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FOREWORD

This report was a product of the Federal Highway Administration’s Automated
Highway System (AHS) Precursor Systems Analyses (PSA) studies. The AHS
Program is part of the larger Department of Transportation (DOT) Intelligent
Transportation Systems (ITS) Program and is a multi-year, multi-phase effort to
develop the next major upgrade of our nation’s vehicle-highway system.

The PSA studies were part of an initial Analysis Phase of the AHS Program and were
initiated to identify the high level issues and risks associated with automated highway
systems. Fifteen interdisciplinary contractor teams were selected to conduct these
studies. The studies were structured around the following 16 activity areas:

(A) Urban and Rural AHS Comparison, (B) Automated Check-In, (C)
Automated Check-Out, (D) Lateral and Longitudinal Control Analysis, (E)
Malfunction Management and Analysis, (F) Commercial and Transit AHS
Analysis, (G) Comparable Systems Analysis, (H) AHS Roadway Deployment
Analysis, (I) Impact of AHS on Surrounding Non-AHS Roadways, (J) AHS
Entry/Exit Implementation, (K) AHS Roadway Operational Analysis, (L)
Vehicle Operational Analysis, (M) Alternative Propulsion Systems Impact, (N)
AHS Safety Issues, (O) Institutional and Societal Aspects, and (P) Preliminary
Cost/Benefit Factors Analysis.

To provide diverse perspectives, each of these 16 activity areas was studied by at least
three of the contractor teams. Also, two of the contractor teams studied all 16 activity
areas to provide a synergistic approach to their analyses. The combination of the
individual activity studies and additional study topics resulted in a total of 69 studies.
Individual reports, such as this one, have been prepared for each of these studies. In
addition, each of the eight contractor teams that studied more than one activity area
produced a report that summarized all their findings.

Lyle Saxton

Director, Office of Safety and Traffic Operations
Research

and Development

NOTICE

This document is disseminated under the sponsorship of the Department of
Transportation in the interest of information exchange. The United States Government
assumes no liability for its contents or use thereof. This report does not constitute a
standard, specification, or regulation.

The United States Government does not endorse products or manufacturers. Trade
and manufacturers’ names appear in this report only because they are considered
essential to the object of the document.
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1 Summary

An Automated Highway System (AHS) is the most advanced and highest risk element of
the overall program on Intelligent Transportation Systems.

The objectives of this study are: to identify the issues that the implementation of AHS
entry and exit must address, to arrive at firm or tentative conclusions about those issues,
and to indicate the uncertainties that remain in the absence of firm conclusions. Issues
in entry/exit are of direct concern to several other areas: check-in (b) and check-out (c),
safety (n), roadway deployment (h) and impact on non-AHS roadway (i). One must ensure
that these inter-connected issues are not overlooked. Our study pays special attention to

safety, check-in and check-out, and has been coordinated with the related PATH studies on
roadway deployment.

The following is a summary of our findings presented as a sequence of assertions, grouped
under three headings: roadway configuration, strategies for entry and exit maneuvers, effect
of entry and exit on AHS traffic. The assertions are supported to varying degrees by the
argument in the report: some qualify to being called “conclusions,” others are “issues” that
need resolution, the rest are “concerns” that need to be addressed.

Roadway configuration

This concerns the different ways by which vehicles can enter the automated lane and the
need for barriers.

The transition lane (between automated and manual lane) may be divided into seg-
ments, one per entry and exit. There is no need for a continuous transition lane;

Automated lane entry/exit via dedicated ramps simplifies coordination;

L

Permitting manual vehicle to merge with automated vehicles is dangerous;

Suitably designed barriers that allow emergency vehicles to go through can avoid the
need for a continuous breakdown lane.

Strategies for entry/exit

Entry and exit of vehicles into and from the automated lane must be carefully chore-
ographed, both because of safety and capacity. A major outcome of our work is a control
design that seems to achieve high levels of safety and capacity.

o Platooning leads to better capacity and safety than AACC (Advanced Adaptive Cruise
Control), but it requires inter-vehicle communication for coordination;

e Vehicle leaving automated lane and entering transition lane must be coordinated with
vehicles on transition lane, if any;



¢ Provision must be made for removing vehicle from transition lane if its driver is unable
to resume control;

¢ Large spacing between vehicle entering automated lane and the vehicle in front of it
can be hazardous if the latter decelerates rapidly;

¢ AACC vehicles on dedicated lane may lead to instability or inefficiency.

Effect of entry/exit on other traffic

Since automated lane have a much higher capacity than manual lanes, feeding and discharg-
ing such a lane can disrupt traffic. The disruption can be reduced by proper coordination.
An outcome of our work is an analytical model that can be used to evaluate the extent of
the disruption in terms of excess travel time and reduced flow.

¢ Merging of vehicle with mainstream traffic on automated lane must be coordinated to
prevent disruptive “shock wave”;

e If vehicles are allowed to enter automated lane without controlled stop, the flow on
the automated lane can be seriously disrupted.

2 Introduction

This section is in four parts. We begin with a brief description of entry and exit in the
AHS. We then summarize the focus of our study and reasons for that focus. The issues
concerning entry and exit that we have addressed are described next. The section concludes
with a description of our approach.

2.1 Entry and exit

An Automated Highway System (AHS) is the most advanced and highest risk element of
the overall program on Intelligent Transportation Systems (ITS). It is the most advanced
element, not only because it embodies the most sophisticated form of computer-based “in-
telligence,” but also because it must show dramatic gains in highway capacity and safety.
AHS involves the highest risk, not only because it requires the introduction of information
technology that will significantly replace driver control, but also because its implementation
will require a radical change in the system of highway traffic. The objectives of this and
other studies in the Precursor Systems Analyses (PSA) of AHS are: to identify the issues
that an AHS design must address, to arrive at firm or tentative conclusions about those
issues, and to indicate the uncertainties that remain in the absence of firm conclusions.

The PSA studies are grouped into 16 activity areas, labeled (a)—(p). This study is concerned
with area (j), “AHS Entry/Exit Implementation.” Issues in entry/exit are of direct concern
to several other areas: check-in (b) and check-out (c), safety (n), roadway deployment (h)
and impact on non-AHS roadway (i). One must ensure that these inter-connected issues



are not overlooked. Our study pays special attention to safety, check-in and check-out, and
has been coordinated with the related PATH studies on roadway deployment.

AHS entrances are the narrow veins that feed the wide arteries of the automated lanes. If
those veins get constricted or if they are too few in number, the arteries will be starved, and
the AHS capacity will remain underutilized. The stream of vehicles leaving the automated
lanes debouch into narrow AHS exits. If those exits are blocked or if they are unable to
cope with a heavy stream, traffic can spill back into the automated lanes, creating massive
traffic jams. The design of AHS entry and exit, the management of the processes by which
vehicles negotiate their passage through them, and the coordination of that passage with
the stream on the automated lanes thus have a determining effect on the achievable traffic
flows of the AHS.

At some point during entry, control over the vehicle passes from the driver to the automated
system. And at some point during exit the driver takes over responsibility for the vehicle
from the system. These transfers of authority between system and individual driver last
a few seconds, but they are nevertheless periods of potential danger. The transfer must
be smooth, the agent taking over control must be ready and prepared, and agreed-upon
procedures must be invoked if the transfer falters.

The movement of a vehicle from entry to mainstream of the automated lane has to be
choreographed. The movement cannot be left to chance. At the moment when the AHS
takes control of the vehicle, its speed is likely to be lower than the speed on the automated
lane. The AHS control system (distributed between vehicle and roadway infrastructure)
must accelerate the vehicle to the mainstream speed at the point when it merges into the
automated lane. At that point, vehicles on the automated lane must be disposed in such a
way as to accept the entering vehicle. If for any reason the introduction of the vehicle into
the automated stream fails to follow the prepared script, agreed-upon procedures must be
invoked to recover from the failure.

These considerations show that the study of “entry/exit” shares important concerns with
the studies of “safety,” “check-in” and “check-out.” In order to achieve adequate capacity
and safety, the physical layout of entry/exit may need to be arranged in ways that can not
be accommodated in existing highways at locations where it would be most desirable to
place an entry/exit due to the pattern of demand. In this respect “entry/exit” may affect
how and where the AHS can most profitably be deployed.

In its expanded description, the Broad Agency Announcement properly finds that the basic
objective of the entry/exit studies is to “develop relationships between AHS parameters,
including: check-in and check-out time, number of instrumented AHS roadway lanes, speed
and density of traffic on the AHS roadway lanes at peak hours, land use requirements.” Even
from our very preliminary remarks above, it should become clear that these relationships
will depend on fairly detailed specification of the physical design of entry/exit, the processes
that govern a vehicle’s entry and exit and its coordination with mainstream traffic on the
automated lanes. Further, this specification must meet stringent safety criteria. These
observations should help anticipate the special focus of the present study.



2.2 Special focus
Three features distinguish this study from the parallel studies of entry/exit:

e Two alternative arrangements of entry and exit are specified in some detail: one
assumes that entry and exit occur through a “transition lane” separating manual

from automated lanes, the other assumes that entry and exit occur through dedicated
“ramps”;

e Entry and exit of a vehicle are choreographed with the movement of vehicles on the
automated lanes. The coordination is achieved through

— the exchange of a structured set of messages, called a protocol, between relevant
vehicles and roadway infrastructure, and

— longitudinal and lateral control laws that safely navigate the vehicle through entry
and exit;

e Vehicles on the automated lanes are organized in platoons in order to improve AHS

safety and capacity. (A platoon is a string of closely spaced vehicles that move as a
unit. Spacing between platoons is large.)

As will be seen below, the issues our study addresses are, with small differences, the same
as those of the parallel entry/exit studies. But these three features channel this study

in a direction different from these parallel studies and therefore our conclusions contain a
different emphasis.

We now summarize the major arguments that underlie the choice of these three features.
The arguments are based on considerations of safety and capacity. A detailed discussion is
presented in section 6.1.

Because the AHS must have fewer serious casualties than current highway traffic, manually
controlled and automated vehicles must be segregated from each other. Traffic on auto-
mated lanes will have a larger flow, hence greater speed and density, than traffic on manual
lanes. If the two types of traffic are mixed, the frequency of unpredictable and inappropri-
ate maneuvers of manually controlled vehicles will be at least as large as that on today’s
highways, but because of the greater speed and density on automated lanes, an accident
resulting from those maneuvers would lead to more serious casualties. Thus mixing both
traffic types will lead to a higher casualty rate than today, which is unacceptable. Segrega-
tion of the two traffic types can only be achieved either by a transition lane or by special
ramps, where the supervised transfer of control between driver and AHS takes place. In
either case, no portion of the highway will legitimately permit the intermingling of the two
traffic types.! This is the argument for the first feature.

At some point during entry, in the transition lane or in the on-ramp, control of the vehicle
will be taken over by the AHS. The control system must now initiate an entry maneuver
at the successful completion of which the vehicle has merged into the mainstream on the

1Of course, the intentional or unforeseen intrusion of one traffic type into a portion of highway reserved
for the other may occur. To reduce such intrusions is the objective of other studies.




automated lane. The time available for this maneuver and the space dedicated to it on the
transition lane or on the ramp are both limited. Successful completion of the maneuver
in this limited space-time interval will require that the movement of the entering vehicle
and the disposition of the nearby vehicles on the automated lanes be closely coordinated.
Achieving this coordination will, in our view, place significant demands on the layout of
entry/exit and the placement and capabilities of sensors and communication infrastructure

in the roadway and on vehicles. This accounts for the separate emphasis on the second
feature.

Based on earlier successful designs {1, 2] we have partitioned the coordination task into
two functions: a logical function implemented by a communication protocol, and the actual
longitudinal and lateral control implemented in feedback laws. This partition, of course,

is not mandatory, and there are plausible alternatives. A detailed discussion appears in
section 6.3.

The third distinguishing feature of our study is the assumption that traffic on automated
lanes is organized in platoons. This is not a necessary feature of the study, and, with
appropriate modification, much of our analysis remains valid without it, as will become
clear.? However, as argued in section 6.1, in order to achieve high capacity and safety,
inter-vehicle spacing must either be large or small, and this implies a platoon organization.

2.3 Issues addressed

The specific issues investigated in this study are also the concern of the parallel studies.
The issues are organized in the following list:

¢ Strategies for entry and exit maneuvers;

¢ Integration with a roadway deployment study undertaken by PATH;

o Alternative ramp configurations, as well as entry/exit via a transition lane;
o Queue lengths at several critical transition regions;

¢ Transfer of control;

o Effect of entry and exit on mainstream AHS traffic;

¢ Length of transition lane and ramps.

Because this list is almost self-explanatory, only a brief elaboration is provided.

Strategies for entry/exit maneuvers include the communication protocols, the feedback laws
governing longitudinal and lateral control, and provisions for aborting a maneuver if it is
not practicable or safe to continue the maneuver. We have attempted to determine how
to place an AHS with appropriate entries and exits within a section of US 101—one of
several highway corridors investigated in the PSA roadway deployment study undertaken

2The essential modification is to insist that the maximum permitted platoon size is one.



by PATH. In addition to entry/exit via a transition lane, we study alternatives based on
special ramps.

Queues can develop at several places where vehicles move from one control regime to another
as, for example, between transition lane and automated lane. The queues account for the
temporary mismatch of flows between the two regimes. If entry or exit is improperly coordi-
nated, or if too many vehicles attempt entry or exit, the mainstream flow on the automated
lane can be disrupted. Finally, the length of the transition lane and ramps determines the
time available for the entry/exit maneuver. The time available is also determined once the
speed and acceleration involved are specified.

2.4 Approach

Simulation

Repgesintaﬁve_— Strategies | _| Performance —- Queuing
gurati for entry/exit evaluation by analysis
Configuration B
Redesign [<— Verification | Construction
costs, etc.

Figure 1: The approach

The logic of our approach follows the three steps depicted in Figure 1. Step 1 provides
a specification of “Representative System Configurations (RSC).” An RSC is a group of
four distinguishing design characteristics that sets the boundaries within which the study
investigates the variation of more detailed AHS design choices. An individual study, like
ours, confines itself to one RSC or a small set of RSCs. Parallel studies explore alternative
RSCs. The four characteristics of an RSC are:

o Infrastructure impact—the amount of construction required to implement the AHS.
In this study this is the construction of the transition lane and special ramps;

o Traffic synchronization—the degree to which the movement of vehicles is coordinated.
This refers to the strategies of entry/exit and to the organization of vehicles in platoons;

e Instrument distribution—how information technology is distributed between vehicles
and roadway;



¢ Operating speed—the range of speeds that the automated lanes will accommodate.

Only light duty vehicles at 100 km/hour (30 m/sec) are considered here. However, the
analysis is readily modified to permit higher speeds.

Step 2 gives the detailed design of strategies for entry/exit. As noted before, a strategy has
two parts: communication protocols that ensure that the sequence of logical steps required
for successful entry/exit maneuvers is followed, and the implementation of those steps in
feedback laws for lateral and longitudinal control. Figure 1 indicates that the design process
is iterative: each version of the design is tested to check whether it meets the requirements
for successful maneuvers, followed by a redesign if those requirements are not met, until a
satisfactory design is invented. In this report, of course, only the final design is presented.

Step 3 evaluates the performance of a satisfactory design. Three methods are employed.
One method depends on the construction and analysis of models that explain the formation
of queues. The second relies on simulations of the AHS that highlight the processes of
entry/exit. The third method evaluates other dimensions, including construction costs and
ease of deployment on existing highways.

The remainder of this report is organized as follows. Section 3 presents the RSCs that frame
this study. Section 4 summarizes the technical discussion of the Steps 2 and 3 outlined above.
Section 5 presents our conclusions. The analyses that follow the approach outlined here are
more fully presented in the Appendices, Section 6.

3 Representative system configurations

This section specifies the Representative System Configurations or RSCs that frame our
study. An RSC comprises four design characteristics: infrastructure arrangement, traffic
synchronization, instrument distribution, and operating speed. Table 1 summarizes the
defining characteristics. We consider each characteristic in turn.

3.1 Infrastructure arrangement

Our five assumptions narrow down the range of possible infrastructure arrangements.
Assumption 1: AHS deployed on existing highway

The AHS is deployed on part of an existing highway, containing four lanes (in each direction).
One or two of those lanes are converted for AHS use. The AHS occupies the inner lanes,
the outer lanes continue to be used for manual traffic as before. As a consequence of this
assumption, manual lanes (MLs) and automated lanes (ALs) will exist side by side, and
entrance into (and exit from) ALs must occur either through the MLs or by means of special
ramps elevated above the MLs. We refer to the arrangement of entry and exit through the
ML as the manual lane option or MO and the arrangement using special ramps as the ramp

option or RO. (These two arrangements constitute the first feature of the special focus of
this study.)

Assumption 2: Manualfy controlled and automated vehicles segregated



Table 1: Summary of RSC defining characteristics.

| Characteristics | Assumptions Comments
Infrastructure | 1. AHS deployed on existing highway Four infrastructure
arrangement 2. Manually and automatically controlled | arrangements 1,2,3,4a,b
vehicles are segregated illustrated in Figures 2-6
3. Vehicles undergo check-in at entry
4. Vehicles undergo check-out at exit
5. Barriers between TL and AL, ML
Traflic 1. Platoon organization on AL Improves capacity and
synchronization | 2. Strategies for coordination, control use | safety, Figures 7, 8
communication protocols, sensor-based | Architecture in Figure 9
feedback control laws
Instrument Sensors, communication and control Distributed between
distribution calculation roadside and vehicle
Operating 30 m/s on AL, 30 m/s on TL; maximum | These determine
speed permissible accel/decel/jerk capacity and geometry

Manually controlled and automated vehicles do not co-exist on any stretch of roadway. This
assumption is made to satisfy certain safety constraints. A consequence of this assumption
is that ALs and MLs are segregated.3 Another consequence is that the process of entry is
in two phases. In the first phase, a vehicle is manually controlled. At the end of that phase
it is automatically controlled. Thus the roadway occupied during the entry process must
correspondingly be divided into two segments. In the first segment vehicles are manually
controlled, in the second segment they are automatically controlled. The roadway where
this transfer of control occurs is called the transition lane or TL. In the MO, one of the
MLs is taken over by the TL, and the TL lies between the ALs and MLs. In the RO, the
TL occupies part of the length of the ramp. The exit process is symmetric. There is a TL
comprising two segments: in the first segment vehicles are automatically controlled, in the
second they are manually controlled.

Figure 2 is a schematic of the MO arrangement, Arrangement 1. It shows two inner lanes of
a four-lane highway taken over by the AHS. Lane 1 is automated, lane 2 is devoted to the
TL, lanes 3 and 4 are MLs. Entry into the TL takes place from the “fast” ML. Similarly,
manually controlled vehicles enter the fast ML from the TL. The other details in Figure 2
are discussed later.

Figures 3-6 illustrate four different RO arrangements. Arrangement 2, Figure 3, also oc-
cupies two MLs. The innermost lane, lane 1, is automated, with no entry or exit. Lane
2 is divided into segments at least 5 km long. Each segment terminates at one end in an
entrance ramp and at the other end in an exit ramp. The ramps are elevated structures.

31t is possible, indeed likely, that an inner lane may be restricted to automated vehicles for part of the
day, and revert to manually controlled vehicles during the rest of the day, as is the case today with HOV
lanes.



automated lane  CCS : change control section
3 transition lane EMS: entry maneuver section

03 manual lane XMS: exit maneuver section
== barrier

Note: Transition Lane of 2 km is needed per entry/exit

Figure 2: Entry/exit arrangement 1

We imagine that these widely separated ramps would be linked with entrances and exits
from the MLs (not shown in the figure), although the latter would have additional entrances
and exits. The AHS ramps constitute the TL. As will be seen later, arrangement 2 offers
the simplest coordination and control strategies.

Arrangement 3, Figure 4, converts both lanes 1 and 2 into ALs. An entrance ramp feeds
directly into an AL. Vehicles from that AL exit directly into an exit ramp. The entry and
exit ramps need to be at least 5§ km apart. As in Arrangement 2, they may be linked with
entrances and exits from the MLs. Arrangement 3 has a greater capacity than Arrangement
2, but requires significantly greater coordination and control.

Arrangements 4a and 4b, Figures 5 and 6, combine attractive features of Arrangements 1
and 3. They require a degree of coordination that is almost as simple as Arrangement 1,
and achieve a capacity close to that of Arrangement 3. However, these arrangements will
require more complex construction because a 2 km-long section of the ALs that lies between
entrance and exit ramps must be elevated.

Table 2 summarizes the differences between these arrangements for several characteristics.

In Table 2 the row corresponding to capacity is based on the following calculation. Manually
controlled lanes have a capacity of 2,000 vehicles/hour, so that the original four-lane highway
has a capacity of 8,000. An AL has a capacity of 6,000 vehicles/hour. Under arrangement 1,
there are two MLs, one AL, and one transition lane, carrying no additional sustained flow,
leading to a total capacity of 2 x 2,000 + 6,000 = 10,000 vehicles/hour. In arrangements
2, the ramp segment can accommodate an additional sustained flow of 2,000, leading to a
total capacity of 12,000 vehicles/hour. In arrangements 3 and 4b there are two ALs and two
MLs giving a capacity of 2 x 2,000 + 2 x 6,000 = 16,000 vehicles/hour. Arrangement 4a
has one AL and three MLs that can support a total capacity of 6,000+ 3 x 2,000 = 12,000
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Figure 3: Entry/exit arrangement 2

vehicles/hour. The argument supporting the capacity estimates for the ALs are presented
later.

Assumption 3: Vehicles undergo check-in

A vehicle seeking to travel on the AHS will undergo a check-in process.* “Check-in” refers
both to a location on the TL and to the time it takes for the process to complete. The
time per vehicle is assumed to be so small that vehicles queued up for check-in can be
accommodated on the TL, under both MO and RO.

This assumption limits the amount of space-time available on the TL for check-in. If the

*There are PSA studies devoted to “check-in.” Our assumption concerns the way check-in affects the
infrastructure arrangements, especially the TL.

Table 2: Comparison of different infrastructure arrangements.

Characteristic Manual Arr. 1} Arr. 2 Arr. 31 Arr. 4a | Arr. 4b

! Capacity (veh/hour) 8,000 10,000 | 12,000 16,000 12,000 16,000
Construction — — Low [ Medium High High
Control complexity — | Medium Low High | Medium | Medium
Exit to fast manual lane — Yes — - - —
Min distance bet entry - 3km | 5km 5 km 5 km 5 km

Notes: (1) Construction High, Medium, Low refers to the complexity of the construction, presumably
correlated with cost. (2) Control complexity High, Medium, Low refers to “tightness” of control specification
and the need for special sensors and communication.

10
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Figure 4: Entry/exit arrangement 3

check-in process cannot be conducted in that space-time, the process could be divided into
two phases: the first phase, requiring more space-time, is conducted outside the TL; the
second phase, within the TL, serves only to verify that the first phase was successfully
completed. Figures 2-6 indicate where check-in is located on the TL.

Under manual control, a vehicle enters the TL at some point before the beginning of the
check-in process. In Figure 2 this point is indicated by the leftmost arrow leading from
the ML into the TL. In Figures 3-6, this point is on the entrance ramp somewhere before
“check-in” but it is not explicitly indicated. At the end of a successful check-in, the vehicle is
under automatic control. If a vehicle fails the check-in tests, it should be unable to proceed
to the ALs.> Provisions must be made for these failed vehicles to leave the AHS under
manual control and will require modifications in the infrastructure arrangements shown in
the Figures. In arrangement 1, Figure 2, there must be a path to return to the ML for these
vehicles. In Figures 3-6, there must be a similar path. In the latter case, this path could
be linked to the outermost ML. These modifications will not be considered any further.

Some time after a vehicle passes check-in, it starts an entry maneuver which takes the
vehicle from the TL to an AL. Provisions, akin to those needed to handle vehicles that fail
check-in tests, must also be made for vehicles that fail to enter the AL. This is a failure of
the control system, discussed under traffic synchronization, section 3.2, and should be rare.

Assumption 4: Vehicles undergo check-out

This is an assumption about the check-out process, somewhat symmetric with that of check-
in. When a vehicle leaves the AL, it enters the TL.® At some point the check-out process

®Procedures, presumably investigated by the “check-in” studies, prevent failed vehicles from entering the
AHS, inadvertently or deliberately. '
$Other PSA studies deal with check-out, so we limit ourselves to aspects with a bearing on infrastructure

11
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Figure 5: Entry/exit arrangement 4a

starts. Thus check-out is both a location in the TL (as indicated in Figures 2-6) and an
amount of time. The check-out process tests that the driver is able to take over control. If
the process terminates successfully, the vehicle is placed under manual control. Provisions
must be made to ensure safety in case tests determine that the driver is unable to take
control.

These provisions will require modifications in the arrangements shown in the Figures. In
arrangement 1, Figure 2, it is possible for vehicles that fail check-out, to continue along the
TL under automatic control and bring the vehicle to rest, before it reaches the entrance
from the ML to the TL. In Figures 3-6, vehicles that fail check-out are brought to rest under
automatic control at some point after the locations marked “check-out.”

It is possible that vehicles wishing to leave the AL are unable to do so because queued

vehicles have blocked exits. This, too, is a control system failure. It is discussed in section
3.2,

Assumption 5: Barriers between TL and AL, ML

Entry into and exit from the TL is restricted to specific locations, by means of barriers
between the TL and AL and the TL and ML. There are several reasons for doing this.
First, barriers prevent automated vehicles in the AL from entering those portions of the TL
reserved for manually driven vehicles, automated vehicles in the TL from entering the ML,
etc. (This merely reinforces segregation of automated and manually controlled vehicles,
Assumption 2.) Second, it will reduce the likelihood of a collision in the TL from “spilling
over” into the AL or ML, and vice versa. Third, the barriers are breached by “gaps” or
“gates” of sufficient length (specified later) to permit movement of vehicles between the
TL and AL or ML. The barriers thus confine the location of these gates, permitting tight

arrangements.

12
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Figure 6: Entry/exit arrangement 4b

coordination between vehicles on the AL and TL. The barriers are indicated in Figure 2,
Arrangement 1. The gates between TL and AL are also indicated there, as are the gaps
between TL and ML. The gates between TL and AL are also indicated in Figures 4-6,
Arrangements 3,4a,4b. There is no need for gates in Arrangement 2, Figure 3.

Barriers are discussed in greater detail in section 6.1.

3.2 Traffic synchronization

Traffic synchronization refers both to the overall organization of traffic as well as to the
specific strategies used to coordinate the processes of entry and exit with traffic on the ALs
and to control vehicle motion. We have made two assumptions about traffic synchronization.
(The two assumptions account for the two other features of the focus of this study.) We
state those below, together with arguments in support of those assumptions. The arguments
concern capacity and safety.

Assumption 1: Platoon organization on ALs

Traffic on the ALs is organized in “platoons” of closely spaced vehicles with large spacing
between platoons. Figure 7 shows by a simple calculation that a capacity of 8,250 vehi-
cles/hour can be achieved with intra-platoon spacing of 2 m, inter-platoon spacing of 60
m, average platoon size of 15, and a vehicle speed of 25 m/s (90 km/h), assuming a 5 m
vehicle length. This capacity estimate must be interpreted with caution, for two reasons.

In the first place, the estimate rests on the assumption that traffic on the ALs can be
synchronized or controlled so as to maintain indefinitely a two-meter intra-platoon spacing
and a 60-meter inter-platoqn spacing, at 25 m/s. In section 6.1 we summarize the evidence
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supporting the claim that this level of performance is possible.”

a platoon of size n —_—y

ld s | | d |
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n a d C Notes
- 40 2,000 n=15 yields nearly 4
5 2 60 4,800 times today’s capacity
15 2 60 8,250 capacity proportional
to speed

Figure 7: Platoon organization and capacity

In the second place, the capacity estimate is for “steady state” flow conditions, ignoring
disruptions to the flow from entry and exit of vehicles. (In other words, this is the maximum
“longitudinal” capacity.) It is obvious that if there is a significant “lateral” flow caused by
entry and exit, this capacity will be reduced. The extent of the lateral flow will depend
on the capacity of entrances as well as on trip lengths, and on the manner in which entry
and exit are coordinated with traffic on the AL. We argue in section 6.5 that with the
form of coordination described below, entry and exit capacity of 1,800 vehicles/hour, and
with average trip length of 10 km, the longitudinal capacity will be reduced at most by 10
percent, i.e., from 8,250 to 7,400 vehicles/hour. Thus, a large capacity is afforded by the
platoon organization, with suitable coordination and control.

The platoon organization also favors safety. A detailed comparison with other forms of
traffic organization is presented in section 6.1. The essence of the argument, first presented
in (3], can be understood with the help of Figure 8. If two vehicles traveling at 20 m/s
are initially separated by a distance d, and the first one decelerates at 10 m/s/s while the
second decelerates at 7 m/s/s, they may collide. The relative speed at collision, Av, as a
function of d, has an inverted U shape: Awv is small for large and small values of d, and
large for intermediate values of d. The platoon organization provides vehicle spacings that
are either small (intra-platoon spacing) or large (inter-platoon spacing).

Assumption 2: Strategies for coordination and control

The entry of vehicles from the TL is coordinated with relevant vehicles on the AL by means
of communication protocols that ensure safety and cause minimum disruption of flow on

"For an overview of analytical, simulation and experimental evidence see 2] and the references cited
therein.
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Figure 8: Platoon organization and safety

the ALs. Once the communication protocol reaches agreement that a vehicle can properly
carry out the entry maneuver, that maneuver is executed by feedback laws that determine
the vehicle’s throttle, braking and steering actuator signals. The feedback laws are based

on sensor readings that provide information about the disposition of vehicles relative to the
entering vehicle.

The exit of vehicles from the AL into the TL is also coordinated using communication

protocols. And the exit maneuver is executed by sensor-based feedback laws that guide the
exiting vehicle.

An entry or exit maneuver is aborted if at any time it is determined that continuation of
the maneuver leads to a hazardous situation. This unexpected situation may be caused by
a system failure, and should occur rarely.

As we noted in section 2.1, the coordination of the movement of vehicles on the TL and AL,
and the automatic guidance of vehicles through entry and exit, have a determining influence
on AHS capacity and safety. The better the design of coordination and control strategies,
the more predictable is the movement of vehicles, the less is the disruption caused by entry
and exit, and the safer are these maneuvers. For these reasons, much effort in this study
has gone in the design, verification, and performance evaluation of these strategies.

A detailed discussion of coordination and control may be found in sections 6.2, 6.3. We
only give an outline here. Traffic on the AL is organized in platoons. The lead vehicle in a
platoon is called the leader, the others are followers. A one-vehicle platoon is a free agent.
At any moment of time, an automated vehicle is a leader, follower or free agent.

The platoon is the basic unit of automation. Only a leader or free agent can initiate a
maneuver. (However, a follewer may request its leader to initiate a maneuver.) A follower’s
control task is only to stay in its platoon at the specified intra-platoon spacing. There are
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five possible maneuvers: in join a leader of a platoon joins the platoon in front of it to
form a larger platoon; in split a leader splits its platoon into two platoons at a designated
position; in change lane a free agent changes lane;® in entry a free agent or a pre-platoon®
enters the AL from the TL; in ezit one vehicle at a time leaves the AL platoon from an exit

into the TL.
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Figure 9: Coordination and control architecture

Figure 9 gives a block diagram of the coordination and control architecture, organized as
a three-layer hierarchy. Coordination is shared by the roadside-based link layer and the
vehicle-based coordination layer. The link layer assigns target speed and platoon size, and
informs a vehicle when it should exit. It also informs vehicles if there is an incident, and
suggests remedial action, if necessary.1? A vehicle’s coordination layer determines which of
the five maneuvers is to be conducted. (For example, if the vehicle learns from the link layer
that it is close to its exit, the coordination layer will attempt the exit maneuver.) Having
determined the maneuver to be attempted, the coordination layer exchanges messages with
the coordination layers of its relevant neighboring vehicles requesting their cooperation. If
such cooperation is not forthcoming, which may happen for a variety of reasons, including
the most likely reason that one of those neighbors is itself engaged in some other maneuver,
the maneuver is aborted and the request is repeated at a later time. If cooperation is

81f there is only one AL, change lane is unnecessary.

°A pre-platoon is a platoon in the TL. Usually entry is carried out one vehicle (free agent) at a time;
however, the flow from a TL entrance into the AL can be increased if a small number of vehicles can enter
together as a pre-platoon.

1°Examples of remedial actions are: “exit if later exit is blocked,” “slow down (or stop) if lane is blocked.”
One link layer design, together. with simulation-based performance results, is presented in [4]). Link layer
design is beyond the scope of this study and is not discussed further.
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secured, the leader’s coordination layer commands its regulation layer to invoke the (pre-
programmed) feedback control law that executes the maneuver.

The regulation layer comprises seven feedback laws, five of which correspond to the five
maneuvers. The remaining two laws, described first, are used when a platoon is not engaged
in a maneuver. The cruise law keeps the leader in its lane at the target speed suggested
by the link layer, while maintaining a safe distance from the platoon in front.!! A follower
vehicles always implements the follower law which maintains its position within the platoon
at the desired spacing from the vehicle in front of it.

The join law accelerates the leader and then decelerates it so that it joins the platoon in
front. The split law decelerates the leader until it is at a safe distance from the platoon

in front. The change lane law steers a free agent from one lane to an empty space in an
adjacent lane.

120+ 7 x,
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480m —
_ 30 m/s.

TL ' Cjﬁ“ o Y trectory ccs

manual vehicles check In stop vehicles failing entry
- — —_—
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X = size of preplatoon
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Figure 10: Regulation layer for entry: Arrangements 1,3,4

We now describe the entry law. Under this law, a pre-platoon in the TL is accelerated to
the speed on the AL, then enters the AL through a gate, and finally joins up with the rear
of a platoon—the target—in the AL. At the end of the maneuver the pre-platoon is part of
the target platoon. (This is illustrated in Figure 10.) At the beginning of the maneuver, the
pre-platoon is at rest in the TL, at the “stop sign” indicated in Figures 2-6. It is assumed
that the maximum speed in the AL is 30 m/s, and that for comfort, the maximum values for
jerk and acceleration are 2 m/s® and 2 m/s?, respectively. Since the pre-platoon is at rest
at the beginning of the entry maneuver while the target may be traveling as fast as 30 m/s,
a simple calculation shows that a 240 meter-long section in the TL is sufficient for the entry
maneuver. In Figures 2 and 10 this section is labeled EMS. The TL contains similar sections
in the arrangements of Figures 3-6, but they are not indicated. The entry law determines

11The cruise law is identical with the so-called AICC (autonomous intelligent cruise control) law [5, 6, 7],
combined with a lateral control law that keeps the vehicle in its lane.
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the throttle, braking and steering actuator control signals of the pre-platoon, assuming that
it knows the relative position of the target. Thus sensors providing this information must
be available. The lateral motion from TL into AL should take about 5 sec. Assuming a
maximum speed of 30 m/s gives a gate length of 150 m, as indicated in Figure 10.

In order for the entry law to be executed safely, the movement of the entering pre-platoon
and the target must be coordinated. In particular, the latter must not itself be engaged in a
maneuver, nor must its size be so large that the combined size exceeds the size recommended
by the link layer. These logical conditions are checked by the communication protocol
exchanged by the pre-platoon and the leader of the target platoon. That entry protocol is
presented in section 6.2 and will not be discussed further here.

traffic flow direction 150; 180:150: 800-900m
0 m/s

XMS H

check-out
; automated traffic (TL) ;
- e
manual traffic (TL) manual traffic (TL)

Gate 1 --- Vehicles1 & 3

Gate 2 - Vehicles2 & 4

max speed on AL = 30 m/sec
max speed on TL = 30 m/sec

Figure 11: Regulation layer for exit: Arrangements 1,3,4

We now describe the ezit law. A vehicle exiting from the AL may be part of a platoon, and
more than one vehicle may exit from the same platoon. For safety reason (see Section 6.1),
we do not allow different vehicles from the same platoon to exit through the same gate.
This requires many gates per exit. Figure 11 illustrates the exit maneuver, assuming up to
two vehicles can exit from the same platoon. This requires two gates. Under the exit law,
the platoon must create a short space for each exiting vehicle, which must then enter the
TL through an exit gate. We also require that the vehicle forward in the platoon must exit
from the rear gate. The platoon on AL will then close up the gap created by the exiting
vehicle, whereas, the vehicle on TL will longitudinally align itself so that the next vehicle
in the same AL platoon that will exit from the next gate can do so at a small distance
(intra-platoon spacing) behind it. Thus the vehicles exiting from the same AL platoon
from a platoon on TL. This is called as a post_platoon. Assuming the same maximum jerk
and deceleration values for comfortable driving as for entry, we can calculate the length of
the exit maneuver section or XMS, as shown in Figure 11. An exit gate must be 150 m
long, again assuming it takes 5 sec to move from AL to TL at a speed of 30 m/s. At the
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end of the XMS, the post_platoon is broken down into single vehicles so that the human
drivers can take over the control of the vehicles.

In order for the exit law to be executed safely, at most two vehicles per platoon can exit
(assuming there are only two gates), and they should exit from the proper gate. If more
than two vehicles wish to exit, the platoon should be split up upstream from the exit gates.
This coordination is achieved through another communication protocol, the ezit protocol,
also presented in section 6.2 and not further discussed here.

We now argue why it may be necessary to abort a maneuver after it has started, with the
help of Figure 10. Suppose the pre-platoon has secured the agreement of the target. The
regulation layer implements the entry law, and the pre-platoon begins to accelerate, expect-
ing to rendez-vous with the target at the entrance gate. If for some unanticipated reason
the target platoon is forced to decelerate (perhaps because the platoon in front of the target
slowed down or because of a fault), the spacing between the target and the platoon behind
it may became too short to accommodate the pre-platoon entry. In this case, avoiding a
hazardous situation may require aborting the entry maneuver. Thus the coordination and
control strategies must include a “safety check” and provision to abort the maneuver in
case the safety check is violated at any time during the maneuver. Furthermore, as dis-
cussed above under Assumptions 3 and 4 of section 3.1, the TL must include provisions to
accommodate any vehicle that has failed to enter. Similar procedures must be incorporated
in the coordination and control strategies for exit. Aborting a maneuver is not dangerous.
It may, however, cause some local disruption in traffic on TL and it may prevent a vehicle
from entry. It should occur rarely.

We have assumed that the pre-platoon starts the entry from rest (at the stop sign). It
will take some time for it to accelerate to the AL speed. It is easy to modify the entry
maneuver so that entering vehicles, following check-in (which itself may not bring vehicles
to halt), initiate the entry maneuver without coming to a stop. This will reduce slightly
the maneuver time, but create two disadvantages which seem overwhelming. First, because
the vehicle is moving, its position will not be closely coordinated with that of the target,
so that the vehicle may have to stay in the TL for a longer time. If the AL is crowded,
this time may be significant. As a result, the EMS section will have to be longer than the
240 m indicated in Figure 10. Second, the less tight coordination between the positions of
the target on the AL and the pre-platoon in the TL implies that the location where the
latter enters the AL will be uncertain, and so the “gate” will have to be longer than the
150 m gap indicated in Figure 10. The larger gap, in turn, increases the possibility that an
accident in the TL or AL spills over into the other lane, reducing safety.

Entry and exit under Arrangement 2 are much simpler than under Arrangement 1. In the
former, as seen in Figure 3, entering vehicles leave the TL and automatically end up in
an AL in a portion dedicated to entering vehicles. Once on the AL, they merely need to
execute a change lane maneuver into the inner AL. Similarly, an exiting vehicle only needs
to execute a change lane maneuver into the outer AL. Thus in Arrangement 2 there is no
need for a special entry or exit maneuver. This simplicity of coordination and control is
achieved at a cost, however. If the inner AL is crowded or if many vehicles are seeking
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Table 3: Features of TL in arrangements 1,3,4.

Feature | ___Stop on EMS | No stop on EMS
[ Length of EMS on TL _' 240 m 332 m
Length of EMS on AL 480 m 678 m
Space to form pre-platoon 100 m 150 m
Time needed for entry 31-36 sec 30-37 sec
Instrumented space on AL 660 m 858 m
Pollution Higher no effect
Driver comfort discomfort due to stop no effect

Notes: (1) Instrumented space refers to the coverage of the sensors and communications needed for the entry
maneuver, see section 3.3. (2) The time and space needed when there is no stop on EMS may be longer
than indicated. (3) Pollution is higher because of greater acceleration due to the stop.

entry, the entering vehicle will take a longer time to coordinate a lane change.!? As a
result the outer AL section between entry and exit has to be considerably longer—at least
5 km—compared with at most 2 km needed for Arrangement 1.

Arrangements 4a and 4b offer the possibility of using coordinated entry and exit as under
Arrangement 1, requiring special maneuvers, or of using only the change lane maneuver
of Arrangement 2. However, under the latter arrangement, the 2 km-long elevated section

(figures 5,6), would have to be at least 5 km long, possibly increasing the construction
complexity and cost.

Table 3 summarizes some of the features of the TL in Arrangements 1,3 and 4.

3.3 Instrumentation distribution

Instrumentation refers to the sensors, communications, and computational equipment needed
to support the coordination and control strategies described in section 3.2, and distribu-
tion refers to how these are distributed between vehicles and roadway infrastructure. Table
4 summarizes the instrumentation distribution. We discuss each item in Table 4 in turn
starting from the top. The coordination protocol of the entry layer, illustrated in Figure 10,
determines (among other logical checks) whether there is sufficient space behind the target
platoon to accommodate the pre-platoon. We envision that this is done using sensors on
the AL. As seen in Figure 10 those sensors must cover a range of 190 meters in the portion
of the AL called EMS, where the entry maneuver occurs. The accuracy of 1 % may be
more than required. Similarly, as indicated in Figure 11, a vehicle exiting from the AL and
entering the ML must be aware of the presence of any vehicles on the XMS portion of the
ML, devoted to the exit maneuver.

The platoon organization demands that the lead vehicle have a longitudinal sensor that

128ee (8] for a study that relates the time needed for entry via a change lane as a function of the flow on
the inner AL and the flow of vehicles attempting entry. Also see section 6.5 for a queuing analysis.
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Table 4: Instrument distribution.

range, speed
sensor

60 m inter-platoon distance, accuracy +1%

Equipment Function Location
[ Road Determines if there is sufficient space behind On EMS in AL, for
occupancy target to accommodate entering pre-platoon. Arrangements 1,3,4
sensor Sensor covers 190 m, accuracy 1%
One at gate & one 480m upstream of the gate
Determines if there are vehicles on XMS in TL. | On XMS in TL, for
Sensor covers 150 m, accuracy +1% Arrangements 1,3,4
One sensor required for each gate
Longitudinal | Leader detects 80 m ahead, including On vehicles in AL

Follower detects 5 m ahead, accuracy +1%

On vehicles in AL

Lateral
range, speed
sensor

Entering vehicles on TL detect target on
AL. Range of 30 m, accuracy +1%

On vehicles in TL

Vehicles in AL changing lane detects veh.
in adjacent lanes up to 30 m, accuracy +1%,
Arrangement 2

On vehicles in AL,

Communic- | Between road occupancy sensors, pre-platoon Roadside, vehicles
ation Between vehicles for coordination protocols Vehicles

Within platoon for follower law Vehicles
Coordination | Link layer coordination Roadside
and control Entry, exit coordination Roadside, vehicles
computation | Other five maneuvers coordination Vehicles

Seven feedback laws

Vehicles
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Table 5: Assumptions about vehicle capabilities.

| Capability | Value |

[ Speed on AL 30m/s
Speed on ML 20 m/s
Max comfortable accel/decel 2m/s?
Max comfortable jerk 2 m/s®
Emergency braking 7 m/s?
Vehicle type Private auto/light truck

measures the distance and speed of the vehicle in front of it up to some range, which
is larger than the inter-platoon distance. The range of 80 m, and 1 % accuracy, seems
adequate.!3 The longitudinal sensor range required for followers is much shorter.

During the execution of the entry feedback law, the pre-platoon first accelerates, then enters
the AL through a gate, and then joins the target platoon. Proper steering through the gate
and making a rendez-vous with the target requires lateral sensors which measure distance
and speed. A range of 30 m is sufficient. In Arrangement 2 where the entry maneuver is
replaced by the simpler change lane maneuver, a similar lateral sensor is needed.

Coordination of maneuvers requires communication services between roadside and vehicle
and between neighboring vehicles. There is also a need for communication among vehicles
in a platoon, for control and coordination.

The computations involved in the coordination and control tasks may, in principle, be car-
ried out anywhere. Elementary considerations of robustness and reliability, together with
the technological trends towards lower cost and higher computational power in micropro-
cessors, suggest that these tasks should be decentralized, and that computational resources
should be located as close as possible to where the necessary information is available. These
considerations lead to the locations suggested in the last item of Table 4.

3.4 Operating speed

Under the heading of “operating speed” we include several items pertaining to the assumed
capabilities of automated vehicles: nominal speeds on AL and TL, nominal values of accel-
eration, deceleration and jerk, and vehicle type. These are listed in Table 3.

The assumptions about vehicles speed and acceleration underlie the calculations of the
lengths of the various segments in the TL of Figures 10, 11. They also figure in the cal-
culation of the minimum (safe) inter-platoon distance of 60 m that enters the capacity
calculation of Figure 7. Finally, it is assumed that heavy vehicles are not allowed in the
ALs (or that they have a separate dedicated lane). This permits us to assume that vehicles
traveling in a platoon have a comparable performance.

13PATH’s longitudinal control experiments uses a radar with a range of 30 m and an accuracy of 5 %.
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It should be noted that all of the analyses presented in sections 4-6 can be modified in
obvious ways to accommodate larger operating speeds. Thus the nominal speed of 30 m/s
should be treated simply as a parameter. It turns out that for reasonable ranges of speed,
the “longitudinal” capacity will increase slightly almost in proportion to the nominal speed.
This is a major advantage of highway automation.

4 Technical discussion

As depicted in Figure 1, our approach involves three steps: (1) specification of the RSCs,
(2) design of entry/exit strategies, and (3) performance evaluation of the resulting system.
Step 1 was discussed in detail in section 3. This section is in two parts. The first part is
devoted to entry/exit strategies, and the second to performance evaluation.

4.1 Entry/exit strategies
Six features of the assumed RSCs frame the design of these strategies:

¢ Manually controlled and automated vehicles are segregated;

e ALs and MLs are separated by a TL;

o There are barriers separating the TL from ALs and MLs; These barriers have “gates”
or gaps for vehicles moving into and out of the TL;

¢ Vehicles undergo check-in and check-out at specific locations in the TL;
e Vehicles in the AL are organized in platoons;

o Vehicle capabilities on the ALs are given by Table 5.

The first four features are embodied in the entry/exit arrangements 1,2,3,4a,4b.

Strategies for entry

We first discuss the entry strategy for arrangement 1 of Figure 2. The strategies for Ar-

rangements 3 and 4 are virtually identical. The strategy for arrangement 2 is discussed
later.

Consider Figure 2. Manually controlled vehicles enter from the ML at the leftmost portion
of the TL via a gate or exit lane. They enter the section labeled CCS (change control
section). After successfully passing through the check in, the control of the vehicle will be
transferred from the driver to AHS. The sequence of events that will take this automated
vehicle from TL onto AL can be represented by a flow chart of Figures 12, 13. The vehicle
under automatic control will come to a stop behind the stop sign. Thus, a small queue of
vehicles that want to enter the AHS will form behind the stop sign. Physically, the stop sign
is a roadside controller with communication capabilities. The stop sign communicates with
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the road occupancy sensor on AL which determines available space behind an AL platoon,
called the target platoon. The available space in turn determines the maximum size of
preplatoon that can join behind the target platoon on AL without creating disturbance for
the upstream AL traffic. In case space is available on AL, the first vehicle at the stop sign
communicates with the leader of the target platoon requesting cooperation in the entry
maneuver. The permission to proceed is granted if the target platoon is not already busy
with some other maneuver and the combined size of the target and the preplatoon does not
exceed the maximum allowable platoon size on this section of the AHS.

Once an agreement is reached, the first vehicle at the stop sign forms a preplatoon of
appropriate size and becomes its leader. Preplatoon formation is similar to ‘join’ maneuver
of [1] but it does not involve any control action by the regulation layer as the vehicles
in the queue have the same velocity (zero m/sec) and required intra-platoon separation
between them. The preplatoon accelerates to catch up with the target platoon while the
vehicles stopped behind the preplatoon move forward up to the stop sign and wait for the
next available gap on AL. Given the passenger comfort bounds on acceleration and jerk, a
simple calculation shows that it takes 16 seconds and 240 meters for a stopped vehicle to
reach the AL operating speed of 30 m/sec. During that time, the target platoon travels
480m at 30m/sec. This determines the location of AL road occupancy sensor to be 480m
upstream of the entrance gate.

At the end of the acceleration phase, the preplatoon should be aligned with target platoon
and traveling at the same speed. This requires velocity of the target platoon to be relayed
to the leader of the preplatoon so that its feedback controller can adjust to the changes
in speed of target in response to the traffic on AL. The feedback control law used by the
leader of the accelerating preplatoon ensures that when the preplatoon reaches the gate, it
is properly aligned with the target platoon moving at the same speed so that lane change
can safely take place. The preplatoon changes lane at a short distance behind the target
platoon and completes the entry maneuver by joining the target platoon.

In rare situations, such as accidents on AL, two things can go wrong. The changes in speed
of the target platoon could be drastic so as to create substantial error in the alignment of
two platoons; or the gap behind the target platoon may shrink because of congestion on
AL. Whereas the former condition can be detected by the lateral sensors of the preplatoon
leader, the latter requires an additional road occupancy sensor to monitor the gap behind
the target platoon. This sensor is placed at the entrance gate. In either case, the entry
maneuver is aborted (before the lane change is started), the preplatoon is broken up in
CCS (figure 10) and the control of the vehicle is returned to the driver who then drives the
vehicle onto ML. A slight variation of this scheme used in arrangements 4a and 4b is as
follows: After aborting the entry maneuver, the preplatoon continues its journey through
the exit gates on TL coordinating its movement with the exiting vehicles. At the end of
XMS, it is broken up and control is turned over to the driver.

The entry maneuver can be carried out even if the target platoon on AL does not exist
which might be the case if the traffic density on AL is low. In this case, the preplatoon on
TL will enter onto AL as an independent platoon. To do this without disturbing the AL
traffic will require available space to be at least 2 x 60m (inter-platoon separation in the
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front and back of preplatoon) + size of preplatoon on AL.
Thus, for a maximum preplatoon size of 10, the road occupancy sensor should have a range

of 190m. The average speed on AL obtained from the link layer of AHS, is used in the
feedback law for the accelerating preplatoon.

The entry maneuver for arrangements 2, 4a and 4b is similar except that the vehicles join
TL directly from the arterial streets, rather than from the ML.

Strategies for exit

We now describe exit strategy for arrangements 1, 3 and 4. The exiting vehicle, which may
be part of a platoon on AL, executes a lane change maneuver to enter the XMS section of the
TL at an exit gate. More than one vehicle may exit from the same platoon. Design of an exit
strategy must follow the safety principle of Section 6.1 which requires the safe longitudinal
vehicle following distance to be either very small (such as the intra-platoon separation of
2m on AL) or sufficiently large (such as inter-platoon separation on AL). It is also shown in
[9] that high relative velocity collisions can occur if the preceding vehicle applies maximum
braking and the trailing vehicle is following it with an intermediate spacing greater than 2
car lengths but less than the safe inter-platoon separation. This rules out the possibility
of two vehicles from the same AL platoon exiting from the same gate as they won’t have
safe separation between them on TL. Another potential danger with allowing more than
one vehicle from a platoon to exit through one gate is that the platoon on AL will be left
with several gaps or larger ones violating the safety principle. Thus different vehicles from
the same platoon exit using different gates.

It is natural to consider the following strategy to ensure safety on TL when its operating
speed is lower than the operating speed on AL. Once on TL, the exiting vehicle decelerates
to TL speed. The distance between successive exit gates!4 should be such that the vehicle
that exits through first gate can create a large (safe) spacing between itself and the next
vehicle exiting from the parent platoon at the next gate. This guarantees safety for vehicles
exiting from the same platoon on AL. However, because of the speed differential between
TL and AL, it is possible that a vehicle from the trailing AL platoon may catch up with the
slow moving vehicle on TL and might collide with it after exiting at a later gate. Because
of this, to attain collision-free operation, we adopt the following slightly more complicated
strategy for exit.

Under this strategy, all vehicles that exit from same AL platoon form a platoon on TL. We
call this a post-platoon. The forward-most exiting vehicle in AL platoon exits through the
rear-most gate. The AL platoon closes the gap (by executing a “join” maneuver) between
two gates. The exited vehicle longitudinally aligns itself (by decelerating first and then
accelerating) such that the next vehicle can change lane at the intra-platoon separation of
2m behind it. The second vehicle exits as a follower of the post-platoon. The post-platoon
leader receives the location of the next exiting vehicle from its parent AL platoon and then
uses its lateral sensors to align itself with this vehicle. Under extremely rare conditions such

4The inter-gate distance should be sufficient to allow AL platoon to close up the gap created by the
exiting vehicle. .
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as control system failures, this alignment is not properly achieved, in which case the second
vehicle aborts its lane change onto TL and attempts the exit maneuver at a later gate. Road
occupancy sensors are also needed to check for available space behind the post_platoon on
TL. The leader of the platoon on AL has to keep track of the aborted exit maneuvers and

assign new exit gates to these vehicles. The protocol used for this coordination is presented
in Section 6.3.

The post-platoon always travels parallel to the parent platoon on AL thereby avoiding being
hit by vehicles exiting from other AL platoons. At the end of XMS, the post-platoon is
broken in to free agents. The free agents slow down and create larger inter-vehicle separation
such that human drivers can take over the control of the vehicles. If for some reason, the
driver is unable to take over control, a special turnout, called dormitory (not shown in
the figure), is provided where the vehicle comes to rest. Figure 14 contains the flow chart
description of the logical steps involved in exit under this strategy.

Entry/exit strategies under arrangement 2

The coordination and control strategies for entry/exit under Arrangement 2 are much simple
than other arrangements. Similar to other arrangements, all vehicles are operating as free
agents under automatic control after they pass check-in station on entrance ramp (See figure
3). In this arrangement, instead of stopping at the stop sign and waiting for a suitable gap
on AL, the vehicles accelerate up to the average speed of automated lane. The average
speed on AL can be obtained from the link layer controller on AHS. In this case, vehicles on
TL will not form platoons. Once on the surface section of TL, the vehicles find themselves
adjacent to an automated lane. At this point, they will execute ‘lane change’ maneuver
according to [1, 7, 10} to change lane to AL. The automated vehicles on AL that want
to exit, will similarly change lane (after becoming a free agent) onto TL. The TL section
ends into an exit ramp. Vehicles on exit ramp will slow down and increase their separation

(similar to ‘break up’ maneuver described earlier) so that human drivers can take over the
control of the vehicle.

This shows that, we do not need any special hardware (such as road occupancy sensors,
stop light, communication devices) as well as any special control laws for entry/exit under
this Arrangement. At the beginning of the entrance ramp, the vehicles need to know the
average speed on AL, which can be relayed from the link layer on AHS. Depending on the
density of traffic on AL, conventional ramp metering can be used to control the flow of cars
entering the transition lane.

4.2 Performance evaluation

When a vehicle (or pre-platoon) enters the AL from the TL, the AL platoon immediately
behind the entering vehicle may have to slow down in order to maintain a safe distance.
In turn, this may cause the platoon behind it to slow down as well. This slow down will
propagate upstream on the AL in a “shock wave.” The shock wave is finally arrested when
it encounters an inter-platoon gap that is larger than the safe distance.
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The slow down of AL platoons causes a degradation in performance that can be evaluated
in two equivalent forms: the delay induced by the shock wave measured as platoon x
distancel®, and the additional time measured as platoon x time (platoon-hours)!6. The
degradation depends on several factors:

o The strategy used to coordinate the entrance of vehicles from TL into AL with AL
vehicles;

e The probability distribution of AL inter-platoon distances;

¢ The average speed and flow on AL.

Suppose that an entering vehicle needs a space of S m on the AL. (S depends on speed, size
of entering vehicle or pre-platoon and the control law used by the vehicle.) Suppose that
the inter-platoon distances are independent, Poisson distributed random variables with a
mean value D > A where A is the safe distance. In section 6.6 we show that the average
delay is

2
T 2(D-A)

If the nominal speed on AL is v m/s, this delay leads to an additional travel time of Eé/v
platoon-sec.

E$

platoon-meters.

If we assume an average trip length of L meters, an average platoon size of N vehicles, then
the trip time is increased on average by a factor v,

N5
T=T 3D-a)

Consider the following case: AL flow = 6,000 v/hour, N = 10, speed of 30 m/s, vehicle
length of 5 m and intra-platoon distance of 2 m. (These assumptions give D = 110 m.)
Suppose the safe distance is A = 60. Suppose, lastly, an average trip length over the AL of
10 km. Then
S2
= 55"

If we assume § = 100 m, this gives ¥y = 10 %, i.e., the average trip time is increased by
10 %. The maximum flow is correspondingly reduced from 6,000 to 5,400 v/hour. If the
speed can be increased from 30 to 33 m/s, the flow of 6,000 v/hour would be restored. The
assumed deviation of § = 100 m seems rather high if entry into AL is coordinated in the
manner that is suggested in this report. v is also reduced if pre-platoons of more than one
vehicle enter the AL.

5 Conclusions

An Automated Highway System (AHS) is the most advanced and highest risk element of
the overall program on Intelligent Transportation Systems. Entry/exit is arguably the most

3This is the additional distance platoons would have travelled on the AL had they not been slowed down.
'6This is obtained by dividing the previous measure by the average AL speed.
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complex function that must be implemented in the AHS. Since it involves the transfer of
control between driver and system and the transfer of the vehicle between AL and TL, both
safety and capacity are critically affected by the way in which entry/exit is implemented.

This study has proposed a fairly detailed design and evaluation for 1mplementmg entry/exit.
The major features of the design include:

o Coordination of the movement of a vehicles on TL and AL using communication
protocols that have been verified;

e Lateral and longitudinal control laws that guide vehicle movement to and from the
AL, based on a nonlinear system-level model of the vehicle. These laws have been
subject to a limited validation based on simulation;

¢ Performance analysis of degradation of speed and flow on the AL due to disruption of
the AL traffic caused by vehicle entry.

The second major product of this study is the design of four different types of entry/exit
roadway configurations. In attempting to deploy an AL on an existing highway, the designer
can select one of these configurations depending on the availability of space and structural
cost. The paralle]l PATH study on roadway deployment has been focussed on a challenging
segment of US Route 101 in Southern California. That study found the four configura-
tions proposed here to provide a sufficiently flexible range of designs to meet the difficult
requirements imposed by that segment of highway.

The objectives of this study are: to identify the issues that the implementation of AHS
entry and exit must address, to arrive at firm or tentative conclusions about those issues,
and to indicate the uncertainties that remain in the absence of firm conclusions. Issues in
entry/exit are of direct concern to several other PSA study areas: check-in (b) and check-out
(¢), safety (n), roadway deployment (h) and impact on non-AHS roadway (i).

The following is a summary of our findings presented as a sequence of assertions, grouped
under three headings: roadway configuration, strategies for entry and exit maneuvers, effect
of entry and exit on AHS traffic. The assertions are supported to varying degrees by the
argument in the report: some qualify to being called “conclusions,” others are “issues” that
need resolution, the rest are “concerns” that need to be addressed.

Roadway configuration

This concerns the different ways by which vehicles can enter the automated lane and the
need for barriers.

e The transition lane (between automated and manual lane) may be divided into seg-
ments, one per entry and exit. There is no need for a continuous transition lane;

e Automated lane entry/exit via dedicated ramps simplifies coordination and control;

e Permitting manual vehicle to merge with automated vehicles is dangerous;
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o Suitably designed barriers that allow emergency vehicles to go through can avoid the
need for a continuous breakdown lane.

Strategies for entry/exit

Entry and exit of vehicles into and from the automated lane must be carefully chore-
ographed, both because of safety and capacity. An importatnt product of our study is a
control design that seems to achieve high levels of safety and capacity.

e Platooning leads to better capacity and safety than AACC (Advanced Adaptive Cruise
Control), but it requires inter-vehicle communication for coordination and control;

¢ Vehicle leaving automated lane and entering transition lane must be coordinated with
vehicles on transition lane, if any;

¢ Provision must be made for removing vehicle from transition lane if its driver is unable
to resume control;

o Large spacing between vehicle entering automated lane and the vehicle in front of it
can be hazardous if the latter decelerates rapidly;

e AACC vehicles on dedicated lane may lead to instability or inefficiency.

Effect of entry/exit on other traffic

Since automated lane have a much higher capacity than manual lanes, feeding and discharg-
ing such a lane can disrupt traffic. The disruption can be reduced by proper coordination.
We have developed an analytical model that can be used to evaluate the extent of the
disruption in terms of excess travel time and reduced flow.

e Merging of vehicle with mainstream traffic on automated lane must be coordinated to
prevent disruptive “shock wave”;

o If vehicles are allowed to enter automated lane without controlled stop, the flow on
the automated lane can be seriously disrupted.

6 Appendices

6.1 Safety and capacity
Modes of operation on an AHS
An Automated Highway System (AHS) is designed to reduce congestion, partly by increas-

ing the flow of vehicles on an automated lane (AL) by a factor of three or more. Spacings
at which human drivers are too liable to run into the vehicle ahead can, it is suggested, be .
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made safe by the use of automatic controls, not subject to human error. Thus congestion
is relieved. Nevertheless, it is recognized that mechanical failures of both vehicles and con-
trol systems are possible, though hopefully rare. With a greatly increased lane flow, such
failures can credibly lead on to accidents in which many people are hurt.

Shladover [3] pointed out that if a vehicle is following another which decelerates abruptly the
resulting collision occurs at low relative speed if the vehicles are either well-separated or very
close together. Large separations between all pairs is inconsistent with the desired capacity.
He was led on to propose motion in closely-spaced platoons containing 3-20 vehicles. The
different platoons are so far apart that the follower can stop without colliding if the leader
suffers a mishap. The vehicles within a platoon use sensors and communication with the

leader for their longitudinal control action. This concept lies at the basis of the AHS design
adopted here.

Others, notably Autonomous Adaptive Cruise Control (AACC), Cooperative Adaptive
Cruise Control (CACC) and Point Follower Control (PFC) use other configurations. In
AACC, autonomous controls are used by each vehicle to keep a desired distance behind its
predecessor, which we take to be constant for all vehicles at any one speed. The vehicles
use only sensor readings with no communication. In CACC, the same result is achieved
with communication between vehicles. AACC and CACC, unlike the other configurations,
can operate in the presence of manually-controlled vehicles. In PFC a vehicle stays in a
slot defined by the infrastructure, which moves along the AL. These slots 10-20 m long are
moving along the highway. Each slot may or may not contain a vehicle.

Safety

Hitchcock {11] compares these competing strategies from the point of view of safety from
mechanical failures. In the accidents he discusses, strings of vehicles respond to the initial
incident by braking. Nevertheless collisions occur. One of the factors affecting the severity
of injuries is the variability between vehicles. In any of the longitudinal control schemes,
if vehicles were all identical there would be few or no collisions. In fact, however, the
maximum deceleration that a vehicle can achieve depends on the condition of its brakes,
and, in wet weather, on the condition of its tires. In well maintained vehicles these do vary,
but not very much.

The only failures of longitudinal control which can generate accidents are ones in which
a vehicle’s acceleration changes abruptly, or will not change when this is necessary. It is
argued that the fail-safe mode of the longitudinal control system will be to have a “brakes-
on” fajlure. In this case, the brakes are fully applied by a vehicle without warning to the
following vehicles. The following assumptions about the communication capabilities are
used.

¢ In the platooned condition, and also in CACC, a message is passed back from vehicle
to vehicle in the platoon. This is modeled by a communication delay of 0.01 s. There
is then a delay before brakes are applied (0.09 s is used);

e With AACC, each vehicle can only detect the vehicle ahead of it. We take mechanical
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delay before application of brake to be 0.09 s. This is optimistic with present day
brake technology, but it can become possible in the future. Thus the generally negative
conclusions we reach about AACC later are not due to pessimism here;.

o PFC systems are controlled from the infrastructure. We therefore consider a delay of
0.09 s.

Given these assumptions, a detailed study is conducted in [11] of effects of sudden braking
by a vehicle on its followers. The distribution of vehicle masses and of friction coefficient
values is taken to be random. The calculation is based on a “Monte Carlo” simulation,
that is, values of the random parameters are given fixed values determined by an unbiased
process for each run, and the runs are repeated many times, till the probabilities or expected
rates of death and injury in a given situation can be determined statistically.

It is shown that at high capacities the performance of closely spaced platoons is superior
to that of competing configurations in terms of casualty rate per failure. The PFC systems
are second. Close-spaced platoons are certainly superior to high-density AACC-only con-
figurations by at least an order of magnitude. One very desirable feature of platoons is the
fact that all collisions occur below the threshold at which deaths can occur!?, and another
is the lack of sensitivity to road surface conditions and system speed.

Whether or not all this is important depends on the frequency of the brakes-on failure. If
the reliability of the longitudinal control system leads to the brakes-on failure at a rate of
1% per year, then the injury rate for the non-platooned systems due to this cause alone
exceeds that due to all causes at present, while that for platooned systems is around 10% of
the present rate. If the failure rate is reduced to 0.1% per year, the platooned system will
still have a worth-while advantage, in reducing injuries to about 10% of the present rate.
If the failure rate is reduced to 0.01% per year—a mean time between failures of about 106
hours operating time-——the advantage becomes insignificant.

The position of AACC, mixed with ordinary manual traffic, is interesting. At low fractions
of the total traffic, it gives rise to no great safety problems, but as the possibility rises that
one AACC vehicle will follow another, the risk of casualties rises sharply, and by the time
that there are five AACC vehicles for every manual one, it may come to be thought necessary

to prescribe stringent conditions on the mean time between failures of the automatic braking
system.

Thus, platooning strategy is the clear favorite from the safety point of view. Even allowing
for the TL, which bears little through traffic, the capacity per unit width can be made
high—twice or three times that for manual lanes. The system can thus be economic. If an
AACC system has to be designed for such a high safety standard, the inter-vehicle distance
will be so large that the main objective of increasing the capacity will be lost.

7From accident records and hospitalization data, 3 m/s is used as a threshold relative velocity for a
collision before hospitalization is needed.
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Capacity

Let us consider the effect of automation on capacity. In platooning environment, the ve-
hicles will be following each other at a very small distance. These tightly packed platoons
will be traveling at a large separation between them. Taking intra-platoon spacing as d,
interplatoon spacing as D, vehicle length as s and a steady state speed of v m/s, gives a
capacity of

n

C=vx m T (= 1diD X 60 vehicles/lane/hr

if traffic is organized in n car platoons. If we analyze this equation for s = 5 m and
v = 72 km/hr, it can be seen that the capacity of 7200 veh/hr can be achieved, with d = 2
m, D = 60 m and platoon size of 20, which is almost four times the maximum capacity of
manual traffic. Another advantage of platooning is that the capacity increases in proportion
to the operating speed as can be seen from the above equation.!® Furthermore it is shown

in [8] that the capacity reduction due to lateral flow required for entry/exit is less than
10%.

Thus amongst the various competing solutions for AHS, we choose platooning to be the
preferred configuration.

Segregation of automated and manual traffic

The casualty rates that are acceptable are not currently defined. But it is clear that AHS
must appear to be less dangerous to car occupants than the manual traffic (on freeway) that
it replaces. In fact such accidents as do occur are likely to make newsworthy photographs:
many will involve many vehicles, and when, as will be true in most cases, the injury rate
is low, the public is more likely to ascribe this to luck than to sound engineering. When
fatal accidents do occur, they are likely to be multi-fatality ones. Thus an AHS will appear
more dangerous than it is. We suggest here that safety criteria, if they are to be publicly,
politically and legally acceptable will require that the injury rate due to any one kind of
accident should be less than 10% of the present rate on freeway. Ultimately the decision
about what is acceptable in such cases is for legislatures.

The requirement above that safety be increased by a considerable factor over the present
situation implies that there be no manual traffic on the high-density AL. Otherwise human
errors will occur at the same rate as at present, and produce accident rates which are likely
to be significantly larger than at present, since speeds and densities will be increased on
ALs. This means, incidentally, that full economic advantage may be taken of automation,
and lane widths of ALs can be narrowed. For some designs of the TL and in fault conditions
manual and automated traffic may co-exist on parts of the TL, but this is at low density
and reduced speed. It has sometimes been suggested that, for example, platoon leaders
might operate with manual control of interplatoon spacing. Under such conditions freedom
from interplatoon collision would be lost in many fault conditions—each such event could
be a multi-fatality accident.

*3This is not strictly true because D should increase with v.
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Dividers between lanes

Even though the manual and automated traffic are segregated, an AHS may well consist of
automated lanes (ALs) with traffic in platoons and manual lanes on the same freeway. With
such a configuration there are arguments for and against the provision of a physical barrier
(called a divider) between the automated lanes and the rest. On the one hand, a divider
is unattractive to drivers. It is likely to make them feel “fenced in” and could generate
claustrophobic reactions. While changing lanes through a gate, drivers may become alarmed
or fearful. (“Gates” are the gaps that have to be left in the divider to permit vehicles to
enter or leave the AL.) Changing lanes between such gates could reduce capacity. The end
of a divider would itself be an obstacle which a vehicle can strike, come to rest and be struck
by other vehicles. Thus, it is argued, dividers create more casualties than they prevent.

On the other hand, Hitchcock [11] asserts that a divider is necessary to prevent the casu-
alties which would otherwise occur in secondary accidents when a collision on the manual
lanes intrudes on the ALs. With high-speed vehicles, such an occurrence would lead to
multiple casualties. Further, the divider will not generate serious casualties. Its end need
be only a foot or so high. If a car hits the divider’s end while changing lane, the passenger
compartment would not be penetrated, and deceleration would not be very great. Because
a vehicle would join a platoon only by entering at the rear, the following platoon could
stop without running into a vehicle stranded on the barrier. Such an accident would inter-
rupt traffic on the AL, but would generate no serious casualties. The secondary accidents
prevented by the divider, however, would generate serious casualties.

Hitchcock [11] analyzes the enumerated data about “relevant accidents” on a section of
the Santa Monica freeway. These are accidents on the manual lanes as a result of which a
vehicle is projected on to the leftmost lane, where the ALs would be. Hitchcock calculated
the death rate in automated vehicles on an AL on this freeway due to secondary collisions
after a relevant accident in the absence of a divider. With platooned operation the death
rate would be around 0.4 times the present rate due to all causes. It is also shown that
with other control modes, the effect is even worse. With gates between AL and ML, the
death rate drops by a factor of 10 for platooning.

Since the death rate without AL/TL dividers is unacceptable, any system meeting safety
criteria must have them. It is not immediately apparent, however, that barriers can be made
safe. It is clearly possible for a barrier to be struck end-on by a vehicle which is changing
lane through a gate. If the barrier is a Jersey beam, or the familiar corrugated-metal barriers
seen on freeways, this is known to be extremely dangerous. The barrier must be designed in
such a way that it will resist penetration by a vehicle striking its side, but will yield, giving
a moderate deceleration when struck end-on. Another possibility applies between ALs, or
at the entry-gate, where the barrier has only to contain vehicles to a narrow lane. Here
a low barrier, which will pass under the vehicle and slow it by causing it to plow through
sand may perhaps be acceptable. Refer to [11] for different possible designs of barriers.
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6.2 Infrastructure arrangement

In this section, we present four different highway arrangements to arrange entry/exit from
arterial streets (city/local streets) to AHS via either a transition lane or dedicated ramps.

Arrangement 1

Figure 2 is a schematic of Arrangement 1. It shows two inner lanes of a four-lane highway
taken over by the AHS. Lane 1 is automated, lane 2 is devoted to the TL, lanes 3 and 4
are ML. Entry into the TL takes place from the “fast” ML. Similarly, at the end of exit
maneuver, manually controlled vehicles enter the fast ML from the TL.

The advantage of this scheme is that it does not require construction of separate en-
trance/exit ramps. The disadvantage is that the entry/exit onto the AL is through the
leftmost (fast) ML. Thus the congestion on AL will affect the traffic on MLs and vice versa.
Note that about 2-3 km of transition lane is needed per entry/exit. Parts of TL can po-
tentially be used for manual traffic between two entrances.!® But in an urban area (mostly
where AHS will be deployed), as the entrances and exits are close to each other, this will
create lot of disturbance to manual traffic. Therefore, we assume that one lane of the orig-
inal four lane highway is converted into transition lane over the entire length of highway.
This lane does not contribute to the capacity of the highway. For this arrangement, increase
in capacity is moderate: from 8,000 vehicles/hour for the existing manual highway to 10,000

vehicles/hour (6,000 vehicles/hour for the AL, 2,000 vehicles/hour for each ML and 0 for
TL).20

subsubsection*Arrangement 2 This arrangement (Figure 3) also occupies two ML. The
innermost lane, lane 1, is automated, with no entry or exit. Lane 2 is divided into segments
at least 5 Km long. Each segment terminates at one end in an entrance ramp and at
the other end in an exit ramp. The ramps are elevated structures that connect lane 2 to
the arterial streets. We imagine that these widely separated ramps would be linked with
entrances and exits from the MLs (not shown in the figure), although the latter would have
additional entrances and exits. The AHS ramps constitute the TL. According to Section
4.1, arrangement 2 offers the simplest coordination and control strategies.

The advantage of this scheme is the provision of separate entry/exit from arterial traffic to
AL and manual lanes. The congestion on AL does not-directly affect the traffic on MLs
and vice versa. This scheme does not need dedicated hardware (sensors, communication
devices etc.) in the infrastructure for entry/exit maneuver as explained in Section 4.1.
These advantages are obtained at the cost of construction of elevated TL. As the transition
lane segments are at least 5 Km long, the TL can carry up to 2,000 vehicles/hour that can

1% Another way to see this is to note that each entry/exit requires a segment of TL. There is no need for
a continuous TL. Thus in Figure 2, the TL would consist of one segment for entry, and another segment for
exit.

This is a conservative estimate. As noted above, there is no need for a continuous TL. Moreover, the
capacity calculation presented here do not take into account the relative widths of manual and automated
lanes. As the automated lanes could be narrower than the manual lanes, conversion of 2 manual lane to
automated lane can create some more space which might be utilized to increase capacity by adding another
lane. Typically, converting a ML to an AL can free up to one fourth of the previous ML width.
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exclusively travel on TL. Therefore, this arrangement results in a maximum capacity of

12,000 vehicles/hour; 6,000 vehicles/hour for the AL, 2,000 vehicles/hour for each ML and
2,000 vehicles/hour for the TL.%!

Arrangement 3

The third arrangement considered is shown in Figure 4. Two manual lanes, 1 and 2, are
converted into AL. An entrance ramp feeds directly into an AL. Vehicles from that AL
exit directly into an exit ramp. The automated lanes themselves have to be elevated at
the entry and exit ramps. This arrangement has greater capacity than Arrangement 2,
as two automated lanes and two manual lanes result in the maximum capacity of 16,000
vehicles/hour. Similar to Arrangement 2, the AL and ML traffic do not affect each other.
This arrangement results in highest capacity with additional construction cost comparable
to arrangement 2. But, it also requires significantly more complex coordination and control
than Arrangement 2. One of the drawbacks of this arrangement as drawn in figure 4 is that
the entry and exit side of the TL are not connected thereby not providing any path for the
vehicle that has aborted its entry maneuver. One needs to construct special turnouts for this
purpose from the entrance ramp to the MLs or the arterial streets increasing construction
cost and complexity. This also means that the entry maneuver should be executed at a very
high precision increasing the communication and control complexity.

Arrangement 4

The schematic diagram of arrangement 4 is shown in Figure 5. This arrangement combines
attractive features of arrangements 1 and 3. This requires a degree of coordination that
is as simple as arrangement 1 and achieves a maximum capacity of 12,000 vehicles/hour,
same as arrangement 2 but with a different proportion of manual to automatic traffic. In
this case, the highway can carry 6,000 vehicles/hour of manual as well as automatic traffic.
However, this arrangement will require complex construction because a two km-long section
of the AL that lies between entrance and exit ramps must be elevated along with the TL
that has to pass over 2 km of the left-most ML.

In this arrangement, we can convert either one or two MLs into automated lanes. The
scheme of figure 5, where one lane is automated, is called arrangement 4a. Arrangement
4b (figure 6) will have two automated lanes and two manual lanes resulting in maximum
capacity of 16,000 vehicles/hour. This increases construction cost even further as both the
automated lanes should be elevated for the entire length of the TL.

6.3 Protocol design and verification

Recall Figure 9. It gives a block diagram of the coordination and control architecture,
organized as a three-layer hierarchy. Coordination is shared by the roadside-based link

21 Al capacity calculations are based on the assumption that the distribution of trip origin/destination
patterns, the location of entry and exits, and the non-AHS urban arterials are able to support the capacity
flows on the AHS.
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layer and the vehicle-based coordination layer. The design and verification of coordination
layer protocols for entry and exit maneuver under arrangements 1, 3 and 4 are presented
in this section. In this and the next section, we present a controller design which can
implement the entry/exit strategies discussed in Section 4.1. The first step is to break
up the strategies into two parts: a logical part consisting of a sequence of discrete steps
and continuous time sensor-based feedback control laws that are used to implement each
of these logical steps. This has many advantages, in particular, the logical steps break
down the feedback control design problem into simple and manageable tasks, and it can be
verified that the sequence of logical steps itself possesses certain desirable properties. The
logical tasks are organized into the coordination layer and the feedback control laws are
included in the regulation layer. We present the design of coordination layer for entry and

exit maneuvers in this section. The regulation layer control laws are described in the next
section.

The logical steps in the entry/exit maneuver are modeled by interacting finite state ma-
chines, similar to a communication protocol. Thus, in case of entry, we have finite state
machines to capture the discrete decisions taken by the vehicle that is entering the AHS.
The vehicle state transitions through discrete steps such as passing the check in, stopping
at the stop sign, accelerating to catch up to the target, changing lanes, etc. To capture the
dependence of some of these decisions on factors such as availability of the gap on AL, we
also model] all the relevant parts of the environment. Thus in our model, we will have finite
state machines representing the state of the stop sign, road occupancy sensor, longitudinal
sensors as well as target platoon leader (figure 15). In most cases these will be simple two
state machines and will indicate, for example if a gap exists on the AL or not.

The protocols monitor the current state of the vehicle and the environment as well as the
interactions between vehicles on TL and AL. Each state of the FSM has outputs associated
with it. The state transitions of the finite state machine of the vehicle depend on its state and
the outputs of other machines. Thus the design of the protocol also models communication
among different “agents” such as the vehicle, stop light, road occupancy sensor etc, via the
interacting FSMs. In each state, the FSM of the vehicle in turn, invokes a (precomputed)
continuous time feedback control law. Finite state machines for the exit maneuver were
also designed in a similar fashion.

The protocols so designed were verified automatically using COSPAN [12]. COSPAN is
a verification tool that works by symbolically analyzing a given set of FSM to make sure
that their performance satisfies certain requirements specified by the user. It should be
noted that symbolic testing is different from simulation or execution of the system; it is an
automated mathematical proof that the system fulfills the requirements.

The machines for the entering vehicles as well as the environment were translated to code
in the Selection/Resolution (S/R) FSM model used by COSPAN. The transitions of the
environment machines that determine what the vehicle will do next are “selected” by the
verification algorithm to take on all possible values, thus recreating all the runs that the FSM
may produce. If the design passes the specification, then the verification tool return “yes”,
otherwise it produces a counterexample, i.e., a trace of events that failed the requirement.
The design is then changed so that the failed trace cannot occur in the new design. This
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procedure constitutes the first loop of design-verification-redesign of figure 1.
It was verified that the entry maneuver satisfies the following properties with respect to the
system behavior:
¢ Every vehicle that requests entry into the AHS, eventually succeeds;
¢ No entering vehicle collides with vehicles on AL.
The first property is proved under a so-called “fairness” assumption: a gap will eventually

appear on the AL. The second property is proved under the assumption that the regulation
layer control laws are properly designed and work perfectly along with the sensors.

Similarly for the exit maneuver, it was verified that
e Every vehicle that requests exit from AHS, eventually succeeds;

¢ No exiting vehicle collides with vehicles on TL.

6.4 Feedback control laws

The design of the feedback control laws is based on the dynamic model of a vehicle which is
described in the next section. Since we are considering only autos/light trucks on AHS, the
lateral and longitudinal dynamics of the vehicle are assumed to be decoupled. We design
the lateral and longitudinal control laws separately based on this decoupled vehicle model
of the vehicle.

Longitudinal Dynamics

We use a simplified nonlinear, third order, ordinary differential equation model for the
longitudinal control design:

z; = bi(di, %)+ ai(Ei)u (1)
1
‘ ‘l: o — 2
ai(z;) &) (2)
2Kq4 . . 1 .. Kgi., dmi
bi(2i,%:) = ‘—Wf Ti Ti — T(}T)[xi + —d‘_-l'? + 'n% (3)

where the subscript 4 indicates the 3*» vehicle. z; is the position of this vehicle with respect
to a fixed roadside reference (therefore #;, Z; are its velocity and acceleration, respectively),
m; is its mass, 7; is the time constant of its engine, u; is the engine input, Ky; is the
aerodynamic drag coefficient and d,,; is the mechanical drag.

Although vehicle powertrain models describing engine, transmission, tire forces and brake
dynamics in more detail exist in the literature, we believe that the above model is adequate
for control design. For the design of the longitudinal controller for the leader of a platoon
the following simplifying assumptions were made about the state of the vehicle and the
parameters of the model:
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¢ The whole state (z;, ;, £;) can be measured directly, so that full state feedback is
possible without the use of an observer;

e m;, Ti, K4i, dmi are known. This is quite a strong assumption as these quantities are
usually known only approximately and might change with time, even for the same car.
However it allows us to linearize the model by state feedback as discussed in the next

section (see [7]). An adaptive version of the controller may be designed at a later stage
to relax this assumption.

The controller design was carried out in two stages, as outlined in Figure 16. In the first
stage (inner loop), nonlinear feedback was used to make the intermediate closed loop system

input-output (from v to y) linear. In the second stage (outer loop), controllers for the linear
system were designed.

Linearizing control

For a particular class of nonlinear systems it is possible to find a state feedback control law
such that the resulting closed loop system is linear from the input-output point of view.
The conditions that characterize this class of systems can be found in the nonlinear systems
literature (see [7] for references). The system (1)-(3), however, is simple enough to allow
us to obtain the linearizing state feedback law by inspection, without having to go into the
details of nonlinear control theory. The requisite control law is:

1 A
u= a(ii) [_b(zhzt) + V]
The resulting linear system is in a controllable canonical form:
FRIEL 010 z; 0
% z; |=100 1 z; |+ 10 (v (4)
&; 0 00 Z; 1

The objective now is to choose a suitable v to achieve the desired performance. The control
laws for the longitudinal motion of the cars on AL, namely cruise control and control laws
for join, split and change lane marieuvers, are also developed by using this model. For
details, refer to [7].

Lateral Dynamics

A detailed model describing lateral dynamics of a vehicle is obtained in [13]. We use a
simplified version of that model used in {13] for designing the “lane following” control law
and in [10] for designing the “lane change” control law.

The simplified model for lateral motion is given by:

. A . Az, K .2 . .
vy = “71‘!/—1‘11€+—‘-/-?-€-*-Bxi5—?!'(wa--Ve-f-y)2 sign (Viyy — Ve +9)
. Aj . .« Agq,

€ = —"/2 —A3€+—Vi€+.326
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where

—4C, |, =2C,(l - k)

A= =S s Ao —
_ 2 _ 2
A4 203(11 12)’ Bl = 203, B2 = 2031].
I, m m

The parameters are given by:

6 = Steering wheel angle (Control Input)

y,€¢ = Lateral position and yaw angle of a vehicle
V = Longitudinal speed of the vehicle
Vwy) Ky = Lateral wind speed and lateral air drag coeff.
Cs = Cornering stiffness
m,I, = Mass and moment of inertia about the yaw axis of the vehicle

li,l3 = Distances from center of gravity to front and rear axle

=2Cs(ly - 1p)

Entry and exit under arrangement 2 can be carried out by the control laws developed

in [7, 10, 13].

We now present control laws used for entry/exit under Arrangements 1, 3 and 4.

Entrance onto AL

1. Stop sign regulation Law:

This longitudinal control law is used on TL before the stop sign, along with the ‘lane
keep’ lateral control law of [13]. In this section of the TL, all vehicles are operating as
‘free agents’ under automatic control. The goal of this controller is to ‘safely’ follow
the preceding vehicle and eventually stop at the stop sign. Similar to the cruise control

law of [7], we define safe following distance on TL to be:

dsafe = Ay i+ Ap, where ), = 1s, A, = 2m.

The free agents?? will follow each other with a constant time separation of one second.
Distance between two stopped vehicles will be 2 m. We have two distinct cases in this

region.

o If the vehicle ahead is closer than the stop sign, we use the following control law

U =5:"- = ky Z;+ ks (ii"‘ii—l)—'k:i €
ei = (Tisi—zi—Lic1) = (A Zi + Xp)

(8)
(6)

where e; represents the error in maintaining safe following distance for vehicle <.
L,;_, is the length of the vehicle i — 1. We assume that all vehicles are 5 m long;

22A free agent is a single vehicle platoon.
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o If the vehicle ahead is farther away than the stop sign (e.g., there is no vehicle
ahead), we use the following control law:

U = li,': k] Z; + k2 3.?:' - k3 dstop (7)

where d;,p is the relative distance between front bumper of vehicle ¢ and the stop
sign where dy,, is provided by longitudinal sensor.

In both cases, we use ky = —2.1, k; = —1.47, k3 = —0.343 to place the closed loop
poles at —0.7. The choice of control gains ensures that the acceleration and jerk
bounds for passenger comfort are not violated.

2. Accelerate to Enter Law: _
The objective is to accelerate the stopped pre-platoon up to the speed of AL target
platoon, so that the two platoons are longitudinally aligned. First, the controller
calculates a desired trajectory similar to the one shown in figure 17. We use the
following bounds on acceleration (|@maz| < 2m/s?) and jerk (lamaz| < 2m/s3) for
trajectory calculation.?? The distance between stop sign and gate depends on the
maximum speed on AL, which we assume to be 30 m/sec. If the target platoon on
AL is going at 30 m/sec, then the desired trajectory is calculated such that the target
platoon and the preplatoon will be aligned exactly at the beginning of the gate. If
the speed of target platoon on AL is slower, then the alignment takes place before the
gate. The acceleration trajectory is parametrized by time and symmetric. The initial
velocity of the target platoon vy and the distance between stop sign and gate result

in a quadratic equation whose solution determines the time parameters specifying the
desired trajectory.

Figure 17 contains a plot of the desired trajectory where the speed of target platoon
on AL is 25 m/sec and the distance between stop sign and the entrance gate is 240 m.

This trajectory calculation assumes that while the preplatoon is accelerating, the speed
of AL target platoon is constant. This assumption may not hold as the target platoon
has to respond to the state of traffic in front of it on AL. Therefore, we use the following
feedback law to guarantee asymptotic trajectory tracking:

u = Tq4ki(Ei—&4)+ka(Ei — $a + vo — Zege) + ka(i — Ta + Tegrt — Tdege)(8)
T4 = Distance of the target platoon from gate
rdy; = Desired 74,
= Vg taccel, Using the constant speed assumption about target platoon
taccet = Time elapsed since the beginning of acceleration.

In this equation, z4 denotes the desired trajectory that is calculated at the beginning
of the maneuver. The values of the gains (k; = 3,k = —3,k3 = —1) are chosen so
that the system is stable (closed loop poles at —1) and the resulting acceleration and
jerk are within bounds. This longitudinal control law along with “lane keep” lateral

23These bounds guarantee passenger comfort.
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control law [13] is used on TL by the accelerating preplatoon leader. The followers of
the preplatoon use “follower” control law of {14, 15].

Ideally, at the end of the desired trajectory, the two platoons are aligned (rear bumper
of the last vehicle of target platoon is 2 m in front of front bumper of the preplatoon)
and they are traveling at the same speed. However, it is possible that the preplatoon
reaches the target platoon, before it reaches the gate. In this case, it has to keep
following the target platoon until it reaches the entry gate and gets a command to
change lane. The following control law is used to track the speed of target platoon:

u = kyE; 4+ ko(%i — Tege) + k3 (€1a¢ + 2) (9)
elit = Distance from last vehicle of target platoon to first vehicle of preplatoon,
(10)

The lateral sensor of the first vehicle of preplatoon can provide the value of ejq;.

The feedback law of equation (9) needs information about speed and relative position
of target platoon from the gate. The lateral sensors on-board the vehicle cannot be
used as the two platoons can be as far as 240 m at the beginning of the maneuver. We
assume that the target platoon leader uses its radio transmitter to send its velocity
and distance information to the preplatoon leader, at regular intervals.

. Lane Change onto AL:

We use control law presented in [10] to execute the lane change maneuver. The design
of [10] is similar to the design of “accelerate to enter” control law presented above.
In particular, a desired trajectory for the lateral position of the car is calculated and
then feedback is used to asymptotically track this trajectory. The desired trajectory
in this case is sinusoidal. The following bounds on lateral acceleration and jerk are
imposed in calculating the trajectory: amaz = 0.05m/s? and jmer = 0.1m/s3.

In this case we want the entire preplatoon to change lane onto AL. We use the control
law of [10] individually for each vehicle of the preplatoon to get the desired result. Note
that the followers of the preplatoon cannot start executing the lane change control law
until they have reached the gate.

The “accelerate to enter” control law is used for longitudinal dynamics for the prepla-
toon leader during this time.

. Close Up on AL:

The goal of this control law is to close up the gap in front of the vehicle to 1 m while
following the speed of the platoon ahead. By now both vehicles are in the same lane.
We use the control law of equation (5) with A, = 2m and A, = 0.

. Lane Following and Longitudinal Vehicle Following:

The lateral control law for lane following developed in [13] is used by every vehicle of
the preplatoon whenever it is not changing lane onto AL. Similarly all the followers in
the preplatoon use the longitudinal control law of [14] to follow the preceding vehicle at
a fixed intra-platoon spacing of 2 m. These control laws have already been developed
for platooning operation on AHS and will not be discussed any further.
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Exit from AL

1. Lane Change onto TL:
We use the control law of {10] to execute a lane change of a vehicle from AL onto TL.

As only one vehicle changes lane through a gate at a given time, we can use the control
law of [10] without any modifications.

2. Close Up on AL: :
This is the same control law as in the entry maneuver discussed above.

3. Catch Up on TL:

This control law is used by the leader of the post-platoon on TL, when it has to
join with another vehicle exiting from its parent platoon on AL. The objective is to
longitudinally align with the vehicle, which is going to exit at the next gate. The goal
is to start with a zero velocity mismatch and a distance mismatch of dg and end the
maneuver with a zero velocity mismatch and 2 m gap between the exiting vehicle and
the end of the post-platoon. The strategy is similar to the one used for ‘accelerate to
enter’. Given the value of do, a desired trajectory is generated based on the assumption
that the parent platoon in AL travels at constant velocity. Then a feedback controller
(similar to the one in equation (8)) is used to asymptotically track this trajectory.
Figure 18 shows the desired trajectory, when the platoons are traveling at 25 m/s
and the post-platoon has to catch up with a vehicle that is three vehicles behind it,
resulting in dg = 18 m. Note that while calculating the distance do, one has to take
into account the fact that the parent platoon is undergoing a “close up” maneuver at
the same time.

4. Cruise Control law on TL:
This control law is the default for the leader of the post-platoon. The aim of this
controller is to follow the preceding vehicle with a safe inter-platoon separation. We
use the cruise control law of {7] for this purpose. As the platoon leaders on AL are also
following the same control law, the post-platoons on TL always remains longitudinally
aligned with part of the parent platoon on AL, always remaining in its “shadow.”

5. Platoon Break Up:
At the end of the last gate of XMS, the transition lane contains post-platoons of
automated vehicles that have exited from AL. The next step is to hand over the
control to the human drivers. But humans are unable to drive in platoons. Therefore,
the aim of this control law is to convert every vehicle of the post-platoon into a free
agent with an interplatoon gap suitable for human drivers to take over. (We use 2
seconds as a suitable inter-platoon gap).

We make use of the lead control of [7]. Recall that the lead controller of (7] can
be used for “split” maneuver as well (although it would take much longer than the
“split” control law used in [7]). This maneuver is initiated for all vehicles of the post-
platoon at the same time. This causes all vehicles in the post-platoon to follow the
lead control of [7] with A, = 0 m and A, = 2 s. The followers of the post-platoon
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find themselves 2 m behind the vehicle in front but traveling at the same speed. The
controller decelerates the vehicle to slightly lower velocity than the vehicle in front and
holds it constant until the desired separation is achieved. It takes about 30 seconds
to reach a separation of 50m at 25 m/s. This requires a “break up section” of at least
900m at the end of TL. Figure 19 shows simulation plot of a three vehicle post_platoon
breaking up in 30 seconds. The two followers slow down to 23 m/sec and 21.5 m/sec
respectively in order to create the required gap.

6.5 Simulations

The modeling of the entry-exit maneuvers was implemented in the SmartPath simulation
environment.

SmartPath is a highway system simulator. It provides a framework for simulation and
evaluation of Intelligent Transportation System (ITS) alternatives. SmartPath can sim-
ulate automated, manual, or mixed mode traffic; it also accommodates different control,
communication, and computing architectures.

SmartPath is a micro-simulator, i.e., the functional elements and the behavior of each
vehicle and highway component with respect to normal and degraded mode of operations
are individually modeled.

SmartPath consists of two separate modules: simulation and animation. The SmartPath
animator is a tool to view and examine the simulated data of the AHS in the most natural
way. The effect is akin to what might be seen from a traffic helicopter moving over the
AHS. The user can control the motion of the helicopter, rewind the animation, and adjust

its speed; the motion of the helicopter can be restricted to the highway or forced to follow
a specific car.

The simulation data provides information about the position, speed, and maneuvers of each
vehicle in the AHS at every unit of simulation time. With the animation interface, the
user can select a vehicle and view the interaction between the vehicle and its neighboring
vehicles.

In SmartPath a vehicle can have different behaviors depending on the type of lane on which
it is traveling. For example, when a vehicle is in a manual lane, it has a manual behavior,
and as soon as it enters a transition lane or an automated lane, it switches from the manual
behavior to the transition or automated behavior, respectively. For a complete report on
SmartPath see [16].

To simulate the entry and exit maneuvers, we modeled the “check-in” station, stop-light
and its related sensors in the automated lane, and gates and their sensors individually. The
simulation scenario we developed is as follows:

A vehicle (we call it our-vehicle) enters the highway system from an entrance. It is initialized
as an automated vehicle with the manual behavior, since it is in an entrance lane (which
leads to the TL). Its on-board computer, then, transmits its destination to the link layer
control of that section, which inquires about a routing from the network layer controller.
The network layer controller provides a route. (The network layer will route our-vehicle

43



through the AL because of its shorter travel times.) The link layer controller of the section,
in turn, broadcasts its recommendations (Turn-Right, Turn-Left, Stay-in-own-lane) for ev-
ery possible destinations to the vehicles traveling on that section. Our-vehicle follows the

recommendations until it enters TL, which causes the switch from manual to the transition
behavior.

The transition behavior is modeled after the protocol described in section 6.3: our-vehicle
first waits until it gets a message from the check-in station, it then activates its stop-sign
regulation law, and so on.

After the completion of the maneuver, the vehicle again will switch from transition lane to
the automated behavior, which is completely described in [1].

Figure 20 shows the first stage of entry maneuver. The light has been turned green, and a
car has received an acknowledgement to its entry-request and has formed the pre-platoon.

Figure 21 shows a frame of the animation while a platoon of three cars is entering the
automated lane.

The simulation of exit maneuver follows the exit protocol described in Section 6.3. Figure
22 shows a frame of an animation when a vehicle is in the process of changing lane through
a gate. At the end of the exit maneuver, the vehicle is in the transition lane and enters the
manual lanes as soon as it sees no barriers and it is safe to change lane.

6.6 Performance analysis

When a vehicle (or pre-platoon) from the TL enters the AL, the AL platoon immediately
behind the entering vehicle may have to slow down in order to create a safe distance between
itself and the entering vehicle. This may force the platoon behind it to slow down also, and
so on, creating a “shock wave” that travels upstream on the AL. The shock wave will be
arrested when it encounters an inter-platoon gap that exceeds the safe distance.

We present an analytical stochastic model to calculate how far the shock wave will travel,

the resulting decrease in the average AL speed, and the capacity loss due to the decreased
speed.

Model

Suppose that inter-platoon distances are iid (independent, identically distributed) random
variables, denoted d. Let A be the safe distance. Assume that d > A, with probability 1,
and assume that z := d — A is an exponentially distributed random variable with mean
u=1, i.e., z has the probability density

p(z) = pe ", 2 > 0.

For convenience also denote py(z) = p(z).

Now consider the sum of n inter-platoon distances, }_7 d;, all the d; being iid as mentioned
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above. Then, with z; := d; - A,

P di-nAa=2) = p(d zi=1z)
1

xn—l

= @) =p e T 20 (11)

Now suppose we are given a fixed number § > 0. (§ will be the “gap” on the AL needed
by the entering vehicle.) Define the non-negative random integer M by

m+1

M=m¢{iz;$5< Zz;}.
1

1

So the probability that M = m is given by Ps(m) = Prob{3.T'z; < § < _7"*!z;}. One

can calculate the probabilities Ps(m) from the p, by observing that

S
Ps(m) = [ pi(e1 2 5= 1) X pm(y)dy.

A little calculus then gives the fbllowing formula:
m
Ps(m) = e"“sgl—s-')— =Ps(m—-1)x E—“i, m=01,.. (12)
m! m

Equation (12) is the formula for a Poisson distribution. Thus the number M of platoons
disturbed by the deviation S, has a Poisson distribution. (M is the number of platoons that
are affected by the shock wave.) In particular the mean number of disturbed (or delayed)
platoons is EM = uS§. If we write the mean inter-platoon distance as D := Ed, and recall
the definition p=! = E(d — A), we conclude that

Average number of delayed platoons = FM = -—-S—— (13)

D-A
As expected, as D — A, EM — o0, i.e., as congestion (AL flow)increases, the shock wave
from an individual maneuver passes through an increasing number of platoons, on average.
Another interesting point in (13) is that the average number of delayed platoons grows
linearly with the size of the initial maximum deviation, §.

Calculating delay

One can now calculate the total delay. This is the extra travel time induced by the shock
wave. Suppose that platoon #0 (the entering vehicle) creates a maximum deviation of size
S. Then platoons #1,...,#M will be delayed too, where M is the random variable above.
Platoon #i is delayed by the distance

S—t(@—A): S—i:l:j, i=1,...M.
j=1

. J=1
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So the total delay (measured in platoon x distance, and converted into time by dividing by
the average speed) is the sum of these M numbers,

M T M i
Delay::&:Z[S—an]:MS—Zsz (14)

=1 j=1 =1 j=1
We want to calculate Eé, the average total delay.

Introduce the partial sums yo = 0, y; = Zj~=1 z; for i > 0, and write 6 = MS — }:{” Yi.
Then

Eé = io[ms - ilE{y;lM = m}]Ps(m). (15)

Since in (1) we have an expression for Ps(m), it remains only to calculate E{y;|M = m}.
Fact We have

PV Ym+1) = P(Y1s -0 Yml¥m+1)P(Ymt1)
m!
= mpmﬂ(ymﬂ)l(yx <y << Yme1)
m
prtleHmi 1y < yp < v+ < Ymt1), (16)

where pr,41(y) is given by (11) and 1(-) is the indicator function.

Proof The first equation in (16) is Bayes rule. Since ymy1 = L7 i, P(Ymt1 = ¥) =
Pm+1(y) from (11). Second, since y; — y;—1 = z; are iid and exponential, therefore, given
Ym+1, the y; are uniformly and independently distributed over [0, ym+1], constrained to

Y1 < ¥2 < +++ < Ym+1- This gives the second relation. Then the third relation follows upon
substitution for pm41 from (11). ]

We now calculate E{y;|M = m}.

E{yiiM =m} = E{yilym < S < Yym41}

E[ytl(ym <§5< ym+1)] E say
Ell(ym < S<ymsu1)] D77

where

(o 0] o0
N = /0 /0 Yil(ym < S < Ym+1)P(Y15 o0y Ym+1)d%1 - - - dYmsr
o0

o0
D = ./0 tee A l(ym <§5< ym+1)p(yl,~--v ym+1)dy1 s dYma1

Y2 S oo
= / dyl dyz / dYm—1 / dym/g P(Y1s s Ym+1)dYm41

— y::- d m+1 —HBYm+1 4
- 0 (m _ 1 Ym X H € Ym+1

= e"‘ .
m!
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A slightly more laborious calculation gives
S Smum
m+1 m!

—uS
e H,

and so N S
i
E{yiM = = — = —
{yilM = m} D m+1
Substituting this into (15) gives

E§ = i[mS—i 9 ]Ps(m)

m=0 =1 m+ 1

=§mem

2 m=0
= —i— latoon-meters
= p-a)° ’

where we used (13) in the last relation.

Proposition A deviation of S meters on average disturbs S/(D — A) platoons and they
suffer a total delay of §2/2(D — A).

Note We can compare this delay with the case when inter-platoon distance is exactly
D. (This requires perfect synchronization of AL platoon formation to achieve equal inter-
platoon distance.) In that case platoon #1 is delayed distance S — (D — A), #2 is delayed
S-2(D-A), ... ,#M by S — M(D - A)and M = S/(D — A). The sum of these delays
is §2/2(D - A) — §/2. Thus the random distribution of the inter-platoon distances causes
an extra delay of 5/2, on average.

Calculating capacity

Suppose a platoon creates a deviation of size S meters when it travels ! meters. So per [
platoon-meters of travel, a platoon imposes an additional delay of §2/2(D — A) platoon-
meters. So congestion cost as fraction of useful travel is

§2
2D-A4)
Suppose the average trip length is L meters and there are N vehicles per platoon. Assume
each vehicle imposes one deviation per trip. (There would be more deviations if there are
several automated lanes.) Then [ = L/N, so
_N " §?
T=T  aD-ay

1
T=7

We calculate v for a simple case. Assume: flow = 6,000 v/hour, N = 10, speed of 30 m/sec,
vehicle length of 5 m and intra-platoon distance of 2 m. So there is a flow of one platoon
every 6 sec, and the average inter-platoon distance is D = 6 x 30 — 10 x (5 + 2) = 110 m.
Suppose A = 60 m, so D — A = 50 m. Take L = 10,000 m or 10 km, so that

5’2

T= 105
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If § = 100 m, which seems high, this gives ¥ = 0.1. That is, the average speed is reduced
from 30 m/s to 27 m/s, because of slowdowns from disturbances created by entering vehicles.
Note that the maximum flow (at the operating speed of 30 m/s) is correspondingly reduced
by 10 %, i.e., from 6,000 to 5,400 v/hour. Of course, if the operating speed can be increased
by 10 %, the flow of 6,000 v/hour can be maintained.
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Figure 14: Flowchart for exit manever
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Figure 15: Model for protocol verification
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Figure 16: Two stage feedback.
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Figure 17: Desired trajectory for accelerate-to-enter
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Figure 18: Desired trajectory for catch up
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Figure 19: Break up of a three vehicle post-platoon
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Figure 20: Simulation of entry maneuver—at the stop light
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Figure 21: Simulation of entry maneuver—change lane section

Figure 22: Simulation of exit maneuver—change lane section
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