.h"
#include "util.h"

void FreeSim (
 handle_t h,
 idl_char *client_greeting,
 idl_char *server_reply
)
{
 UINT wReturn;
 char *semaphore;
 char *client;
 char *date;
 char szMsg[80];

 client = strtok (client_greeting, ":");
 semaphore = strtok (NULL, ":");
 date = strtok (NULL ,"");
 printf ("Client: %s %s\n", client, date);
 wReturn = WinExec("/hival/fresim/fresim.pif", SW_SHOWMINIMIZED);
 if (wReturn < 32)
 sprintf (szMsg,"%d",wReturn);
 else
 sprintf (szMsg,"0");

 strcpy(server_reply,szMsg);
}

HiVal FRESIM / AHS RPC Interface

/* Generated by IDL compiler version DCE 1.0.0-1 */
#ifndef FresimIf_v1_0_included
#define FresimIf_v1_0_included

#if (__STDC__ != 1)
#define volatile
#endif

#include <dce/idlbase.h>
#include <dce/rpc.h>

#ifdef __cplusplus
 extern "C" {
#endif

TASC Task R Page 57

53

#include <dce/nbase.h>
#define REPLYSIZE (100)
extern void FreeSim(
#ifdef IDL_PROTOTYPES
 /* [in] */ handle_t h,
 /* [in] */ idl_char client_greeting[],
 /* [out] */ idl_char server_reply[100]
#endif
);
typedef struct FresimIf_v1_0_epv_t {
void (*FreeSim)(
#ifdef IDL_PROTOTYPES
 /* [in] */ handle_t h,
 /* [in] */ idl_char client_greeting[],
 /* [out] */ idl_char server_reply[100]
#endif
);
} FresimIf_v1_0_epv_t;
extern rpc_if_handle_t FresimIf_v1_0_c_ifspec;
extern rpc_if_handle_t FresimIf_v1_0_s_ifspec;

#ifdef __cplusplus
 }
#endif

#endif

6.6 Linkage Functions

HiVal’s linkage functions provide the analytic connections that allow independent simulation

models to be correctly integrated together. For a new module to be installed in HiVal, both input (pre-

processor) and output (post-processor) linkage functions are specified. Inputs and outputs are

transferred via HiVal’s central database, as illustrated in Figure 6-2.

TASC Task R Page 58

54

Module A Module B

A Input
Linkage
Function

B Input
Linkage
Function

A Output
Linkage
Function

B Output
Linkage
Function

HiVal
Analysis
Database

Figure 6-2 Pre- and post-processing linkage functions in HiVal

Examples of input and output linkage functions for both the FRESIM / AHS traffi c

simulation and the Mobile5a emission model are presented below.

HiVal Input Linkage Function for FRESIM / AHS

#!/usr/local/bin/perl
Title: fresim.pre
Date: 4 Oct 94
Revision History: None.

This perl script performs the pre-processing of static and
database data as defined in the HiVal infrastructure.
Accepts 2 command-line parameters:
pathname # pointing to the local storage directory
semaphore # key for process thread control
#
Utilizes 8 record(s) from the HiVal database:
RoadWayLayout
RandomNumberSeed
TotalSimulationTime
SimulationTimeStep
AHSTargetSpeed
NonAHSTargetSpeed
IntraplatoonDistance
TargetPlatoonSize
#

TASC Task R Page 59

55

The database utilization defined above should be reflected in the
module configuration file traffic.XX.module, where XX is the unique
two digit integer corresponding to the Fresim/AHS server module.
Errors such as incorrect number of command line arguments shall be
trapped and diagnostic text is written to STDERR via the perl "die"
command. See "Programming Perl" by Larry Wall and Randall Schwartz
(O'Reilly copyright 1991) for complete perl syntax descriptions.

Check the number of input arguments: $#ARGV = 0 means 1 argument was
passed not counting the name of this script.
if ($#ARGV != 1)
{
 die "Incorrect number of arguments to fresim.pre.\n" .
 "Stopped";
}

chop ($HIVAL_DIR = `pwd`);
chdir ($ARGV[0]);
$SEM = $ARGV[1];

Initialize some default variables.
$DBPATH = $ENV{'HOME'} . "/hival/database";
$DB = $DBPATH . "/hival.db";
$roadwayfile = "roadway.info";
$fresimfile = "fresim.in";
$exitfile = "exit.info";

@geomrow = `val_db $DB RoadWayLayout`;
if ($? != 0)
{
 die "Fresim pre-processor failed on fetch.\n" .
 "Stopped";
}
chop @geomrow;
$geomfile = $geomrow[2];

@randomnumberseedrow = `val_db $DB RandomNumberSeed`;
if ($? != 0)
{
 die "Fresim pre-processor failed on fetch.\n" .
 "Stopped";
}
$randomnumberseed = $randomnumberseedrow[2];

@totalsimulationtimerow = `val_db $DB TotalSimulationTime`;
if ($? != 0)
{
 die "Fresim pre-processor failed on fetch.\n" .
 "Stopped";
}
$totalsimulationtime = $totalsimulationtimerow[2];

@simulationtimesteprow = `val_db $DB SimulationTimeStep`;
if ($? != 0)
{
 die "Fresim pre-processor failed on fetch.\n" .
 "Stopped";
}
$simulationtimestep = $simulationtimesteprow[2];
$dumptimestep = $simulationtimesteprow[2];

@ahstargetspeedrow = `val_db $DB AHSTargetSpeed`;
if ($? != 0)

TASC Task R Page 60

56

{
 die "Fresim pre-processor failed on fetch.\n" .
 "Stopped";
}
$ahstargetspeed = $ahstargetspeedrow[2];

@nonahstargetspeedrow = `val_db $DB NonAHSTargetSpeed`;
if ($? != 0)
{
 die "Fresim pre-processor failed on fetch.\n" .
 "Stopped";
}
$nonahstargetspeed = $nonahstargetspeedrow[2];

@intraplatoondistancerow = `val_db $DB IntraplatoonDistance`;
if ($? != 0)
{
 die "Fresim pre-processor failed on fetch.\n" .
 "Stopped";
}
$intraplatoondistance = $intraplatoondistancerow[2];

@targetplatoonsizerow = `val_db $DB TargetPlatoonSize`;
if ($? != 0)
{
 die "Fresim pre-processor failed on fetch.\n" .
 "Stopped";
}
$targetplatoonsize = $targetplatoonsizerow[2];

filter roadway geometry information
`grep '^%' $geomfile | sed 's/%//' > $roadwayfile`;
if ($? != 0)
{
 die "Fresim pre-processor failed on geometry file.\n" .
 "Stopped";
}
`grep '^&' $exitfile | sed 's/&//' >> $roadwayfile`;
if ($? != 0)
{
 die "Fresim pre-processor failed on exit file.\n" .
 "Stopped";
}

$nats = sprintf("%2.0f", 2.237*$nonahstargetspeed);
$ats = sprintf("%2.0f", 2.237*$ahstargetspeed);
$ipd = sprintf("%4.0f", 100*$intraplatoondistance/$ahstargetspeed);
$tps = sprintf("%4.0f", $targetplatoonsize);
$tst = sprintf("%4d", $totalsimulationtime);
$sts = sprintf("%5.0f", 10*$simulationtimestep);
$rns = sprintf("%8d", $randomnumberseed);
if ($simulationtimestep < 1)
{
 $dts = sprintf("%4d", 1);
}
else
{
 $dts = sprintf("%4d", $dumptimestep);
}

`grep -v '^[#%&]' $geomfile | sed 's/:IntraplatoonDistance:/$ipd/g;
s/:AHSTargetSpeed:/$ats/g; s/:NonAHSTargetSpeed:/$nats/g;
s/:TargetPlatoonSize:/$tps/g; s/:TotalSimulationTime:/$tst/g;

TASC Task R Page 61

57

s/:SimulationTimeStep:/$sts/g; s/:DumpTimeStep:/$dts/g;
s/:RandomNumberSeed:/$rns/g' | nawk '{print \$0 "\r"}' > $fresimfile `;

if ($? != 0)
{
 die "Fresim pre-processor failed on fresim.in.\n" .
 "Stopped";
}

Return to the caller's directory.
chdir ($HIVAL_DIR);
`touch $SEM`;
This perl script has run successfully.
exit (0);

HiVal Output Linkage Funtion for FRESIM / AHS

#!/usr/local/bin/perl
Title: fresim.post
Date: 4 Oct 94
Revision History: None.

This perl script performs the post-processing of a Fresim/AHS output
as defined in the HiVal infrastructure.
Accepts 2 command-line parameter:
pathname # pointing to the local storage directory
semaphore # key for process thread control
#
Utilizes 34 record(s) from the HiVal database:
RoadWayLayout
VehicleTrace
RoadWayInfo
RoadWayGeometry
XMilesLengthOfTrip
YMilesLengthOfTrip
XVMTMix
YVMTMix
XTripDuration
YTripDuration
XThroughputCapacityAutomated
YThroughputCapacityAutomated
XThroughputCapacityManual
YThroughputCapacityManual
XVelocityAverageAutomated
YVelocityAverageAutomated
XVelocityAverageManual
YVelocityAverageManual
XAutomatedVelocityHistogram
YAutomatedVelocityHistogram
AutomatedVelocityMean
AutomatedVelocitySigma
XManualVelocityHistogram
YManualVelocityHistogram
ManualVelocityMean
ManualVelocitySigma
XAutomatedAccelerationHistogram
YAutomatedAccelerationHistogram
AutomatedAccelerationMean
AutomatedAccelerationSigma
XManualAccelerationHistogram
YManualAccelerationHistogram

TASC Task R Page 62

58

ManualAccelerationMean
ManualAccelerationSigma
#
The database utilization defined above should be reflected in the
module configuration file traffic.XX.module, where XX is the unique
two digit integer corresponding to the Fresim/AHS server module.
Errors such as incorrect number of command line arguments shall be
trapped and diagnostic text is written to STDERR via the perl "die"
command. See "Programming Perl" by Larry Wall and Randall Schwartz
(O'Reilly copyright 1991) for complete perl syntax descriptions.

Check the number of input arguments: $#ARGV = 0 means 1 argument was
passed not counting the name of this script.
if ($#ARGV != 1)
{
 die "Incorrect number of arguments to fresim.post.\n" .
 "Stopped";
}

chop ($HIVAL_DIR = `pwd`);
chdir ($ARGV[0]);
$SEM = $ARGV[1];

Initialize some default variables.
chop($CURRPATH = `pwd`);
$DBPATH = $ENV{'HOME'} . "/hival/database";
$DB = $DBPATH . "/hival.db";
$dumpfile = "vhdump";
$roadfile = "roadway.info";
$tempfile = `tempnam /tmp hival`;

`highway $dumpfile $roadfile > $tempfile`;

Check the exit value of the `highway...` call.
Exit if it is nonzero.
if ($? != 0)
{
 die "Highway parser failed.\n" .
 "Stopped";
}

Assuming we have not exited, tempfile must be available.
Put each line into the database.
if (!open(TEXTFILE, $tempfile))
{
 die "Could not open temporary data file.\n" .
 "Stopped";
}
while (<TEXTFILE>)
{
 next if /^#/;
 next if /^$/;
 `put_db $DB $_`;
 if ($? != 0)
 {
 print ("Database insertion failed on line " .
 $., " of ", $tempfile, ".\n");
 die "Stopped";
 }
}
close (TEXTFILE);
'rm $tempfile';

TASC Task R Page 63

59

@geomrow = `val_db $DB RoadWayLayout`;
if ($? != 0)
{
 die "Fresim post-processor failed on fetch.\n" .
 "Stopped";
}
chop @geomrow;
$geomfile = $geomrow[2].".geom";

`put_db $DB VehicleTrace "tscalar : filename : $CURRPATH/$dumpfile"`;
if ($? != 0)
{
 die "Database insertion failed.\n" .
 "Stopped";
}

`put_db $DB RoadWayInfo "tscalar : filename : $CURRPATH/$roadfile"`;
if ($? != 0)
{
 die "Database insertion failed.\n" .
 "Stopped";
}

`put_db $DB RoadWayGeometry "tscalar : filename : $CURRPATH/$geomfile"`;
if ($? != 0)
{
 die "Database insertion failed.\n" .
 "Stopped";
}

chdir ($HIVAL_DIR);
`touch $SEM`;
This perl script has run successfully.
exit (0);

HiVal Input Linkage Funtion for Mobile5a

#!/usr/local/bin/perl
Title: mobile5a.pre
Date: 5 Oct 94
Revision History: None.

This perl script performs the pre-processing of static and
database data as defined in the HiVal infrastructure.
Accepts 2 command-line parameter:
CarEmissions
TruckEmissions
#
Utilizes 4 record(s) from the HiVal database:
ScenarioName
AutomatedVelocityMean
YMilesLengthOfTrip
YVMTMix
#
The database utilization defined above should be reflected in the
module configuration file emission.XX.module, where XX is the unique
two digit integer corresponding to the Mobile5a server module.
Errors such as incorrect number of command line arguments shall be
trapped and diagnostic text is written to STDERR via the perl "die"
command. See "Programming Perl" by Larry Wall and Randall Schwartz
(O'Reilly copyright 1991) for complete perl syntax descriptions.

TASC Task R Page 64

60

Check the number of input arguments: $#ARGV = 0 means 1 argument was
passed not counting the name of this script.
if ($#ARGV != 1)
{
 die "Incorrect number of arguments to mobile5a.pre.\n" .
 "Stopped";
}

chop ($HIVAL_DIR = `pwd`);
chdir ($ARGV[0]);
$SEM = $ARGV[1];

Initialize some default variables.
$DBPATH = $ENV{'HOME'} . "/hival/database";
$DB = $DBPATH . "/hival.db";
$mobilefile = "mobile5a.in";
$staticfile = "static.data";

@scenarionamerow = `val_db $DB ScenarioName`;
if ($? == 0)
{
 $scenario = $scenarionamerow[2];
 chop $scenario;
 $scenarioname = sprintf("%14s", $scenario);
}
else
{
 print "Using default scenario name: HiVal\n";
 $scenarioname = "HiVal client";
}

@velocityrow = `val_db $DB AutomatedVelocityMean`;
if ($? != 0)
{
 die "Mobile5a pre-processor failed on fetch.\n" .
 "Stopped";
}
$vel = $velocityrow[2];
chop $vel;
$velocity = sprintf("%4.1f", $vel);

@lengthoftriprow = `val_db $DB YMilesLengthOfTrip`;
if ($? != 0)
{
 die "Mobile5a pre-processor failed on fetch.\n" .
 "Stopped";
}
chop @lengthoftriprow;
Any single element in the lengthoftrip array
cannot be unity because of the format required
by Mobile5a.
if ($lengthoftriprow[2] == 1.0)
{
 $lengthoftriprow[2] = .999;
 $lengthoftriprow[3] = .001;
}
if ($lengthoftriprow[3] == 1.0)
{
 $lengthoftriprow[3] = .999;
 $lengthoftriprow[2] = .001;
}
if ($lengthoftriprow[4] == 1.0)

TASC Task R Page 65

61

{
 $lengthoftriprow[4] = .999;
 $lengthoftriprow[7] = .001;
}
if ($lengthoftriprow[5] == 1.0)
{
 $lengthoftriprow[5] = .999;
 $lengthoftriprow[7] = .001;
}
if ($lengthoftriprow[6] == 1.0)
{
 $lengthoftriprow[6] = .999;
 $lengthoftriprow[4] = .001;
}
if ($lengthoftriprow[7] == 1.0)
{
 $lengthoftriprow[7] = .999;
 $lengthoftriprow[5] = .001;
}
if ($lengthoftriprow[8] == 1.0)
{
 $lengthoftriprow[8] = .999;
 $lengthoftriprow[4] = .001;
}
$lengthoftrip = sprintf("%5.1f%5.1f%5.1f%5.1f%5.1f%5.1f",
 $lengthoftriprow[2]*100,
 $lengthoftriprow[3]*100,
 $lengthoftriprow[4]*100,
 $lengthoftriprow[5]*100,
 $lengthoftriprow[6]*100,
 ($lengthoftriprow[7] + $lengthoftriprow[8])*100);
@vmtmixrow = `val_db $DB YVMTMix`;
if ($? != 0)
{
 die "Mobile5a pre-processor failed on fetch.\n" .
 "Stopped";
}
chop @vmtmixrow;
Any single element in the vmtmix array
cannot be unity because of the format required
by Mobile5a.
if ($vmtmixrow[2] == 1.0)
{
 $vmtmixrow[2] = .999;
 $vmtmixrow[3] = .001;
}
if ($vmtmixrow[3] == 1.0)
{
 $vmtmixrow[3] = .999;
 $vmtmixrow[2] = .001;
}
if ($vmtmixrow[4] == 1.0)
{
 $vmtmixrow[4] = .999;
 $vmtmixrow[7] = .001;
}
if ($vmtmixrow[5] == 1.0)
{
 $vmtmixrow[5] = .999;
 $vmtmixrow[7] = .001;
}
if ($vmtmixrow[6] == 1.0)
{

TASC Task R Page 66

62

 $vmtmixrow[6] = .999;
 $vmtmixrow[4] = .001;
}
if ($vmtmixrow[7] == 1.0)
{
 $vmtmixrow[7] = .999;
 $vmtmixrow[5] = .001;
}
if ($vmtmixrow[8] == 1.0)
{
 $vmtmixrow[8] = .999;
 $vmtmixrow[4] = .001;
}
The order of the indices in the vmtmix array of the
following sprintf are the transformation from HiVal
vehicle types to Mobile5a vehicle types.
LDGV --- high performance car [3]
LDGT1 --- low performance car [2]
LDGT2 --- low performance car [2]
HDGV --- single unit truck [6]
LDDV --- bus [8]
LDDT --- semi-trailer (small load) [4]
HDDV --- semi-trailer (fuil load) [7]
MC --- no motorcycles in HiVal

$_ = sprintf ("%.3f %.3f 0.000 %.3f %.3f %.3f %.3f 0.000",
 $vmtmixrow[3],
 $vmtmixrow[2],
 $vmtmixrow[6],
 $vmtmixrow[8],
 $vmtmixrow[4],
 $vmtmixrow[7]);

$sum_v = 0.0;
@temp_out = split(/ /,$_);
foreach(@temp_out)
{
 $sum_v += $_;
}
$vmtmixrow[2] = $temp_out[1] + (1.0 - $sum_v);

$_ = sprintf ("%.3f%.3f0.000%.3f%.3f%.3f%.3f0.000",
 $vmtmixrow[3],
 $vmtmixrow[2],
 $vmtmixrow[6],
 $vmtmixrow[8],
 $vmtmixrow[4],
 $vmtmixrow[7]);
s/0\./\./g;
$vmtmix = $_;

`grep -v '^#' $staticfile | sed 's/:ScenarioName:/$scenarioname/g;
s/:AutomatedVelocityMean:/$velocity/g; s/:YVMTMix:/$vmtmix/g;
s/:YMilesLengthOfTrip:/$lengthoftrip/g' | nawk '{print \$0 "\r"}' >
$mobilefile`;
if ($? != 0)
{
 die "Mobile5a pre-processor failed to write mobile5a.in.\n" .
 "Stopped";
}

Return to the caller's directory.
chdir ($HIVAL_DIR);

TASC Task R Page 67

63

`touch $SEM`;
This perl script has run successfully.
exit (0);

HiVal Output LinkageFuntion for Mobile5a

#!/usr/local/bin/perl
Title: mobile5a.post
Date: 4 Oct 94
Revision History: None.

This perl script performs the post-processing of a Mobile5a output
as defined in the HiVal infrastructure.
Accepts 2 command-line parameter:
pathname # path to the local data storage area
semaphore # key for process control
#
Utilizes 2 record(s) from the HiVal database:
CarEmissions
TruckEmissions
#
The database utilization defined above should be reflected in the
module configuration file emission.XX.module, where XX is the unique
two digit integer corresponding to the Mobile5a server module.
Errors such as incorrect number of command line arguments shall be
trapped and diagnostic text is written to STDERR via the perl "die"
command. See "Programming Perl" by Larry Wall and Randall Schwartz
(O'Reilly copyright 1991) for complete perl syntax descriptions.

Check the number of input arguments: $#ARGV = 0 means 1 argument was
passed not counting the name of this script.
if ($#ARGV != 1)
{
 die "Incorrect number of arguments to mobile5a.post.\n" .
 "Stopped";
}

chop ($HIVAL_DIR = `pwd`);
chdir ($ARGV[0]);
$SEM = $ARGV[1];

Initialize some default variables.
$DBPATH = $ENV{'HOME'} . "/hival/database";
$DB = $DBPATH . "/hival.db";
$mobilefile = "mobile5a.out";
$tempfile = `tempnam /tmp hival`;

$_ = `grep 'VMT' $mobilefile`;
s/^\s+//;
s/\s+/ /g;
@vmtmixrow = split(/\s/);

The only emissions data applicable to AHS from
Mobile5a is the exhaust breakdown of CO, HC, and NOX.
`grep Exhst $mobilefile > $tempfile`;
if ($? != 0)
{
 die "Could not open mobile5a output data file.\n" .
 "Stopped";
}

TASC Task R Page 68

64

if (!open(TEMPFILE, $tempfile))
{
 die "Could not open temporary data file.\n" .
 "Stopped";
}
Assuming we have not exited, mobile5a.out must be available.
while (<TEMPFILE>)
{
 s/^\s+//;
 s/\s+/ /g;
 @emissions = split(/ /);

 if ($emissions[1] eq "HC:")
 {
 $carhc = $emissions[2]*$vmtmixrow[2] +
 $emissions[3]*$vmtmixrow[3] +
 $emissions[4]*$vmtmixrow[4];
 $truckhc = $emissions[6]*$mvtmixrow[5] +
 $emissions[7]*$vmtmixrow[6] +
 $emissions[8]*$vmtmixrow[7] +
 $emissions[9]*$vmtmixrow[8];
 }
 elsif ($emissions[1] eq "CO:")
 {
 $carco = $emissions[2]*$vmtmixrow[2] +
 $emissions[3]*$vmtmixrow[3] +
 $emissions[4]*$vmtmixrow[4];
 $truckco = $emissions[6]*$mvtmixrow[5] +
 $emissions[7]*$vmtmixrow[6] +
 $emissions[8]*$vmtmixrow[7] +
 $emissions[9]*$vmtmixrow[8];
 }
 elsif ($emissions[1] eq "NOX:")
 {
 $carnox = $emissions[2]*$vmtmixrow[2] +
 $emissions[3]*$vmtmixrow[3] +
 $emissions[4]*$vmtmixrow[4];
 $trucknox = $emissions[6]*$mvtmixrow[5] +
 $emissions[7]*$vmtmixrow[6] +
 $emissions[8]*$vmtmixrow[7] +
 $emissions[9]*$vmtmixrow[8];
 }
}
close(TEMPFILE);

$carems = sprintf ("CarEmissions \"fvector : g/mile : 3 : %6.2f %6.2f %6.2f
\"",
 $carhc, $carco, $carnox);
$truckems = sprintf ("TruckEmissions \"fvector : g/mile : 3 : %6.2f %6.2f
%6.2f \"",
 $truckhc, $truckco, $trucknox);

`put_db $DB $carems`;
if ($? != 0)
{
 die "Database insertion failed.\n" .
 "Stopped";
}

`put_db $DB $truckems`;
if ($? != 0)o
{
 die "Database insertion failed.\n" .

TASC Task R Page 69

65

 "Stopped";
}
chdir ($HIVAL_DIR);
`touch $SEM`;
This perl script has run successfully.
exit (0);

6.7 Suggested Programming Guidelines for New Software to be Added to HiVal

This is the set of suggested programming guidelines for HiVal that was distributed to the

AHS PSA team during the course of the program. It contains some high-level guidance on

programming techniques to follow when new code is being developed in order to facilitate its

incorporation into HiVal.

Guidelines

Introduction -- As part of the PSA contractor team, TASC is developing a computing

environment called HiVal for AHS simulation and analysis. The objective of this proof-of-concept

project is to provide a computing framework within which simulations, analytic models, and

databases can be integrated and made available to FHWA AHS researchers. Through the integration

of individual elements, HiVal will support alternative system-level analyses working off of common

models, databases and scenarios to facilitate comparative evaluations. It is anticipated that key

elements of the HiVal system will be the models, simulations, and scenarios developed under the

current PSA activities. Other simulation and modeling elements developed under non-PSA activities

will also be included. These guidelines are designed to facilitate the process of integrating many

disparate analysis elements written in different languages for different computing systems. However,

the suggested guidelines are fairly benign -- they should not place any major constraints on the

analytic creativity or software development processes. Many of the recommendations suggest

practices you might already plan to implement as part of a modern structured programming project. In

addition, these guidelines should not deter PSA teams from exploring areas that may be counter to

any one of these recommendations.

Computing Architecture -- In order to facilitate the integration of software elements written in

many languages that will interact in varying degrees, HiVal will be implemented using a client/server

paradigm. Attachment 1 presents some of the basic concepts involved in open system architectures

and client/server systems. While HiVal’s integration task is made more complex by the variety of

software and computer environments being used for development, it is our desire and purpose to

preserve the flexibility and creativity this variety affords. To minimize the impacts of integration on

the AHS software developer for this initial HiVal implementation, HiVal will be based on an open

system architecture across a (distributed) network. The overall communication scheme is based on

the client server / Distributed Computing Environment (DCE).

TASC Task R Page 70

66

The prototype computing architecture is being developed in two phases, each defined by the

level of interactive communication established between individual computing system elements. In the

first phase, the communication will be a very simplified version of the DCE paradigm: inter-element

communication will occur through ASCII files. During the second phase these links will be

expanded to inter-element and inter-procedural communication using a full-scale DCE paradigm and

protocol.

 Encapsulation -- The HiVal environment will ultimately provide an “encapsulation toolkit”

(or “wrapper”) for incorporating individual models into the HiVal testbed with minimal impact on

independent software development activities. The goal is to minimize the impact on individual

models and preserve their operating environment. Although the encapsulation toolkits are still under

development for HiVal, there are recommendations that will facilitate this encapsulation process --

they form the basis for these guidelines. The Level One recommendations apply to all elements,

whereas the Level Two recommendations apply primarily to software that is being newly developed,

or existing software that can be modified for more complete DCE-compliance. Depending on the

nature of the PSA software elements you are developing, you may be able to follow either Level Two

(most desirable) or Level One guidelines.

The Level One Guidelines (ASCII file communication) for PSA software
development are:

• Provide a batch mode of operation that does not require user interaction,
but rather uses ASCII file I/O. For example, a command line option for

disabling the interactive mode and enabling the batch mode

• Implement routines which can write all program outputs to an ASCII file
(e.g. vs. to a screen display)

• Incorporate command line switches for disabling graphical output

The Level Two Guidelines (Inter-procedural communication) are:

• Use ANSI standard C-language as the primary programming language and
maintain ANSI standards

• Avoid the use of global variables, particularly for logical control

• Decompose complicated functions and p rocedures into multiple,
simpler, procedures

• Decouple graphics and interface procedures from computational routines

• Isolate system calls to a single module

TASC Task R Page 71

67

7. CONCLUSIONS

In order to meet the present and future needs of AHS concept analysis and tradeoff studies, a

prototype integrated modeling, simulation, and decision support testbed, called HiVal, has been

developed by FHWA under the AHS PSA Program. HiVal fulfills several major objectives:

• Provide integrated, system-level analy sis and decision support for alternative AHS
system concept evaluations and tradeoffs

• Preserve and make accessible the software and database products of PSA and
other AHS researchers to support future elements of the National AHS
research agenda and the NAHSC (National Automated Highway System
Consortia)

• Develop a computing system which is flexible and easily extensible that will adapt
to and evolve with the rapidly advancing state of AHS knowledge by using
combinations of the best individual AHS models, simulations, and databases from
a variety of sources

HiVal accommodates a range of user expertise and objectives, ranging from high-level,

aggregate AHS performance metrics and tradeoffs, to low-level, detailed simulation of individual

AHS subsystem elements. HiVal provides a computing environment which integrates a variety of

simulations, models, and databases from both PSA activities and the broader AHS research

community. More than a dozen simulations and models have been incorporated into the prototype

system. HiVal uses a modular, distributed client-server computing architecture. Modern workstation

technology (Unix & X-Motif, DOS/MS Windows, DCE, TCP/IP) is used throughout to support a

wide variety of modeling and simulation needs, and allow for continued system growth. All of

HiVal’s basic interfaces, protocols, and control software uses COTS (Commercial Off The Shelf)

technology. A functional prototype of HiVal has been implemented and provided to FHWA.

TASC Task R Page 72

68

REFERENCES

1. Interim AHS Results Summary, Calspan Corporation, Buffalo, NY, April 1994

2. Stevens, W. B., Automated Highway System (AHS) Concepts Evaluation (Draft), MTR-
94W000xxx, The Mitre Corporation, MacLean VA, June 1994

3. IEEE Standard for Information technology -- Protocols for Distributed Interactive
Simulation Applications, IEEE-Std 1278-1993, IEEE Inc., Piscataway, NJ, May 1993

4. Introduction to OSFTM DCE, Revision 1.0, Open Software Foundation, Cambridge, MA,
1992

TASC Task R Page 73

	Table of contents
	System 'Cover Page'
	Back to master index
	First page this document

	1. EXECUTIVE SUMMARY
	2. INTRODUCTION
	3. REPRESENTATIVE SYSTEM CONFIGURATION (RSC)
	4. TECHNICAL DISCUSSION
	4.1 General Functional Requirements Analysis
	4.2 System Architecture Specification
	4.2.1 Major Functional Elements

	5. HiVal USER GUIDE
	5.1 HiVal uses a variety of specialized system and applications software to implement its AHS simula
	5.3.1 The first step in starting up the HiVal system is to initailize the server processes on their
	5.3.2 HiVal has a conventional set of pull-down menus as part of its interface, illustrated in F
	5.3.4 HiVal constructs an analysis hierarch y consistent with the RSC and MOEs selected, choosing
	5.3.5 HiVal provides a variety of pre-specified results displays for each MOE in the database. Wh

	6. HiVal PROGRAMMING GUIDE
	6.1 HiVal has implemented a variety of formal software structures to modularize and faciltate t
	6.2 This section presents the Unix directory structure of the HiVal prototype, as well as a director
	6.3 HiVal currently implements the twelve RSC developed by Calspan under the AHS PSA program. Thes
	6.4 Measures of Effectiveness
	6.5 Software Wrappers and RPC
	6.6 HiVal’s linkage functions provide the analytic connections that allow independent simulation mod

	7. CONCLUSIONS
	References
	1. Interim AHS Results Summary, Calspan Corporation, Buffalo, NY, April 1994
	2. Stevens, W. B., Automated Highway System (AHS) Concepts Evaluation (Draft), MTR- 94W000xxx, The
	3. IEEE Standard for Information technology -- Protocols for Distributed Interactive Simulation App
	4. Introduction to OSF DCE, Revision 1.0, Open Software Foundation, Cambridge, MA, 1992

