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FOREWORD

This report was a product of the Federal Highway Administration’s Automated Highway
System (AHS) Precursor Systems Analyses (PSA) studies.  The AHS Program is part of the
larger Department of Transportation (DOT) Intelligent Transportation Systems (ITS) Program
and is a multi-year, multi-phase effort to develop the next major upgrade of our nation’s
vehicle-highway system.

The PSA studies were part of an initial Analysis Phase of the AHS Program and were initiated to identify the high
level issues and risks associated with automated highway systems.  Fifteen interdisciplinary contractor teams were
selected to conduct these studies.  The studies were structured around the following 16 activity areas:

(A) Urban and Rural AHS Comparison, (B) Automated Check-In, (C) Automated Check-Out, (D) Lateral
and Longitudinal Control Analysis, (E) Malfunction Management and Analysis, (F) Commercial and
Transit AHS Analysis, (G) Comparable Systems Analysis, (H) AHS Roadway Deployment Analysis, (I)
Impact of AHS on Surrounding Non-AHS Roadways, (J) AHS Entry/Exit Implementation, (K) AHS
Roadway Operational Analysis, (L) Vehicle Operational Analysis, (M) Alternative Propulsion Systems
Impact, (N) AHS Safety Issues, (O) Institutional and Societal Aspects, and (P) Preliminary Cost/Benefit
Factors Analysis.

To provide diverse perspectives, each of these 16 activity areas was studied by at least three of the contractor
teams.  Also, two of the contractor teams studied all 16 activity areas to provide a synergistic approach to their
analyses.  The combination of the individual activity studies and additional study topics resulted in a total of 69
studies.  Individual reports, such as this one, have been prepared for each of these studies.  In addition, each of the
eight contractor teams that studied more than one activity area produced a report that summarized all their
findings.

Lyle Saxton

Director, Office of Safety and Traffic Operations Research

and Development

NOTICE

This document is disseminated under the sponsorship of the Department of Transportation in the interest of
information exchange.  The United States Government assumes no liability for its contents or use thereof.  This
report does not constitute a standard, specification, or regulation.

The United States Government does not endorse products or manufacturers.  Trade and manufacturers’ names
appear in this report only because they are considered essential to the object of the document.
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 1.0 INTRODUCTION

Managing each AHS vehicle and the AHS system as a whole is an extremely complex
undertaking.  We have investigated and now report on Artificial Intelligence (AI) approaches
that can help.  In particular, we focus on AI technologies known as Knowledge Based Systems
(KBSs) and Learning Methods (LMs).  Our primary purpose is to identify opportunities: we
identify several problems in AHS and AI technologies that can solve them.  Our secondary
purpose is to examine in some detail a subset of these opportunities: we examine how KBSs and
LMs can help in controlling the high level movements -- e.g., keep in lane, change lanes, speed
up, slow down -- of an automated vehicle.  This detailed examination includes the
implementation of a prototype system having three primary components.  The Tufts Automated
Highway System Kit (TAHSK) discrete time micro-level traffic simulator is a generic AHS
simulator.  TAHSK interfaces with the Knowledge Based Controller (KBCon) knowledge based
high level controller, which controls the high level actions of individual AHS vehicles.  Finally,
TAHSK also interfaces with a reinforcement learning (RL) module that was used to explore the
possibilities of RL techniques in an AHS environment.

We begin with an executive summary (section 1), followed by introduction to knowledge based
systems and learning methods (section 2).  Next, we review the literature on how these
methodologies have been applied to AHS to date (section 3).  We then list the areas of AHS that
we have identified as opportunities where AI technologies can help (section 4).  Next, we
describe an in-depth study of two of these opportunities, which includes the construction of the
implementation described above (section 5).  Finally, we summarize (section 6), and  list our
references (section 7).

 2.0 EXECUTIVE SUMMARY

Our primary conclusions are that AI technologies, particularly knowledge based systems and
learning methods, can make strong contributions to AHS, especially in the following four areas.

• Management of malfunctions onboard the vehicle: While onboard malfunction detection
is probably left to more conventional technologies, determining the best response to
malfunctions may need the power and flexibility that AI technologies can bring to bear.

• Management of each automated vehicle in traffic (i.e., controlling its high level
movements such as stay in lane, change lanes, exit, speedup, etc.): In order to deal with
the inherent complexity of AHS, a powerful and flexible high level control system is
needed.  AI technologies can help meet this need.

• Overall traffic management: For efficient and effective use of automated highways, AI
scheduling and planning methods can be extremely beneficial.

• Sensor interpretation and fusion:  In particular, there is vast potential for machine vision
to collect valuable data about the environment.  Moreover, the problem of fusing data
from several sources into a coherent picture of the environment may be helped by AI
technologies.
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In any eventual AHS, there will be widely varying capabilities among the possibly millions of
AHS vehicles because there will be a mixture of new and old models, plus there will be widely
varying levels of maintenance.  Also, with that many vehicles, there will be numerous
malfunctions.  Hopefully, these will mostly be minor, but some will  be major.  Moreover, the
world is complex and unexpected things can happen, such as a moose entering the highway, or a
refrigerator falling off of a truck?

The conclusion that we draw from the above intuitive argument is that, even with full
automation, the AHS environment will not be highly structured.  By that, we mean that it will
not be so easily predicted nor subject to analysis.  Moreover, if we allow for AHS environments
that allow mixed populations of “drivers” -- i.e., mixing human drivers with automated vehicles
-- then the structure of AHS and the predictability of any given situation drops enormously.  As
a result, in order to manage an automated vehicle in an AHS, the vehicle must be able to deal
effectively with an enormous number of possible traffic situations.  The number of situations is
enormous because we include situations involving minor and major malfunctions, plus
unexpected events (e.g., moose on the highway).

Our recommendations regarding the foregoing are as follows.

• We should incorporate the management of malfunctions, both onboard and in other
vehicles, into normal operations as much as possible.

• We should design each AHS vehicle to have effective predetermined responses to a large
number of traffic situations but

• We should also design each AHS vehicle to be able to respond effectively to new
situations.

The last recommendation places a significant burden on AHS.  The traditional engineering
approach has the human engineer performing all of the analysis and design work.  The result is a
machine or piece of software that meets the original requirements but which does not include
explicitly any of the knowledge that went into the design.  In other words, the product typically
cannot modify itself to handle situations unforeseen by the engineer.  But this is precisely what
we are recommending.  We should give to each vehicle that capability to design a response to a
new situation as well as to execute that response.  For this type of capability, we must turn to AI
technologies.

We note that our effort has focused primarily on the latter phases of AHS.  In the context of our
group’s ERSCs, we have focused on ERSCs 4 and 5, where there is full automation of vehicles.
There is a role for AI technologies earlier in the evolutionary process.  However, given that this
task had limited resources, we focused on these larger issues.  Furthermore, of the four areas that
we have identified where AI can be helpful, we have focused on the first and second.  Namely,
we have examined how to control an individual AHS vehicle at a high level in a variety of traffic
situations, with a particular emphasis on situations where there are malfunctions either onboard
the vehicle or in nearby vehicles.

One might ask: Why is controlling the high level actions of a vehicle so complicated?

Raytheon Task R Page 9



• It is an expert behavior, as exemplified by the fact that there is wide variability in the
way that people drive, and that there are recognized expert drivers.

• The available data about the environment is inaccurate and incomplete.  For example, if
the car to your left is beginning to swerve into your lane, you cannot tell if it is due to
wind, due to a momentary lapse by the driver, or due an intentional lane change (albeit a
dangerous one).  Thus your interpretation of a given situation

• Relies upon predictions of the behaviors of others.  Sometimes these are merely educated
guesses because there are not only the laws of physics at play here, but the intentions of
the other “driver”, be they human or machine.

• We must handle our own malfunctions.  Should we immediately stop, move to a
breakdown lane, or “limp home”.  Which is safe?  Which is most effective for the overall
traffic flow?

• We must respond to malfunctions in nearby vehicles.  The car to our left is swerving
towards us.  What should we do?

• Many different situations may arise and many combinations of situations may arise.

We are thus left with the question: How can a system respond effectively to a large number of
situations?  One way is with a structure similar to a decision tree.  The tree is designed by
engineers offline and the vehicle uses the tree to determine responses online.  But is this
possible?  Is the space of situations small enough or regular enough so that complete coverage
can be gotten?  We think not.  Also, will the decision tree work is if the vehicle’s information is
incomplete?  Will it get “stuck” in the tree, or might it be unable to disambiguate among
possibilities?

There AI technologies that attend to this type of situation are expert systems, knowledge based
planning, and learning methods.  The latter two enable the system respond to new situations.
Planning methods handle these situations online.  Learning methods typically discover these new
situations and the best responses offline using a simulated environment.

We therefore recommend the following.

• Each AHS vehicle have the capability to plan its own maneuvers and execute them.

• Further investigate the following areas, particularly with regard to AHS applications: KB
planning (to handle new situations), learning methods (to handle new situations and to
improve responses to already known situations), and expert systems (for overall high
level control).

By incorporating the ability to plan new maneuvers, we gain new flexibility but we do not lose
the ability to use preprogrammed responses to certain known situations.  The vehicle should be
designed so that if the current situation is familiar and the vehicle knows how to respond, then it
should perform the preprogrammed response.  However, if a new situation is encountered, or if
the vehicle determines that the preprogrammed response is unsafe, then the vehicle should plan
its own response if there is time.  If there is not enough time, it should perform a backup
emergency maneuver.
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In our investigation of KBCon, the prototype KB high level controller we developed, we found
that online planning was not as time consuming as we feared because the search space was
deliberately kept small.  However, we worked with a small prototype.  With full planning
capability, it is not clear whether or not a real time response is possible.  Also, the current
research in planning is not up to the challenge presented by AHS.  In KBCon, we took many
shortcuts in the planner.  Considerable more research in planning for AHS-like environments,
both basic and applied, is needed.  For the other parts of KBCon, such as the classification
methods used to predict the motion of nearby vehicles, we found that a simple knowledge
representation scheme plus a rule based system was adequate for the task.  By scaling up to
realistic AHS size, we do not expect to encounter fundamental problems, except those of
validation and verification, which are difficult to attain in any AI system.  Also, while we cannot
be certain given our limited study, it is likely that this portion of the system can be made to
respond in real time.

We recommend that reinforcement learning (RL) , in conjunction with an AHS simulator, be
used as a tool to help design controllers.  We do not recommend that an RL module be a
component in an actual AHS system.  Since an AHS system will be operating at velocities and
time intervals unfamiliar to human drivers, we should not rely solely on human experience when
designing an AHS vehicle controller.  We believe RL can be used to help design controllers, or
to improve existing controllers by adjusting parameters such as headways.  As part of our study,
we implemented an RL module and ran it in the simulated TAHSK environment.  Our RL
module uses a three-layer feedforward artificial neural network to evaluate traffic situations.
This network operates quickly enough to be  useful for this research, however we recommend
exploring the possibility of replacing it with a Cerbellar Model Articulation Controller (CMAC)
network, which may exhibit better generalization abilities in this domain.

3.0 GENERAL BACKGROUND: What are Knowledge Based
                           Systems and Learning Methods?

We begin with a general introduction to knowledge based systems and learning methods,
beginning with the former.  Interested readers might wish to see other, more detailed,
introductions (e.g.,  [50, 15]).

What are Knowledge Based Systems?
All computer programs manipulate data to achieve their intended goals.  A knowledge based
system (KBS) manipulates not only data but knowledge itself.  But what is knowledge?  How
can it be manipulated by a program?  By knowledge in a computer we mean a structured
collection of symbols that have specific meanings.  By manipulation of knowledge we mean the
manipulation of these symbols to produce new collections of symbols that have new meanings.
Take a simple example.  We wish to encode the following facts: (1) all cars are vehicles and (2)
all vehicles can move under their own power.  In a KBS system, we can encode this information
in a declarative fashion, i.e., we can encode this information symbolically.

∀ x car ( x ) ♦ vehicle ( x ) 

∀ x vehicle ( x ) ♦ selfpowered ( x ) 
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Here we have used first-order logic to encode this knowledge -- there are a large variety of
languages one could use.  The important thing is that there is a regular pattern to the symbol
structures and there is a clear meaning to them.
Now that the information is encoded symbolically, we can write computer programs to do (at
least) 2 things:

1. Apply it to specific situations and
2. Infer new knowledge from it.

Case 1 occurs when we are asked the question: Is a particular car self powered?  By applying
standard rules of logic, we can use the above to determine "Yes".  For example, let CAR1 be a
symbol representing a given car.  We are given that:

car ( CAR 1 ) 

and we infer that:

vehicle ( CAR 1 )  and selfpowered ( CAR 1 ) 

Case 2 is more powerful.. In this case, we can infer that all cars are self powered, i.e.,

∀ x car ( x ) ♦ selfpowered ( x ) 

It is the ability of KB systems to draw inferences -- i.e., to determine new knowledge about the
world by combining bits of existing knowledge -- that gives them their power.
Of course, this power comes with a price.  One must be very careful when using inference
because inference, in general, is very complicated.  It can take an unbounded amount of time and
memory if left unfocused.  Thus, KB systems must be carefully controlled in order for them to
perform this type of high level reasoning and to have them do so in a reasonable amount of time.

Structure of a Knowledge Based System
A traditional computer program is typically designed to operate on a set of data, as sketched in
figure 1.  A KBS has a different overall design.  While there is still a program and data, there is
also a knowledge base.  The knowledge base contains special types of data structures that
represent knowledge, as discussed above.  The capabilities of a traditional computer program
arise solely from the program itself.  The capabilities of a KBS arise from a combination of the
program plus the knowledge base.  In the most general case, the program in a KBS would be a
theorem prover and the knowledge base would contain general rules, such as the ones listed
above.  The data would consist of information about particular objects, such as vehicles on the
highway.  The theorem prover plus the knowledge base plus the data, when put together, would
cause new information to be inferred.  The inferred information would cause the vehicle to make
intelligent choices.  For examine, it might infer that a particular action is dangerous while
another action is prudent.
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    P r o g r a m     

        D a t a         

    P r o g r a m     

        D a t a         

K n o w l e d g e 

        T r a d i t i o n a l   C o m p u t e r   P r o g r a m                 K n o w l e d g e   B a s e d   S y s t e m 

Figure 1.   A traditional computer program versus a Knowledge Based System

Of course, a KBS based on a general theorem prover would be a poor choice because such
programs are very difficult to focus, and keeping automated reasoning focused is essential when
time is critical, such as with AHS.  Fortunately, there are other methods for representing and
reasoning about knowledge that are more focused and more efficient.  One such method uses
rules to capture knowledge.  We briefly review this topic after presenting the needs that AHS has
for KBSs.

Why does AHS need Knowledge Based Systems?
The main reason is that the domain of AHS is extremely complex -- sufficiently complex that we
cannot identify in advance all of the situations that an AHS will encounter.  It is therefore
unlikely that traditional programming techniques will suffice.  We should try our best to identify
all possible scenarios and to program the AHS to handle each one effectively and safely.  But in
order to prepare for the unexpected, we will probably need to give to the AHS more general
knowledge like the kind shown above.  We will likely need to arm it with the ability to figure
out, by itself, how to handle novel situations.  Thus, AHS will probably need the ability to
reason about its actions, and that requires the techniques that KBSs offer.

There is another advantage to using declarative (i.e., symbolic) knowledge structures.  This type
of knowledge can be used in a variety of ways.  For example the two rules above were used to
infer information about a particular car, and also to infer information about all cars.  It could
also be used to help interpret data.  For example, if an object appears to be moving under its own
power, we could use the above structures to suggest that it is a vehicle (we could not infer this
conclusively from only this knowledge).  With more information, we might be able to suggest
that it is a car.  Once an object is identified as a car, the system is better able to predict its
behavior (e.g., so as to avoid colliding with it).

Another advantage KBSs bring is the ability to represent knowledge at various levels of
abstraction.  When reasoning about overall traffic patterns, a vehicle can be abstracted to simply
be a moving point.  When reasoning about precisely when to change lanes, a more detailed
representation of each vehicle can be used, such as one that takes into account the sizes,
positions and velocities of the vehicles.  All of these levels of abstraction can refer to the very
same individuals and yet the differing levels can be kept distinct.  In this way, we use the
simplest representation for each task so as to simply the task.   When we need more detail, we
have it available, but we need not be swamped with detail all of the time.
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A final advantage is that declarative structures are often easier to write and maintain than
programs that try to encode the same information.  If there is much knowledge to be encoded, it
is often easier to get it right if people can easily read and understand the encoding -- and
declarative structures are typically much easier to read than computer programs.

Rule Based Systems and Expert Systems
Rules provide a way to represent knowledge that can be used to infer new information.  Here is
an example of a rule that a vehicle might use to determine when it might pass another vehicle.

IF V is the vehicle just ahead and
    V is moving too slow and
        there is a passing lane to the left and
              there is time to plan & execute a passing maneuver before coming too close to

V
THEN plan and execute a maneuver to pass V on the left.

In typical rule systems, the rules are always operating.  In the above case, whenever some other
vehicle V meets the criteria in the first part of the rule (often called the left hand side or LHS or
the if part or the antecedent), then the system can execute, or infer, the second part (often called
the right hand side or RHS or the then part or the consequent).  Below is another rule that can
determine when simply to stay behind and follow another vehicle.

IF V is the vehicle just ahead and
    V is moving too slow and
      either there is no passing lane to the left or
            there is not enough time to plan & execute a passing maneuver
THEN plan and execute a maneuver to follow behind V.

Rules are typically used in either of two modes.  Forward-chaining matches the LHS of each
rule against a storehouse of information, whereupon some matching rule is selected as the one to
be used next.  This process repeats itself until no rules match any further.  In the rule just above,
forward-chaining would require that the knowledge base know about some other vehicle V that
was just ahead and moving too slow, etc., before the rule system decided to use that rule.
Backward chaining works in the opposite direction.  It begins with someone or some part of the
system asking a question.  Rules that can answer the question via their RHS are invoked to see if
their LHS is true.  Each LHS is tested by the same process: for each clause in the LHS, a
question is asked.  Using the last rule as an example, the rule would be invoked only if there
were some other vehicle V that the current vehicle was considering following behind.  To see if
indeed it should, it tries to show that the rule’s LHS is true.  It thus asks whether or not V is the
vehicle just ahead.  If that is true, it asks whether or not V is moving “too slow.”  This goes on
until the LHS side is shown to be either true or false, during which time other rules might be
invoked.  If the LHS is shown to be true, then the RHS is true.

The power behind rule systems is that one does not need to program their execution explicitly.
The LHS of each rule determines when the rule should be used, and so the selection of which
rule to use at any given time can be fully automated.  This not only greatly reduces the amount
of programming needed, it reduces the potential for error.  Moreover, since the rules select

Raytheon Task R Page 14



themselves, the overall system is better able to deal with unexpected situations: the situations
themselves trigger the proper rules to use, not the foresight of the AHS programmer.

Of course, using rules does not guarantee that the system will operate correctly: one must write
rules that work.  Thus, there is still a great amount of thought and consideration and testing that
needs to be done.

Expert systems are KBSs that exhibit expert behavior.  Typically, an expert system addresses a
narrow but complex area and demonstrates considerable expertise in mastering that area.  Expert
systems control manufacturing processes, diagnose malfunctions in devices, assist in identifying
likely places to mine, analyze the likelihood of finding oil, and a host of other tasks.  Some
estimates say that there are from hundreds to thousands of commercial expert systems either in
use or in development [13].  Although any KBS technology can be used to implement an expert
system, often the rule system technology is used at least in part.

Planning the Vehicle's Actions
Some KBSs plan their activities.  By this, we mean that the system deliberates for a time and
designs a sequence of actions that it should take in order to achieve its goals.  An example might
be to plan a passing maneuver.  In this scenario, our vehicle is approaching a slower vehicle
from behind.  The question is: Do we pass or not, and if so, how?

own 1 2 

2 

1 

Figure 2.   A Plan to Pass Two Vehicles

We might be able to construct a rule system, as suggested above, that would cover all possible
scenarios and would makes the best choice in each case.  As an alternative, we might let the
vehicle use planning instead.  A plan for the own vehicle (the own vehicle is the vehicle we are
considering) to pass vehicles 1 and 2 might be a representation of the path in figure 2.  Here, the
own vehicle is in lane 1, will move to lane 2, will pass both vehicles 1 and 2, will return to lane
1, and will exit.  The planner would construct this scenario, simulate it, and then evaluate the
plan.  Is the maneuver safe?  Is it likely to succeed?  Will the own vehicle make it to the exit?
Finally, is it worth the effort?

For the vehicle to perform planning, we must give it considerable knowledge.  It must know
about the:

• Physical world: vehicles, roads, obstacles and motion.
• Capabilities of vehicles: move, brake, turn, communicate.
• Requirements for using these capabilities: e.g., to send a message, the transmitter must be

operational,   or to move, the vehicle must have gas (or battery power).
• Effects of using these capabilities: e.g., if the vehicle has gas and attempts to accelerate,

then the vehicle will indeed accelerate.
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• Expected behaviors: e.g., what should a “change lane” operation look like?

Moreover, the vehicle must be able to perform hypothetical reasoning. in that it must examine
possible actions to take, and predict the outcome for each possible action based on simulation.
Finally, it must be able to evaluate and select the best action to take.

Thus, a plan is developed dynamically with respect to the current situation and is represented
declaratively.  Multiple plans may be examined and evaluated, with some rejected.  Planning can
occur in background so that the on-line operation of the vehicle is unaffected until a given plan
is implemented.    Moreover, the vehicle’s plan can be developed so as to respect the plans of an
overall traffic manager when the roadway has one.

What is Machine Learning?
Machine learning is the study of techniques that allow a machine to modify its behavior in
response to unforeseen situations, or allow it to acquire behaviors for which it was not directly
programmed.  Machine learning techniques fall into several broad categories:  supervised vs.
unsupervised, and online vs. offline.  A supervised learning system is presented with example
situations together with the correct response to each example and is expected to learn to generate
correct responses on its own.  It is desirable that the system be able to generalize from the
examples presented to it so that it can generate responses to unseen situations.  A completely
unsupervised learner just sees examples without being given any information that will allow it to
infer a response, thus it is only able to classify examples into sets of similar examples or infer
relationships between examples.  Learning systems may fall between these extremes in several
ways.  A system may just be given a hint, rather than the complete response for a given situation.
It may be given complete responses in some situations, hints in some others, and no information
at all in some situations.  A learning system may also contain an unsupervised component as
well as a supervised component.

An offline learner is given all its examples at one time and infers a program to generate the
correct response or a classifier that assigns examples to classes.  Thus the learning phase is
separated from the testing phase.  An online learner must generate a response as each example is
presented, gradually learning how to improve its performance.  As with the supervised-
unsupervised distinction, some learners will have both online and offline aspects.  An offline
learner can simulate an online learner if it is allowed to memorize all the examples and has
enough time to reprocess the entire set of examples as each new example is seen.  On the other
hand, a learner may operate in an online fashion as it is learning, but be used in an offline
fashion by a larger system.  This may be because it is desirable to use the same sequence of
examples repeatedly to ensure that as much as possible is learned from those examples, or
because it is desirable to test or verify the program that the learner produces before using it in an
application.

The particular learning techniques we have investigated are Artificial Neural Networks (ANNs)
and Reinforcement Learning.  These techniques work together in a synergistic way, as explained
below.  ANNs are actually a broad class of related machines, which can implement supervised,
unsupervised, online, and offline learners.  We will be interested in using them as a supervised
online learners within the context of a reinforcement learning system.  Reinforcement learning is
a technique that allows offline or online learning in an environment that does not provide
complete supervision.  It assumes that a reward function is available, but this function may not
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give an answer in all situations, and the answer may be incomplete.  A good example is learning
to play chess just by being told how many points were gained or lost in an exchange of pieces,
and whether the game was a win, loss, or draw at the end of the game.  This is not enough
information to directly evaluate most moves, but together with some lookahead it can be used to
select good moves.

An Artificial Neural Network is a network of interconnected neurons, each of which is a simple
computational element [23, 10].  Neurons in ANNs are usually arranged in at least three layers:
an input layer that receives data from the outside world, an output layer that gives the result of
the network’s computation, and one or more hidden layers that perform the internal
computations.  The connections between the neurons are used to transmit the output (usually a
single number) of a neuron to the inputs of other neurons.  Each such signal is modified by
multiplying it by a weight associated with the connection over which it was transmitted.  A
neuron’s output is computed by summing its weighted inputs plus a bias weight, and passing this
sum through a nonlinear transfer function such as a sigmoid.

Despite their apparent simplicity, ANNs are capable of approximating any mathematical
function.  On the other hand, finding the proper settings of the weights to implement a given
function may not be straightforward.  This has led to a number of training algorithms that
adaptively adjust the weights to approximate a function given by a set of input-output examples.
An example of such a training algorithm is backpropagation, which uses a gradient-descent
approach to iteratively adjust the weights.  In a network where the neurons are arranged in levels
such that neurons in a given level only send their output to neurons in the next level,
backpropagation starts by calculating the difference between the desired output and the actual
output.  This difference is propagated backwards through the network to calculate the errors at
each level.  These errors are then used to adjust the weights in the network.

In an AHS environment, the inputs to an ANN might be the relative positions, velocities, and
accelerations of nearby vehicles.  The output could be a classification of the current state into a
set of predefined states, such as {unsafe, safe to change lanes left, safe to change lanes right,
etc.}.  (Note that these states do not need to be mutually exclusive - neural networks naturally
work well in a “fuzzy systems” setting.)  Another possibility is that the output could be a number
giving the relative safety of the current state.  This could be used to select the safest next state
from those states attainable from the current state by reasonable accelerations.  A third
possibility is that a network could be trained to output an objective measure of safety, such as the
probability that the current situation will lead to an accident within 5 seconds if no change is
made.

In order to train a network to do any of these, it needs to be presented with a lot of examples of
traffic situations together with the desired output of the network.  In some cases the desired
output is easy to calculate.  For example, if an accident is unavoidable it is clear that the state
should be assigned a large negative value.  In most cases, however, the desired output is not so
easy to determine.  One approach is to try to assign these values by hand for typical situations,
and hope that when the network is trained from these examples it will generalize to similar
situations.  Another approach is to use the network in a learning algorithm that allows it to
improve its performance from (simulated) experience.
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Reinforcement learning is a class of such algorithms [43].  The version of reinforcement learning
we have investigated is called Q-learning [47].  The Q-learner maintains an evaluation function
(implemented by an ANN in our case) that evaluates proposed actions in any given state
(configuration of nearby vehicles, including velocities and accelerations, in our case).  This
allows it to select the best action for any given state and to give a value to states according to the
best action possible in that state.  At each step the Q-learner selects and performs the best action
and updates its evaluation function using the value of the new state and any reinforcement it
received from the environment at that state.

4.0 Literature Review: Knowledge Based Systems and Learning Methods 
in AHS

The next section, 4, identifies a number of AHS areas where AI can make a significant
contribution.  Of these areas, we have focused primarily on the problem of controlling individual
vehicles on an AHS, with particular concern to what we call high level control.  Here, we are
concerned with managing each vehicle in traffic -- e.g., deciding when to follow behind another
vehicle, when to change lanes, when to exit, etc.  We are not concerned with methods to
maintain a safe following distance behind another vehicle (a longitudinal control systems
manages that task) nor the overall flow of traffic (a centralized traffic manager handles that
task).  Thus, our focus is on AI applications to AHS in this particular area.  While there are an
enormous number of papers on KBSs and machine learning, only a small number are applied to
AHS, and an even smaller number applied to high level control of individual vehicles.  Before
reviewing the most relevant works, we briefly review works that are less relevant.

In the summer of 1993, a workshop was held in conjunction with the national conference of the
American Association for Artificial Intelligence.  The overall conference is known as AAAI-93;
the workshop was titled “Artificial Intelligence in Intelligent Vehicle Highway Systems”.  Many
of the papers were written by transportation engineers with the purpose of introducing IVHS and
AHS to researchers in AI.  Several papers were by AI researchers, though none addressed the
problem of controlling individual automated vehicles.  Wellman [49] presented a method for
obtaining good performance of distributed algorithms using a scheme based on economic
models.  The type of distributed problem he analyzes is the overall traffic management problem,
which he solves via a distributed algorithm -- i.e., there is no central controller.  There were
other papers on overall traffic management (e.g., [14, 24]).  Other papers at the workshop
addressed topics in IVHS that are not directly relevant to AHS.

There has been much AHS work performed by PATH, the group operated out of the University
of California.  In an important paper that summarizes the PATH work [40], there is no mention
of AI applications.  While attending a PATH course, held in Berkeley in early February 1994,
some relevant work in AI was presented, though none of it directed towards high level vehicle
control.  In particular, Malik presented an algorithm that detected obstacles using stereo
computer vision and alluded to another algorithm that performed lane keeping using machine
vision [48, 21].  Also, Dickerson described a fuzzy controller that learned the throttle control
function for a car [6, 7, 8].
Also at the PATH course, Varaiya presented his algorithm for controlling individual vehicles,
which is summarized in [18, 46].  The work is well thought out and does not rely upon AI
techniques except possibly at the highest level of path planning for each vehicle.  Instead, it
relies upon a highly structured environment, and using that, is able to control each vehicle using
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fairly simple finite-state machine algorithms.  For example, to change lanes, the vehicle’s high
level controller executes a simple finite state machine that finds a gap, signals its intention to
change lanes, waits for an acknowledgment, performs the lane change, and terminates the
operation.  Complexities that might arise due either to malfunctions or to differences in protocols
or expectations between vehicles are not dealt with at this level.  Instead, all non-standard
behavior is delegated to malfunction management, which we have not yet seen described in the
literature.  However, in the conclusion of [18], the authors note that AI technology will likely be
of use here.  In our view, this line of research may be assuming too much regarding the
environment.  Their methodology requires the environment to be both highly structured and
highly predictable.  But with the inherent complexity of the world (e.g., refrigerators falling off
trucks), the variability of maintenance among AHS vehicles, and differences in both software
and performance among AHS vehicles (many cars last for 10 to 15 years, during which time
many software and hardware improvements will be made), we predict that these requirements
might be too strong.  Instead, we urge that a more flexible high level control system be
developed, and we argue that KBSs and learning methods can play an important role here.

Gomi et al investigate using Brook’s subsumption architecture [5] to perform both high and low
level control for each vehicle [16, 17].  Without going into the details of this architecture, we
point out two difficulties with this work.  First, a subsumption architecture is difficult to analyze;
for example, the authors measure its success by testing its performance in specific cases.  This
makes it difficult to judge its performance over large classes of situations, and thus hard to judge
it overall.  Second, the subsumption architecture is not designed for the inclusion of detailed
knowledge.  Thus, even if you know how to handle particular types of situations, it is difficult to
encode this in the system.  While it is premature for us to predict the eventual success of
subsumption architectures for AHS, given the complexity of AHS and the need to encode
specific safe behaviors, we are pessimistic as to its utility at this time.

We now move on to two pieces of research that are directly relevant to high level vehicle
control.  The first is by Okuno et al  [37], who are developing an intelligent vehicle for the
Mazda Corporation for use in an AHS type of environment.  They call this functionality
autonomous cruising.  Their basic idea is to provide a set of driving programs, each of which is
tailored to a particular type of situation.  Situations include following behind another vehicle,
changing lanes where the neighboring lane is empty, and changing lanes when the neighboring
lane has vehicles at certain relative locations.  Each driving program is written without using AI
technology so as to insure its real time response.  However, AI is used in the cruise planner: this
module (1) identifies the current driving situation, (2) plans actions, and (3) activates the proper
driving program.

Each driving program has a tight control loop involving perceptual inputs with updates at least
every 0.1 sec.  The cruise planner is a rule based system involving higher level information with
updates about every 1 sec.  This higher level information includes a highly symbolic model of
the road and surrounding vehicles.  The area around the vehicle of interest -- the own vehicle --
is split into 12 regions:  near-back, near-front, near-side, back-side, etc.  The speeds of
surrounding vehicles are also expressed symbolically (e.g., fast, slow).  The rules process this
high level description of the current situation and determine the next action to take.  Here is an
example of a rule that notes when a lane change is dangerous due to a vehicle approaching
quickly from behind and changes the current action so that the vehicle waits instead.
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IF action = 'lane-change' and
    position[D] = 'back-side' and
    speed[D] = 'fast'
THEN action = 'waiting'

Okuno et al built a prototype system with a cruise planner that contained 140 rules.  The
inference speed of the cruise planner was about one second.  In their experiments using
simulation, the system operated well using a two lane highway.  For their future work, they will
supply more comprehensive knowledge to the cruise planner, such as traffic regulations,
navigation strategies, and anticipating potential dangers.  They note that inference speed is a
very important issue, that the human interface is critical, including human override, and that they
must treat obstacle avoidance as low level driving program, which they expect will be very
difficult.

We have borrowed from Okuno et al in our work in that we also have a high level planner that
selects processes for the vehicle to execute, which are similar to their driving programs.  Also,
our system abstracts information about the roadway and vehicles into high level abstraction
whenever possible so as to simplify both the processing and the complexity of the logic needed.
However, our approach is more flexible because our system will eventually have a greater ability
to synthesize the processes it executes, and thus hopefully can respond effectively to a wider
range of situations.  Also, the planner that we are constructing can invoke numerous processes
that communicate and operate in parallel, sequentially or a mixture of the two.  At this time, we
are less sensitive than Okuno et al to the real time requirements because we are still developing
our ideas.  With planning as a basic activity in both our approaches, it is possible that we will
need vast amounts of time consuming computation to take place.  However, it appears that the
search space needed for the AHS domain will be relatively small, making the computations
tractable.  Further research is needed to confirm this.

The second piece of research that is directly relevant is that of Stengel and Niehaus [42, 34, 35],
who have built expert systems for high level control of autonomous vehicles in an AHS
environment.  They assume the use of sophisticated lateral and longitudinal controllers, which
we do also.  Numerous components in their overall system are rule based systems.  In [34], they
developed a stochastic version of their system to deal with uncertainty in the data the vehicle
collects about surrounding vehicles.  Finally, they tested their system against a simulator and
found that it performed well.

We find that the basic approach of Stengel and Niehaus is sound.  They make useful abstractions
in order to facilitate reasoning.  The rules shown in the articles are clear and compelling, making
it fairly plain how the overall system operates.  The only difficulties with their approach is that
the system is not very flexible nor robust.  All configurations that the system handles must be
pre-determined.  For example, they have the concept of "waiting for a gap in left lane", which
must be pre-programmed into the rules.  Moreover, it appears as if there is no dynamic planning
capability.  If this is true, then they cannot plan to pass a vehicle in front and then exit from
highway.  Instead, each of these two actions is determined and then handled separately, one after
the other.  As we stated above, we consider a planning capability to be important for AHS, and
so we have incorporated that capability into our design.  Other than that difference, our approach
is similar to that of Stengel and Niehaus.
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Another area of relevant research is that of real time AI systems.  Lockheed's L*STAR KB
system [20] is a knowledge based system that performs satellite telemetry analysis for the
Hubble space telescope.  Ingrand et al report on a KBS that performs real time reasoning and
control for process engineering applications [19].  Finally, numerous real time AI systems are
presented in [25].  While none that we know of apply directly to AHS, these systems show that
AI techniques can be successfully deployed in real time environments.

We have identified the importance of the ability to have each vehicle plan its actions in order to
handle situations not foreseen by AHS designers.  It is also important for the efficient use of the
roadway.  We distinguish macro-level traffic planning from micro-level planning of individual
vehicle actions.  Overall traffic planning is crucial to the efficient use of the highways, as others
have noted (e.g., PATH is committed to this type of planning [46]).  In this study, we focus
instead on micro-level planning and will now review a small portion of the relevant AI planning
literature.

Classical planning (e.g., [11, 39, 41]) addresses the following problem: given an initial situation,
a goal, and a set of action types, devise a sequence of actions to achieve the goal.  Over two
decades of research have been invested here, yielding hundreds of papers and results.  Much of
this work makes the assumptions made by the STRIPS system [11], namely, that the robot (or
agent or program) is in complete control of the world, that the world does not change except via
the actions of the robot, that changes happen instantaneously, that the robot knows everything
about the world that it needs to know, that the world is completely deterministic and predictable,
and that the actions available to the robot are fairly simple.  Even with all these assumptions,
classical planning is intractable in general and computationally expensive in practice because the
search space -- i.e., the set of possible action sequences that could be taken -- is typically huge.

In the past decade, planning researchers have relaxed many of these assumptions and made
important contributions.  For example, in a dynamic and changing environment -- one that
changes in ways beyond the control of the robot and in ways that the robot cannot predict -- the
classical approach of generating a complete plan in advance is pointless [33] given that much of
the future is unpredictable.  There are two approaches here.  The first is incremental or partial
planning (e.g., [22]), where one plans for a short time into the future, possibly leaving out many
details, and expects to continue planning when more information is available.  An example is
planning to drive across town.  One may plan the general route in advance, but details about
when precisely to touch the gas pedal or to signal right are left to later planning when the
situation arises.  The second approach is to build a reactive system (e.g., [5, 1]) which is a
system that does less planning but more reacting to the stimuli it receives from the environment.
In AHS, we have a dynamic, somewhat unpredictable environment, and actions can occur over a
considerable amount of time.  We therefore found it necessary to use processes as the basic
elements of our plans, similar to [36, 26], and we have chosen an incremental approach that
retracts existing plans and replans when necessary.

We have not found any papers on reinforcement learning in an AHS setting, however there has
been much recent research on RL for robotics in general.  A number of papers at the 1994 MLC-
COLT Workshop on Robot Learning present ideas that may be useful in an AHS setting [3, 9,
30, 31, 44, 45, 4].

5.0 OPPORTUNITIES FOR KNOWLEDGE BASED SYSTEMS AND
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                  LEARNING METHODS TO HELP AHS

We have examined three broad areas of AHS where knowledge-based systems (KBSs) and
machine learning methods (MLMs) can help.

• Malfunction Management -- Identifying on-board malfunctions and determining
appropriate responses.

• Management of the Vehicle in Traffic -- Determining and controlling traffic-level
operations (e.g., lane changes, entries/exits, merges, splits, obstacle avoidance,
emergency maneuvers).  We have referred previously to this function as high level
control, a term taken from the field of Artificial Intelligence (AI).

• Overall Traffic Management  -- Controlling the overall flow of traffic through the
highway system.

In addition, we claim that AI systems will also be extremely valuable in the area of:

• Sensor Interpretation and Fusion -- Interpreting data from sensors, such as machine
vision, and the fusion of that sensory data.

In this section, we present a number of specific problems from the first three areas that may
benefit from the use of KBSs and MLMs.  We do not examine that fourth area.  Note that
portions of the first two areas are studied in some detail, as explained in section 5.

5.1. Malfunction Management

We separate malfunction management into the two tasks of, first, detecting malfunctions and,
second, taking the best response.  We examine four avenues.

Malfunction management using classification
If we enumerate all possible malfunctions beforehand, then malfunction detection is essentially a
classification problem.  There is a fixed set of categories -- the possible malfunctions -- and the
task is to classify the vehicle into zero, one or more of these categories at all times.  KBSs,
which include the category of systems known as expert systems, offer powerful techniques for
solving classification problems, particularly when the rules for classification are complex, vague
or involve judgments.

Many types of malfunctions are easily detected and will not require the power of KBSs.
However, some malfunctions may be quite complex to diagnose.  For example, imagine that the
vehicle is in a platoon, is not leading the platoon, and is maintaining close headway.  The
malfunction system detects an unacceptable amount of fluctuation in the vehicle’s speed.  The
cause might be in several places, such as the vehicle’s longitudinal control system or in the
sensors that detect the distance to the car in front.  Let’s assume that further malfunction checks
on these subsystems conclude that they are operating properly.  There is another possible cause:
the car in front might be experiencing a similar fluctuation of speed.  One option is to
communicate with the car in front to see if it is experiencing the same problem.  If so, then this
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communication can go forward in the platoon until we identify a car in the platoon that does not
have this fluctuation -- the problem probably lies with the car just behind it.  In a sense, the car
is diagnosing malfunctions in other cars.  This is difficult and requires careful judgment.  For
high degrees of safety, vehicles must assess the functionality of nearby vehicles (see below).

Like detecting, determining the best response to a malfunction is also a classification problem if
we enumerate the possible responses to each malfunction beforehand.  However, this
determination will frequently be complex because it may depend upon the surrounding
environment of roadways and vehicles.  In most cases, one can respond by bringing the vehicle
to a stop in such a manner that it doesn’t endanger vehicles behind.  However, this creates an
obstruction on the highway.  Can the vehicle “limp along” until the next exit?  Is there an
emergency lane?  Can the vehicle make it to the emergency lane safely?  What if the vehicle has
to cross lanes of traffic to get to the emergency lane -- can it safely do so?  Some of these are
difficult judgment calls.

Solving classification problems that are complex and that involve making careful judgments are
the strengths of expert systems and KBSs.  The problem of detecting malfunctions that originate
on-board the vehicle may not be sufficiently complex so as to require a KBS.  However, the
problem of detecting malfunctions in nearby vehicles is quite complex and may well require a
KBS approach.  This is examined further in section 4.3 below.

Improving malfunction detection and responses using machine learning
When detecting a malfunction or when determining the best response to one, it is essential for
the system to operate very quickly.  Learning methods can speed up these classification
procedures.  One idea is to examine the use of decision tree induction to minimize the number of
variables that must be examined, to identify the best order for examining these variables, and to
minimize the complexity of expressions involving these variables.  This learning process is
performed off line; it does not operate on-board the vehicle.  The input to the learning program
is the set of variables that are considered to be relevant plus a large number of example scenarios
(probably generated by simulations).  The output is a decision tree that will guide the
implementation of the malfunction management program such that it operates more efficiently
and quickly.

Automated diagnosis of malfunctions
Automated diagnosis techniques can complement the malfunction management effort described
above.  There is a large body of results on automated diagnosis in the AI literature where the
computer uses a model of, in this case, the mechanics of the vehicle plus data about its current
operating status, and determines any existing malfunctions, much as a human diagnostician
would.  In a sense, these systems generate their own malfunction classification schemes
automatically.  Their strength is that they can implement malfunction detection quite readily and
can be updated easily if the vehicle’s mechanics change.

Automated synthesis of responses to malfunctions
Synthesis is the creation of a new solution to a given problem at hand.  There are many
techniques for automated synthesis, particularly in the literature on AI planning.  Some of these
techniques can be expanded and adapted to apply to the AHS domain.  Planning techniques are
quite powerful;  they would allow a vehicle to create its own set of maneuvers to handle the
particular situation faced by the vehicle.  However, planning techniques work best when there is
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a considerable amount of time to respond;.  Clearly this will not be the case in general for AHS,
so careful evaluation will be needed here.

5.2 Management of the Vehicle in Traffic
This refers to managing the vehicle’s traffic/roadway level operations such as lane changes,
entries/exits, merges, splits, obstacle avoidance, and emergency maneuvers.  We have referred
previously to this function as high level control.  It is essentially the systems management and
decision analysis functions for the operation of the vehicle with respect to the roadway and other
traffic.  It also includes adaptive control in that it would set parameters of underlying control
systems -- e.g., it might set the desired headway for the longitudinal control system.

Situation assessment using classification
In order to insure safe operation, the vehicle will need to assess its situation with respect to
surrounding traffic in an ongoing manner.  For example, assume that the vehicle is traveling in a
platoon with a second platoon just to its left in another lane.  The car immediately to its left
begins to move laterally to the right.  Should the vehicle be prepared to detect and respond to
this?  We think that the answer is “yes”.  But the vehicle needs to make an assessment of the
intent of the other car and of its ability to operate properly.  If indeed the other car is about to
swerve, then it suffers from some sort of malfunction, and our vehicle must determine that fact
and take appropriate avoidance action, such as slowing down immediately.
Situation assessment is another classification problem.  Unfortunately, this problem is
complicated because the actions of other vehicles depends not only upon the physics of the
situation, but upon the intent of the vehicles involved.  We expect that KBSs have much to offer
to this problem.

Situation assessment using plan recognition
If we only take the approach described just above for the problem of situation assessment, then
all of the possible scenarios that a vehicle might encounter must be identified and programmed
in advance.  Unfortunately, when we take the intent of other vehicles/drivers into account, then
the variety of traffic situations is enormous and new situations are likely to be encountered.  If
we use predetermined classification rules, then the vehicle might assess a new situation
incorrectly.  A more robust approach is to give the vehicle a flexible capability to recognize the
intent of other vehicles.  Such a capability is called plan recognition in the AI literature.  The
basic idea is that the vehicle uses the data it collects about the actions of another vehicle, and
infers to the best of its ability the intention of that vehicle/driver.  Moreover, this is done from a
knowledge base of vehicle maneuvers: the knowledge base might contain a set of maneuvers and
the different ways to effect them.  The knowledge base would also contain descriptions of
vehicle behaviors that correspond to malfunctions.  From that knowledge, and from the
behaviors it witnesses, it tries to infer the maneuver (or malfunction) of the vehicle (e.g.,
changing lanes, swerving out of control, etc.).

For example, if a vehicle called V starts drifting left towards another lane, then V might be
changing lanes, or it might have been blown by a gust of wind, or it might be losing lateral
control.  If there is a safe gap in traffic for vehicle V to change lanes, then it is likely that it
intended to change lanes.  If there is another vehicle in the lane to the left of V, then maybe
something forced vehicle to swerve.  Was there a recent gust of wind, and can the vehicle detect
this?  Was there a vehicle to the right of V that swerved, causing V to swerve in response?  Was
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there no reason for V to swerve, indicating a malfunction?  Each of these situations might
require a different response and so the vehicle should try to detect these differences.

Controlling the vehicle at the traffic level
The normal operation of the vehicle requires a module that makes decisions about when and how
to change lanes, exit, join platoons, etc.  First and foremost, this module is responsible for
ensuring safe operation.  Thus, if situation assessment reports an obstacle in the path of the
vehicle, this module would immediately initiate an obstacle avoidance maneuver.  If it appears
that another car is about to swerve into the vehicle, then this module would immediately initiate
an emergency avoidance maneuver, such as slowing down rapidly.  Second, under normal
operations, this module has the responsibility of route planning and of carrying out those plans.
While the overall route plan of each vehicle is determined in cooperation with a centralized
traffic manager, those route plans will necessarily be somewhat vague and the vehicle will be
responsible for refining the plan and for carrying it out.  For example, the central traffic manager
may instruct the vehicle to change lanes to the left, but only the vehicle can determine exactly
when to initiate the actual maneuver and control the progress of the maneuver.

These two responsibilities -- responding to emergencies and performing normal traffic
maneuvers -- require different types of system support.  The former can be viewed as a
classification problem and would thus be similar to the malfunction management unit.  The
difference here is that the emergency arises from the environment -- other vehicles, obstacles,
etc. -- instead of an on-board malfunction.  The latter requires the ability to synthesize plans to
some extent (route planning is essentially a synthesis activity), to refine plans and to carry them
out.  There is a vast amount of literature about using KBSs for these types of problems.

Improving management of the vehicle in traffic using machine learning
Learning methods can assist in this area in a number of ways.  The most interesting method is to
use reinforcement learning techniques to try to anticipate and avoid dangerous situations before
they occur.  For example, here is a two-level approach.  The reinforcement learning module is at
the upper level and an artificial neural network or similar classifier is at the lower level.  The
artificial neural network is used to classify different traffic situations.  Overall this is a very
difficult problem because of the potentially enormous number of variables involved.  The output
of the artificial neural network would be used by the reinforcement learning program to classify
similar situations into states. The reinforcement learning program would also be able to model
the world using physical laws and vehicle dynamics.  This would have two benefits.  First, it
would be able to evaluate some states directly as being dangerous and estimate the cost and
probability of potential damage.  Second, it often takes a long time for a reinforcement learner to
propagate its values backward and assign values to states and actions leading to unsafe states.  If
it has a world model, it can speed up this process by looking ahead to determine the best action
in each state, and assigning the value of the subsequent state (minus any cost for taking the
action) to the current state.  Another possibility for speeding up learning is to replay past
experiences, since it may take repeated runs through the same situation for values to be assigned
to previous states.

5.3 Traffic Management
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Traffic management has the responsibility of coordinating traffic over a regional highway
system.  This would include not only automated highways but the manual roads and highways as
well.  However, the task of traffic management for the automated roads is more challenging
given the goals of high throughput and safety.

There are many functions within the traffic management task, and it is not yet clear which will
be assigned to each vehicle, which to centralized units in the infrastructure, and which should be
handled in a distributed fashion.  In fact, it may be that these assignments change dynamically
depending on the current situation.  We predict that the AI technologies of search techniques,
knowledge based scheduling and machine learning will be extremely helpful in implementing
these functions.

Traffic management function assignment
The main function of traffic management is to prevent congestion and to ensure free flowing
traffic whenever possible while minimizing the time of and distance traveled by each vehicle.
For the automated highway, this can be managed in several ways.  One approach is that
proposed by PATH where the infrastructure's traffic management determines which cars are
allowed in every lane in addition to the speed of each car/platoon.  It controls the former by
controlling when cars can change lanes.  It controls the latter by posting speed requirements.  It
also performs route planning for individual vehicles; a vehicle requests a point to point route
plan and the centralized traffic manager provides the route.  These routes would be selected so as
to maximize overall traffic flow while not placing undue time or distance burdens on individual
cars.
However, this design might lead to high volume data management requirements.  In particular,
does the centralized manager need to maintain information on the current location and travel
plan of every vehicle on the automated highway?  Can a reasonable traffic manager be designed
that does not have this burden but which still attains the primary goal of free flowing traffic?
We think that the answer is “yes”, whether it uses AI-based or more traditional technologies.

Knowledge-based scheduling for traffic management
In any scheme, there will be a need for route planning for a large number of vehicles.  This is
essentially a synthesis and scheduling problem of a large magnitude.  Finding optimal schedules
so that all vehicles reach their destinations with an overall minimum travel time and distance is
clearly intractable.  Thus, sub-optimal solutions must be found.  The field of operations research
has much to offer in this area.  But AI, particularly with the strengths of search techniques and
knowledge-based scheduling, also has very strong techniques to offer.

Machine learning methods for traffic management
Genetic algorithms might also be very helpful to traffic management.  Genetic algorithms have
been shown to be effective in optimizing flows in other situations, and are probably an
appropriate technique to use in a situation where local changes can have wide-spread effects.
Genetic algorithms use operations analogous to mutation and recombination to modify non-
optimal solutions to problems in an attempt to improve them.  The idea of recombination allows
it to search a very large space of solutions very quickly while minimizing the chances of getting
stuck in a local minimum -- i.e., a region of the search space where no good solution exists.

6.0 INVESTIGATION OF TWO OPPORTUNITIES
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For two of the opportunities listed in section 4, we have performed a detailed investigation.

• Section 5.2:  Controlling the vehicle at the traffic level.

• Section 5.3:  Improving management of the vehicle in traffic using machine learning.

Our goal was to elaborate the above modules to a limited extent so that the interested reader
could see some of the detail needed to develop KBSs and learning modules.  Moreover, our
work might provide the seeds for a larger effort in this area.  The Tufts effort was fairly resource
limited, and so our intent was to provide a good sized sample rather than a fully developed
module.

Both of the above efforts depended upon a micro-level traffic simulator, which we also
developed as part of this effort.  The simulator, called TAHSK (for Tufts Automated Highway
Simulator Kit, and pronounced “task”), is discussed in section 5.1, and is followed by the two
subsections detailing the two efforts.  Before beginning, we explain the overall structure of the
software, as depicted in figure 3.

T A H S K 
S i m u l a t o r 

( C ) 

K B C o n 
( L i s p )   

L e a r n i n g 
M o d u l e 

( C ) 

Figure 3.   The three primary modules of our effort.

The TAHSK simulator is a discrete time micro-level traffic simulator with a graphic display of
the roadway and vehicles, and is written in the C language using the public domain Tcl/Tk
interface to the X Window System.  The simulator can run without the other two modules,
though its control of vehicles is rather simple.  The learning module, also written in C, relies
upon the simulator to provide feedback to its learning algorithms.  It learns to control a
simulated vehicle in a variety of traffic situations.  The KBCon module is tightly integrated with
the simulator and serves as the knowledge based high level vehicle controller for each simulated
vehicle.  When the simulator is run in the mode that uses KBCon, the simulator pauses at the end
of each simulated time point (i.e., at the end of each tick), sends the current traffic data to
KBCon and waits for KBCon to pass back high level instructions for each vehicle.  These
instructions set headway, control lane changes, etc.  The connection between KBCon and the
simulator is a TCP/IP network connection, and thus the two modules could be run on any two
machines on the Internet.  KBCon is written in Allegro Common Lisp, from Franz Inc., and uses
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the free Loom knowledge representation system [27, 28, 29], licensed from the Information
Sciences Institute of the University of Southern California.  At this time, the learning module
and KBCon are not connected, though that is an obvious area for future work.  All of our
software is copyrighted and available at no cost, but with some restrictions, via any of the tools
that access the world-wide web, such as Mosaic.  To obtain this software, begin at the home
page for the Dept. of Electrical Engineering and Computer Science at Tufts University,
http://www.cs.tufts.edu, and look under the listings for Prof. James G. Schmolze.

6.1 The TAHSK Simulator for AHS

We have designed and written a discrete time micro-level traffic simulator, TAHSK, for
conducting AHS research.  TAHSK uses some of the ideas from Reece’s PHAROS simulator
[38], but omits much of the complexity that is not needed for the current research.  TAHSK is
written in the C programming language using the Tcl/Tk toolkit, so it is portable to any machine
that supports X windows.  It contains a TCP/IP network interface to the Lisp programming
language for knowledge based vehicle control.  When TAHSK is started, it pops up an X
window of a size specified on the command line, as shown in figure 4.  The roadway is shown,
in this case a three lane highway with barriers on either side and dashed lines between the lanes.
Vehicles appear as moving rectangles.  This window can be scrolled using the scrollbars to view
any part of the roadway.  The control bar at the top of the window contains buttons and fields
that allow the user to stop and start the simulator (clicking and re-clicking on “Frz” -- for
“freeze”), to step through the simulation by one tick at a time (the “Step” button), to have the
simulator freeze if a crash occurs (“Frz on crash”), to zoom in or out (set the “Scale” factor), and
to adjust the ratio of simulated time to real time (set the “Time ratio” factor).  Clicking on a
vehicle with the left mouse button allows the user to view the data structures associated with that
vehicle.  The right mouse button allows the user limited control of the selected vehicle, including
lane changes, swerves, acceleration and deceleration.
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Figure 4.  The X window view of the TAHSK simulator

Roadways for TAHSK are specified by an input language which allows multiple links, lanes,
and segments.  Within a link, consecutive segments of different lengths may be specified, but all
lanes have the same width.  At this point, all segments are straight, but curved segments could be
implemented if needed.  Within a segment, lanes may have different speeds and lane markings.
Lanes may be designated as sources, in which case vehicles are created at random at a specified
rate and time headway at the beginning of the lane.  Lanes may also be specified as nonexistent,
which forces a vehicle to make a lane change before reaching that segment.  This can be used to
specify  entry and exit lanes which do not exist on every segment.

The main loop in TAHSK calls a high-level, mid-level, and low-level control function for each
vehicle.  The low-level controller handles the basic physics of the vehicle, calculating where it
will be at the next tick based on its current acceleration, velocity, and position.  The mid-level
controller performs both the lateral and longitudinal control functions, thereby performing lane
keeping, handling lane changes and maintaining headways.  The high-level controller determines
how much headway should be maintained, who to maintain headway on, when to stay in lane,
when to change lanes, etc.  This modular design makes it easy to create a mix of zombie vehicles
that operate in prespecified ways plus intelligent vehicles controlled by KBCon plus learning
vehicles controlled by the learning module.

6.2 KBCon: A Knowledge Based High Level Vehicle Controller

KBCon is a knowledge based high level controller for fully automated intelligent vehicles (IV)
in an AHS.  KBCon manages the high level operations of the IV, such as getting the IV to its
intended destination, changing lanes, staying in lane, and exiting.  It relies upon several onboard
subsystems for controlling lateral and longitudinal positioning, communications, sensing, and
other functions.  It also interfaces with controllers that may be operating in the roadside
infrastructure.  The goal of KBCon is not only to manage the normal high level operation of the
automated vehicle but also to manage responses to situations arising from malfunctions --
malfunctions that occur either onboard the vehicle or in nearby vehicles.  Thus, KBCon
continually monitors its own status while simultaneously attempting to identify the intentions
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and operational status of nearby vehicles so as to recognize possible threats and to respond to
them.
Our approach has been to use AI technology sparingly, preferring to rely upon more traditional
engineering approaches whenever possible.  Our reasons for this are simple: most AI
technologies are difficult to verify and validate to the extent necessary for safe highway travel.
One function that eschews traditional engineering approaches is that of high level control, as
described above, and to which we have taken a knowledge-based approach.

Onboard Sensing 
& Interpretation

Communications Other Controls

Lat/Long Control

    KBCon 

Shared Database 

Figure 5.  The modules that KBCon depends upon

Figure 5 shows the more important subsystems that KBCon depends upon.  Lat/long control
performs lane keeping and headway control.  Communications controls vehicle-to-vehicle and
vehicle-to-roadway message traffic.  Onboard sensing controls various types of instrumentation
to detect vehicles and obstacles.  Other controls include functions such as headlight operation,
etc.

The function of KBCon is to control these subsystems so that the vehicle reaches its destination
safely and in a timely manner.  To do this, KBCon performs three primary sub-functions.  The
first is to establish and maintain a plan of action.  The plan describes the actions needed for the
IV to reach its destination.  The plan typically is not complete at any given time.  For example,
the plan might include an action to change lanes into the appropriate exit lane, but it typically
does not say exactly when to do so until the vehicle is close to the exit.  The plan is updated and
modified as needed.  For example, another vehicle might swerve into the IV’s lane, which will
probably lead to an immediate change in plans.  Also, the plan is represented at various levels of
abstraction.  An example of plan abstraction occurs when changing lanes; the IV should
communicate to nearby vehicles that it will change lanes, but the method of communication may
be left abstract, so that the manner of communication can be selected when it is actually needed
(options might include radio communication, infrared, or visual signals).  The planning
component of KBCon relies upon techniques from AI planning.  While these techniques usually
require considerable time to execute, the size of the search space for this application is small --
there are only a small number of maneuvers available -- and so we are able to perform this
planning in a reasonable amount of time.

The second sub-function of KBCon is to assess the intentions and operational status of nearby
vehicles and to predict the future motion of nearby obstacles, if any.  For example, if the vehicle
immediately to the left of the IV is moving laterally to the right side of its lane, then the IV must
determine whether or not this is normal lateral drift or an unexpected and dangerous swerve.
Moreover, if this type of swerving occurs frequently for a given vehicle, then that vehicle is
determined to be malfunctioning and appropriate actions must be taken.  These include reporting
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the vehicle and avoiding it.  For this first effort, we are using rule based classification techniques
to assess other vehicles and objects.  In the future, we hope to investigate the use of AI plan
recognition techniques.

The third sub-function of KBCon is to assess the current situation, which depends upon the
operational status of the IV , the assessments of nearby vehicles and obstacles, static information
about the roadway layout, plus information and restrictions that come from a roadway controller.
This assessment leads to one of four basic outcomes.  (A) The current plan is being followed and
there are no reasons to change the plan.  (B) Some adjustment to a subsystem, such as the
lat/long controller, is needed in order to follow the current plan but there is no reason to change
the plan.  (C) There is a need to fill in more details in the current plan.  (D) There is a need to
change the current plan.  An example of B occurs when a lane change is just about to finish and
KBCon instructs the lat/long controller to stop changing lanes and, instead, to follow in the
current lane.  An example of C occurs when the current plan calls for exiting at a particular
place, but there is no specific time to begin the exit maneuver, and the exit is sufficiently close
that a specific time must be set.  An example of D occurs when a car in an adjacent lane
suddenly and unexpectedly moves into the IV’s lane -- an emergency maneuver is needed, such
as slowing down or performing an emergency lane change.  The methods used here are a
mixture of rule based techniques that watch for certain conditions to arise along with plan
monitoring techniques.

A diagram showing the different modules of KBCon along with brief descriptions of the data
that flows between them is shown in figure 6.
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Figure 6.  The basic modules of KBCon

We are assuming the following.  All vehicles on the highway are IVs.  Also, each IV has good
estimates of the positions and velocities of nearby cars and obstacles as well as the layout of the
nearby roadway.  In future efforts, we will investigate relaxations of these assumptions.

As explained earlier, a prototype of KBCon has been implemented that is tightly integrated with
the TAHSK simulator.  The simulator runs as a process separate from KBCon.  This simulator
code, written in C, simulates the roadway and each vehicle.  The only component missing from
the simulation is the high level control function, which is supplied by the KBCon module.
KBCon operates as a separate process -- in theory, one KBCon process for each IV.  KBCon is
written in Common Lisp and uses the Loom knowledge representation system, developed by the
Information Sciences Institute of the University of Southern California.  KBCon and the
simulator communicate using TCP/IP network connections.  The information sent to KBCon is
that which we can reasonably expect the underlying subsystems to determine, such as the
estimated position and velocity of nearby vehicles.  In turn, KBCon sends back commands to the
underlying subsystems, which are implemented in the simulator.

The remainder of this subsection is devoted to some of the details of KBCon.  We begin with an
overview of the knowledge representation scheme used, followed by a discussion of the
functionality implied by figure 6.

Knowledge Representation Scheme used in KBCon
We use the Loom [27, 28, 29] knowledge representation (KR) system in KBCon.  Loom is a
frame-based terminological KR system.  There is a fairly rich language for defining types, an
assertion language for describing particular situations, plus three programming tools.  The first
tool is a production rule system (for forward chaining rules), a backward chaining rule system,
plus an object-oriented programming tool.  The Loom system distinguishes definitions from
assertions about particular situations.  For definitions, there is a the type language that allows the
definition of concepts, each of which denotes a set, and relations.  In frame systems, these are
called, respectively, frames and slots.  While the language for defining types is fairly rich, we
have only used a few of its features, primarily that of subsumption.  One term subsumes another
if and only if the set denoted by the first term is a superset of that which is denoted by the
second.  For example, the concept for MAMMAL subsumes the concept for PERSON since all
persons are mammals.  The type language essentially allows on to create a domain specific
language, which in our case includes concepts such as AHS-Vehicle.  A fraction of the AHS
type hierarchy is shown in figure 7.
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Figure 7.   A Hierarchy of some of the types used by KBCon

Here, we have a high level concept named AHS-Physical-Object that represents all the physical
objects in the AHS domain, including vehicles, roadways, and such.  Throughout, we have tried
to choose names that are meaningful, and we often include hyphens in the names.  By using
hyphens in Lisp, such as with “AHS-Vehicle”, we can create a single name that is comprised of
several words, leading to a more meaningful name.  Also, the names of concepts have all words
capitalized.  Names for relations have all words but the first one capitalized.  A specific type of
AHS-Physical-Object is AHS-Vehicle, which is a concept representing all AHS vehicles.  With
each such vehicle, we associate certain other information, such as the vehicle’s id number, the
vehicle’s dimensions, the id of the link it is on, the number of the lane it is currently in on that
link, etc.  The items listed below AHS-Vehicle in figure 7 represent the relations relevant to each
AHS vehicle.  has-Id is a relation that represents the id number of each AHS vehicle, and that id
must be a Number, where Number is the concept representing all numbers.  has-Dimensions
denotes the dimensions of the vehicle -- i.e., its width and length.  The Dimension concept is not
shown here, but it has two relations, namely, has-Width and has-Length.  has-Lane-Number
denotes the number of lane the vehicle occupies.  has-Lane-Position is the position of the vehicle
relative to the reference frame of the link.  The Position concept is not shown here; it is a vector
that represents the X and Y coordinates of the origin of the vehicle.  has-Lane-Velocity and has-
Lane-Acceleration are similar.  The relation has-Destination represents the given destination of
the vehicle.  It is a Lane-Portion, which is also shown in the figure.  A Lane-Portion represents a
portion of a lane: it has lane and link id numbers, positions as to where the portion starts and
stops, plus the posted speed on the portion.  For a destination, the Lane-Portion is typically the
exit lane that the vehicle seeks to use, where the has-X-Start is the position on the link where the
exit lane starts, has-X-Finish is the position where one can no longer change into it (i.e., where
the exit lane barriers start), and has-Posted-Speed is the posted speed limit for the exit ramp.
Each AHS vehicle also has a number of neighbors, represented with the relation has-Neighbor.
A neighbor is another AHS vehicle in the vicinity of the original vehicle.  A basic assumption
we have made is that each AHS vehicle has relatively accurate position and velocity information
for all neighbors, where neighbor is a parameter of the system, and which is currently set to be
any vehicle within 500 meters.  We point out that a given vehicle, which we refer to as the own
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vehicle, has only limited information about neighbor vehicles, namely, it has estimates of its
position, velocity and acceleration, plus it knows its width and length.  In particular, the own
vehicle does not have access to the plans of neighbors, and so it must infer the intended actions
of these neighbors.  has-Nearby-Lane denotes the Lane-Portion information of the lanes near to
the vehicle.  We assume that each vehicle has such roadway information available.  Finally,
there are numerous other relations concerning each vehicle -- we do not have space to list them
all and will explain them as they arise in our later discussions.

Assertions in Loom are used to assert information about that current situation using domain
specific types. There are three types of assertions in Loom: one can create individuals, one can
assert information about those individuals, and one can retract information.  For example, we
can create an individual AHS-Vehicle within Loom, and can give it the name, say, V24 (i.e., this
is the 24-th such individual vehicle).

(create  V24  AHS-Vehicle)

The above Lisp code creates the individual, asserts that it is of type AHS-Vehicle, and gives it
the name V24.1   The name given to an individual is simply a handle used to find it; the name
carries no meaning of its own, and so we have chosen a very simple naming scheme for
individuals.  (During the actual use of the KBCon system, the names of individuals are never
used -- we present them here primarily for pedagogical purposes.)  We can assert information
about V24 via the Loom function tell.  Here we tell Loom that the vehicle id number of V24 is
6374.

(tell  (has-Id  V24  6374))

In order to tell Loom about the position of V24, we must first create a Position individual, tell
Loom that this individual is the position of V24, and then assert the data regarding the Position.

(create  P57  Position)

(tell  (has-Position  V24  P57)
       (has-X  P57  (meters  507.4))
       (has-Y  P57  (meters  1.9)))

P57 is the name of this particular Position individual.  Note that we have made several assertions
in one call to tell.  The first assertion states that the has-Position (this is the relation that relates
each vehicle to its position) of V24 is P57.  We then fill in the data for P57 by giving it an X
coordinate, via the relation has-X, of 507.4 meters, and a has-Y of 1.9 meters.2

                                           
1For those readers who are familiar with Lisp, the “create” function evaluates its arguments,
and so the call would actually be (create ‘V24 ‘AHS-Vehicle).
2Again, for Lisp programmers, we have taken another liberty with ““tell”.  “tell” is a macro,
and does not evaluate its arguments, so no quotes are needed.  As such, the call to the
meters function is also not evaluated.  Loom allows a limited form of evaluation within a call
to “tell”, namly via the use of Loom variables, which are symbols beginning with a “?”.  These
are the only quantities evaluated with a tell or forget macro call.  Thus, this call to tell would
actually look as follows.
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There are a number of reference frames used in the simulator and KBCon.  Relevant to this
discussion are the reference frames for lanes and vehicles.  The coordinates of each vehicle are
relative to the reference frame for the lane that the vehicle is in.  Each vehicle is “in” only one
lane at a time, though its body may spill over into another lane.  The origin of a lane is the center
of the lane, beginning at the start of the link that the lane occupies.  As you face down the
roadway, positive X is in front of you and positive Y is to your left.  A vehicle’s reference frame
is similarly directed, though its origin is at the rear, center of the vehicle.

The third type of assertion in Loom is the forget operation, which retracts an earlier assertion.
For example, if the above vehicle, V24, moves in the next tick, KBCon does the following
(remember, the position of V24 is stored in P57).

(forget  (has-X  P57  (meters  507.4))
           (has-Y  P57  (meters  1.9)))
(tell  (has-X  P57  (meters  508))
       (has-Y  P57  (meters  1.85)))

The “forget” operation forgets the earlier position information and the “tell” asserts new position
information.  The fact that P57 is the has-Position for V24 is still asserted.
There are numerous Loom functions to retrieve information from the knowledge base.  Space
does not permit our reviewing them here.

Our treatment of time is based on the situation calculus [32] and is similar to that found in
STRIPS [11], namely, (nearly) the entire knowledge base of assertions in Loom is intended to be
true of the current simulated time point.  Therefore, time is not explicitly represented.  In the
future, KBCon will become more sophisticated, and an explicit representation for time will be
introduced.  Also, we rely the closed world assumption, in particular, negation as failure.  In
other words, explicit assertions stored in the knowledge base are assumed true.  If an assertion is
not explicitly stored in the knowledge base, then it is assumed to be false.

Loom supports contexts.  A context is a “place” to store information.  Contexts can be
completely separate, so that assertions in one context are completely unknown in another.
Alternatively, contexts can be structured in a parent/child relation -- assertions in the parent are
automatically asserted in the child as well but assertion in the child are unknown in the parent.
We use a single Lisp/Loom Unix process to perform the processing for all vehicles in the
simulator.  However, each vehicle has its own context, so no assertions are shared between
vehicles.

Onboard Sensing, Interpretation and Communications
Each time we go to a new simulated time point -- we call this a tick -- a fairly large amount of
information is retracted and new information asserted.  At each tick, the simulator sends several
TCP/IP messages to KBCon.  The first such message informs KBCon about any new vehicles
that were created during the previous tick, and it passes along information about the vehicle that

                                                                                                                                            
(let  ((?x  (meters  507.4))  (?y  (meters 1.9)))
    (tell  (has-Position  V24  P57)  (has-X  P57  ?x)  (has-Y  P57  ?y)))
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does not change, such as its size and destination.  KBCon creates a new context for each new
vehicle and asserts this unchanging information.

The next message identifies vehicles that were sunk in the last tick -- to sink a vehicle is to
remove it from simulation (typically, a vehicle is sunk when it drives off of the end of the
simulated roadway).  For these vehicles, all information is removed by destroying that vehicle’s
context.
Next, KBCon receives a message describing the current status of each vehicle being simulated.
This includes the vehicle’s position, velocity and acceleration, plus any other relevant data that
changes on each tick.  Our assumption is that each vehicle has an accurate model of its own
position, velocity, and acceleration.  Moreover, we assume that each vehicle has a fairly accurate
model of this data for nearby vehicles, which we call neighbors.  This data is meant to be the
result of onboard sensing and interpretation plus communication, and is considered by the
Ford/Raytheon team to be a reasonable set of assumptions.  In addition, certain information is
computed from this new data and asserted in Loom.  Finally, some Loom assertions are
forgotten -- these correspond to information that must be computed fresh for each tick since they
depend upon time varying data.  Thus, for this type of computed information, we retract the
information at the beginning of each tick and re-compute it.  Information of this type will be
identified as it is introduced.

We note that simulated inter-vehicle messages are supported by KBCon.

Controlling the Lat/Long Controller
The lat/long controller (a combined lateral and longitudinal controller) is simulated in TAHSK.
Its interface for a given vehicle is as follows.

• Target speed: The controller tries to maintain this speed, subject to headway constraints.
• Target lane number: The lane number that the vehicle is headed for (when lane keeping,

this is simply the current lane).
• Offset within lane: The Y distance from the lane center about which the vehicle should

be centered.  Normally, this is zero.
• For each lane: a flag, a vehicle, and a headway time:  The flag indicates that headway

should  be maintained for that lane.  The vehicle is the one to keep headway on, and the
time is the time headway to keep.

• Emergency flag: If false, which is normal, then the vehicle will only use comfortable
accelerations (but will use any deceleration that is necessary for safety, though trying to
use a comfortable one when possible).  If set, then it will use any possible acceleration as
well.

Thus, the controller can keep headway for up to N vehicles when there are N lanes, one vehicle
per lane.  This is very important when changing lanes, or when vehicles in nearby lanes are
acting dangerously.  Headway information is gathered by querying Loom for all n that match
(keep-Headway-On v n) where v is the own vehicle.  This is explained below.

Assessing Neighbor Vehicles
The primary purpose of assessing neighbor vehicles is to identify threats to the safety of the own
vehicle.  Thus, this module implements a type of defensive driving.  If all operations are normal,
this module is not needed.  However, not everything will be normal all the time.  There are two
types of identification made in this module.  The first identifies neighbors that are already in or
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may soon be in the same lane as the own vehicle.  We use the relation may-Occupy-Lane-
Number to identify a lane that a given vehicle is either currently in or, in the judgment of
KBCon, may soon be in.  For example, if vehicle V24 is in lane 2 of the current link, then:

(tell  (may-Occupy-Lane-Number  V24  2))

is asserted.  If V24 is not in lane 2 but it is determined that it may soon be in that lane, the above
is also asserted.  This type of determination is made, for example, if a neighbor has indicated
that it will soon change lanes, or if it appears to be swerving into a neighboring lane.  These
assertions are made for the own car as well.  Note that assertions regarding may-Occupy-Lane-
Number are computed for each tick, and so all such assertions are retracted at the start of each
tick.
Here is a rule that makes this determination trivially.

IF  (AHS-Vehicle ?v)  and  (has-Lane-Number  ?v  ?l)
THEN  (tell  (may-Occupy-Lane-Number  ?v  ?l))

In this and all rules, variables begin with a “?”.  Thus, ?v and ?l can match anything in the
knowledge base.  Here (AHS-Vehicle ?v) will match against any assertion of an individual being
an AHS-Vehicle.  Similarly, (has-Lane-Number  ?v  ?l) matches against has-Lane-Number
assertions that use the same ?v.  The effect of this rule is to note that an AHS-Vehicle may
occupy the lane that it is already in.  As we said, this is trivial, but also necessary for our
algorithm.  Here is an example.  Let us assume that our knowledge base had only the following
four assertions.

(AHS-Vehicle  V24) (AHS-Vehicle  V43)
(has-Lane-Number  V24  2) (has-Lane-Number  V43  1)

The above rule would match two times.  The first against the two facts on the left, in which case
?v becomes V24 and ?l becomes 2.  The second match is against the two facts on the right, with
?v = V43 and ?l = 1.  After the rule executes for both matches, the knowledge base would have
two additional assertions, making the entire set of assertions as follows.

(AHS-Vehicle  V24) (AHS-Vehicle  V43)
(has-Lane-Number  V24  2) (has-Lane-Number  V43  1)
(may-Occupy-Lane-Number  V24 2) (may-Occupy-Lane-Number  V43  1)

An assertion is made after we have received a message that a vehicle intends to change lanes.
Recall that when such a message is received, we associate with the neighbor the following fact:

(has-Target-Lane-Number  V43  2)

which asserts that V43 intends to change to lane 2.  The following rule relies upon this.  It
simply states that if a vehicle intends to change into lane ?l, then it may soon occupy ?l.

IF  (AHS-Vehicle ?v)  and  (has-Target-Lane-Number  ?v  ?l)
THEN  (tell  (may-Occupy-Lane-Number  ?v  ?l))
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The final rule we will show here is one that attempts to detect a possible malfunction in a
vehicle.  If a vehicle is failing to keep to the center of its lane by a certain amount, and if it is not
moving back to the center, then assume it is changing lanes.  This is a conservative assumption,
and one that will be refined in future versions of KBCon.  Below is a rule that checks for a
vehicle moving left.

IF  (AHS-Vehicle ?v)  and ?v is an AHS vehicle.
(has-Lane-Number  ?v  ?l) and ?v is in lane ?l.
(has-Position  ?v  ?pos)  and ?pos is the position vecotr for ?v.
(has-Y  ?pos  ?Y)  and ?Y is the Y position of the center of ?v wrt

the lane’s center.

(has-Velocity  ?v  ?vel) and ?vel is the velocity vector for ?v.
(has-Y  ?vel  ?Vy) and ?Vy is the y component of the velocity of ?v.
(has-Dimensions  ?v  ?dim) and ?dim is the dimension vector for ?v.
(has-Width  ?dim  ?Wv) and ?Wv is the width of ?v.
(is-On-Link  ?v  ?link) and ?link is the link that ?v is on.
(has-Lane-Width  ?link  ?Wl) and ?Wl is the width of each lane on the ?v’s link.
?Vy _ 0  and ?v is either moving left or not shifting left nor 

  right.

?Y > ((?Wl - ?Wv) / 2)* 0.8 See below.

THEN  (tell  (may-Occupy-Lane-Number  ?v  (?l + 1)))

This is quite a long rule, but it is not complicated.  The first 11 lines merely retrieve data, of
which primarily ?Y, ?Vy, ?Wv and ?Wl are of interest.  The second-to-last clause in the IF part
makes sure that the vehicle is either moving left or is not moving laterally (if it is moving right,
we ignore it for now).  The last clause compares ?Y against a computed value.  Remember that
?Y is the y-distance from the lane’s center to vehicle’s center.  Now, given the width of the lane
and the vehicle, the distance to the left of ?v when ?v is dead center in the lane is (?Wl - ?Wv) /
2.  If ?Y is off center by more than 0.8 of that amount, then we determine that ?v is moving left.
Of course, the use of 0.8 is a parameter of the overall system.  This criteria is a bit simplistic and
should be determined by a more thorough study.  However, our purpose here is to demonstrate
the capabilities of KBSs, and so we have chosen simple criteria when possible.

Note that, though this rule may seem overly long, it has the advantage of being entirely self-
contained.  Except for basic data about the vehicles and roadway, it does not depend upon other
calculations.  Moreover, its execution can be made quite efficient.  A similar rule is added for
shifts to the right.

The second type of identification concerns what to do about vehicles that may be in the same
lane as the own vehicle.  These vehicles fall into three categories: those we ignore, those we
keep headway on, and those we avoid because we are in imminent danger of colliding with
them.  For those neighbors that we ignore, we simply do nothing.  For those neighbors ?n of the
own vehicle ?v that we keep headway on, we assert (keep-Headway-On ?v ?n).  For those
neighbors ?n with whom we might collide, we assert (may-Collide-With ?v ?n).  We examine
these two in reverse order.
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If a neighbor may overlap lanes with the own vehicle and is too close, we determine that they
may collide.  For simplicity, we determine this by checking whether or not the X distance
between their origins is less than a fixed distance away, which we have set to 25 meters.  Again,
this is a criteria that should be more complex, such as being sensitive to speed, vehicle length
and plan of action, and more thoroughly studied.

IF(AHS-Vehicle ?v)  and ?v is an AHS vehicle.
(has-Neighbor  ?v  ?n)  and ?v has a neighbor vehicle ?n.
(may-Occupy-Lane-Number  ?v  ?l) and
(may-Occupy-Lane-Number  ?n  ?l) and ?v and ?n may soon occupy the same lane

?l.
(has-Position  ?v  ?posv)  and ?\posv is the position vecotr for ?v.
(has-Position  ?n  ?posn)  and ?posn is the position vecotr for ?n
(has-X  ?posv  ?Xv)  and ?Xv is the X position of the rear of ?v .
(has-X  ?posn  ?Xn)  and ?Xn is the X position of the rear of ?n.
25 meters _ (?Xn - ?Xv) _ 25 meters ?n is within 25 meters of ?v  (by comparing 

origins).

THEN  (tell  (may-Collide-With  ?v  ?n))

Remember that there may be more than one lane that the own vehicle or neighbor vehicles may
occupy.  Thus, we examine the relative distance between vehicles that might both occupy the
same lane.  If we determine that the own vehicle may collide with another vehicle, then a more
serious examination of the current plan of action is initiated, which may lead to a change in plan.
We examine this in the next section.

Hopefully, the incidence of near collisions will be small.  More commonly, there will be
vehicles that the own vehicle must simply keep away from by maintaining a certain headway.  In
KBCon, we keep headway on neighbors that may overlap soon be in the same lane as the own
vehicle’s and are more than 25 meters in front but less than 500 meters away.  If a neighbor is
more than 500 meters away, it is too far away to worry about.  Again, the distances used here, 25
and 500 meters, should be carefully chosen.

IF  (AHS-Vehicle ?v)  and ?v is an AHS vehicle.
(has-Neighbor  ?v  ?n)  and ?v has a neighbor vehicle ?n.
(may-Occupy-Lane-Number  ?v  ?l) and
(may-Occupy-Lane-Number  ?n  ?l) and ?v and ?n may soon occupy the same lane

?l.
(has-Position  ?v  ?posv)  and ?\posv is the position vecotr for ?v.
(has-Position  ?n  ?posn)  and ?posn is the position vecotr for ?n
(has-X  ?posv  ?Xv)  and ?Xv is the X position of the rear of ?v .
(has-X  ?posn  ?Xn)  and ?Xvnis the X position of the rear of ?vn.
?Xn - ?Xv >  25 meters  and ?n is at least 25 meters ahead of ?v  (by 

comparing origins)
?Xn - ?Xv <  500 meters If ?n is more than 500 meters away, ignore

it.
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THEN  (tell  (keep-Headway-On  ?v  ?n))

The assertion of (keep-Headway-On ?v ?n) makes sure that ?v will stay behind ?n, as explained
earlier when the interface to the lat/long controller was described.  However, this rule makes
these headway assertions for too many vehicles.  For example, if there are two vehicles in front
of the own vehicle, then we need to keep headway only on the rear one.  The following rule
removes these unnecessary headway responsibilities by forgetting those for which there is a
vehicle behind that is also under headway control.  Remember that the lat/long controller allows
up to one vehicle per lane to keep headway on.

IF  (keep-Headway-On  ?v  ?n1)  and
(keep-Headway-On  ?v  ?n1)  and
(has-Lane-Number  ?n1  ?l) and
(has-Lane-Number  ?n2  ?l) and ?v is keeping headway on ?n1 & ?n2, both in lane

?l.
(has-Position  ?n1  ?posn1)  and
(has-Position  ?n2  ?posn2)  and
(has-X  ?posn1  ?Xn1)  and
(has-X  ?posn2  ?Xn2)  and
?Xn1 < ?Xn2 ?n1 is further back than ?n2.

THEN  (forget  (keep-Headway-On  ?v  ?n2)) Forget about keeping headway on 
?n2.

Processes and Plans
A process is an activity that occurs over time.  Our representation for plans is based on
processes, and on a process formation language.  An example of a primitive process is Lat-Long-
Keep-In-Lane. This process keeps the own vehicle in its current lane while maintaining
appropriate headway and checking for dangerous situations (e.g., collisions).  This process is
primitive in that it is not defined in terms of other processes -- it is implemented directly in
software.  Note that this process is actually fairly simple because the real work of maintaining
headway and lane keeping is performed by the lat/long controller.  Thus, the Lat-Long-Keep-In-
Lane merely prepares the proper instructions to be sent to the lat/long controller based on the
headway determination described above.

Lat-Long-Change-Lanes is another primitive process that also transmits the headway
information while instructing the lat/long controller to move into the target lane.  Of course,
changing lanes is considerably more complex that simply moving left or right; we will soon
discuss how this is performed using complex and abstract processes.

An abstract process is one that has no direct implementation. Instead, it is a process that can be
realized by a number of other processes.  For example, when a vehicle is about to change lanes,
it communicates that fact to all neighbor vehicles.  There is an abstract process, Communicate-
Changing-Lanes, that performs this.  One decomposition of this process -- i.e., one way to
accomplish it -- is to use the Broadcast-Changing-Lanes.  This latter process is a primitive
process that uses inter-vehicle radio communication to broadcast the lane change.  However, the
Broadcast-Changing-Lanes process has a prerequisite, namely, that the radio transmitter is
operational.  If it is not, then that decomposition cannot be used, and an alternative is used.
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Though we have not implemented alternatives as yet, one might rely upon a visual signal (the
equivalent of a signal blinker) to signal a lane change or infrared communications.  In any case,
one aspect of planning is to select the best decomposition for any abstract process to be
executed.

A complex process is one that is implemented in terms of other processes using a process
formation language.  This differs from an abstract process in that there are no alternatives.  It is
more like a subroutine.  The process formation language is as follows.

<process> ::= <named-process> |
       (sequence <process1> ... <processn>) |
       (parallel <process1> ... <processn>)

A <named-process> is simply a process that has already been defined.  It can be primitive,
complex or abstract.  The sequence construct executes each of the processes in turn and in order.
It completes when the last process completes.  The parallel construct begins all the processes
immediately and at the same time.  It finishes when all have finished.

Here is the process to change lanes.  We use the def-process form, which is part of KBCon and
which defines types of AHS processes.

   (def-process  Change-Lanes  (has-Target-Lane-Number)  complex
     (sequence  (parallel  (Lat-Long-Keep-In-Lane)

        (sequence  (Find-Gap  has-Target-Lane-Number  is-Changing-Lanes-
Behind)

          (Communicate-Changing-Lanes  has-Target-Lane-Number
       is-Changing-Lanes-Behind)))

        (Lat-Long-Change-Lanes  has-Target-Lane-Number  is-Changing-Lanes-Behind)))

When one creates a Change-Lanes process, one gives it the number of the target lane (i.e., has-
Target-Lane-Number).  The process of changing lanes has two steps.  The first one finds the gap
and communicates with neighbors.  The second one, at the end of the form, performs the actual
changing of lanes.  The parallel form is used because we still want to maintain lane keeping
while we seek a gap using the Find-Gap process.  Thus, we execute in parallel the primitive
process Lat-Long-Keep-In-Lane while performing the nested sequence.  This sequence first
finds a gap in which to change lanes, which is indicated by setting the parameter is-Changing-
Lanes-Behind (i.e., the vehicle to change behind, which is set to a special value if the target lane
is clear), and then broadcasts the vehicle’s intentions via Communicate-Changing-Lanes.  Note
that nearly all use of parameters is as input parameters.  However, the Find-Gap process treats is-
Changing-Lanes-Behind as an output parameter.  This parameter mechanism is actually a
constraint satisfaction mechanism (e.g., [12]) that allows constraints to be posted on or between
variables at any time.  In this case, the constraint is that the vehicle that the own vehicle will pass
behind must be in the proper lane, be at an appropriate distance away, etc.  The identification of
individuals that satisfy constraints is another important part of the planning process.

When a vehicle is first created, Loom is informed of its destination. Loom immediately lays out
a high level plan to get to that destination.  This usually involves a small number of lane changes
and appears like a long sequence of processes (e.g. , stay in lane 2, change to lane 1, and then

Raytheon Task R Page 41



exit into the desired exit lane).  However, the exact times at which to change lanes and the
details of those changes are not determined until the actions are imminent.  Moreover, the plan
may change due to instructions from a central traffic controller (not implemented yet in
KBCon), or a possible collision, such a having a vehicle stray into the own vehicle’s lane.  When
anything occurs to cause a change in plans, KBCon replans.  At this time, KBCon’s planning
ability is fairly simple.  The primary tool is search with simulation -- we heuristically search all
possible plans and evaluate them using simulation.  The first plan that meets the goals of no
collision and reaching the destination is selected.  For now, this works because the search space
is small.  More realistic simulations will lead us to use more sophisticated planning techniques.

Evaluation
The resources given to this project were quite limited, and so most of our effort regarding
KBCon was spent in design and implementation.  Most of the software is operational at this
time, and we will continue to work on it.  However, extensive operational tests with the
simulator have not been performed.  Our intent is for KBCon to respond effectively to all normal
traffic situations and to a large number of abnormal ones, arising from malfunctions either in the
own vehicle or other vehicles.

6.3 Learning to Improve the Management of the Vehicle in Traffic

We have set up a reinforcement learning system using a three-layer artificial neural network
(ANN) as its evaluation function approximator.  This learning system is integrated into a version
of the TAHSK module that controls the motion of the vehicles.  One vehicle is designated the
learner and the remaining vehicles are designated zombies.

The output of the ANN is a number giving the evaluation of the proposed action in the current
situation.  The network has 56 inputs, as follows:

-- 6 inputs give the lateral and longitudinal position, velocity, and acceleration of the
learner vehicle

--  48 inputs give the positions, velocities, and accelerations of eight nearby vehicles,
relative to the learner vehicle

--  2 inputs give the proposed action, specified as lateral and longitudinal accelerations

The learning system has a number of parameters and submodules as follows:

-- The number of neurons in the ANN’s hidden layer.  Increasing this number allows the
ANN to learn more complicated functions, but may decrease its ability to generalize.

-- The backpropagation learning rate for the ANN, between 0 and 1.  A higher rate speeds
up learning, at the risk of learning too quickly from atypical examples or failing to adjust
the weights to the best possible values.

-- The reinforcement learning rate, between 0 and 1.  A similar quantity for the
reinforcement learning algorithm.

-- The reinforcement discount rate, between 0 and 1.  The amount by which future rewards
are discounted.  A zero value indicates that only the current reward is important, whereas
a one indicates that all future rewards are weighted equally with the current reward.
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-- A parameter which controls the probability with which the learner will take the best
possible action.  At the initial stages of learning the evaluation function is not expected to
be very good, so selecting suboptimal actions allows the learner to explore a wide variety
of possibilities.  As learning progresses, the degree of randomness should be reduced so
that the learner will only explore actions which are close to the best.

-- A parameter which controls the amount of randomness added to position measurements.
This is done to simulate real sensors with limited accuracy.

-- The ANN is written as a function which takes the 56 inputs mentioned above and
produces a real-valued output.  This function is simple to modify (such as adding a fourth
layer or changing the transfer function) or replace with another type of network (such as
a CMAC [2]).

-- The reward function is written as a subroutine which takes the same 56 inputs as the
ANN and returns a real-valued reward.

-- The mid and high level controllers are written as functions that can be different for each
vehicle.  This permits zombies that have differing amounts of randomness in their actions
and that attempt to maintain differing headways.  Zombie controllers can easily be
programmed to simulate a variety of malfunctions.

A run of the reinforcement learning system consists of a number of trials, each of which ends
when the learner reaches the end of the roadway or crashes into another vehicle or barrier.  At
the beginning of a run, the ANN is initialized either to all zeroes, to random weights, or to the
result of a previous run.  At the beginning of each trial, a number of zombie vehicles are created,
then a learner is created, followed by more zombies.  Each vehicle is created at a random time,
with velocity equal to the free-flow velocity of its lane, and with a safe headway from the
vehicle in front of it.  At each time step each vehicle’s controller adjusts its acceleration.  The
learner’s controller uses the acceleration selected by the reinforcement learning system using the
evaluation function implemented by the ANN.  The weights of the ANN are then adjusted
according to the results of that action.

At any time, the person running the learning system has the option of saving the weights which
describe the ANN into a file.  This file can be used to initialize a learner for a future run, or the
network can be tested in a nonlearning setting to see how it responds to different types of zombie
vehicles.

7.0 SUMMARY AND CONCLUSIONS

Our primary conclusions are that AI technologies, particularly knowledge based systems and
learning methods, can make strong contributions to AHS, especially in the following four areas.

• Management of malfunctions onboard the vehicle:
• Management of each automated vehicle in traffic.
• Overall traffic management.
• Sensor interpretation and fusion.

Our primary recommendations are as follows.
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• We should incorporate the management of malfunctions, both onboard and in other
vehicles, into normal operations as much as possible.

• We should design each AHS vehicle to have effective predetermined responses to a large
number of traffic situations but

• We should also design each AHS vehicle to be able to respond effectively to new
situations.

We also recommend the following.

• Each AHS vehicle have the capability to plan its own maneuvers and execute them.
• Further investigate the following areas, particularly with regard to AHS applications: KB

planning (to handle new situations), learning methods (to handle new situations and to
improve responses to already known situations), and expert systems (for overall high
level control).

In addition, we have investigated two major applications of Artificial Intelligence techniques for
an Automated Highway System.  The first is the use of a Knowledge Based Systems approach in
an operating AHS to ensure that it has the flexibility to respond to unexpected situations.  Under
normal operation a vehicle might not need to call on these capabilities, just as under normal
highway driving conditions a human driver operates “on automatic”.  Due to the complexity and
diversity of an AHS system, a vehicle must be prepared to take reasonable actions when normal
conditions do not hold, just as a human driver must be prepared to take appropriate actions if the
vehicle in front slows down abruptly, etc.  We have demonstrated a protoype KBS for an AHS,
but there is still much further to go to ensure that such a system could operate quickly enough in
a sufficiently wide variety of situations.

The second application is the use of Machine Learning techniques to help design controllers for
an AHS.  An AHS will operate at higher speeds and with smaller headways than those to which
human drivers are accustomed, so it is desirable that ML techniques be used to explore the best
way to control an automated vehicle.  We have programmed a prototype reinforcement learning
system for an AHS environment, using an artificial neural network to evaluate proposed actions.
This system operates at close to real time on a Sun workstation, but may take many trials to learn
reasonable behaviors.  Although the speed of the network was not a problem, it may be that a
CMAC network would exhibit better generalization.  More work needs to be done to explore the
applicability of these techniques to designing high-level controllers.
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