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FOREWORD

This report was a product of the Federal Highway Administration’s Automated Highway
System (AHS) Precursor Systems Analyses (PSA) studies.  The AHS Program is part of the
larger Department of Transportation (DOT) Intelligent Transportation Systems (ITS) Program
and is a multi-year, multi-phase effort to develop the next major upgrade of our nation’s
vehicle-highway system.

The PSA studies were part of an initial Analysis Phase of the AHS Program and were initiated to identify
the high level issues and risks associated with automated highway systems.  Fifteen interdisciplinary
contractor teams were selected to conduct these studies.  The studies were structured around the
following 16 activity areas:

(A) Urban and Rural AHS Comparison, (B) Automated Check-In, (C) Automated Check-Out,
(D) Lateral and Longitudinal Control Analysis, (E) Malfunction Management and Analysis, (F)
Commercial and Transit AHS Analysis, (G) Comparable Systems Analysis, (H) AHS Roadway
Deployment Analysis, (I) Impact of AHS on Surrounding Non-AHS Roadways, (J) AHS
Entry/Exit Implementation, (K) AHS Roadway Operational Analysis, (L) Vehicle Operational
Analysis, (M) Alternative Propulsion Systems Impact, (N) AHS Safety Issues, (O) Institutional
and Societal Aspects, and (P) Preliminary Cost/Benefit Factors Analysis.

To provide diverse perspectives, each of these 16 activity areas was studied by at least three of the
contractor teams.  Also, two of the contractor teams studied all 16 activity areas to provide a synergistic
approach to their analyses.  The combination of the individual activity studies and additional study topics
resulted in a total of 69 studies.  Individual reports, such as this one, have been prepared for each of these
studies.  In addition, each of the eight contractor teams that studied more than one activity area produced
a report that summarized all their findings.

Lyle Saxton
Director, Office of Safety and Traffic Operations
Research and Development

NOTICE

This document is disseminated under the sponsorship of the Department of Transportation in the interest
of information exchange.  The United States Government assumes no liability for its contents or use
thereof.  This report does not constitute a standard, specification, or regulation.

The United States Government does not endorse products or manufacturers.  Trade and manufacturers’
names appear in this report only because they are considered essential to the object of the document.
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VOLUME VII  COMMERCIAL AND TRANSIT AHS ANALYSIS (TASK F)

1.0 EXECUTIVE SUMMARY

As described in the Abstract of the Technical Report Documentation Page, this task
was performed as two parallel efforts.  The Executive Summary that follows only represents
one of the studies.  It summarizes the detailed report in sections 2.0 through 4.0 and Appendix
A.  Appendix B contains the results of the second and separate analysis effort, where the
Executive Summary appears as section B.0.

1.1 GENERAL

If the implementation of AHS can result in improved highway travel time reliability,
reduced delays, and lower accident rates for commercial vehicles as well as increased
attractiveness of public transit for intercity as well as intra-urban travel, the potential benefits
will also be accrued by passenger vehicle drivers and occupants who share these highway
corridors.

1.2 COMMERCIAL VEHICLES

This brief ove rview of the trucking industry has revealed its enormous contribution to
the nation's economy, employment, and productivity.  Its diverse types of companies,
commodities carried, vehicle types, haul lengths, labor concerns, competitive pressures, and
government regulations indicate that the AHS program will need to address multiple trucking
industry as well as competing mode issues and concerns.  The basic question will be "what's
in it for us?"  Issues of primary concern to the trucking industry include environmental
regulations, safety and health, taxes, labor and emerging technologies.

As the tractor-trailer combination truck appears to be the "workhorse" of the trucking
industry, it must be decided whether this vehicle type should be the design standard for
deployment and control.  The integration of mixed and separate commercial vehicles within the
traffic stream must also be considered.  Analyses presented within Section 3.3 illustrate
implications of trucks on the traffic stream for both rural and urban scenarios.  If commercial
vehicles are to be included, should all types, sizes, weights, and combinations be permitted, or
should the AHS lane or lanes only allow smaller single unit trucks with dynamic characteristics
similar to passenger vehicles?

While heavier and longer vehicles are viewed as needed by the trucking industry, what
place do they have, if any, on the initial and subsequent AHSs that will be developed and
constructed over the next decades? What, if any should the truck type and size restriction be?
What are the cost implications for pavements and bridges?  Should AHSs be designed only for
passenger vehicles, vans, buses, and single unit trucks with a weight limit of 10,000 lbs,
allowing the other commercial vehicles to remain on separate but non - instrumented sections
of the Interstate System in both urban and rural areas?  Or, should longer and heavier trucks
be allowed, as is being lobbied for by the trucking industry.  In theory, AHS will permit the
drivers' tasks to be automated except for ingress and egress, and the risk of truck driver and /
or passenger vehicle driver error leading to accidents will largely be eliminated.

The control and maintenance requirements needed for longer combination vehicles
(LCVs), if they are permitted, need careful evaluation, in view of the greater accident potential
of these commercial vehicles. The industry is, judging from the accident rate reductions
achieved over the past decade, focusing on safety and proud of its accomplishments.  It
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should, accordingly, be participating in the AHS efforts, to lend its expertise and experience in
those vehicle and driver-related areas which will produce the most benefits in the early phases.

1.3 TRANSIT

AHS must be seen by the Local/Express Bus and Intercity transit industries as a cost
effective, significant means to maintain current patronage and encourage new ridership.

The transit industry will need to demonstrate to the American public reasons for
becoming competitive with personal autos.  If AHS can provide the transit industry with the
technology, service, reliability, frequency, direct routing (minimal transfers), at competitive
costs with personal auto, there will be a demand for it.  Contrary to the trends experienced
over the last few decades, the emphasis in urban and suburban transportation is towards
increased transit use, particularly based upon new federal legislation mandating change in
travel habits by the public.  The success of these new programs in accomplishing their goals
will depend on transit's ability to provide more reliable, safe, and efficient transportation.

With AHS lanes or roadways available in high density travel corridors, buses, vans and
qualifying high-occupancy vehicles will be afforded the opportunity to consistently meet on-
time performance standards and schedules.  Improved reliability and travel time will enhance
customer service and attract 'choice' users from other modes.

AHS offers improved service and safety by reducing the potential for driver-related
accidents.  Removing the driver from the continuous operation of the vehicle and providing
guidance and warning systems will enhance the performance of bus transit service on AHS
facilities in high travel demand corridors.  Continuous, predictable reliable service and well-
maintained vehicles will eliminate excessive acceleration and deceleration rates which also
cause numerous passenger injuries.  The required increased maintenance practices would
enhance vehicle operations and improve service reliability and safety.

Similar to the advantages of busways, buses and HOVs on AHS would include the
following cost and service advantages:

1. Relatively low initial construction is required; i.e. convert HOV lanes to AHS, use
existing centra l bus terminals, and expand as bus demand increases.

2. AHS transit lanes can be utilized by trucks during non-rush hour periods of the
day.

3. Dual service buses provide manua lly driven feeder service, non- transfer trunk
line AHS service , and downtown manually driven distribution service.

Expected time savings for HOVs can range from 0.5 to 2.0 minutes/mile.  Carpooling
has increased on HOV lanes in some cases up to 100 percent, and transit ridership has
increased between 10 and 20 percent.  The technology inherent to AHS would allow greater
travel time savings and, potentially, higher ridership.  In general, HOV lanes have shown good
ridership growth and proven congestion mitigation.  As travel demand grows and peak period
capacity requirements outstrip available HOV lane capacity, AHS offers the next solution, with
at least a doubling of vehicle carrying capability, and much greater multiples of person carrying
capacity.

Improvements in the design of transit vehicles, and introduction of user-friendly transit
information systems through IVHS programs, as well as additional government support
through the mandates of the Clean Air Act Amendments and incentives introduced in ISTEA
legislation, will lead to transit's evolution to a much more attractive alternative than it has been
in the past.  AHS offers the potential to make transit even more reliable, safer, and less time
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consuming.  In light of the current legislation and support of transit by government policy to
move people more efficiently, transit can  be an integral, if not leading, component of initial
AHS systems.  Incorporation of transit into an AHS would allow transit agencies and their
passengers to reap significant benefits, provided that the implementation and operating cost
changes over existing conditions are viewed as worthwhile in terms of the benefits achieved.
These potential benefits to the transit industry and its passengers Include:

• Increased ridership due to better customer service

• Reduced travel time: ability to compete with other, faster, modes of
transportation

• Improved safety, reduced insurance costs, fewer third party claims from injuries
sustained on-board buses, reduced fuel, energy consumption reduced bus
down-time

• Reduced labor costs due to  vehicle productivity increases

• Contribution to environmental goals of the CAAA, ISTEA.
Incorporation of AHS technologies into an existing High Occupancy Vehicle (HOV) lane

or roadway would provide a cost effective transition from existing infrastructure.  Transit
vehicles and high occupancy vehicles would be among the first to benefit from AHS.

1.4 CASE STUDIES

From the analyses conducted for the Long Island Expressway, the New York State
Thruway, and the New Jersey Turnpike, it is evident that each type of interstate highway,
urban or rural, exhibits varying capabilities for incorporating AHS technology.

From the analyses, based on the stated assumptions, it appears that the most efficient
travel will occur with passenger vehicles in separate AHS lanes, as well as all commercial and
transit vehicles in separate AHS lanes.

AHS technology would be theoretically viable to alleviate congestion.  The findings in
the analyses for the LIE indicate that Option A for Scenario #4, with an ultimate capacity of
8,900 pcph, would be most beneficial for people-moving efficiency.  These options also exhibit
favorable average vehicle occupancies for compliance with the CAAA/ECO Progam goals.
Along the east Spur of the New Jersey Turnpike Option A for Scenarios #1 and #4, with an
ultimate capacity of 8,900 pcph, prove to be the most efficient.  Option A for Scenarios #1 and
#4 for the combined section of the Turnpike would also be relatively efficient in people-moving
efficiency.  These options would require carpools 2+ persons and aid in the effort to achieve
the CAAA/ECO Program goals.

"No Build" conditions in 2024 on the New York State Thruway would not require excess
capacity.  An AHS could be implemented in this corridor for reasons of safety and efficiency.
Option A, with one (1) AHS lane and two (2) GULs, would be the most effective option.  None
of the Scenarios/Options would meet CAAA/ECO Program goals.

2.0 INTRODUCTION

The dominant role of highways and the importance of trucks to the nation's economy is
illustrated by the most recently available statistics (1) on freight transportation expenditures,
indicating that 78 percent of the $375 billion spent in 1992 (6.3 percent of the $591 trillion
GNP) was for over the road trucks, as compared to only 8 percent for railroads. By
comparison, expenditures for passenger transportation by all modes were $638 billion (10.7
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percent of GNP), and of this, $522 billion or over 80 percent was spent for private passenger
vehicles. These two highway transportation system markets therefore account for a significant
17 percent of the GNP. By comparison, local and intercity passenger transportation, including
bus, rail, and commuter rail accounted for only $24.5 million, or less than one half of one
percent of the GNP. While these transportation costs include expenditures for equipment
purchase, vehicle operation and maintenance, insurance, registration and licensing, they do
not include the indirect costs of congestion, lost time, and accidents. If the implementation of
AHS can result in improved highway travel time reliability, reduced delays, and lower accident
rates for commercial vehicles as well as increased attractiveness of public transit for intercity
as well as intra-urban travel, the potential benefits will also be accrued by passenger vehicle
drivers and occupants who share these highway corridors.

2.1 DESCRIPTION OF ACTIVITY AREA

The Task F Activity Area has focused on identifying the potential commercial vehicle
and transit industry roles, issues, and requirements for involvement and participation in the
AHS Program. A comprehensive study of both industries has been made, identifying existing
highway freight and transit passenger transportation markets, vehicle characteristics, roadway
design criteria, accident patterns, existing and anticipated new technologies, and the expected
impacts of operating these heavier and longer vehicle types on representative urban and rural
AHS configurations, either mixed with AHS lane passenger vehicles, excluded from AHS
lanes, or partially excluded by size/weight restrictions.

2.1.1 Purpose of Effort

The purpose of this task work effort has been to identify and discuss the specific
market, industry, vehicle, roadway, operational, safety, and related issues and risks associated
with the incorporation of commercial and transit vehicles into the various Representative
Systems Configurations (RSCs) and scenarios addressed in this Precursor Systems Analysis.

2.1.2 Overall Approach

The initial Task F work was conducted as a research effort, including a literature
search, review, and summary of relevant technical papers, statistical compilations, and
commercial vehicle traffic characteristics data available from sources including:  Transportation
Research Board (TRB), Society of Automotive Engineers  (SAE), American Trucking
Association (ATA), National Private Truck Council  (NPTC), U.S. Department of
Transportation, Eno Foundation, various State Departments of Transportation and Tollroad
Authorities; interviews with industry representatives; telephone conference discussions with
other PSA Task F researchers; and discussions with members of the IVHS Commercial
Vehicle Operations (CVO) and Advanced Public Transit Systems (APTS) Committees. The
result of this effort was the Interim Report submitted in advance of the April 1994 Interim
Results Workshop, at which its initial findings regarding Commercial Vehicle AHS issues were
presented.

The subsequent work effort focused on completing the statistical market database by
obtaining the national intercity freight shipment computer records and annual freight shipment
records of the U.S. military to assess its relative importance; obtaining and evaluating hourly
traffic volume classification counts for sections of urban and rural Interstate highways,
including existing High-Occupancy Vehicle (HOV) roadways; and analyzing the impacts on
these facilities of various RSC scenarios and AHS lane vehicle restriction alternatives by
projecting existing passenger vehicle and truck traffic volumes thirty years ahead, to 2024. The
results of these analyses have been used to provide input to the estimates of benefits and
costs of operating commercial vehicles and transit on the selected AHS RSCs.  This benefit
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cost analysis has been performed under PSA Task P, and the results are described in Section
VIII of the overall report.

2.1.3 Guiding Assumptions

Given the rapid advances and price reductions in IVHS and vehicle engine and braking
system technology, it is assumed that today's electronic computer engines, satellite
communications systems, electronic data exchange, and cruise control will evolve quickly to
widespread commercial acceptance of "intelligent" cruise control, collision avoidance devices,
and ultimately, to "autopilot" type systems for commercial vehicle use, as the means for
companies to retain their competitive edge. Transit operators will also implement these
systems if they are seen as the means to control operating costs, retain existing passengers,
and to attract new riders through improved service offered.

The present size, weight, and dynamic (acceleration, decel eration, braking, etc.)
characteristics of existing truck and bus fleets are assumed to remain relatively stable over the
next twenty years, although the trucking industry is actively seeking relaxation of current size
and weight restrictions on large combination vehicles (LCVs). There will be a trend towards
restriction of heavy vehicles in urban areas, but the resulting increase in smaller truck traffic
may also prove to be objectionable. This study has, therefore assumed no major changes from
existing truck or bus designs that would permit narrower lanes or lower vertical clearances to
structures on AHS lanes or roadways.  It has also been assumed that the passenger car
equivalencies of trucks and buses will be the same on AHS facilities as they are now on
Interstate highways.

3.0 TECHNICAL DISCUSSIONS

The evaluation of commercial and transit use of AHS followed the approach of
identifying and studying the system parameters, or categories, of functional, operational and
design issues and risks associated with this potential use. Relevant present and horizon year
commercial and transit sector parameters were compiled and evaluated, and the results are
described in the following sections of this Task Area F report. The sections have been
structured into four parts: Section 3.1, Commercial Vehicles; Section 3.2, Transit; Section 3.3,
AHS Scenarios With Commercial Vehicles and Transit.  The Commercial Vehicle and Transit
sections specifically address Functional/Market, Roadway Design/Vehicle, and Safety
Characteristics and Issues. The AHS Scenario section identifies and analyzes alternative
roadway deployment configurations for existing segments of urban, suburban, and rural
Interstate highways, with several AHS lane use options for commercial vehicles, buses, and
high occupancy vehicles (HOVs). The resulting estimates of vehicle miles, person miles and
vehicle person hours of travel on each alternative and by each vehicle type have been
provided to of these analyses to our team's economic analysts to quantify vehicle operating
and capital costs, and to develop an "order of magnitude" estimate of benefits and costs of
implementing each alternative as compared to the base non-AHS condition. Our conclusions
and summary of critical issues and risks are presented in Section 4.

3.1 COMMERCIAL VEHICLES

3.1.1 Functional / Market Characteristics / Issues

3.1.1.1 The Commercial Trucking Industry

National Transportation Statistics for 1990 published by the U.S. Department of
Transportation (2), and summarized in Appendix Table A-1 clearly illustrate the dominant role
of highways and the importance of trucks to America's transportation system. Of the 189
million automobiles, trucks, buses, airplanes, and railroad cars and locomotives operating daily
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to serve the demands of moving people and goods, about 188 million are highway vehicles,
and over 44 million of these, nearly 25 percent, are trucks. Over 3.7 million people are
employed in the trucking industry, almost as many as employed in the automobile industry,
(4.4 million). The railroad freight transportation industry employs less than 10 percent of the
trucking industry, about 337,000. Comparative data on freight moved by rail vs  truck indicate
that while 26 million Class I rail freight car miles were operated in 1990, nearly 617 billion
vehicle miles were traveled by trucks on the nation's highways, about 40 percent of which
were on Interstates and other freeways and expressways. Trucks and the railroads moved
approximately equivalent revenue ton-miles, 1.13 million and 1.03 million, respectively. The
average haul distance for rail freight shipments is about double that of truck, 1,070 miles vs
570 miles, indicating that trucks carry nearly double the intercity tonnage carried by rail.
Financially, the trucking industry generates ten times the annual revenue of the railroads, $272
billion vs $27 billion in 1990. Trucking dominates the market for all freight movements of less
than 10,000 lbs, regardless of distance shipped, and for movements of up to 60,000 lbs for
haul lengths of up to 500 miles. Rail competes with trucking for long haul shipments between
10,000 and 60,000 lbs, and for short hauls of over 60,000 lbs, as noted in "The Motor Carrier
Industry in Transition", by Transportation Technical Services, 1993 (3).

The diversity of the trucking industry today can be seen in Appendix Figure A-1,
prepared by Transport Topics, the National Newspaper of the Trucking Industry (4).  It includes
the "For Hire" Commercial Carriers, which are categorized as either Truckload, (TL), or Less-
Than-Truckload, (LTL), Carriers. In addition, there are the Private Truckers and the Intermodal
segment of the industry, which is growing rapidly.

For Hire Carriers: These companies are classified as interstate, intrastate, or local, the
latter two subject to state or local regulation. They are either Contract Carriers; serving under
contract to a small number of shippers with negotiated rates; Common Carriers who offer their
services to any shippers and are subject to ICC approved commodity shipment rates; or
Exempt Carriers, who transport special category goods, i.e. livestock, agricultural products, not
subject to ICC regulations. Deregulation of the trucking industry by the Motor Carrier Act of
1980 broadened the areas in which these companies can compete for business, and they
often overlap between the above classifications.

The For-Hire industry segments are comprised of the Truckload (TL) and Less -Than -
Truckload (LTL) Carriers.

Truckload Carriers:  These companies are characterized as follows:

• Single shipment between one shipper & one receiver

• Starting to compete in the short haul regional markets

• Heavily into Intermodal rail

• Constrained by driver shortages due to long hours away from home

• Strong market demand

• Non-Union drivers

• Dominated by J.B. Hunt, Schneider
Operating statistics for the 27 largest TL general freight carriers, presented in the

August 1993 Commercial Carrier Journal (5), indicated total 1992 gross revenues of over $5.5
billion, 65 billion tons of freight moved and over 3.7 billion vehicle miles traveled.  Two national
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carriers, J.B. Hunt and Schneider National, dominate this TL segment, each grossing over
$800 million in 1992.

Less than Truckload Carriers:  These carriers are characterized as follows:

• Single truck, multiple shippers, multiple stops

• Small shipments, 300-400 lb. packages

• Strong competition from UPS for small shipments, now up to 150 lbs

• Less driver problems than TL, drivers home most nights

• Unionized (Teamsters)

• Regional, Inter-regional, & National Network Carriers

• Trend is towards downsizing, streamlining

• Shippers reducing number of carriers used
Operating characteristics for the top 37 LTL common carriers were also presented in

the August, 1993 Commercial Carrier Journal (6).  These companies grossed over $27 billion in
1992, moving over 87 billion tons of general freight nearly 6 billion miles.

The dominant carrier in this industry segment is United Parcel Service, which grossed
over $12 billion in 1992.  United Parcel Service (UPS) is the world's largest freight carrier.
Together with Federal Express, both gross over $25 Billion annually, about equal to the annual
intercity freight revenue of the entire U.S. rail industry.

Private Carriers:  The characteristics of this segment of the industry have been documented
in Private Fleet Profile; 1993 (7), as well as garnered during discussions with industry sources.
These fleets are owned and operated by companies who manufacture and ship their own
goods. The trend in these companies is towards reducing costs by using for-hire carriers to
supplement or replace their in-house fleets. They are represented by The National Private
Truck Council, with over 1,100 members. The 1993 survey of these member firms provided the
following information:

• One-way haul lengths range from 390 to 470 miles

• Average annual fleet miles range from 3.7 to 7.9 million miles

• Average number of stops on typical runs range from 4 for construction vehicles
to about 30 for service vehicles

• Average percentage of empty miles operated: 27.1%

• Average annual tons hauled: 2.9 million

• • Percent of vehicles, by type, operated in 1992:

light, class 1&2 (under 10,001 lbs) : 30.4
light / medium, class 3&4 (10,001-16,000 lbs) : 7.5
medium, class 5&6 (16,001-26,000 lbs) : 8.2
medium / heavy, class 7 (26,001-33,000 lbs) : 20.5
heavy, class 8 (33,001 & over lbs) : 35.3

• Average replacement of equipment: 7-8 years

• Method of driver payment

Calspan Task F Page 18Calspan Task F Page 18



Hourly 56%
Mileage 28%
Salary & other 13%

The major concerns and Issues identified by the private fleet operators in the 1993
survey were:  costing control, customer service quality, compliance with safety regulations,
fleet justification, and compliance with environmental regulations.

3.1.1.2 Military Freight Shipments by Truck

During the search for a national database for truck freight shipment information, it was
found that the U.S. Military Traffic Management Command maintains a Freight Information
Systems (FINS) computer file of freight shipments by military service, mode and vehicle type,
origin, destination, commodity type, weight, revenue, and date of delivery.  As a comparable
origin-destination database for civilian commercial freight movement is only in the planning
stage by the U.S. Census Bureau, the military database, containing over 1 million records, of
which some 600,000 were for trucks covering the period from February 1993 to January 1994,
was obtained.  Also obtained were the annual military data from FY 1984 through FY 1993 on
the number, costs, and tonnages of military freight shipments by mode.  These data, provided
in Appendix Table A-2, indicated the significant role that trucks play in military goods
movement, ranging from 81 to 85 percent of the shipments and 66-69 percent of the costs in
that period.  Only pipeline carried more weight, about 36-40 percent of the total annual
tonnage shipped.

A comparison of revenues and tonnages of military truck freight with the civilian truck
data provided in the previously noted ENO Foundation's 1993 edition of Transportation in
America indicated that while trucking was the military's most significant goods movement
mode, these shipments constituted less than 1 percent of the total civilian and military trucking
tonnages and revenues over the 1984 to 1992 period for which that data was available.  (See
Appendix Table A-3).  Based upon this comparison, it was decided not to sort the military
origin-destination truck shipment database to identify its major shipping corridors, as the
trucking volumes would likely be insignificant in comparison to the overall civilian truck
shipment between major city pairs.  It was concluded that the military, as a purchaser of freight
transportation, will use AHS just as other civilian shippers will if it is cost effective to do so.

3.1.1.3 The Intermodal Industry

The characteristics of the Intermodal segment of the freight carrier industry are
summarized below:

• Containers owned by large trucking companies, railroads, or shipping
companies, moved large distances

• "Double stack" or "Railroader" rubber tire/ steel wheel container units

• Originated by the ocean shipping carriers, off-loading containers to double-stack
railroad trains

• J.B. Hunt intermodal network transforming north american freight railroad
system, with 39 terminal connections with at least 9 railroads

• Hunt is replacing entire trailer fleet with containers

• Current issues include linehaul & terminal capacity, equipment standards
(Containers), railroads' capacity
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• Predicted to grow by 8 percent in 1994, or to about 8 million containers

• Actual growth through June 1994 was 13.4 percent above comparable 1993
period.

• Competitive with trucking on long hauls (over 700 mi.), not short hauls

• Comparable system for considering AHS for commercial vehicles

In his 1994 paper, "Integrated Intermodal Freight Transportation Technologies in the
21st Century," (8) M. J. Vickerman described the growth of the Intermodal market, presenting
the following statistics and information:

• Trailer and container on rail flatcar (TOFC/COFC) comprised 15 percent of the
U.S. intercity freight moved over 500 miles and 3 percent of the total U.S.
intercity freight moved in 1992

• This market generated $6 Billion in revenue in 1992, carrying 6.2 million loads
and 16 percent of the total U.S. railroad freight volume.

• One-third of all shippers switched from truck to intermodal rail in 1992.

The significance of the Intermodal concept and its emergence as a long haul
competitor  to trucking is that it can also be viewed as an alternative to providing AHSs for
heavy (LCV) trucks. Its advantages include safety, reduction of the need for drivers, reduction
in heavy truck miles and infrastructure costs for highways and bridges to accommodate heavy
vehicles, and reduced energy consumption. An April 1991 study, prepared for the U.S.
Department of Transportation's Federal Railroad Administration (9), compared the fuel
efficiency of rail freight movement with truckload freight movement in comparable corridors
moving common and competitive commodities. The Measure of Effectiveness (MOE) used
was Ton-Miles per Gallon. The results indicated rail to attain fuel efficiencies of 1.4 to 9 times
greater than competing truckload service, ranging from 196 to 1,179 ton-miles per gallon of
fuel consumed as compared to 84 to 167 ton-miles per gallon for trucks. The 43 different truck
scenarios studied six different trailer types powered by a Cummins 350 truck engine. Truck
distances ranged from 237 miles to nearly 2,100 miles. Six different train types were analyzed
ranging from mixed freight in boxcars to doublestack. Rail distances, including switching and
truck drayage for intermodal freight ranged from 311 miles to over 2,200 miles.

The November 1993 issue of "Progressive Railroading" was devoted to Intermodal
Issues. An article by G. Carmichael, former FRA Administrator in the Bush Administration,
entitled "J.B.'s Network" (10) depicted the national intermodal rail network developed by
J.B.Hunt to serve his container freight shipments.  If this network is superimposed on a map of
the Interstate System and other rail corridors, it becomes evident that there are many
unserved intercity corridors in which intermodal rail or AHS for trucks could potentially serve.
Cost-benefit comparisons are recommended to assess the relative feasibility of AHS vs
Intermodal Rail in specific intercity corridors during subsequent phases of this program.
Evaluation of the terminal requirements at transfer points for rail containers vs direct access
AHS commercial vehicles or future AHS containers would be a major part of these subsequent
studies.

3.1.1.4 Summary & Conclusions

This brief overview of the trucking industry has revealed its enormous contribution to
the nation's economy, employment, and productivity.  Its diverse types of companies,
commodities carried, vehicle types, haul lengths, labor concerns, competitive pressures, and
government regulations indicate that the AHS program will need to address multiple trucking
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industry as well as competing mode issues and concerns.  The basic question will be "what's

in it for us?"  The industry has identified it's "Issues of Concern" (4) as follows:

Environmental:
• Restricted operations in urban areas
• Stiffer emission standards
• Hazardous materials regulations

Safety and Health:

• Stringent government regulations
• Restrictions on CCV operations
• Health care costs
• Driver training, substance abuse
• Public perception

Taxes:
• Increasing fuel taxes
• ISTEA/MPO directed funding decisions
• New permit fees, times, penalties

Labor:
• Driver shortages
• Commercial driver's license requirements
• Mandatory drug testing

Technology:
• Pressure from shippers, suppliers, government to adopt new technology
• Competitive pressures for improved communications, computerization, vehicle

components
• Growth of medium-duty trucks for short hauls
AHS has the potential to address many of these industry issues, particularly safety,

driver task enhancement, and competitive pressure.

3.1.2 Roadway Design & Vehicle Characteristics

By defining the specific design and operating characteristics of trucks, including their
sizes, weights, performance dynamics, impacts on roadway infrastructure and traffic
operations, the issues to be addressed in assessing their role in the Automated Highway
System program can be identified.  This "Precursor" review has identified numerous design
and operating issues which will have to be evaluated in detail as the Representative Systems
Configurations which incorporate commercial vehicles are developed. Size and weight
limitations, vehicle handling and stability, pavement and bridge design and maintenance
requirements, geometric design requirements of ingress and egress ramps, are just a few of
the relevant items which have been identified and discussed in the following sections.

3.1.2.1 Design Criteria

Roadway geometric design standards and criteria cover horizontal and vertical
geometry and cross section elements including lane, shoulder, and clearance zone widths and
heights. They are based upon design vehicle characteristics, including: vehicle height, width,
length, driver eye height, vehicle headlight height, weight-to-horsepower ratio, braking
distance, driver perception and reaction time, and acceleration and deceleration rates.

The American Association of State Highway and Transportation Officials, in its 1990
"Policy on Geometric Design of Highways and Streets", (11) has established the design
vehicles and design standards used by state and local transportation agencies for urban and

Calspan Task F Page 21Calspan Task F Page 21



rural roadway design. The design vehicles include: Passenger Car, Single-Unit Truck, Single-
Unit Bus, Articulated Bus, Combination Truck, "Double-Bottom" Truck, and Recreation Vehicle.
The commercial vehicles included in the above design vehicles are further defined by symbol
and description as follows:

COMMERCIAL VEHICLE TYPE AASHTO SYMBOL
Single Unit Truck SU
Combination Trucks:
Intermediate Semitrailer WB-40
Large Semitrailer WB-50
"Double Bottom" Semi/ Full- Trailer WB-60
Interstate Semitrailer WB-62 (48' Trailer)
Interstate Semitrailer WB-67 (53' Trailer)
Triple Semitrailer WB-96
Turnpike Double Semitrailer WB-114

These diverse types of trucks are illustrated in Appendix Figure A-2. Trucks are further
defined by size / weight classifications ranging from Class 1, 6,000 lbs & less to Class 8,
33,001 lbs and over. Statistics published in the July 1993 Commercial Carrier Journal (12)
show that nearly 47 million trucks were sold by U.S. truck manufacturers between 1978 and
1992. Of these, nearly 92 percent were Single-Unit, up to 10,000 lbs Gross Vehicle Weight
(GVW). Only 4 percent were in the Class 8, Combination Vehicle category.

AASHTO design vehicle dimensions are provided in the above-noted 1990 "Green
Book". The common design dimensions and criteria recommended for trucks of all categories
are: Height - 13.5 ft.; Width - 8.5 ft.; Weight / Horsepower Ratio -300; Brake Reaction Time -
2.5-3.2 seconds; Driver Eye Height - 3.5 ft.; and Headlight Height - 2.0 ft. The pertinent
AASHTO truck design dimensions are presented in Appendix Table A-4, along with the
relevant vehicle performance characteristics.

All U.S. Transpor tation Departments are governed by these AASHTO standards, while
the quasi - public Toll Road Authorities use their own standards, which may in some areas
exceed the AASHTO values. These agencies include the New Jersey Turnpike Authority, New
York State Thruway Authority, Delaware Turnpike Authority, Pennsylvania Turnpike Authority,
and Massachusetts Turnpike Authority in the northeast.

Each of these agencies differ in their commercial vehicle classification systems,
described as follows:

For toll collect ion purposes, the New Jersey Turnpike uses eight revenue vehicle
classes, of which four (Class 3-6) are medium to heavy trucks, two (Class 5 & 6) are heavy
trucks with five or more axles, and two (Class B-2 and B-3 ) are buses.  Trucks comprise 12
percent of the annual traffic on the Turnpike.

The comparable classification system on the New York State Thruway includes seven
truck classes, which comprise a low of 6 percent of total daily traffic in the Buffalo sections and
15 percent at its Yonkers Toll Plaza. By comparison, the New York State Department of
Transportation uses thirteen vehicle classification codes for its statewide counting program.
Codes F1 to F3 cover passenger vehicles, motorcycles, and 2 axle, 4-tire pickups, vans, and
motor homes, while Codes F4 through F13 include buses and trucks ranging from 2 axle, 6-tire
single unit to 7 or more axle, multi - unit vehicles.

Data obtained from the New York State classification counts on Interstate Highways in
Rural and Urban areas have been analyzed to show the relationship between total daily traffic,
total truck traffic (F4-F13), and four or less axle tractor-trailer truck traffic (F8-F10), excluding

Calspan Task F Page 22Calspan Task F Page 22



the multi-unit, double trailers (F11-F13) which comprise no more than one percent of the total
daily traffic at all but two of the locations counted, where the percentages were less than two
percent. (At trailer parking areas). The high proportion of tractor -trailer trucks to total trucks on
both rural and urban Interstate highways is found throughout the range of total traffic volumes,
as shown in Appendix Figures A-3 and A-4.

A similar graph, Appendix Figure A-5, was prepared for the NJ Turnpike (I-95).
Although the Classification 3 includes both semi-trailers and 3 axle single unit trucks, it was
included in the data shown in the graph to represent all tractor - trailers. These graphs as well
as additional data obtained from the New York State Thruway Authority portray the over-
representation of tractor - trailers in the total truck population of Interstate Highways and Toll
Roads in urban and rural areas in the northeast, ranging from about 70 to over 80 percent.

Truck characteristics on urban freeway systems in California were investigated in the
"Urban Freeway Gridlock Study: Decreasing the Effects of Large Trucks on Peak-Period
Urban Freeway Congestion" (13).  The study covered freeway systems in Los Angeles, San
Diego, and San Francisco. It found that large trucks averaged up to 5.5 percent of the
morning, mid-day, and afternoon peak period traffic volumes on these freeways, and that 65
percent were tractors hauling single trailers, 20 percent hauled double trailers, 12 percent were
single unit, straight trucks, and 3 percent were others. The authors noted that in Los Angeles,
large trucks account for 80 to 90 percent of all truck miles on the freeways, most of which are
five-axle, 18-wheel tractor-semitrailers. They also noted that California has a larger proportion
of twin trailer trucks than most other states.

In summary, as this and subsequent sections of this report will indicate, the tractor-
trailer combination truck appears to be the "workhorse" of the trucking industry. The implication
or question for the AHS Task F to consider in the evaluation of RSCs with mixed and separate
commercial vehicles is if this  vehicle type should be the design standard for deployment and
control. More information on the size and weight characteristics of these and the other single
unit and combination vehicles is presented in the following sections.

3.1.2.2 Truck Size & Weight

In order to appreciate the current climate in which trucks are
regulated and operated on the nation's highways, background statistics
on Federal and State laws governing  the permissible maximum sizes and
weights of commercial vehicles were obtained from the American Trucking
Association's Motor Carrier Advisory Service (14).  These statistics are summarized in
Appendix Table A-5 in terms of the number of States with the size and weight limits indicated.

As indicated, maximum truck sizes a nd weights on most Interstate highways are
currently set by law at 80,000 lbs. maximum gross weight, 53 feet long, 102 inches wide, and
13 feet 6 inches high.  Twin trailer combination units are set at 28 feet long, and maximum
single axle loads are 20,000 lbs.  The exceptions to these limits are "grandfathered" states
which permitted longer, heavier combination vehicles (LCVs) prior to the 1992 ISTEA
legislation.

Recommendations for changing the current national truck weight regulations were
prepared and published in the June, 1990 TRB Special Report, "Truck Weight Limits. Issues,
& Options", (15).  The study committee recommendations, which are still under discussion by
various environmental and rail industry representatives, included changing the existing Federal
Bridge Formula for maximum truck weight on Interstate Highways to permit heavier loadings,
and providing broader permit processes for heavier vehicles to operate. The intent, as
indicated by ATA's Robert E. Farris, Vice President of Policy, at a 1991 Congressional
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Seminar on Longer and Heavier Trucks (16), was to bring all the States into uniformity on
maximum truck weights.

Another TRB study, "New Trucks for Greater Productivity and Less Road Wear, an
Evaluation of the Turner Proposal" (16), named after a former FHWA Administrator, proposed
a longer double combination trailer, a twin 34' to replace the twin 28', with more axles  to allow
110,000 to 112,000 lbs maximum gross weight. This would conceivably result in a 25 percent
reduction in pavement damage. This proposal has not been adopted by AASHTO nor
embraced by the trucking industry, which prefers to run their existing twin 48' trailers, or
double- twin 28' combinations retrofitted with additional axles to cushion the additional total
load.

The TRB 225 Special Report prepared estimates of the benefits to the trucking industry
of increasing the gross weight limits on the Interstate system. Trucking costs would decrease
by  $2.7 billion per year, offset by $0.3 billion in taxes to pay for the additional bridge and
pavement infrastructure costs. Additional benefits would include shifts of heavy trucks from
non-Interstate to Interstate roads, and shifts from three to four axle trucks, of benefit to
pavements.

Changes in truck size and weight limits affect maximum payloads. High-density freight
is controlled by weight; low-density is controlled by cubic capacity. Increases in weight limits
increase weight per trip, and reduce the number of trips and truck vehicle miles.  Diversion
from rail to truck and truck to rail is influenced by truck weight limits, primarily by changes in
truck transport costs. These include: over the road costs; loading / unloading costs; storage,
loss, and damage costs; delivery time unreliability; and the cost of capital on goods in transit
and inventory.  AHS for commercial vehicles would provide potential reductions in travel time
and damage costs, thereby increasing the diversion of certain shipments from rail to truck.

The railroad industry views attempts to increase truc k size and weight limits negatively.
Testifying at the same June 7th, 1991 Congressional Seminar noted above, the  Association of
American Railroads' President and CEO, William H. Dempsey argued for the promotion of
intermodal transport of highway trailers for long hauls, with the motor carriers performing the
shorter hauls. He cited AAR study findings that permitting general use of LCVs, i.e. twin 48'
trailers, on the Interstate Highway System would cost the rail industry 40 to 50 percent of its
net operating revenue. He also noted AASHTO's reluctance to change the current policy
towards LCVs until further studies are conducted, and quoted a statement of three major U.S.
environmental organizations listing the following objections to increased truck sizes and
weights: "increased air pollution, increased congestion, subsidized competition with more
energy efficient rail transportation, and increased pavement damage which in turn would
require spending scarce Federal transportation dollars on highway and bridge repair rather
than on investments in more energy efficient alternatives."  Similar objections to AHS
operations by LCVs can be anticipated from these sources.

Cornell University investigated the New York State heavy truck permit system to
determine its benefits to the economy, as compared to what would happen if Federal load
limits were maintained. It's Final Report, "Economic and Safety Consequences of Increased
Truck Weights" (18) provides a wealth of information on economic and safety impacts of heavy
trucks, relevant to their potential operation on Automated Highways.

The Cornell researchers concluded from their studies that the permit system has
reduced the number of truck-miles driven by the relevant trucking industry fleet by 79 percent,
without a change in accident rates or severities. It has reduced the number of accidents,
fatalities, and injuries due to the reduced number of trucks used to move the same loads.
They further estimated that the economic benefits to the heavy truck operators of the permit
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system were as much as $690 Million in reduced operating costs annually. The costs to the
infrastructure, i.e. pavements and bridges, of the heavy truck permit program were to be
estimated in a parallel study, " Effect of Truck Weights on Deterioration, Operations, and
Design of Bridges and Pavements" (19).  This study focused on the impacts to roadway
pavements and bridges of the program.  An attempt was made to determine the differences in
pavement costs to New York State with and without the heavy permit vehicles. The results
were inconclusive, however, due to the small percentage of these vehicles.

The potential impacts of heavier vehicles on bridges were discussed by focusing on the
most common type of bridge in New York State, the simple-span, steel, multi-beam or girder
bridge. These were noted as most sensitive to increased truck loading fatigue damage.  State
data indicated an average of three bridges per mile on urban Interstates and close to one
bridge per mile on rural Interstates. This totaled over 1,300 bridges on these existing
highways. Of these, it was estimated that nearly 20 percent are subject to fatigue damage due
to their structural design characteristics. The costs to upgrade and maintain these bridges to
accommodate the heavy permit trucks vs non-permit trucks were found to be minimal on an
annual basis.

In the third of a series of studies conducted by the U.S. General Accounting Office as
directed by ISTEA, the costs and benefits of expanding LCV operations to other Interstate and
primary highways were estimated.  As reported in the August 22, 1994 issue of Transport
Topics(20), GAO found that allowing triple and longer double trailer combinations to use all
Interstate highways and some primary roads could save an estimated $3.4 billion annually in
freight transportation costs.  The required infrastructure costs for bridge replacement,
interchange reconstruction, and staging areas for breakdown and assembly of LCVs would be
relatively modest, assuming their confinement to rural Interstates.  FHWA estimated this cost
at a one-time investment of $2.1 to $3.5 billion.

Based upon these studies it can be inferred that permitting LCVs to use rural sections
of AHS lanes or roadways would also be justified to the trucking industry through even greater
economic benefits at acceptable infrastructure costs.  Further analysis is required to verify this
inference.

3.1.2.3 Vehicle Handling and Stability Characteristics

To assess the risks and control requirements associated with permitting trucks,
particularly longer, heavier commercial vehicles on AHSs, the diverse handling and other
dynamic characteristics of these vehicles have been identified and are discussed in the
following section.  Vehicle handling and stability properties affected by truck weight or
configuration include: Rollover Threshold, Hydroplaning, Rearward Amplification, Braking,
Steering Sensitivity, Low-Speed Offtracking, and High-Speed Offtracking.

Rollover Threshold - This is defined as the maximum level of steady lateral acceleration that
the vehicle can sustain without rolling over. It is related to the ratio of center-of -gravity height
to track width. Other factors include suspension properties and, for combination vehicles,
coupling properties. It is not affected by truck configuration. Fully loaded tractor-semitrailers
and five-axle doubles have similar rollover threshold values. It is affected by Gross Vehicle
Weight (GVW), decreasing with increased weight for both single-unit and combination trucks.
Fatal rollover crash rates of combination vehicles increase with increased GVW. Data on
single-unit truck fatal rollover crash rates are not sufficiently complete.

Rollover threshold characteristics relating to truck types, axle loadings, gross weight,
truck width, and payload center of gravity  were defined and explained in a Texas
Transportation Institute (TTI) report, "Geometric Design Characteristics for Separate Truck
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Lanes"(21). It was noted that rollover thresholds vary from .25 to .40 g's, where 1 g equals the
weight of the truck. Accordingly, to avoid rollover, the maximum lateral force developed by the
tires on the pavement must be less than about 25 percent of the truck's weight. If the rollover
threshold is greater than the pavement coefficient of friction, the vehicle will skid on a turn. If it
is less, it will roll over. The design implications for AHS use by commercial vehicles is that
impending rollover conditions need to be sensed by the control system, either within the
vehicle (C1), the roadway (C3), or both (C2).

Hydroplaning - TTI conducted tests to investigate the problem of unloaded tractor-trailers
losing control during wet weather. At 58 mph, and tire inflation pressure of 75 psi, hydroplaning
was observed, while loaded tractor-trailer tires were shown to have much higher minimum
hydroplaning speeds, over 75 mph. It was noted that, for unloaded conditions, large
differences in hydroplaning speeds exist between the steering and driving axle tires of the
tractor. This results in rotational movement about the tractor's center of gravity, which causes
jackknifing. TTI found that dynamic hydroplaning speeds of highway vehicle tires vary with
both tire pressure and the tire footprint aspect ratio, which is the ratio of the surface contact
zone to the length.  Accordingly, sensing of hydroplaning threshold speeds of loaded, partially
loaded, and unloaded trucks on wet pavements will be a requirement of AHS control systems
for commercial vehicles.

Rearward Amplification - This occurs in multiple-trailer combination vehicles, where the rear
trailer exhibits an exaggerated, whiplike response to rapid steering maneuvers such as sudden
lane-changing or obstacle-avoidance. The rear trailer may overturn at high speeds. Drivers of
five-axle doubles often cannot sense this impending instability. This is a safety concern for
doubles and triples, but not for tractor-semitrailers or single-unit trucks. It increases with
increased GVW. The implication is that significant increases in GVW of these combination
vehicles will increase fatal accident probabilities.  The resulting issue is whether AHS control
systems should include the ability to sense this movement on LCVs or if they should be
prohibited from using AHS roadways entirely due to this major safety concern.

Braking - Both truck brake stopping distance and vehicle control or stability during braking
affect traffic safety. Stopping distance is influenced by available tire-to-pavement friction,
vehicle loads and the distribution of loads on individual axles, wheel-load shifts during braking,
and the different truck brake systems with wide variations in performance and brake
maintenance practices. Stability during braking depends on the probability that wheels on one
or more axle sets will lock up, leading to "jackknifing" on combination vehicles and "spin-out"
on single-unit trucks. Truck brake systems are designed for fully-loaded conditions and are
oversized for partial or empty loads. Controllable braking of doubles is complicated by the
practice of coupling an empty trailer behind a full one.  Tractor-trailers and five-axle doubles do
not vary significantly in stopping distances, while single-unit trucks require shorter distances.
Increased GVW is not likely to affect practical stopping distances or vehicle control for fully
loaded trucks, but may affect braking under partial or empty conditions.  Accordingly, AHS
check-in systems will have to focus on braking systems and individual vehicle loading
characteristics for commercial vehicles.

The paper, "Large Truck Braking Capabilities and the Inadequacies of Geometric
Design and Traffic Operations Standards" (22), reported on the braking capabilities of large
trucks in Canada, and recommended changes to the current Canadian road design standards
for stopping distances. They studied loaded, partially loaded, and unloaded straight trucks,
tractor semi-trailers, and doubles, and found that the existing standard design minimum safe
stopping sight distances were too low for actual conditions. Using an unloaded tractor semi-
trailer, 3-S2 configuration with a 4.82 m (15.8') tractor wheelbase and 10.59m (34') trailer
wheelbase, and a minimum coefficient of tire-pavement friction of 0.2 to represent worn tires
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on a wet pavement, suggested changes to the current minimum design standards for safe
stopping sight distances were developed, as follows:

Operating Friction   Braking Minimum Stopping  Distance
  Speed  Coeff.  Distance   1.0 sec      Standard          %

            kph (mph)                                m     (ft.)        m    (ft.)        m     (ft.)        Incr.     

  40 (25) 0.40   30     (98)   45   (148)   45 (148)   0.0
  60 (37) 0.30   90   (295) 105   (344)   85 (279) 23.5
  80 (50) 0.25 191   (626) 215   (705) 140 (460) 53.6
100 (62) 0.22 340 (1115) 370 (1214) 200 (656) 85.0
120 (75) 0.21 512 (1680) 545 (1788) 285 (935) 91.2

(40 km/hr =25 m/hr, 30 m = 98.4 ft, 100 m = 328 ft.)
As driver's eye heights are higher than the 1.05 m used, these increases would not

affect vertical curve design, but should be considered for horizontal or vertical sight line
obstructions, and, more significantly in AHS design, for minimum headway values for
commercial vehicles. The 1.0 second value in the above table refers to driver brake reaction
time. The Canadian standard, (as well as AASHTO ), uses 2.5 seconds to represent the 90th
percentile driver, while the authors note that truck drivers would be at the 1.0 sec. value. An
AHS would reduce this value to fractions of a second from detection to brake application,
thereby reducing the above minimum stopping distances to the braking distances, which are
still, for all but 40km/hr, significantly higher than the current design standards. The authors also
included data and a plot of the results of field tests reported in TRR No. 1052, "Sight Distance
Problems Related to Large Trucks" (23). The braking field test results for trucks with worn tires
on wet pavement conducted in this study were in agreement with the braking model results
obtained by the Canadians. It is also noted that existing roadway design standards assume
ideal brake efficiency, while in reality 70 percent brake efficiency is obtained for loaded trucks
and only 40 percent efficiency is obtained for partially loaded and unloaded trucks, as
determined from field data.

By comparison, current AASHTO braking distance criteria are considered to be
outdated, as they are based upon ideal equipment, tire and pavement conditions.  AASHTO
braking distances for passenger vehicles are computed as V 2 / 30 f, where V = speed and f =
coefficient of friction. Studies quoted in the previously noted report, "Geometric Design
Considerations for Separate Truck Lanes" (21), indicated that passenger car braking distances
are about two-thirds those of trucks. This was used to support a recommendation to increase
the AASHTO truck braking distances as follows:

    Design    Friction           Braking Distances
     Speed Coefficient Current AASHTO Proposed

               mph (kph)                                                                   ft. (meters)                       

     40    (64)        0.32           167   (50) 250  (76)
     55    (89)        0.30           336 (102) 504 (154)
     60    (97)        0.29           414 (126) 620 (190)
     70  (113)        0.28           584 (178) 875 (267)

                                                                                                                                                
These braking distances are 50 percent higher than AASHTO's. Comparison with the

Canadian researchers recommendation indicates their use of a lower wet pavement friction
coefficient and higher percent increases at speeds greater than 80 km/hr (50mph).
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The relevance of this work to AHS for commercial vehicles is the impact that safe
stopping distances, or safe braking distances, (since the driver is not in control ), have on
headways. At 100 km/hr (62mph), the Canadian recommendations call for over 1,100 ft., while
the Texas proposal calls for 620 ft. at 60mph.  The differences between the two study results
need to be resolved, and safe control headways on AHSs with commercial vehicles permitted
need to be determined.

Steering Sensitivity - This affects ease of vehicle control. It is a property of the towing unit,
defined as the rate of change of steering angle with respect to lateral acceleration. It is
sensitive to center-of gravity height of the payload, tire properties, and fore-and-aft distribution
of roll stiffness. It is not dependent on truck configuration per se. Steering sensitivity of both
tractor-semitrailers and five-axle doubles decreases slightly with increased GVW. Higher
sensitivity values were found to be associated with lower single-vehicle fatal crash rates.  This
major AHS-controlled vehicle handling characteristic will require a sophisticated sensing
system given the number of variables noted above.

Low-Speed Offtracking - This refers to wheelpath differences at intersections under low
speeds, causing encroachment of turning trucks on adjacent lanes. Current design turning
path templates permit new facilities or improvements to be designed to allow for this. Doubles
with 28' trailers encroach about 7% less than 45' tractor-semitrailers. GVW does not affect this,
nor are accidents associated with it.  It is anticipated that low speed turns will be controlled by
the driver and that these turns will occur both prior to AHS ramp entry or after AHS ramp exit
movements.

High-Speed Offtracking- This refers to wheelpaths at high speeds on curves, and is
influenced by wheelbase dimensions, axles, number of articulation points, and tire properties.
Five-axle doubles exhibit larger high-speed off-tracking than tractor-semitrailers. Higher GVW
results in increased high-speed offtracking. This characteristic partially explains the increased
number of truck accidents at freeway exit ramps.  More forgiving geometric design standards
on AHS interchange ramps will be required to address this concern.

3.1.2.4 Pavements and Bridges

Pavements:  The parameter used for pavement design is Equivalent Single Axle Load
(ESAL). An 18,000 lb. single axle is 1.00 ESAL. AASHTO design procedures allow a given
percentage increase in the number of ESALs to be accompanied by a smaller percentage
increase in pavement thickness and cost. ESALs increase sharply with vehicle weight, but
decline with the number of axles. A nine axle combination truck carrying 110,000 lbs has less
effect on pavements than a five axle combination carrying 80,000lbs. The Turner proposal,
studied by TRB, in its previously noted Special Report 227 (17) would allow higher gross
weights by adding extra axles to reduce the ESALs.  The report authors estimated the average
cost per mile of upgrading Interstate highways in rural and urban areas to accommodate a 10
percent increase in ESALs at between $700,000 and $1,100,000.

Pavement life is influenced by the following truck components:

Tire Pressure - Higher tire pressures increase ESALs and hasten pavement wear.

Single vs Dual Tires - Although single tires have more adverse affects on pavements,
unbalanced loads on dual tires and random lateral placement of the truck on the highway can
have counter affects.  Tire "Wander" actually is viewed as beneficial in spreading the load and
reducing pavement rutting.  AHS lateral control systems will need to consider this
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Suspension System - Unconfirmed European findings indicate that improved suspensions
that reduce dynamic load impacts might reduce pavement wear by about 5 percent.
Commercial vehicle suspension systems will require inspection at AHS check-in ramps.

Axle Spacing - The net affect of changes in axle spacing on pavement wear is complex and
dependent on the pavement structure. the impacts vary with pavement type, flexible vs rigid.

Pavement designs on AHS facilities permitting commercial vehicles will have to focus
on high strength, infrequent maintenance, and design lives of 50 years±.  Current procedures
allow for such requirements to be met (24).

Bridges:  There are 580,000 bridges in the U.S., of which 250,000 have been rated as
deficient. Increased truck weight limits will increase the cost of bridge repairs and replacement.
Overstress and fatigue are the two bridge responses that must be considered for heavy
vehicles. Overstress may occur when two or more heavy trucks load a bridge simultaneously.
As the number of heavy trucks increase, the probability of multiple heavy trucks on a bridge at
the same time will also increase. Although bridge design practice accounts for this by means
of safety factors, usually design allowable stresses of 55 percent of limiting yield stresses, the
AHS scenario of separate truck roadways, with convoys of heavy vehicles, leads to
identification of a major bridge design and cost issue. Fatigue Life must be considered in terms
of repetitive truck loads on bridges. A doubling of stress for a single truck passage on a steel
bridge causes eight times as much fatigue damage.  Rehabilitation of existing bridges and
construction of new bridges on AHS roadways which permit heavy commercial vehicles will
require consideration of both overstress and fatigue in their design.  In the section of TRB
Special Report 227 (17) on Bridges, the authors estimated differences in construction cost
increases on new and existing bridges carrying increased heavy truck traffic, both conventional
and "Turner" trucks.  The results ranged from no changes in new bridge costs to an average of
$400,000 each to replace deficient existing Interstate and primary highway bridges.  The
numerous variables to be considered in developing bridge construction, replacement, and
maintenance cost estimates for AHS lanes on roadways permitting conventional and/or new,
heavier LCVs will require further detailed study and quantification.

3.1.2.5 Traffic Operations

Traffic operations characteristics affected by truck weight  or configuration include:
Speed on Upgrades, Freeway Merging, Weaving, Lane Changing, Downhill Operations,
Intersection Operations, Traction Ability, and ability of Longitudinal Barriers to restrain and
redirect vehicles upon impact.

Speed on Upgrades - The ability of trucks to maintain desirable speeds on upgrades
declines with the percent and length of grade and the gross weight / net horsepower ratio of
the vehicle, where net horsepower is the brake horsepower of the truck measured at the
clutch. AASHTO states that truck speeds decrease by about 7 percent on upgrades. No
differences in performance on grades have been found between tractor semi-trailers and
doubles. Excessive speed differences between slow moving trucks on upgrades and faster
moving passenger cars are associated with increased rear-end crash rates. AASHTO design
guidelines use a weight to hp ratio of 300 to represent trucks on grades. However, this ratio is
decreasing with improved truck engines and transmissions, and the average ratios of existing
combination vehicles are slightly over 200 lbs per net hp.

Freeway Merging, Weaving, and Lane Changing - These maneuvers will be more difficult
with increased truck sizes and GVWs. However, the effects of increased weight / hp ratios on
these operations have not been quantified. Nor have relationships between truck accident
rates and freeway maneuvers, truck lengths, or weight / hp ratios. The authors of TRB Special
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Report 225 noted that  AASHTO's guidelines for acceleration lane lengths are based upon the
performance of passenger cars, and, consequently are inadequate for existing trucks
attempting freeway merging and will be even more so for trucks with higher weight / hp ratios.

Downhill Operations - Both driver practices and truck brake characteristics affect the safety
of downhill operations. Driver failure to properly downshift at the top of the hill can cause
overheated brakes or brake failure. As the number of brakes and the GVW increase, the
probability of improper brake adjustment and increased truck brake temperatures during
downhill descents increases. As the GVW increases, the probability of runaway crashes on
downhill roadway sections increases.

Intersection Operations - Sight distances are critical at unsignalized intersections, to allow
trucks sufficient time to turn into or to cross the other roadway. Increased GVWs and truck
lengths will require longer sight distances. AASHTO's design values for unsignalized
intersection sight distances are considered to be inadequate for today's trucks and even more
so for those with higher weight / hp ratios.

Traction Ability - The truck weight / hp ratio determines maximum truck speed on upgrades.
This ability increases as the percent of GVW on the tractor drive axles  (Traction Ratio ), or the
number of powered axles increases. Typical traction ratios range from 0.425 for tractor-
semitrailers to 0.225 for five-axle doubles, indicating the superior traction ability of the former,
particularly in snow and ice conditions. Relationships between truck accident rates and traction
ability have not been established.

Longitudinal Barriers - Except for limited installations (NJ Turnpike), most of these barriers
have been designed to restrain and redirect passenger vehicles. Combination vehicles are
more likely than single-unit trucks to roll over after hitting a longitudinal barrier. Higher GVWs
and centers of gravity will require barrier redesign. The effects of barrier properties on truck
accident rates have not been established.

3.1.2.6 Summary and Conclusions

The issues and risks to be considered under Roadway Design and Vehicle
Characteristics for Commercial Vehicles are led by the initial and subsequent questions as to
whether and how commercial vehicles should be provided their own AHS lane, separate from
passenger vehicles.

If so, should all types, sizes, weights, and combinations be permitted, or should the
AHS lane or lanes only allow smaller single unit trucks with dynamic characteristics similar to
passenger vehicles?

While heavier and longer veh icles are viewed as needed by the trucking industry, what
place do they have, if any, on the initial and subsequent AHSs that will be developed and
constructed over the next decades?

What, if any should the truck type and size restriction be?

What are the cost implications for pavements and bridges?

Should AHSs be designed only for passenger vehicles, vans, buses, and single unit
trucks with a weight limit of 10,000 lbs, allowing the other commercial vehicles to remain on
separate but non-instrumented sections of the Interstate System in both urban and rural
areas?

Or, should longer and heavier trucks be allowed, as is being lobbied for by the trucking
industry?
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In theory, AHS will permit the drivers' tasks to be automated except for ingress and
egress, and the risk of truck driver and / or passenger vehicle driver error leading to accidents
will largely be eliminated.

If heavier vehicles (LCVs) are allowed on rural Interstate highway sections, as indicated
to be cost-effective by GAO, should they be provided separate lanes or mixed AHS lanes with
AHS equipped passenger vehicles?

The costs of fail safe, automated control of the vehicle handling and stability functions
of large commercial vehicles, listed and described in Section 3.1.2.3, will have to be
determined and assessed against their safety risks and capacity requirements.

Most rural Interstate highways are two lanes in each direction, for safe passing, for
maintenance/operation of one lane during construction, and for provision of slower vehicle
lanes.  AHS will, for the I2 RSC, require a "buffer" lane for access/egress and separation of
AHS from non-AHS operations.  Provision of separate AHS commercial vehicle lanes,
particularly for LCVs on rural Interstates, may require a full additional lane in each direction.

There has not been a similar lobbying effort to allow LVCs on Interstate highway
sections in urban areas, as the risks of operating them on more heavily traveled highways are
recognized.

However, if tractor-trailers and large single u nit trucks are either restricted from,
provided their own AHS, or allowed to operate with other AHS equipped vehicles on dense
urban Interstate sections where trucks constitute a relatively high proportion of total traffic (10
percent±) what will be the requirements and impacts on total travel within the corridor?

Prohibiting them entirely will require them to occupy a greater portion of the remaining
non-AHS lanes, which will have to be upgraded in design to provide safe acceleration,
deceleration, and braking distances, adequate horizontal curvature, particularly, at interchange
exit ramps.  The capacity available for passenger vehicles may not be adequate.

Requiring trucks to operate within separate truck-only AHS lanes may result in excess
capacity in those lanes, with the other passenger vehicles forced into the remaining non-AHS
lanes.

This suggests that two AHS lanes might be required on urban Interstates, one for
passenger vehicles and a second for mixed single unit trucks and passenger vehicles.  The
third, non-AHS lane would be for heavier combination vehicles and non-AHS equipped
passenger vehicles.  Obviously, the remaining capacity of this lane will be limited.  These
possible scenarios have been developed and analyzed in
Section 3.3.

3.1.3 Truck Safety Characteristics/Issues

The driver is instrumental in the precipitation or prevention of accidents. Trucks with
good handling and stability properties may have poor safety records if driven by inexperienced
or unsafe drivers. Good drivers can operate less- than- ideal trucks safely. National
Transportation Safety Board reports indicate that driver factors such as fatigue, inattention,
substance abuse, or driving at speeds inappropriate for prevailing conditions have been
primary accident contributing elements.

A 1991 study conducted for the Pennsylvania Department of Transportation
(PennDOT)(25), identified those factors contributing to truck involved accidents. The study
focused on the driver, the vehicle, and the motor carrier. Its findings, relevant to the overview
of issues to be addressed in AHS for Commercial Vehicles, are summarized below.
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3.1.3.1 The Driver

For heavy combination vehicles, the margin for driver error is much less than for
smaller vehicles. While truck drivers generally have a better safety record than the average
motorist, four out of ten accidents involving trucks are attributed to driver-related causes.
These causes include : speeding, tailgating, improper turning, and careless lane changing.
The skills that a professional truck driver must have include: braking, shifting, absorbing and
analyzing information on proper lane position and speed, weather conditions, other road users,
signing, record-keeping, routing, etc.  The current and projected shortage of trained drivers is a
major source of concern. Wages have not kept up with other occupations, qualifications are
getting harder to meet, including the Commercial Drivers License, and initial formal training
and continuous skills retraining and monitoring is not legally required. Untrained drivers are
over- represented in fatal accidents, and errors in judgment have been cited as the cause in
over 90 percent of the accidents when the truck was at fault. The above referenced PennDOT
study referred to an American Automobile Association (AAA) study (26) indicating fatigue to be
one of the primary causes in 41 percent of large truck crashes. Although there is a federal
requirement that drivers sleep after driving 10 hours, fatigue and stress can occur before this,
especially during high risk times between midnight and 8 AM.  The 10 hour limit is often
disregarded due to the pressures of delivery deadlines.  A dramatic example was the recent
fatal truck accident on Interstate 287, the Cross-Westchester Expressway in New York State,
attributed to apparent driver fatigue or misjudgment of speed on a main roadway curve.

AHS represents a potential solution to the driver safety problem.

The Penn State report referred to earlier NHTSA, USDOT, and other studies which
provided the following information:

1. Only about 10 percent of all heavy trucks involved in accidents had mechanical
defects.

2. The three top failures/defects contributing to combination-unit trucks were
broken, worn-out, or inoperative brakes; other parts; and worn or smooth tires.

3. Defective brake systems contribute to over one-third of all accidents resulting
from mechanical defects.

4. Preventative maintenance and regular vehicle inspection programs are viewed
as the means to reduce the truck accidents attributable to the vehicle,
particularly for older vehicles which apparently receive less maintenance. Cited
in this report was the federally-funded Motor Carrier Safety Assistance Program
designed to facilitate roadside truck inspections. However, in Pennsylvania less
than one percent of the total trucks on the highways are inspected.

5. The disparity of braking distances between passenger cars and large trucks was
also noted, with highway design criteria indicated to be based upon the stopping
distances of the former. Use of Anti-locking Braking Systems (ABS) on large
trucks, and providing compatible braking systems on both trucks and their
trailers were cited as means to reduce this disparity. These improvements are
recognized as being needed by the industry.

6. Rollovers are involved in about 60 percent of fatal truck occupant accidents.
Improved steering control, proper loading procedures were noted as means to
reduce these accident types.

By requiring vehicle inspections at AHS check-in points, AHS wi ll potentially eliminate
most vehicle equipment failure accidents on these facilities.
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3.1.3.2 The Carrier

The PennDOT study pointed out that the carriers themselves set the tone for the safety
of their operations, through safety training programs, maintenance practices, driver hiring and
personnel programs, and operating regulations affecting routes, driver hours, delivery
schedules, and cargo handling.  The intense competition growing out of deregulation of the
for- hire trucking industry has resulted in deferred or breakdown maintenance policies and the
accompanying higher risks of equipment  failure accepted in order to reduce costs. The
question to be considered with respect to AHS is how to obtain the compliance of the industry
in properly maintaining their fleets to meet the performance standards of these special
roadways.

3.1.3.3 National Truck Accident Statistics

Effects of truck configurations and weight on fatal truck accidents were presented in the
previously noted TRR 255 Report (15), based upon University of Michigan studies conducted
with 1980 to 1985 data. These studies indicated somewhat higher fatal rollover and jackknife
crashes involving doubles than tractor-semitrailers. Increased truck weights were also related
to higher rollover and ramp-related fatal crashes, but not to jackknife and sideswipe fatal
accidents. Accident rates used for the studies of impacts of alternative truck type and weight
scenarios on safety were:

NATIONAL ACCIDENT STATISTICS, LIMITED ACCESS HIGHWAYS

Truck Type                Accident Rate (per 100 MVM)
Fatal  Injury     PDO

Single-unit   7.7    185        499
Tractor-semi-trailer 10.2    245        595
Doubles 11.2    269        653

These rates indicate nearly one-third greater fatal and injury accident rates  for heavy
trucks and 45 percent higher rates for the doubles as compared to single unit trucks. The
Property Damage rate comparisons show lower increases in rates as the truck size and
configuration increases, about 20 and 30 percent, respectively for the tractor semi-trailer and
the double.

Accident statistics for trucks and passenger vehicles on all roadway types for 1980 and
1990 were provided in the previously cited USDOT's National Transportation Statistics Annual
Report, June 1992 (1).  The vehicle accidents, involvement rates, and occupancy fatality rates
for these vehicles are summarized below:
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PASSENGER CAR AND TRUCK ACCIDENT STATISTICS, 1980, 1990

Vehicle 1980 1990

Passenger Cars
No. of Vehicles in Accidents (Millions) 22.8 14.3
Vehicle Involvement Rate (/ 100MVM)   3.5   2.2
Occupant Fatality Rate (/ 100MVM)   2.5   1.6
Trucks
Total No. of Accidents 31,389 35,735
Vehicle Involvement Rate (/ 100MVM)

Single-Unit  4.3   3.2
Combination  5.8   3.9

All Trucks  5.4   3.3
Occupant Fatality Rate (/ 100MVM)

Single-Unit  2.4   1.7
Combination  1.3   0.5

All Trucks  2.2   1.5

These data show that both truck and passenger car accidents and involvement rates
have declined between 1980 and 1990. Single - unit trucks have maintained higher total
involvement rates than passenger cars, and about the same occupant fatality rates over these
years.  While combination trucks have had higher vehicle involvement rates than both
passenger cars and single - unit trucks, they have maintained lower occupant fatality rates.
Overall, because of the greater number of single - unit trucks, the occupant fatality rates for
both passenger cars and total trucks have been about the same. Of significance is the 62
percent reduction in the occupant fatality rate of the combination truck between 1980 and
1990, as compared to only a 36 percent reduction for passenger cars and 29 percent for single
- unit trucks. The percentage reductions in accident involvement rates for both passenger cars
and total trucks were about the same, 37 and 39 percent, respectively.

Accident data for the New Jersey Turnpike from 1986 to 1992 obtained from the
Turnpike Authority indicate a declining but still disproportionate number and rate of truck
accidents as compared to the total number of vehicles and accidents. The total number of
accidents decreased from a peak in 1989 of 5,588 to 4,116 in 1992, corresponding to accident
rates of 126.7 and 95.8, respectively. Truck accidents decreased from 2,178 (39.1 percent) to
1,331 (32.3 percent) in those same years, and truck accident rates dropped from 347.1 to
239.6., or from 2.73 times the total rate to 2.5 times the total rate. The truck percentage of total
vehicles in those two years dropped from 12.2 to 11.0.

In his 1993 paper, " The Decade of Declining Heavy Truck Fatalities-  A Tribute to the
Cooperative Process" (27), Farrell L. Krall described the significant reductions in medium and
heavy truck accidents and driver fatalities experienced since 1980, citing the increased use of
seat belts by drivers as the single largest contributor to the lower fatality rate. He noted that
between 1979 and 1992, the frequency of heavy truck occupant fatalities declined by 58
percent while truck vehicle miles increased by 40 percent; that truck occupant fatalities are
split 75 percent in combination tractor-trailers and 25 percent in straight trucks; and that
rollover crashes account for 15 percent of heavy truck fatal crashes and 57 percent of driver
fatalities.

3.1.3.4 Summary and Conclusions
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The above review of a sample of the truck safety literature, research findings, and
available accident statistics leads to the conclusion that by eliminating the opportunity for driver
fatigue and error, by controlling the condition of the vehicles entering an AHS, and by sensing
threshold levels for rollover and other truck stability parameters, additional reductions in truck
and truck/passenger vehicle accidents and fatalities could be achieved. The control and
maintenance requirements needed for longer combination vehicles (LCVs), if they are
permitted, need careful evaluation, in view of the greater accident potential of these
commercial vehicles. The industry is, judging from the accident rate reductions achieved over
the past decade, focusing on safety and proud of its accomplishments.  It should, accordingly,
be participating in the AHS efforts, to lend its expertise and experience in those vehicle and
driver-related areas which will produce the most benefits in the early phases.

3.1.4 Benefits and Costs of Commercial Vehicle Use of AHS

3.1.4.1 Travel Time & Schedule Adherence

AHS has the potential to reduce travel time on the line haul sections of intercity, intra-
urban, and interstate truck routes through providing control of speeds at optinum safe levels
for roadway conditions, and through reductions of delays caused by accidents and normal
peak period congestion.  Under current competitive pressures for on-time delivery service, this
potential benefit translates into real bottom-line improvements.  it is currently estimated that
commercial vehicle time is valued at $60/hour.  Assuming that AHS can offer at least a one
minute per mile savings on an average truck trip of 400 miles, a $400 savings in travel time is
possible.  The actual savings would be realized through increased driver and truck productivity
in terms of number of additional trips or pick up/deliveries that could be made annually by
each.

3.1.4.2 Operating Costs, Labor, Fuel, Maintenance

Average annual operating costs for the trucking industry are provided in the August
issue of Commercial Carrier Journal (5,6).  The 1992 data for the LTL segment of the industry
indicate an average cost of $1.16 per vehicle mile, broken down as follows:

LTL (percent)
Labor 67
Fuel Oil & Lubes 3
Maintenace 5
Insurance 2
Taxes. Fees 3
Accordingly, drivers wages and other salary and benefit costs comprise two-thirds of

the industry's operating costs per mile.

To the extent that AHS can reduce these operating cost components, it will be
accepted by the industry.  As labor is the most significant of these cost items, AHS would have
to offer potential labor cost savings.  These will include increased driver productivity as noted
in the previous section, as well as reduced costs for downtime caused by accidents, drug and
alcohol abuse, and fatigue induced stress.

AHS also offer the carriers potential savings in fuel consumption through controlled
speed operations and reduced low or stop and go operations through congested sections of
main roadways.  However, vehicle maintenance requirements will increase, in order for
carriers to operate their vehicles on AHS roadways.

Operating costs also include road user taxes and licenses assessed by the states and
federal government to finance roadway construction and maintenance.  The industry is highly
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sensitive to these user fees and anticipates that the IVHS and AHS programs may result in
increased assessment of these fees, with questionable benefits.

The industry has been lobbying for longer and heavier vehicle use of rural interstate
highways to provide real economic benefits estimated to well exceed the additional
infrastructure costs it would have to bear. In this case, the benefits and costs estimated
released by GAO (20) have been favorably received.  The AHS program, in its subsequent
phases, must provide similar estimates.

3.1.4.3 Accident Reduction

Review of the commercial vehicle safety literature, described in the previous section,
indicates that driver error has been involved in over 40 percent of heavy truck accidents, and
that truck accident rates nationwide are at about one-third higher than passenger vehicle
accident rates (see previous Section 3.1.3.4).  Truck accident rates on the NJ Turnpike in 1992
were 2.5 times the total rate for all vehicles.  If AHS has the potential to reduce the driver's
contribution to truck accidents, it could be estimated that this potential is up to a 40 percent
reduction in truck accident rates.  On the New Jersey Turnpike, for example the 1,331 truck
accidents could drop to about 800, a reduction of 531 accidents.  The economic cost of this
reduction using average accident cost data from NJDOT(1988 combined urban & rural data,
escalated to 1992 @ 5 percent/year), verified $19,500/accident, would be over $12 million in
1992!

3.1.4.4 Summary & Conclusions

AHS provides the potential to offer the commercial trucking industry a range of benefits,
including reduced travel times on each run, increased labor productivity, lower fuel
consumption costs, and significant savings in accidents and their costs.  The potential costs
required to obtain these benefits will include increased equipment maintenance, higher wages
to attract AHS qualified drivers, and increased road user fees to pay for the roadway and
bridge improvements required to accommodate the AHS infrastructure.

It is premature to provide meaningful estimates of the overall benefits and costs under
this precusor analysis.  However, as the Representative Systems Configurations become
narrowed, the benefit and cost items and unit costs noted above can be applied to quantify
these values.  A first attempt has been made, in Section 3.3, AHS Scenarios With Commercial
and Transit Vehicles, to quantify vehicle miles of travel (VMT) and person hours of travel (PHT)
for a variety of AHS Scenarios and options.  The estimates of VMT and VHT provided in
Appendix Table A12, 18, and 24 for the Long Island Expressway, New York State Thruway,
and New Jersey Turnpike when multiplied by commercial vehicle operating costs permile and
value of commercial vehicle time, result in the user costs for each scenario as well as the 'No
Build' alternative.

Comparison of each of these alternatives to the 'No Build' alternative provides an
indication of how the costs of both time and mileage change as more AHS capacity is added.
Time and resources have not permitted an estimate of accident cost changes.  Current
accident rates for both the LIE and NYS Thruway are available, and could be applied, with
estimates of average accident costs in New York State, to derive accident costs for each
Scenario and Option vs. the 'No Build' alternative.

It is recommended that this or a comparable method be used in the subsequent AHS
study program.
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3.2 TRANSIT

This section identifies both current and future mar ket and operational characteristics of
the transit industry, as they relate to potential usage of and benefits derived from AHS.  In light
of the current congestion and air pollution concerns nationwide, transit and ridesharing are
currently being revisited with strategies and actions including High-Occupancy Vehicle (HOV)
lanes being implemented by state and city transportation agencies to increase the person
carrying capacities and levels of service of congested roadway corridors.  In order to assess
the potential for transit use of AHS, a review of the current and anticipated future
characteristics of the transit industry was made.

3.2.1 Functional/Market/Operational Characteristics/Issues

3.2.1.1 The Transit Industry

The public transit industry provides local, regional and intercity passenger services for
the general public, including the disadvantaged, disabled and the aged.  Public transit service
includes both public and privately contracted bus, rail and ferry operations. Contracted
vanpools, taxis, and other transportation services are also available.  Amtrak and Greyhound,
which provide intercity services, complete the national and regional picture.

Buses, the dominant form of public transport in the US, carry more than 70 percent of
all transit riders, and provide local and express services that both complement and compete
with rail transit.  As noted in Appendix Figure A-6, prepared from the USDOT's 1992 National
Transportation Statistics Annual Report (2), buses are responsible for more than 65 percent of
all revenue vehicle miles for local transit, versus 24 percent for commuter/light/heavy rail.
Demand responsive or paratransit service, characterized mostly by small buses and vans,
provides about 10 percent of all local transit service.

Buses travel approximately 21 million passenger miles annually and offer the potential
to significantly increase the person-carrying capacity of existing highway corridors with
excessive demand and limited room for physical expansion.  Of the more than 271,000
employees that operate, maintain and administer public transit service, approximately 165,000,
or 60 percent  are employed in motorbus service.

Accordingly, bus transit has a potentially significant role to play in AHS, including
markets for line-haul express, semi-express, and local feeder service.

Urban Public Transit Usage Characteristics:  The Center of Urban Transportation
Research of the University of South Florida prepared a comprehensive report,  Factors Related
to Transit Use (28), which identifies consumer preferences of both automobile users and transit
users in 17 metropolitan areas across the county who had ready  access to public
transportation.  The findings of the study were as follows:

• 22 percent were auto captives

• 30 percent were transit dependent

• Of the transit dependent, only 37 percent indicated they would drive to work if
an auto were available.

• The four most significant reasons stated by transit users for not using the auto
were 1) cost of parking, 2) availability of parking, 3) travel time, and 4) traffic
congestion.
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• About half of those driving to work could be considered potential transit riders if
flexible and convenient transit service were provided.

• Other factors that would favor increased transit use were non-transfer service,
express routes and increased auto parking fees.

• Traffic congestion was viewed as very serious by 36 percent of respondents
and somewhat serious by 28 percent.

As reported in the 1992 APTA Transit Fact Book (29) (hereafter referred to as APTA)
work trips were the most common reason for transit travel, accounting for 54 percent of all
transit trips taken in 1991.  Trips to school accounted for approximately 15 percent; shopping
and social for approximately 10 percent each; medical for 5 percent; and "other" for
approximately 6 percent (APTA, Table 35)  However, according to the 1990 U.S. Census
Bureau's journey-to-work data (30), the percentage of workers using transit to get to work
declined from 6.4 percent in 1980 to 5.3 percent in 1990.  Similarly, the number of people
using carpools and vanpools declined from 19.7 percent in 1980 to 13.3 percent in 1990.
Single-occupant vehicles accounted for over 70 percent of all work trips in 1990.(APTA, Table
36).  Clearly, bus transit's potential has not been fully utilized.  However the new federal ISTEA
and CAAA legislation  is designed to counter these trends by providing financial incentives for
new transit initiatives as well as penalties for failure to increase vehicle occupancy levels.
Improved express and semi-express bus service using preferential or reserved HOV lanes for
the line haul portion of the trip represents a major opportunity.  AHS lanes for such operations
represent the subsequent evolution of this strategy.

Intercity Bus:  In 1992 there were 4,603 intercity passenger bus carriers with active ICC
authority.  The overwhelming majority  of these are charter and tour bus companies.
According to the USDOT's Office of Highway Information Management (31), over 630,000
buses were registered in intercity service in 1991, of which nearly 518,000 or 82 percent were
school buses.  Fewer than 1 percent were used in intercity regular route service.  The intercity
regular route passenger bus market is highly concentrated, and Greyhound is the only
company left with a national network.  There are approximately 110 regional carriers providing
regular route intercity passenger bus service.  Twenty of these  Class I bus carriers provide
mainly regular-route bus service in specific regions. (Class I carriers are bus companies having
adjusted annual operating revenues of $5 million or more for three consecutive years.)
According to the report produced by the US General Accounting Office(GAO), SURFACE
TRANSPORTATION:  Availability of Intercity Bus Service Continues to Decline (32),
Greyhound dominates the regular-route service by intercity carriers, with 75 percent of
revenues and 43 percent of the passengers.  The next largest intercity carriers account for only
8 percent of the 1990 revenues.

The steady decline in regular route intercity bus service, including Greyhound, which is
downsizing to focus on shorter intercity routes between 100 and 400 miles (NY Times, August
10, 1994), which has taken place over the last 20 years, is due to extensive intermodal
competition from the private auto, Amtrak, and the airlines.  Because of convenience, speed,
and competitive pricing of these other modes, the bus industry only has about a 1.2 percent
share of  total intercity passenger-miles.  Government subsidies to these other modes have
also adversely affected the bus industry's ability to compete.

3.2.1.2 The Transit Passenger Market

In order to identify the potential role of transit in AHS, transit's current and future
markets must be identified; in particular, the financial impetus to transit provided by ISTEA and
the CAAA and the needs of current and potential transit passengers.
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Transit serves two markets: the transit 'captives' and the transit 'choice' users.  Transit
'captive' passengers include those with low incomes, the elderly, students and those without
access to personal transportation.  Local public transit users are primarily women, who
account for 53 percent of the riders.  Forty five percent of the riders are white, 31 percent are
black, 18 percent are Hispanic, 6 percent are Asian or Native American, and 1.5 percent are
disabled.(APTA, Americans in Transit Survey).  Approximately 85 percent of the riders are
between the ages of 18 and 65, 10 percent are 18 years and younger, and 5 percent are over
the age of 65.

The majority of local transit riders, approximately 57 percent, are in the middle income
range and earn an average annual income between $15,000 and $50,000.  The lower income
range, earning less than $15,000 per year, encompasses approximately 25 percent of the
riders, and approximately 18 percent are in the upper income range of earnings greater than
$50,000.(APTA, Table 35).

The transit 'choice' users include commuters and other travelers who do not absolutely
have to use transit but do for reasons of speed, comfort, convenience, cost, traffic avoidance,
parking unavailability or expense, or environmental principles.

Express Bus Commuter Market:  Although the urban bus primarily services the commuter
market(according to APTA), the single occupant passenger car dominates this market with
approximately 73.4 percent of all commuters.  The two-person carpool is the second highest
mode of passenger trips to work, with 10.5 percent of the market.  Transit (rail, bus, etc.)
services only 5.1 percent of all commuter trips.

Intercity Passenger Market:  The four modes that comprise the major share of the intercity
passenger market are the private automobile, commercial airlines, intercity rail(Amtrak) and
intercity buses.  Other, smaller modes include rental cars, private airplanes, trucks, and
subsidized van services.  The general picture of the total intercity travel market share based on
passenger-miles for 1991 shows rail with the smallest share, about 0.7 percent; bus slightly
larger with 1.2 percent; air, 17 percent; and auto, 81 percent.  Greyhound's average trip length
is 387 miles, while the average trip length on other bus carriers is estimated at 130 miles.
Domestic airline trips average 793 miles.  Appendix Figure A-7 illustrates the trends in
domestic intercity passenger miles traveled between 1960 and 1990.  Domestic airline service
in 1990 carried 430 million passengers, compared to 35 million carried by Class I buses.

Intercity Transit Passengers:  Information provided in the July 1993 report, The US Intercity
Regular Route Passenger Bus Industry (33), depicts a slightly different clientele using intercity
services from those using local public transit.  Citing the April 1991 study, Greyhound On
Board Passenger Survey (34), it was noted that the majority of the Greyhound intercity riders
are white (58.2 percent), and 59.7 percent are between the ages of 24 and 65.  The majority,
53.2 percent, of the Greyhound trips were made to "visit someone."  Of those passenger
surveyed, 21.7 percent described their home community as rural.  Similar to local bus
ridership, the majority of the riders are female(57.8 percent) and generally have low incomes.
The study indicated that the majority of the riders of intercity transit have very low incomes; 46
percent have annual household incomes less than $15,000.

In summary, intercity bus passengers are largely lower-income, non-business travelers
who are very price sensitive.  Intercity bus service has shrunk to a minor transportation
alternative in the face of increased auto ownership and availability, and aggressive airline
pricing.  In the previously noted "Intercity Bus Service Continues to Decline"  report, Greyhound
noted that, " ...even the very poorest citizens make 92 percent of their intercity travel by means
other than bus."  Accordingly, while AHS offers the potential for improved travel time and
reliability for intercity buses, the market is relatively small.
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Airlines:  Scheduled air passenger service is offered at over 800 airports throughout the U.S.,
of which 109 hub airports account for about 97 percent of all airline passengers.  Since
deregulation of air passenger transportation in 1978, airlines have increasingly attracted the
economy-minded intercity passenger transport segment that formed the base of bus
passengers.  Although AHS on intercity Interstate highways may offer improved speed and/or
schedule reliance it does not appear to offer a service competitive to intercity airline service for
non-auto passengers.

Amtrak:  Amtrak serves about 600 U.S. points and relies on federal operating subsidies.
Although Amtrak may only offer daily service on some routes, it competes with unsubsidized
intercity bus service, with fares frequently reduced below comparable intercity bus fares.
Amtrak is not always a competitor of the bus industry, as it offers intermodal service with the
bus industry.  A program called "Throughway Bus Connections" expands Amtrak's potential
network through train-bus connections with chartered motor coaches.  As noted previously,
Amtrak's share of the intercity travel market is lower than buses, affected similarly by intercity
airline service.  AHS would represent a competitive mode, working against the environmental
goals of increased rail passenger travel.

3.2.1.3 Potential Impacts of New Transportation Legislation

The downward trend in the transit market is being reversed through federal legislation
enacted in 1990 and 1991.  The 1990 Clean Air Act Amendments (CAAA) and 1991
Intermodal Surface Transportation Efficiency Act (ISTEA) are the two most important actions
taken in recent years to enhance transit as a viable mode choice.

Clean Air Act Amendments of 1990:  In order to achieve compliance with the Clean Air Act
Amendments(CAAA) by 1996, measures to reduce vehicle trips in air quality non-attainment
areas must be implemented.  Employers with more than 100 employees are required to
participate in the Employer Commute Option (ECO) program, otherwise known as Employee
Trip Reduction.  These employers must increase the average passenger vehicle occupancy of
their employees by 25 percent above the region's average vehicle occupancy.  Special
programs must be implemented by employers to make transit more attractive such as:
guaranteed ride home, employer sponsored vehicle policies, Transit Check, etc.  Non
complying companies are subject to fines set by each state.  Failure of the states to meet
CAAA goals will result in loss of federal transportation funds.

Transit use is being encouraged to meet these goals.  However, although pollution
levels for bus transit vehicles are lower than for passenger vehicles, they are not low enough
to meet the CAAA goals.  Technologies for alternate fuel use are currently being developed
and implemented to achieve lower, and ultimately zero emission levels in bus fleets.

Fuel Efficiency, Energy Consumption:  The use of public transit results in reduced energy
consumption. Based on U.S. Department of Energy (USDOE) data, APTA estimates the fuel
efficiency of transit versus commuter auto as follows:

1 bus with 7 passengers = 1 auto

1 full bus        = 6 autos

While an automobile consumes 4,063 BTUs/passenger mile, a transit bus consumes
3,711 BTUs/passenger mile ( APTA, p. 17).

The annual gasoline savings projected for increased transit use are:

• 200 gallons for each person switching from driving alone
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• 85 million gallons for a 10 percent increase in transit ridership in the 5 largest
U.S. cities

• 135 million gallons for a 10 percent nationwide increase in transit ridership.

If the AHS program can incorporate attra ctive, competitive transit service in selected
high travel demand corridors, the potential benefits in reduced energy consumption will be
significant based upon the above projections.

Intermodal Surface Transportation Efficiency Act (ISTEA):  Under ISTEA, the funds
allocated to the Surface Transportation Program (STP) are highly flexible and may be used
entirely for transit capital projects.  Eligible projects include high-occupancy vehicle
lanes(HOV).  State and local officials will now be allowed to select the best mix of projects to
address air quality, congestion, mobility, or other problems without being influenced by funding
requirements for one mode of transportation versus another (35).

ISTEA also includes programs to support intercity bus service.  Section 18, The
Intercity Bus Transportation Program, requires each state to set aside a portion of the
appropriated money and authorizes over $122 million to be spent on intercity bus service over
the next 5 years.  Programs include subsidies for routes serving non-urbanized areas, terminal
assistance, bus service and bus program analyses as well as terminals for intercity or
commuter bus service.  The additional funding will assist in developments within the industry to
improve bus service with the goal of increasing ridership.  AHS technology on selected intercity
Interstate Highway segments may be eligible for inclusion under Section 18.

With the funding of the ISTEA programs and the requirements of the CAAA, the
spotlight will be on fuel efficient and user-friendly transit and high occupancy vehicles to move
the nation out of congestion.  These programs provide the opportunity for transit to receive a
greater share of federal funding than ever before.  Accordingly, the development of the AHS
program should focus on transit, operating within existing and future reserved HOV lanes that
can readily evolve into automated operation through intelligent vehicles, intelligent roadway
lanes, or combinations thereof.

3.2.1.4 Transit Operations

Transit use of AHS has the potential to improve vehicle operations, increase ridership,
and reduce operating costs.  Public transit, as a public service, receives governmental financial
assistance to cover the shortfall between operating expenses (labor, maintenance, fuel, etc.)
and farebox revenues.  State and federal government subsidies comprise 25 percent of the
nation's transit operating revenues.  The other 75 percent is received from passengers, (about
36 percent) and from local government and non-government sources. (39 percent).  The
CAAA, ADA, and ISTEA legislation of the early 1990's provide additional federal funds for
capital and start-up operating expenses of transit service improvements.

Transit Operating Expenses:  In 1991, operating expenses for the public transit industry
totaled about $16.8 billion, of which bus transit accounted for $9.6 billion, or 57 percent of the
total of all modes.  Of the total federal funds paid for transit infrastructure(facilities, vehicles
and major equipment), 35 percent were for bus facilities, vehicles and equipment.

Salaries and fringe benefits comprised the largest share of transit system operating
expenses, about 70 percent of total annual costs, with the other 30 percent for fuel,
maintenance, insurance, etc.

Casualty and liability costs account for about 4 percent of the transit industry's annual
operating expense.  According to APTA, these costs totaled approximately $630 million in
1991.  Accident-related costs include:
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• Workers Compensation

• Third Party Claims

• Insurance

• Repairs and maintenance costs

• Lost productivity

Productivity:  Transit passenger fares have increased 60 percent more than inflation over the
past 25 years (36).  Fares increased more than 30 percent in real terms between 1979 and
1987, but still only cover 33 percent of the total costs of the average transit trip in the U.S.
One reason attributed to the cost increase is the decline in productivity of the U.S. transit
industry, in terms of market served.  While this decline may be due to higher fares, it can more
directly be related to the rapid growth of automobile ownership and highway construction,
contributing to the growth of jobs and residences in low-density suburban areas that are poorly
served by transit.  In 1960, only about 36 percent of the workers who lived in medium- and
large-sized metropolitan areas in the US had jobs in the suburbs.  By 1980, nearly 50 percent
of workers who lived in these areas had suburban jobs.  The 1990 Journey to Work (30) data
showed a slowing of this prior 20 year trend, with older cities showing increases in the number
of workers employed in central city counties.  This indicates the potential for greater transit
productivity in denser, older cities where central cores are regaining their older vitality.  AHS is
a potential application of new technology for selected non-rail transit transportation corridors in
these cities, including New York, Philadelphia, and Washington, D.C.

3.2.1.5 The Transit Vehicle

Significant developments have been initiated in transit bus designs  over the last few
years.  Technological advances in engine designs are currently being tested to reduce vehicle
emissions; structural designs are being modified to improve accessibility; new materials are
being incorporated into bus designs; IVHS technologies are being incorporated to improve
communications, safety, reliability and efficiency of operations.  Present day bus dimensions,
performance characteristics and design parameters are included in Appendix Tables A-4 and
A-6.

Advanced Technology Transit Bus (ATTB):  The developing technologies in bus transit
design are being driven by the Clean Air Act Amendments (CAAA) of 1990 and the Americans
with Disabilities Act(ADA) of 1990.  The CAAA dictates that future bus designs must have
emissions lower than the current diesel engine and meet specific tailpipe standards.  In
California, where pollution is severe, "Zero Emissions Vehicles (ZEV)" are being produced.
The ADA requirements mandate that transit manufacturers develop user friendly designs for
handicapped and disabled persons.  These government initiated policies are shaping the
current designs of buses.  Transit agencies that purchase any additional vehicles must order
buses with engines using alternate fuels to ensure reduced emissions.  The structural design
and the composition of the vehicles are also being altered to reduce the weight and improve
performance characteristics.

The Federal Transit Administration is supporting the development of the Advanced
Technology Transit Bus(ATTB).  These vehicles are being designed to incorporate alternate
fuels, which reduce emissions and improve fuel efficiency.  The vehicles will also be "low floor"
to improve accessibility for disabled persons, and improve dwell times.

Advanced Public Transportation Systems (APTS):  Technology is currently being
developed by the bus transit industry and its suppliers to improve communications as well as
the information flow to and from passengers.  These advances are being pursued by the
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Federal Transit Authority(FTA) in association with IVHS America.  The IVHS Advanced Public
Transportation System (APTS) Committee has been supporting the development of new
technologies including Smart Traveler, Smart Vehicle, and Smart Intermodal Systems.

Smart Traveler technologies are being explored to increase the ease and convenience
of using transit.  Smart Vehicle technologies represent new methods of increasing reliability,
efficiency, and safety, and improving vehicle and fleet planning, scheduling, and operations.
Greyhound is currently implementing a VORAD radar-based system which signals the driver
when there is a vehicle too close on either side, if he is following too closely to the vehicle in
front, and if his speed is in excess of the programmed allowable speed.  Sensors indicate
when the headway distances are less than 3 seconds and indicate blind spots on the right
side.  The system monitors vehicle speeds and a tone sounds if the vehicle is operating above
65 or 70 mph. It has been in operation for more than one year, and Greyhound is planning to
incorporate it into the entire fleet.  Smart Intermodal Systems involve the integration of APTS
technologies into traffic management and other non-transit applications of IVHS.  Improved
transportation services should attract more riders to transit and ridesharing; thereby providing
public benefits of reductions in traffic congestion, air pollution and energy consumption.  These
innovations will be in place before AHS is implemented, but will set the stage for bus transit's
evolution as an acceptable user of either exclusive transit or mixed vehicle AHS operations.

IVHS America's APTS Committee's goal is to increase the market share of transit and
ridesharing by:

• Reducing the Number of Transfers - One of the primary goals is to limit the number
of intersystem or intermodal transfers.  This would reduce travel time, reduce
congestion, and increase convenience by providing a non-stop or passenger loading
only stop between trip origin and destination points, e.g., park & ride areas in suburban
and urban fringe areas and central bus terminals in downtown and other major
employment centers.

• Improving Safety and Security - Communications systems between vehicles and a
control center would increase the perception as well as reality of passenger safety and
security.

• Reduction of Operating Costs - Low speed feeder circulation combined with high
speed trunk line route segments and efficient turnaround operations in central terminals
would contribute to reduced operating costs through higher labor productivity, lower
fuel costs, and lower accident rates.

The programs being developed through the APTS Committee's efforts, it successful,
will promote increased ridership, demonstrate transit's effectiveness in achieving ISTEA,
CAAA, and ADA objectives, and ease the natural progression to transit operation on AHS.

3.2.1.6 Summary and Conclusions

AHS must be seen by the Local/Express Bus and Intercity transit industries as a cost
effective, significant means to maintain current patronage and encourage new ridership.

The transit industry will need to demonstrate to the American public reasons for
becoming competitive with personal autos.  A study noted in "Perceptions of Public
Transportation", Public Transportation (37) cited the following factors influencing the choice of
auto over transit:

• Reliability

• Able to leave when you desire
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• Shortest time door-to-door

• Able to stop when you wish

• Weather protection

• Adequate space to carry items

• Transfer not needed

• Independence

• Clean vehicle

• Able to travel at own speed

If AHS can provide the transit industry with the technology, service, reliability,
frequency, direct routing (minimal transfers), at competitive costs with personal auto, there will
be a demand for it.

Contrary to the trends experienced over the last few decades, the emphasis in urban
and suburban transportation is towards increased transit use, particularly based upon new
federal legislation mandating change in travel habits by the public.  The success of these new
programs in accomplishing their goals depend on transit's ability to provide more reliable, safe,
and efficient transportation.

With AHS lanes or roadways available in high density travel corridors, buses, vans and
qualifying high-occupancy vehicles will be afforded the opportunity to consistently meet on-
time performance standards and schedules.  Improved reliability and travel time will enhance
customer service and attract 'choice' users from other modes.

3.2.2 Transit Safety Characteristics / Issues

3.2.2.1 Accident Characteristics

One of the primary goals of the AHS program is to improve safety and reduce the
potential for accidents.  In order to assess the potential benefits to transit of AHS, the safety
characteristics of existing systems have been reviewed.

Accident Rates and Types:  Transit is one of the safest modes of passenger travel in the
U.S(36).  The 1988-1990 average fatality rates in terms of 100 million passenger miles for the
various modes are listed below:

     Fatality Rate

Auto 1.12

Intercity & commuter RR 0.03

Airlines 0.02

Intercity buses 0.01

School buses 0.03

Transit buses 0.01

Many factors contribute to transit system accidents: people, vehicles, facilities, traffic
conditions, ergonomics, maintenance support equipment, communications, procedures,
training, and management controls.  Data cited by the New York State Public Transit Safety
Board (PTSB) in its 1992 annual report (38), which presents accident statistics for bus transit,
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intercity and local/express bus services, and rail, indicated the predominant transit accident
causes to be driver error and mechanical failure.

3.2.2.2 The Driver and the Vehicle

According to the above noted PTSB report, "over the six year period (1987 through
1992), 61 percent of all bus accidents were caused by transit systems' bus drivers or factors
related to equipment."  The report further noted that  86 percent of the accidents caused by bus
drivers over the six year period were attributed to failure to drive defensively and operate a bus
safely, failure to keep a safe following distance behind other vehicles, and failure to properly
utilize bus equipment, such as rear door interlocks and wheelchair lifts.

Often, drivers alter their driving habits to maintain their schedules.  This results in sharp
stops as the bus drivers speed up and then abruptly stop to pick up passengers.  Highway
crashes involving buses are estimated to result in about 35,000 injuries in the US each year.
According to the 1994 TRB paper, "Recommendations for Reducing Bus Passenger Injuries"
(39) many bus-related injuries involve non-collision accidents which occur when passengers
are riding buses.

The report noted that "Bus drivers should be screened, properly trained, and continually
monitored," because it is the bus driver's inability to control his vehicle that results in many
passenger injuries.  The non-collision related accidents reported on buses included passenger
falls while boarding or alighting as well as injuries while the vehicle is stopping or standing.

As noted in the PTSB Annu al Report, a high percentage of bus accidents occur due to
equipment failure.  Use of transit on an AHS would require increased maintenance of vehicles,
which would reduce the potential for accidents due to electrical fires and faulty brakes and the
accompanying bus down-time for repairs.

While AHS could potentially eliminate the driver entirely from the trunk line portion of
the transit route, prior to that (if feasible), it can relieve the bus driver of his vehicle control
responsibilities on this route segment.  Although this could potentially reduce the rate of
accidents occurring because of the driver, it would not preclude their proper training.  AHS
transit vehicle operation will require enforcement of proper driver training as well as increased
vehicle inspections and maintenance operations.

3.2.2.3 Perceived Safety

Many potential passengers do not ride transit due to perceptions of compromised
safety.  The results of the study, "Perception of Crime on Public Transit in Small Systems in
the Southeast" (40), were presented at the 1994 Annual TRB Conference.  The findings
indicate that when crime is experienced on transit systems, it is generally soft crime(begging,
panhandling etc.).

It has been noted that people's perception of safety is improved with a noticeable
transit force.  The driver serves as the guardian of his passengers and acts as a deterrent to
crime.  On rail, for example, although there are a number of railroad personnel on board the
trains, the cars are segregated and few train cars have personnel in them.  On the average,
riders are not usually concerned that the train has only a limited number of personnel on
board, and do not expect one person in each vehicle.  Passengers using a multiple platoon
transit AHS could become accustomed to a similar arrangement.

There are other concerns that would arise if the driver were removed from a transit
vehicle on an AHS.  Disabled persons in need of assistance would be at a disadvantage.
Under system malfunction conditions, how would control of the vehicle be maintained without
jeopardizing passenger safety?  Therefore, although anticipated AHS technology will not
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require the driver's skills at all times, his presence on board provides redundancy and well as
reassurance to his passengers.

3.2.2.4 Summary and Conclusions

AHS offers improved service and safety by reducing the potential for driver-related
accidents.  Removing the driver from the continuous operation of the vehicle and providing
guidance and warning systems will enhance the performance of bus transit service on AHS
facilities in high travel demand corridors.  Continuous, predictable reliable service and well-
maintained vehicles will eliminated excessive acceleration and deceleration rates which also
cause numerous passenger injuries.  Increased maintenance practices would enhance vehicle
operations and improve service reliability and safety.

3.2.3 Potential Transit AHS Applications

3.2.3.1 Existing HOV Lanes

As congestion has increased along with poor air quality, moving more people  in fewer
vehicles has become a major goal of urban and regional transportation planning and operating
agencies.  Giving preferential treatment to high-occupancy vehicles (HOVs) is not a new
concept.  During the energy crisis of the 1970's, in an effort to conserve fuel, many cities
initiated HOV programs to move more people in fewer vehicles.  When the crisis ended, the
idea was further developed in an effort to reduce congestion on highways, especially during
commuter hours.  Throughout the U.S., busways and HOV lanes are being provided in dense
commuter highway corridors to increase the total person carrying capacity, thereby reducing
congestion while addressing environmental concerns.  In support of these measures, the
Federal government issued a mandate, Title 23 USCS Section 109(h), stating that further
roadway expansion must not degrade the environment beyond certain safe standards.
Roadway expansion is now a concern in all metropolitan areas.

The primary goal of these preferential treatment lanes is  to carry more people than the
same lane when used by single-occupant vehicles during peak travel periods.  The number of
people moving in this lane should be equal to or greater than the number of auto occupants in
the adjoining lane.  This goal has been met successfully in existing HOV lane operations
throughout the country.  In considering AHS as a natural next stage in the evolution of the
HOV lane concept, objectives established for the latter operation can be re-stated as:

1. Maximize total person fl ow and reduce net person delay.

2. Provide adequate scheduled bus transit service to meet existing and potential
demands.

3. Improve vehicle speeds and schedule dependability of bus transit.

4. Coordinate/combine express and feeder local bus services.

HOV and preferential bus lanes ideally should serve high-density residential areas, link
them to high-density employment centers,  and provide convenient distribution within these
major activity centers.

According to APTA, there are more than 59 high-occupancy vehicle lane operations
nationwide with lengths greater than one mile.  They carry more than 85 percent of all A.M.
peak-hour person-trips through the Lincoln Tunnel to New York City, and over 50 percent of all
peak-hour travelers on the San Francisco-Oakland Bay Bridge in California, the Shirley
Highway in Northern Virginia, the Ben Franklin Bridge in Philadelphia, and the Long Island
Expressway in Queens, New York.
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HOV/transit facilities have been operating for over 20 years and have demonstrated
that increased transit usage can be achieved through bus priority measures.  The delay
reductions and time savings experienced have varied from 5 to 30 minutes, and compare
favorably with time savings resulting from rail transit improvements.  AHS on these facilities
has the potential to provide even greater travel time savings, delay reductions and schedule
reliability through higher average maintained speeds and virtual elimination of non-recurring
congestion.

The present bus priority measures have been  effective when provided in concert with
over-all transportation management strategies dealing with traffic operations, parking control
and financial support of public transit.  Consequently, these measures would be required in
transitioning to AHS on priority transit lane facilities.  These include support of equitable transit
fares; congestion pricing of downtown parking and single occupant vehicle tolls, strict
enforcement of bus and HOV priority usage of the AHS lane during peak periods, and
provision of adequate downtown terminal and distribution facilities for the greater volume of
transit vehicles processed.

3.2.3.2 Station Stops, Terminal Concepts

Station stops along the trunk line portion of express/semi-express bus routes include
facilities for buses to leave the preferential lane for passenger pick-up and delivery.  These
stops could be within the right-of-way of the highway, above grade, or on new adjacent right-
of-way.  In both cases, passengers would be served by transfers from feeder bus routes, park
and ride lots, or "kiss & ride" areas.  Illustrations of existing station stops on express bus/HOV
lanes are shown in Appendix Figure A-8.  They are directly applicable to transit AHS lane
station-stop concepts.

Effective central passenger terminal and distribution facilities are essential
complements to regional bus transit services.  Distribution may take place in on-street bus
lanes, bus tunnels, and bus terminals.  Downtown express bus transit terminals are located at
points of "optimum efficiency" within short walking distances of major employment
concentrations, or connected with secondary public transport distribution systems including
subways and local buses.

High capacity bus transit terminals will be required at the ends of AHS transit lanes to
efficiently process high volumes of buses and other permitted HOVs.  Distribution from these
lanes into the local street network could create substantial queues, unless multiple platform
intercepting terminals or multiple exit ramps to the street system are provided.

It can be argued that rail or "people-mover" systems are more feasible alternatives to
AHS transit lanes in high density travel corridors.  In defense of transit AHS, "dual service"
type transit vehicles offer the potential of lower equipment and operating costs than rail cars,
as well as lower physical infrastructure costs, while providing much greater flexibility.  Buses
can be driven onto and off of AHS lanes, and have the flexibility to serve many origins and
destinations as compared to the inflexibility of fixed rail rapid transit.  The old "dual mode" bus
concept provided retractable rail wheels for operation on tracks along the trunkline segment of
its route.  Under AHS, this feature would be unnecessary.

The significant person carrying capability of existing bus and HOV lanes is best
demonstrated by the Route 495 Lincoln Tunnel Express Bus Lane in northern New Jersey.
The bus lane serves approximately 725 buses per hour, which represents about 35,000
passengers per hour under peak conditions (41).  Similarly, the reversible HOV lanes on the
Shirley Highway in northern Virginia are highly productive, serving 16,500 passengers within
the peak hour (42).  Of these, over 4,800 passengers are carried in 134 buses/hour and 8,500
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persons are carried in 2,100, 3 or more person carpools and vanpools/hour.  These actual
performance data indicate that properly planned and utilized bus and HOV lanes provide an
alternative to rail transit at these demand levels, ranging between 10,000 and 35,000 persons
per hour.

Although bus infrastructure is less costly than initial investments in rail systems, this
tends to be counterbalanced by the higher labor productivity(lower operating costs) of rail
operations.  If AHS platoon operations are feasible, in which the lead bus has a driver and the
following buses are driverless, labor costs would be reduced or drivers could be deployed from
trunkline segments to local circulation and feeder service.

3.2.3.3 Summary & Conclusions

Similar to the advantages o f busways, buses and HOVs on AHS would include the
following cost and service advantages:

1. Relatively low initial construction is required; i.e. convert existing HOV lanes to
AHS, use existing central bus terminals, and expand as bus demand increases.

2. AHS transit lanes can be utilized by trucks during non-rush hour periods of the
day.

3. Dual service buses provide manually driven feeder service, non-transfer trunk
line AHS service, and downtown manually driven distribution service.

Expected time sa vings for HOVs can range from 0.5 to 2.0 minutes/mile.  Carpooling
has increased on HOV lanes in some cases up to 100 percent, and transit ridership has
increased between 10 and 20 percent.  The technology inherent to AHS would allow greater
travel time savings and, potentially, higher ridership.  In general, HOV lanes have shown good
ridership growth and proven congestion mitigation.  As travel demand grows and peak period
capacity requirements outstrip available HOV lane capacity, AHS offers the next solution, with
at least a doubling of vehicle carrying capability, and much greater multiples of person carrying
capacity.

3.2.4 BENEFITS & COSTS OF TRANSIT USE OF AHS

Automated Highway Systems have the opportunity to benefit the transit industry in a
number of significant ways.  AHS has the potential for making public transportation more
attractive to 'choice' riders by improving service, reliability, and safety and reducing out of
pocket fare costs by controlling operating expenses.

These practical benefits  can be realized through the increase in lane capacity, average
travel speeds, and increased productivity of individual vehicles.  However, this additional
through-put of persons and vehicles will require larger central terminals to provide the
unloading and loading capacities required to match the greater trunkline capacities provided.
Alternatively, increased numbers of local street bus lanes would be needed to accommodate
these terminating transit vehicles.

The transit industry, as well as the environm ent, would benefit from improvements in
fuel efficiency.  Travel at a maintained, controlled constant speed results in a lower fuel
consumption than travel with frequent acceleration and deceleration.  Lower vehicle emissions
will also result from controlled constant speeds, assisting in CAAA goals.

3.2.4.1 Travel Time & Schedule Adherence

AHS has the potential to reduce travel time for local/express bus services as well as for
intercity buses.  however, as discussed in Section 3.2.1, the intercity bus market has lost a
significant share of riders to the airline industry, whose low travel times and competitive fares
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would be difficult to match by intercity buses on AHSs.  The major competitive advantage that
AHS offers for transit is an alternative to the private auto in express/local distribution  between
residential and employment center trip ends.  By guaranteeing travel times and schedules
under nearly all weather conditions, AHS can provide the alternative to driving for commuters
in corridors not served by rail transit systems.  As a dual service type of operation, it offers a
no-transfer ride that cuts travel time by eliminating the need for park and ride facilities and
mode changes.

3.2.4.2 Operating Costs, Labor, Fuel, Maintenance

While AHS has the potential to reduce operating costs in terms of fuel savings, more
frequent maintenance would be required to comply with AHS check-in requirements.
Additional vehicle trips would result in more wear and tear on the vehicles and require more
parts purchases.  It is anticipated that these additional costs would be offset by increased
revenue from growth in ridership due to better service.

If the driver is removed from the vehicle, substantial cost savinsg could be achieved.
APTA reports that nearly half of the operating expenses are attributed to salaries and wages.

3.2.4.3 Accident Reduction

In view of the high percentage of driver related incidents, AHS operations together with
improved maintenance procedures would reduce the number of accidents related to driver and
equipment failure.  Accident-related operating expenses would be reduced.  Reduced personal
injuries to drivers and passengers, third party claims, and down-time for vehicles damaged or
destroyed in accidents.  This will lead to the lowering of insurance premiums.

The transit agencies are currently experimenting with Intelligent Vehicle Highway
Systems(IVHS) and Advanced Public Transportation Systems(APTS) to improve vehicle and
fleet planning, scheduling and operations, as well as reliability, efficiency and safety.  These
experiments, if successful, will provide a natural progression to incorporation of "smarter" and
safer transit technology, including collision avoidance controls, and evolution to AHS
operations in the appropriate travel corridors.

3.2.4.4 Summary and Conclusions

Improvements in the design of transit vehicles, and introduction of user-friendly transit
information systems through IVHS programs, as well as additional government support
through the mandates of the Clean Air Act Amendments and incentives introduced in ISTEA
legislation, will lead to transit's evolution to a much more attractive alternative than it has been
in the past.  AHS offers the potential to make transit even more reliable, safer, and less time
consuming.  In light of the current legislation and support of transit by government policy to
move people more efficiently, transit can  be an integral, if not leading, component of initial
AHS systems.  Incorporation of transit into an AHS would allow transit agencies and their
passengers to reap significant benefits, provided that the implementation and operating cost
changes over existing conditions are viewed as worthwhile in terms of the benefits achieved.
These potential benefits to the transit industry and its passengers include:

• Increased ridership due to better customer service

• Reduced travel time: ability to compete with other, faster, modes of
transportation

• Improved safety, reduced insurance costs, fewer third party claims from injuries
sustained on-board buses, reduced fuel, energy consumption reduced bus
down-time
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• Reduced labor costs due to vehicle productivity increases

• Contribution to environmental goals of the CAAA, ISTEA.

Incorporation of AHS technologies into an existing High Occupancy Vehicle (HOV) lane
or roadway would provide a cost effective transition from existing infrastructure.  Transit
vehicles and high occupancy vehicles would be among the first to benefit from AHS.

3.3 AHS SCENARIOS WITH COMMERCIAL & TRANSIT VEHICLES

3.3.1 Introduction

Three existing Interstate highway facilities:  the Long Island Expressway, New Jersey
Turnpike, and the New York State Thruway, have been analyzed as case studies to determine
the potential impacts of AHS implementation on peak period traffic operations under
alternative passenger, commercial and transit vehicle lane use.  The presence of commercial
vehicles including heavy trucks and buses could significantly alter the expected performance of
an AHS lane, while exclusion of these vehicles could have major impacts on adjacent general
use lanes (GULs).  It is therefore important in the evaluation of AHS on actual roadways to
understand the implications of inclusion or exclusion of single unit trucks, tractor trailers, and
buses.

High volumes of trucks and buses in AHS as well as GULs limit the space available for
passenger vehicles.  In order to serve the same number of passengers, increased carpooling
and transit use is the alternative to additional lane construction.  The mandates of the Clean
Air Act Amendments/Employee Commute Options(CAAA/ECO), require that average
passenger vehicle occupancies be increased by 25 percent in the next five (5) years by
companies with over 100 employees that are located in air quality non-attainment areas.  The
results of the analyses described in this section indicate several configurations and lane
restrictions which support compliance with these regulations, as well as other configurations
which detract from these goals.

3.3.1.1 Assumptions

Base Condition:  The "No Build" Scenario for the three case study highways in the year 2024
will be considered as the base condition, with no automation or significant capacity increasing
technologies other than expanded traffic management systems in operation.

The first facility, the Long Island Expressway (Interstate 495), is currently comprised of
three lanes in each direction in Nassau and Suffolk Counties on Long Island, New York.  A 2.5
mile long eastbound roadway section between New Hyde Park Road and Mineola
Boulevard/Willis Avenue in Nassau County provides a good representation of a mixed
urban/suburban high traffic roadway section (over 180,000 vehicles daily) and was used for
this analysis.  The traffic operations occurring within this segment are indicative of operations
within the 15 mile corridor of the LIE, under evaluation in other Tasks.  It is noted that the New
York State Department of Transportation (NYSDOT) is currently studying the addition of a
fourth lane in each direction for HOVs only in this section.   The "No Build" Scenario assumes
that the fourth lane has been built and is operating with HOVs of two or more occupants in this
lane, at level of service`C` or 80 percent of capacity(1,760 passenger car equivalents/hour)

The New York State Thruway, (I-87) is comprised of two, two lane directional roadways
between Exits 16 and 18 in the Newburgh area, a distance of 31 miles.  This rural section of
the northbound roadway of the Thruway was used for the second case study.

The third case study, the New Jersey Turnpi ke, (I-95) consists of three lanes in each
direction on both its eastern and western "Spurs" in northern New Jersey and two, six-lane
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roadways in the combined section to the south.  Only the northbound roadways were
considered in this analysis.  It has high volumes of commercial vehicles including commuter
buses from suburban areas headed into New York City's Port Authority Bus Terminal.

For study purposes, it has been assumed that traffic volumes will be evenly distributed
among the lanes and all vehicle types would be allowed free access between lanes for the
base "No Build" Scenario.  Analyses of subsequent future base year and alternative AHS
scenarios comprised estimating traffic volume capacity ratios, roadway lane capacity, and
vehicle occupancy requirements to achieve non-congested (Level of Service E) conditions.
For each alternative, passenger vehicle, commercial vehicle, and bus vehicle miles and
passenger hours of travel were computed.  Subsequent calculations of vehicle operating and
travel time costs were made for comparison of each alternative with the base "No Build"
Scenario.

Future Year 2024 Traffic Volumes:  Forecast peak hour traffic volumes for the Long Island
Expressway for the year 2015, and 1993 volumes for the New York State Thruway were used
as base year data.  These volumes were factored up to a future design year of 2024 at a 2
percent compounded annual growth rate, or  1.85 times 1993 and  1.2 times 2015 peak hour
volumes.  The New Jersey Turnpike Authority provided 1993 peak hour traffic volumes that
were similarly factored up to the year 2024 using the same 2 percent annual growth rate.

Vehicle classifications for the Long Island Expressway and the New York State
Thruway were derived from the 1990-1991 Truck Weight and Continuous Count and Special
Station computer printout furnished by NYSDOT.  As the highway locations provided are not
the specific sections under analysis, only relative percentages of heavy vehicles and single
unit trucks/buses were obtained.  Bus percentages were not included in the NYSDOT report
and were obtained from other sources.  An estimate of the percentage of buses utilizing the
Thruway in the Newburgh area was provided by the Thruway Authority.  Actual hourly vehicle
classification breakdowns by volume were provided by the New Jersey Turnpike Authority.
These percentages and actual counts were used to develop the future projections of peak
hour passenger vehicles, single unit and tractor trailer trucks and buses used in the alternative
scenario analyses.

Commercial and transit vehicles have different operational characteristics than
passenger cars and can significantly affect traffic operations.  To determine the impact of
heavy vehicles and buses on the traffic stream, an adjustment must be made to the traffic
volumes.  Under current highway capacity analysis procedures (43) passenger car equivalents
(PCEs) are applied to actual vehicle counts for trucks and buses to determine the number of
passenger cars that would consume the same percentage of the roadway's capacity as one
truck or bus, under prevailing roadway and traffic conditions.  PCEs were utilized to determine
the relative effects of the heavy vehicles on the traffic stream, both in the AHS lane and in the
GULs.    The critical assumption for the AHS lane is that the same passenger vehicle/truck
equivalence factors as are now used for conventional lanes would apply.  This is based upon
the assumption that relative vehicle geometry and braking distances will remain the same as
they are today and that the physical and dynamic vehicle characteristics (acceleration,
deceleration, braking) will be the same for vehicles on AHSs as on conventional lanes.

An average PCE of 3.0 was applied to single unit trucks, tractor trailers and buses for
both the AHS lanes and GULs on the New Jersey Turnpike and the New York State Thruway.
On the Long Island Expressway, where as-built information was available, the actual grade
along the roadway between New Hyde Park Road and Mineola Blvd./Willis Avenue, and the
relative distribution of the percentage of trucks in the traffic stream, was considered in the
determination of the PCEs.  For capacity analysis purposes, the "typical" truck population is
assumed to have a characteristic ratio of 200 lb/hp.  A PCE of 4.0 was determined from Table
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3-4, Passenger Car Equivalents for Typical Trucks(200 lb./hp), of the 1985 Highway Capacity
Manual(43) and applied to the heavy vehicle volumes.  Although buses typically operate at a
performance level better than trucks, and intercity buses tend to be more uniform in their
characteristics, to be conservative, a PCE of 4.0 was also applied to the bus volumes.  These
values represent a conservative estimate of the anticipated traffic stream along these
roadways.

It has been assumed that AHS lane capacity in passenger vehicles/hour will be 4500
pvphpl or over twice the capacity of the GULs, 2200 pvphpl.

Vehicle Occupancies:  Average vehicle occupancies were used to determine the number of
people transported on each of the highway facilities.  An average vehicle occupancy (AVO) of
1.20 was used for both the Long Island Expressway(Fourth Lane Study) and the New York
State Thruway.  The passenger vehicles travelling in the HOV lane under No Build conditions
on the LIE carry an AVO 2.0.  An AVO of 1.25 was used on the New Jersey Turnpike.

It was assumed that only one driver is present in each truck and an average of 48
passengers are on buses on the New Jersey Turnpike and the New York State Thruway.  An
AVO of 30 was used for the mixed distribution of buses and vanpools using the Long Island
Expressway.

These vehicle occupancies were used for the projected forecast year 'No Build'
conditions.

3.3.1.2 Scenario Descriptions

The goal of this analysis has been to determine the effect of restricted use of the AHS
by various vehicle types, and to identify impacts on the AHS and GULs.  If the established
highway configuration cannot be altered by adding lanes, it is important to understand how
people will be transported along the existing remaining roadway lanes.  All indications suggest
that increased carpooling/transit will become the only viable means of future travel on these
facilities if widening is not possible.  Accordingly, four scenarios for AHS and manual lane use
have been investigated, each with three lane use options based on vehicle class.  These
include:

Scenario #1: An exclusive AHS lane for passenger vehicles only;

Scenario #2: Mixed use in all lanes, including the AHS lane(s);

Scenario #3: An exclusive AHS lane for passenger vehicles and light trucks; with
semi trailers prohibited;

Scenario #4: An exclusive AHS lane for all commercial and transit vehicles.

Each scenario has three different options or combinations of lane type, AHS or non
AHS (GUL):

Option A, composed of one(1) AHS lane and two(2) GULs;

Option B, two(2) AHS lanes and one(1) GUL;

Option C, a fully automated highway with three(3) AHS lanes.

Distribution of Traffic among Lanes:  Throughout the scenarios it was assumed that there
will be a range of market shares for the AHS, from 33 percent to 100 percent eligible vehicles.
Projected peak hour passenger and commercial vehicle traffic volumes have been divided
accordingly.

Scenario #1 - Exclusive AHS Lane for Passenger Vehicles Only
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Option A - under this configuration, the AHS lane carries 50 percent of the passenger vehicle
demand of the roadway, and the remaining 50 percent is divided between the two GULs.  The
single unit truck, tractor trailer, and bus volumes are distributed evenly between the two GULs.

Option B - one AHS lane is used exclusively by 50 percent of the passenger vehicle demand.
The second AHS lane carries all single unit, tractor trailer, and bus volumes;  there are no
passenger vehicles in this lane.  The GUL carries the second 50 percent of the passenger
vehicles.

Option C - the three AHS lanes carry the same vehicle distribution as Option B.

Scenario #2 - Mixed Use in AHS Lane(s)

There are no lane restrictions within Scenario #2; all vehicle types are distributed
evenly among the three lanes, regardless of lane capacity, for each of the same three AHS
lane options as in Scenario #1.  This represents a low of 33 percent AHS use by passenger
and commercial vehicles under Option A to a high of 100 percent by both under Option C.

Scenario #3 - Exclusive Lane for Passenger Vehicles, Light Trucks and Transit
Vehicles

Option A - 50 percent of the passenger vehicles, 50 percent of the single unit trucks (SU),
and 50 percent of the buses are included in the AHS lane.  No tractor trailers are permitted in
this lane.  The remaining 50 percent of the PVs, SUs and buses are distributed evenly among
the two (2) GULs.  Tractor trailer volumes are likewise divided evenly between the two (2)
GULs.

Option B - tractor trailers are restricted from the two(2) AHS lanes.  PVs, SUs and bus
volumes are evenly distributed among the three lanes.  All tractor trailers must use the
remaining one (1) GUL.

Option C - the same vehicle restrictions and distribution is used as in Option B, above, with
the third former GUL for tractor-trailers now an AHS lane.

Scenario #4 - Exclusive AHS Lane for all Commercial and Transit  Vehicles

Option A - all trucks and buses are in the One (1) automated lane, and passenger cars are
distributed evenly between the two (2) GULs.

Option B - trucks and buses remain segregated in one (1) AHS lane, however, 50% of the
passenger vehicle demand is serviced by the second AHS lane.  The remainder of the
passenger vehicles are carried by the single (1) GUL.

Option C - one (1) AHS carries only trucks and buses, and the passenger vehicle volume is
distributed evenly between the remaining two (2) AHS lanes.
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3.3.2 Long Island Expressway(Urban, Suburban)

3.3.2.1 General

A 2.5 mile section of the eastbound Long Island Expressway(LIE) in Nassau County,
New York was evaluated to determine the potential traffic conditions within an AHS and
General Use Lanes (GULs) in the year 2024.  This  segment between New Hyde Park Road
and Mineola Boulevard/Willis Avenue, was used  to evaluate the operation of the lanes, the
resultant vehicle distribution and average passenger vehicle occupancies for each scenario
based on lane capacity, either AHS or GUL for the entire 15 mile roadway length.  Within this
section of the roadway an I-2 scenario (where the AHS lane is accessed from the GULs) was
analyzed.  Given the physical constraints of the Long Island Expressway corridor and the
overall AHS Program goals, the I-2 RSC appears to be a more probable candidate for early
deployment than an I-3 Scenario where separate ramp entrances and exits would be provided.
Peak hour traffic volumes for both the AHS lane and the GULs were projected to the planning
year 2024 at a 2 percent compounded annual growth rate.

The approximate percentage of heavy vehicles utilizing the LIE was derived from the
1990-1991 Truck Weight and Continuous Count and Special Station computer printout
furnished by New York State Department of Transportation(NYSDOT).  The only location
along the LIE that was recorded in this data was a segment between Kissena Boulevard and
Utopia Parkway, in Queens.  At this location, approximately 6.9 percent of the total vehicles
are heavy vehicles, ranging from Class F4 through F13, which includes buses and large tractor
trailers, and 93.1 percent passenger vehicles.  Approximately 0.1 percent of the total vehicles
are large trucks ranging from Class F8 through F13, which includes tractor trailers and double
bottom vehicles; thus 6.8 percent of the vehicles are classified as single unit vehicles, F4
through F7.  Review of data from the Long Island Expressway Fourth Lane Study (44),
indicates that 0.5 percent of the traffic is buses/vanpools, which are grouped within the single
unit vehicle class.  The resulting heavy truck(Class F4 through F7) distribution is 6.3 percent.
Based on these data, for the AHS analyses of the LIE, the overall vehicle distribution was
assumed to be comprised of 93.1 percent passenger vehicles, 6.3 percent single unit trucks
(SU), 0.5 percent buses/vanpools and 0.1 percent tractor trailer combination units.

3.3.2.2 Analysis Results

Base Condition:  In the year 2024, peak hour traffic demand for the three GULs on the LIE
between New Hyde Park Road and Mineola Blvd./Willis Avenue will be more than double the
existing roadway's capacity, as shown in Appendix Table A-7, Base Conditions, HOV No Build.
To maintain operations at a Level of Service(LOS) of E in the general use lanes, while serving
the same number of people, the projected number of passenger vehicles in the lanes would
have to be reduced by forcing average passenger vehicle occupancies in the lanes to
increase.The HOV lane would operate at a LOS of C.This would maintain an AVO of 2.0 in the
HOV lane, and cause an increase in AVO in the GULs from 1.2 to 3.2 in each of the three
lanes.  Although, it has been assumed that this fourth lane will have been constructed prior to
the possible implementation of any of the alternative AHS scenarios evaluated, under the AHS
I-2 RSC configuration, only three of the four lanes will be available for through-travel as the
fourth lane will be the transition lane.

Scenario #1 - Passenger Vehicles in Separate AHS Lane

Under the traffic distribution allocated for Scenario #1, Option A, all three lanes exceed
capacity, as shown in Appendix Table A-8.  In order to operate at capacity, the average vehicle
occupancy(AVO)for the AHS lane would have to increase from 1.2 to 1.5 persons/vehicle and
the GULs to 6.0.  This indicates that the LIE would only remain operational under this
configuration with a 25 percent increase in passenger vehicle occupancy on the AHS lane, but
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a significant increase in vanpooling within the GULs.  The AHS lane would have an excess
demand of over 1,000 passenger vehicles, unless it were restricted to higher occupant
vehicles.

Under Option B, with a second AHS lane for commercial vehicles and buses, the
passenger vehicle AHS lane would exceed capacity by 25 percent, while the truck/bus AHS
lane would operate at a volume to capacity ratio(v/c) of 0.7, below capacity.  The GUL would
have a demand of 2.5 times capacity, unless average occupancy increased to 3.0.  Vehicle
occupancies within the passenger vehicle AHS lane would have to increase to 1.5.  This would
require designation of both passenger vehicle AHS and non-AHS lanes for HOV operations,
although less restrictive in the AHS lane due to its higher vehicle capacity.

Under Option C, the two passenger vehicle AHS lanes would operate at 25 percent
above capacity unless vehicle occupancies were higher, averaging 1.5.  The truck/bus AHS
lane would operate again below capacity, at a v/c ratio of 0.7.

Scenario #2 - Mixed Vehicles in AHS Lane(s)

Under Option A, the demand for the single AHS lane would be about 300 vehicles over
capacity, while demand for the two non-AHS lanes would be more than double their capacity,
as shown in Appendix Table A-9.  This would require increasing average vehicle occupancy to
1.3 in the AHS lane and to 4.0 in the GULs.  Vanpooling and increased transit would be
required to maintain vehicle operations at capacity in the two GULs.

Under Option B, all lanes would operate above capacity.  Vehicle occupancies would
have to increase to 1.3 in the two AHS lanes and to 4.0 in the GUL to achieve capacity
operations.  Vanpooling and transit increases would be required in the non-AHS lane.

Under Option C, all three AHS lanes would operate at about 300 vehicles over
capacity, and average vehicle occupancies would have to increase to 1.3, or only 8 percent
above current levels.  This does not support CAAA goals, unless alternate fuel or electric
vehicles are assumed, by the end of the 30 year planning period.

Scenario #3 - Exclusive AHS Lane for Passenger Vehicles Light Trucks and Transit
Vehicles

Under Option A, demand in all lanes would be about 60 percent over capacity and
vehicle occupancies would have to increase to 2.3 in the single AHS lane and 2.4 in the two
GULs, as shown in Appendix Table A-10.  Carpooling with 2+ to 3+ occupancies would be
required in all of these lanes.

Under Option B, with two AHS lanes and a third, non-AHS lan e in which the tractor
trailers would be allowed, passenger vehicle occupancies would have to increase to 1.3 in the
two AHS lanes and to 4.2 within the GUL, in order to achieve capacity operations.  AHS users
in both lanes would have to increase their vehicle occupancies only slightly, while vanpooling
and increased transit would be required on the GUL in order to reduce the number of
passenger vehicles.

Under Option C, with three AHS lanes, of which only one carries tractor trailers, traffic
demand is less than 10 percent above capacity.  Passenger vehicle occupancies averaging
1.3 would be required in all three lanes to achieve capacity operations, requiring increased
carpooling, but not to the degree being promoted by the CAAA.

Scenario #4 - Exclusive AHS Lane for all Commercial and Transit Vehicles

Under Option A, the truck/bus AHS lane would operate at a v/c ratio of 0.7, while the
two GULs would have a demand of more than double their capacity, as shown in Appendix
Table A-11.  Average passenger vehicle occupancy would have to increase to 3.0 in the two
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GULs to achieve capacity operations.  This would require carpools of 2+, 3+, vanpooling and
increased transit use.

Under Option B, the single truck/bus AHS lane would operate as in Option A, at a v/c
ratio of 0.7, while the passenger vehicle AHS lane would be 20 percent over capacity.  The
remaining GUL would have a demand over double its capacity.  The passenger vehicle AHS
lane would have to increase its average vehicle occupancy from 1.2 to 1.5, or by over 20
percent, and the GUL would require an AVO of 3.0.  An increase in carpooling would be
required in the AHS lane and carpools of 3+, vanpooling, and more transit service would be
required in the GUL.

Under Option C, with three AHS lanes, the third passenger vehicle AHS lane would
operate similarly to the second AHS lane in Option B.  A 20 + percent increase in carpooling
would be required in the two passenger vehicle AHS lanes in order to achieve capacity flow.

3.3.2.3 Summary and Conclusions

Most of the forecast year AHS Scenarios and Options discussed above provide
operating improvements in comparison to the base 'No Build' condition in which the HOV lane
and three general use lanes have demands above capacity.  Vehicle occupancies in the
general use lanes would have to average 3.2 in order to achieve capacity traffic flows of 2200
equivalent passenger vehicles per lane per hour.  The HOV lane would operate better than the
GULs, at a v/c ratio of 0.8.

Under Scenario #1, Option A presents poor ope rations with all lanes at capacity and
AVOs reaching 6.0 in the GULs.  Option B presents only the truck/bus AHS lane operating
below capacity and an AVO of 3.0 in the GUL.  Option C exhibits similar lane capacities with
lower vehicle occupancies of nearly 1.5 in all three AHS lanes.

Under Scenario #2, all lanes under Option A are at capacity and the GULs have AVOs
of 4.0.  All lanes under both Options B and C also operate at capacity.  The GUL in Option B
has an AVO of 4.0 and the AHS lanes of Options B and C all have AVOs of 1.3, about 8
percent higher than the current experience.

Under Scenario #3, all lanes under Option A are at capacity and the GULs have AVOs
of 2.4.  All lanes under both Options B and C also operate at capacity.  The GUL in Option B
has an AVO of 4.2 and the AHS lanes  of Options B and C have AVOs of about 1.3.

Under Scenario #4, the truck/bus AHS lane operates below capacity for all three
Options, while all other lanes operate at capacity.  Under Options A and B, all GULs have
AVOs of 3.0 and the passenger vehicle AHS lanes of Options B and C have AVOs of about
1.5.

It is evident from this analysis that the influence of trucks and buses within the AHS is
significant and has the potential to alter the passenger and passenger car distributions of the
facility.  The results indicate that the volumes exceed the capacity of up to three AHS lanes.
The average vehicle occupancies fluctuate based on the vehicle mix and lane restrictions.  In
some instances the lanes of the AHS-equipped roadway operate the same as or worse than
the "No Build" condition in terms of capacity and vehicle occupancy.  The managed capacity
would require carpooling and vanpooling in order to accommodate the high passenger
demand.  Vehicle occupancies between 1.3 and 1.5 fall short of meeting the objectives of the
ECO program.  Options that encourage AVOs of 2.0 or greater should be pursued.

Table A-12 presents a summary of vehicle-miles and person-hours traveled by vehicle
classification for each scenario and option of this analysis.  This information was used to
generate Appendix Figure A-9 "Optimum AHS RSC Configurations."  This graph illustrates the
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most efficient combination of AHS and non-AHS lanes based on vehicle-miles(VMT) and
person-hours(PHT) traveled.  From this it appears that the "optimum" conditions at which both
VMT and PHT are lowest,would occur at a total hourly roadway capacity of 8,900 pcph.  This
best corresponds to a one AHS lane, two GUL configuration. Scenario #4 Option A (4A)
represents the alternative with the least vehicle-miles traveled and the least person-hours of
travel.

3.3.3 New York State Thruway (Rural)

3.3.3.1 General

A 31 mile segment of the New York State Thruway between Exits 16 and 18 was
analyzed in the northbound direction.  Existing traffic volumes (assumed to be 1993) were
provided by other Calspan Team Members for their Scenario T, in a fax transmission dated
June 22, 1994.  These peak hour volumes, for both the AHS lane and the GULs, were
projected 31 years to the planning year 2024 at a 2 percent compounded annual growth rate.

The distribution of traffic between the AHS and GULs was determined by DEA.  The
vehicle classification breakdown was extracted from the 1990-1991 Truck Weight and
Continuous Count and Special Station computer printout for a segment between Exit 35 and
Exit 36, as information between Exits 16 and 18 was not available.  At this location,
approximately 10.8 percent of the total vehicles are heavy trucks, ranging from Class F4
through F13 which includes buses and Large Commercial Vehicles (LCVs), and 89.2 percent
passenger vehicles.  Approximately 0.8 percent of the total vehicles are large trucks ranging
from Class F8 through F13, which includes tractor trailers and double bottom vehicles; thus
10.0 percent of the vehicles are classified as single unit vehicles, F4 through F7.  According to
the Thruway Authority (45), of the single unit class approximately 3.0 percent are buses.  For
the AHS analyses of the NYS Thruway between Exits 16 and 18, these same percentages will
be used.  The overall vehicle stream was therefore assumed to be comprised of 89.2 percent
passenger vehicles, 7 percent single unit trucks (SU), 0.8 percent tractor trailer combination
units, and 3 percent buses.

The same three scenarios and four options as used in the Long Island Expressway
analysis were considered in the evaluation of the influence of single unit trucks, bus and tractor
trailers on the Thruway.  The current configuration represents an I-2 RSC, with AHS access
from the GULs.  The existing two-lane directional roadway section would be widened to three
lanes to accommodate the AHS lane, and two lanes would be available for manual operation.

3.3.3.2 Analysis Results

Base Condition:  In the year 2024, the two GULs on the New York State Thruway will
operate at 80 percent of their capacity, as shown in Appendox Table A-13.  It appears that
AHS technology would be instituted as a means to improve safety and travel time efficiency
along this route, as it would not be needed to increase capacity.  From the physical
characteristics of the roadway, it appears that an I-2 RSC would be an appropriate
configuration.

Scenario #1 - Passenger Vehicles in Separate AHS Lane

Under Option A, all lanes operate well below their respective capacities.  The
passenger vehicle AHS lane would operate at one-third of its capacity, and the two GULs
would each operate at half of their capacity, as shown in Appendix Table A-14.  Consequently,
no vehicle occupancy restrictions would apply and the AVO will remain at 1.2.

Under Option B, with a second AHS lane for commercial vehicles and buses, the
passenger vehicle AHS lane v/c ratio would be 0.3, and the truck/bus AHS lane would operate

Calspan Task F Page 57Calspan Task F Page 57



more freely at a v/c ratio of 0.2.  The GUL would operate at 60 percent of its capacity.  No
vehicle occupancy restrictions would be required and the AVOs would remain at 1.2.

Under Option C, all AHS lanes would operate well below capacity with v/c ratios
ranging from 0.2 to 0.3.  Again, no vehicle occupancy restrictions would be required, and the
AVOs would remain at 1.2.

Scenario #2 - Mixed Vehicles in AHS Lane(s)

Under Option A, the AHS lane would operate at 30 percent of its capacity, and the two
GULs would each operate at one half of their capacity, as shown in Appendix Table A-15
Vehicle occupancy restrictions would not be required, and the AVO would remain at 1.2.

Under Option B, again, all lanes would operate well below capacity. The two AHS lanes
would have v/c ratios of 0.3, and the GUL would operate at one half of its capacity.

Under Option C, all three AHS lanes would operate at 30 percent of their capacity.
AVOs would remain at 1.2.

Scenario #3 - Exclusive AHS Lane for Passenger Vehicles, Light Trucks and Transit
Vehicles

Under Option A, the demand in all three lanes would be about 40 percent of capacity,
as shown in Appendix Table A-16.

Under Option B, with two AHS lanes and a third, non-AHS lane in which tractor trailers
would be allowed, vehicle occupancies would not increase, as additional capacity is not
required.  The two AHS lanes would operate at 30 percent of capacity, and the GUL would
operate at half of its capacity.

Under Option C, all three AHS lanes would operate at 30 percent of capacity.  As with
Options A and B, vehicle occupancy restrictions would not be required.

Scenario #4 - Exclusive AHS Lane for all Commercial and Transit Vehicles

As shown in Appendix Table A-17, under Option A, the AHS lane reserved for
commercial and transit vehicles would operate well below capacity at a v/c ratio of 0.2.  The
two GULs would also operate below capacity, at 60 percent of capacity.

Under Option B, the truck/bus AHS lane would operate as in Option A, at a v/c ratio of
0.2, and the passenger vehicle AHS lane would operate at a v/c ratio of 0.3.  The GUL would
operate at 60 percent of its capacity.

Under Option C, the truck/bus AHS would operate at a v/c ratio of 0.2.  The two
passenger vehicle AHS lanes would operate at 30 percent of their capacity.

As in all previous scenarios there would not be any vehi cle occupancy restrictions for
Options A, B or C.

3.3.3.3 Summary and Conclusions

This analysis of three Scenarios for AHS operation of a three lane directional roadway
section of the NYS Thruway confirms that the primary reason to implement the technology in
this segment would be to improve the safety and travel speed characteristics of the freeway.
The forecast 2024 volumes do not warrant an increase in capacity.

Appendix Table A-18 summarizes the vehicle-miles and person-hours traveled for each
Scenario and Option, as well as the no-build base condition.  Appendix Figure A-10, "Optimum
AHS RSC Configuration," illustrates that there is no one configuration that is truly efficient in
vehicle-miles and person-hours of travel.  If AHS is implemented to improve safety and
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efficiency then Option A, with one AHS and two GULs, provides the most cost-effective use of
the New York State Thruway under an AHS. In all other options, the infrastructure is excessive
for the low volumes.  None of the twelve options promote carpooling or require any kind of
vehicle occupancy restrictions.

3.3.4 New Jersey Turnpike

3.3.4.1 General

Segments of the New Jersey Turnpike north of Exit 14 through Exits 16E and 18W in
Hudson and Bergen Counties were analyzed.  Both the east and west "Spurs", as well as the
combined section that feeds them from the south, were analyzed.  The western segment, is 6
miles long; the eastern segment, is 5 miles long; and the combined roadway section is 2 miles
long. Traffic volume classification counts were provided by the New Jersey Turnpike Authority.
These volumes were factored at a rate of 2 percent per year to reflect future growth projections
for 2024 peak hour conditions.  A.M. peak hour traffic conditions were analyzed to determine
truck and bus distributions by type and the effects of these commercial and transit vehicles
within the AHS lanes and GULs.

The distribution of passenger vehicles, single unit vehicles, tractor trailers and buses
was obtained from the existing classification counts.  Of the distributions for both roadway
"Spurs", the higher truck volume percentages were applied to all three segments:  east, west,
and combined sections.  The resulting base conditions for all segments was:  66.8 percent
passenger vehicles;  7.5 percent single unit trucks;  15.7 percent tractor trailers; and 10
percent buses.

It was assumed that the future AHS would be an I-2 RSC, with access to the AHS
lanes from the GULs, given the physical constraints and the cost of infrastructure construction.
A fourth AHS lane has been assumed to be added to the existing three-lane directional
roadways, however only two non AHS, GULs would be available as one lane would function
as a transition area.

3.3.4.2 Analysis Results

Base Condition:  In the year 2024, the three GULs on both the west and east Spur and the
six GULs on the combined section of the New Jersey Turnpike will exceed capacity.  To
maintain operations at a LOS of E, the peak hour passenger vehicle demand in the lanes
would have to be reduced.  This would require vehicle occupancies to rise from the present
AVO of 1.25 (1.3)  to 2.1 on the west; 3.7 on the east; and 2.7 on the combined section.
These results are summarized in Appendix Table A-19.

As these three segments must operate as one cohesive system (i.e. if carpooling is
required on the west Spur it would be introduced in the combined section and the east Spur as
well), the Scenario/Option with the most restrictive conditions will govern the operations of the
facility.

Scenario #1 - Passenger Vehicles in Separate AHS Lane

Under Option A, the single passenger vehicle AHS lane would operate below capacity with a
v/c ratios ranging from 0.7 to 0.9.  The two GULs would exceed capacity in all segments by 40
to 80 percent.  In order to operate at LOS E, AVOs would have to increase to 2.6 along the
west, to 10.1 along the east, and to 4.5 along the combined section.  These conditions would
require increased mass transit in the form of passenger vans and buses in place of passenger
cars to maintain traffic operations at a LOS of E along this facility.

Under Option B for all Turnpike segments, both the passenger vehicle and the
truck/bus AHS lanes would operate at conditions less than capacity with the passenger vehicle
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AHS v/c ratio ranging from 0.7 to 0.9 and the truck/bus AHS with v/c ratios ranging from 0.7 to
0.9.  The GUL would exceed capacity by 40 to 80 percent along all three segments.  For
capacity operations vehicle occupancies for the GUL would range from 1.7 on the west, to 2.2
on the east and to 2.0 on the combined section.  This would require 2+ person carpools along
the roadway to meet the conditions imposed by the east Spur.

Under Option C, all three AHS lanes along the three segments would operate at
volumes ranging from 70 to 90 percent of their capacity.  The AVOs would remain at 1.3 and
the CAAA/ECO objectives would not be achieved.

The above results are summarized in Appendix Table A-20.

Scenario #2 - Mixed Vehicles in AHS Lane(s)

Under Option A for each Turnpike segment, vehicular d emand for the AHS lane and
the two GULs would meet or exceed capacity by up to 30 percent.  Passenger vehicle
occupancies would have to be increased to meet this demand.  The resulting AVOs for the
AHS lane would range from 1.3 on the west to 1.9 on the east; and the combined section
would have an AVO of 1.6.  The AVOs of the GULs of the west would remain at 1.3; the AVO
for the GULs on the east would increase to 2.0; and the AVO of the combined section GULs
would be 1.6.  Carpools of 2+ persons would be required to sustain vehicle operations within
this vehicle mix.

Under Option B  the two AHS lanes along the west and the combined section would
operate at volumes from 70 to 90 percent of capacity.  Consequently, the AVO would remain
at 1.3.  The east would operate at capacity, with AVOs remaining at their current level (1.25).
All GUL segments would operate at v/c ratios of 1.4 to 1.8.   AVOs of 2.1 on the west, 3.7 on
the east and 2.7 along the combined section would be required to meet the demands posed
by this configuration and vehicle mix.  Vanpools and transit buses would be required to
maintain capacity operations.

Under Option C along the west and combined section all three AHS lanes would
operate at volumes from 70 to 90 percent of capacity.  Consequently, the AVO would remain
at 1.3.  Along the east Spur, all AHS lanes would operate at capacity and the AVO would
remain at 1.3.  Carpooling restrictions would not be required and CAAA/ECO objectives would
not be achieved.

These results are summarized  in Appendix Table A-21.

Scenario #3 - Exclusive Lane for Passenger Vehicles, Light Trucks and Transit
Vehicles

Under Option A only the AHS lane of the west Spur would operate at conditions better
than LOS E.  The AVO would remain at 1.3.  The east and combined sections would operate
at or exceed capacity.  To reduce this vehicular demand would require AVOs of 1.4 and 1.3,
respectively.  The two GULs along all three segments would exceed capacity by 20 to 60
percent.  AVOs of 1.7 for the west, 3.2 for the east, and 2.3 along the combined section would
be required for LOS E operations.  Vanpooling would have to be instituted to maintain capacity
operations along the facility.

Under Option B the displacement of all the tractor trailers to the GUL would bring this
lane to a stand-still along the east and combined sections.  As this distribution of commercial
vehicles would exceed lane capacity, this option for the east spur and combined section is
unacceptable.  The west Spur, however, would operate at 60 percent of capacity in the two
AHS lanes, while exceeding capacity in the GUL.  Average passenger vehicle occupancies in
the GUL would increase to 9.0, and vanpools/transit would be required.
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Under Option C for all three segments, the two AHS lanes without tractor trailers would
operate at volumes 60 to 70 percent of capacity.  The AHS lane with the tractor trailers would
exceed capacity within the east and combined sections.  AVOs of 1.3 for the west, 1.7 for the
east and 1.3 along the combined section would be required for LOS E operations.

Refer to Appendix Table A-22 for these results.

Scenario #4 - Exclusive AHS Lane for all Commercial and Transit Vehicles

Under Option A for all three segments, only the AHS lane would operate below
capacity, with v/c ratios ranging from 0.7 to 0.9.  Along all segments, the two GULs would have
v/c ratios of 1.4 to 1.8.  The GULs would have AVOs of 1.7 for the west Spur, 2.2 for the east
Spur, and 2.0 along the combined section.  Carpooling of 2+ persons would be required.

Under Option B for all three segments, the two AHS lanes would operate below
capacity at v/c ratios ranging from 0.7 to 0.9.  The GUL would exceed capacity along all
segments, by 40 to 80 percent.  As in Option A, in order to operate at LOS E, the GULs would
have AVOs of 1.7 in the west  2.2 in the east and 2.0 in the combined section.  Carpooling of
2+ persons would be required.

Under Option C for all three segments, all three AHS lanes would operate below
capacity with v/c ratios ranging from 0.7 to 0.9.  All AVOs would remain at 1.3.  No
driver/carpool restrictions would be required.

These results are shown in Appendix Table A-23.

3.3.4.3 Summary and Conclusions

The introduction of AHS technology improves operations along the New Jersey
Turnpike, as compared to the "No Build" condition for 2024, in most of the scenarios under
consideration.

The passenger and vehicle demand created by each of the various scenarios and
options works towards the goals of the ECO Program in eight of the twelve cases.  Only three
cases, Option C for Scenarios #1, #2 and #3 exhibit no change in AVO from the current ratio
(1.25).  Scenario #3, Option B is unacceptable for the east and combined sections.  Scenario
#1, Option B (1B); Scenario #2, Option A (2A); Scenario #4, Options A (4A) and B (4B) require
carpools of 2+ persons in one or more of the lanes.  Scenario #2, Option B (2B); Scenario #3,
Options A (3A) and C (3C) require vanpooling in one or more of the lanes, and Scenario #1,
Option A (1A) and Scenario #3, Option B (3B) - west Spur, require increased bus transit
service in one or more of the lanes.

Based on these findings, it appears that, under certain applications, AHS would be
viable along this northern section of the Turnpike, and would support the objectives of the
CAAA/ECO Program.

Appendix Table A-24 presents a summary of vehicle-miles  and person-hours traveled,
by vehicle classification, for each Scenario and Option for both the east Spur and the
Combined section of this analysis.  The information is depicted in Appendix Figures A-11 and
A-12, "Optimum AHS RSC Configurations," which illustrate the most efficient combination of
AHS and manual lanes based on vehicle-miles and person-hours traveled for each of the two
roadway segments.  From this, it appears that optimum conditions occur at a total roadway
capacity of 8900 pcph along the east Spur.  This best corresponds to Scenario #4, Option A
and Scenario #1, Option A.  Accordingly, this”worstcase” east Spur would govern the scenario
selected for the combined section.
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3.3.5 Summary and Conclusions, AHS Scenarios

From the analysis conducted above for the Long Island Expressway, the New York
State Thruway, and the New Jersey Turnpike, it is evident that each type of freeway, urban or
rural, exhibits varying capabilities for incorporating AHS technology.

'No Build' conditions for both the Long Island Expressway(LIE) and New Jersey
Turnpike will require additional vehicle capacity in the year 2024.  AHS technology would be
theoretically viable to alleviate congestion.  The findings in the analyses for the LIE indicate
that Option A for Scenario #4,with an ultimate capacity of 8,900 pcph, would be the “optimum”
alternative.  These Options also exhibit favorable average vehicle occupancies for compliance
with the CAAA/ECO Program goals.  Along the east Spur of the New Jersey Turnpike Options
A for Scenarios #1 and #4, with an ultimate capacity of 8,900 pcph, appear to be the most
efficient.  Option A for Scenarios #1 and #4 for the combined section of the Turnpike would
also represent “optimum” conditions of VMT and PHT.  These Options would require carpools
of 2+ persons and aid in the effort to achieve the CAAA/ECO Program goals.

Under 'No Build' conditions in 2024, the rural section of the New York State Thruway
was studied and indicates that it would not require additional capacity.  An AHS could be
implemented in this corridor for reasons of safety and efficiency.  Option A, with one (1) AHS
lane and two (2) GULs, would be the most cost effective Option.

4.0 CONCLUSIONS AND SUMMARY OF ISSUES

The issues, concerns, conclusions, findings and risks which have emerged from the Task F
studies of commercial vehicle/transit use of AHS are summarized in Table 4.1.
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Table 4.1
Summary of Issues, Concerns, Risks and Conclusions, Commercial and Transit AHS

Number Item Type Description Conclusions/Findings/Risks RSC Task Section
Impact Impact Reference

1. Issue, Acceptance by trucking, transit  industries. Benefits, costs, derived from 2, 4, 6, 7, 10, O, P 3.1.1,
Concern Will the industries accept the costs of specific demonstrations will need 11 3.2.1

upgrading their equipment and maintenance to be provided to skeptical trucking
practices required to use AHS ? industry. Transit may be more receptive.

2. Issue, Competition with Intermodal Rail, AMTRAK. Commercial vehicle operations 2, 4, 6, 7, 10, O 3.1.1,
Concern Is federally funded AHS program in direct on AHS may be most appropriate 11 3.2.1

competition with private sector rail for long- for trip lengths and weights less
haul freight market?, with AMTRAK for than those served by Intermodal
intercity passenger market? Rail. Diversion from AMTRAK is a risk.

3. Issue Acceptance by organized labor, drivers. The potentially safer environment for the 2, 4, 6, 7, 10, N, O 3.1.3,
Will labor view AHS as a job reduction driver, reduced travel time per run, 11 3.2.1
act by the government and industry? elimination of fatigue, upgraded

responsibilities as "autopilot", 
potentially higher pay as AHS-certified,
improved quality of life, need to be shown.

4. Issue Vehicle Handling & Stability. Electronic sensors can be designed 2, 4, 6, 7, 10, B, C ,D, E, 3.1.2
Will AHS controls for commercial vehicles to perform complex detection and 11 J, N
be capable, at acceptable costs, to cover control tasks. Costs must be 
the multiple truck weight and configuration determined, demonstrations
properties for loaded and unloaded performed, decisions made as to 
conditions, wet and dry pavements? maximum truck size and type.

5. Issue Infrastructure Costs, Pavements & Bridges. Heavy truck studies on rural Interstates 2, 4, 6, 7, 10, A, H, P 3.1.2
Will the incremental costs be significant  to have indicated industry benefits to  11
upgrade pavements and bridges to exceed the infrastructure costs. These 
accomodate commercial vehicles on AHSs include fewer truck trips, lighter axle loads.
as compared to passenger vehicles only? Extra costs should be borne by users.
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Table 4.1
Summary of Issues, Concerns, Risks and Conclusions, Commercial and Transit AHS

Number Item Type Description Conclusions/Findings/Risks RSC Task Section
Impact Impact Reference

6. Issue, Traffic Operations. It has been assumed that the same 2, 4, 6, 7, 10, A, D, H, K 3.1.2,
Concern What are the AHS passenger vehicle equivalencies can be used in AHS 11 3.3.1

equivalencies to commercial and lanes as in non-AHS lanes. This must 
transit vehicles? be verified. 

7. Issue Safety. Passenger vehicle geometric design 2, 4, 6, 7, 10, B, C, D, E, 3.1.2,
For safe operations,should trucks and full-size requirements and dynamic characteristics 11 H, J, K, L, 3.1.3, 3.2.2
transit vehicles be separated from passenger differ from heavy trucks and buses. Each N, P
vehicles on AHS roadways? vehicle type has its own requirements, with

the tractor trailer and LCVs the most 
demanding and presenting higher risks,
more severe accident potential.

8. Issue, Traffic Operations. This issue has not been researched under 2, 4, 6, 7, 10,A, C, E, H, 3.2.3
Concern What happens at the terminus of the AHS lane? this task however the impact on transit 11 I, J, K, N, O

How will transit vehicles be distributed within the operations and scheduling, as well as on
center city?  New/improved bus terminals? other vehicles, is critical to the viability of 

AHS.
This must be researched and analyzed.

Calspan Task F Page 64Calspan Task F Page 64



CalspanTask FPage 65 CalspanTask FPage 65



Calspan Task F Page 66Calspan Task F Page 66



Calspan Task F Page 67Calspan Task F Page 67



Calspan Task F Page 68Calspan Task F Page 68



Calspan Task F Page 69Calspan Task F Page 69



Table A-2

Carrier Utilization By Mode
Fiscal Years 1984 and 1993

Weight Charges
Method Shipments (lbs.,Millions) ($, Millions)

1984 1993 1984 1993 1984 1993
Rail 20,813 10,606 3896 3,883 89 103,375
Motor 1,226,088 1,199,643 11,796 13,345 377 435,581
Frt Forwarder 6,789 11,509 40 40 2 3,095
Water 1,377 1,299 6,559 5,676 15 15,386
Pipeline 3,369 2,965 15,549 15,877 35 43,730
Air Freight 83,332 113,595 14 14 13 10,872
Air Forwarder 161,183 78,938 20 46 18 19,662
Bus 6,014 122 0.2 0.8 0.1 0.1
Unidentified 0 0 0 0 0 0
TOTAL 1,508,965 1,418,677 37,875 38,881 549 631
Truck % 81% 85% 31.1% 34% 68% 69%
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Table A-3

Military vs. Total U.S. Goods Movement by Truck
1984 - 1993

Revenue ($ Millions)

Fiscal Year Military Non-Military Total U.S. % Military
1984 $377 $199,400 $199,777 0.19
1985 $397 $205,400 $205,797 0.19
1986 $440 $213,000 $213,440 0.21
1987 $463 $224,400 $224,863 0.21
1988 $424 $238,900 $239,324 0.18
1989 $399 $253,750 $254,149 0.16
1990 $413 $270,650 $271,063 0.15
1991 $474 $274,250 $274,724 0.17
1992 $418 $292,800 $293,218 0.14

Tonnage (Millions)

Fiscal Year Military Non-Military Total U.S. % Military
1984 5.898 2,125 2,131 0.28
1985 5.895 2,131 2,137 0.28
1986 6.599 2,236 2,243 0.29
1987 6.881 2,364 2,371 0.29
1988 6.579 2,422 2,429 0.27
1989 6.805 2,543 2,550 0.27
1990 6.499 2,589 2,595 0.25
1991 7.617 2,684 2,692 0.28
1992 7.352 2,838 2,845 0.26

Sources: 1. Military Traffic Management Command, Department of the Army, May 1994
2. "Transportation in America", ENO Transportation Foundation, Inc., Dec. 1993
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Table A-4
 Commercial and Transit Vehicle Design Characteristics

Design Vehicle
 Trucks Buses

Intermediate Larger Dbl.Bottom
Sngl.-Unit Semi-Trlr. Semi-Trlr. Semi/Full Trlr. Single- Unit Articulated

( SU ) ( WB-40 ) ( WB-50 ) ( WB-60 )
Affects:

Height Vertical Clearances, 162in. 162in. 162in. 162in. 162in. 117.6-126in.
Rollover

Width Lane, Shoulder 102 in. 102 in. 102 in. 102 in. 102 in. 102 in.
Widths

Length Offtracking, 30 ft. 50(55) ft. 55ft. 65 ft. 40 ft. 60 ft.
Pavement Width

Driver Eye Sight Distance, 3.5 ft. 7.58-8.92 ft. 7.58-8.92 ft. 7.58-8.92 ft.
Height Crest Vertical Curves

Headlight Sight Distance, 2 ft. 2 ft. 2 ft. 2 ft.
Height Sag Vertical Curves

Weight/HP Performance on Grades 300 to 1 300 to 1 300 to 1 300 to 1
Ratio

Braking D=V^2/30f, f=Coef. Frict. 256-336 ft. 256-336 ft. 256-336 ft. 256-336 ft.
Distance Crest Vertical Curve 

(@55mph) Lengths, Lateral Sight (TTI recommends increasing by 50%)
Distances

Brake Total Safe Stopping 2.5 sec. 2.5 sec. 2.5 sec. 2.5 sec. 2.5 sec. 2.5 sec.
Reaction Distances

Time
Decision Complex Maneuvers 1,150 ft. 1,150 ft. 1,150 ft. 1,150 ft.

Sight Distance to detect,initiate, complete (Urban) (Urban) (Urban) (Urban)
Distance hazard avoidance maneuver

(@55mph)
Passing Total Length Required

Sight For Passing :
Distance psd= V( Lf+Ls +P+R)/dV 1,155 1,430 1,430 1,540 1,265 1,485

(@ 55mph) V=Passing Veh. Speed,
Lf, Ls= Vehicle Lengths,

P &R = Pullout & Return Lgths, 150 ft.+/-
dV=Speed Differential, 10mph

Horizontal Minimum Radius 1,060 1,060 1,060 1,060 1,060 1,060
Alignment of Curvature :
(@55mph) R=V^2/15(e+f) 

V= Vehicle Speed,
e= Superelevation, .06

f= Limiting Side Friction Factor, .13
Widening Offtracking 6 ft. 9 ft. 11 ft. 16 ft. 7 ft. 10 ft.

On Curves w = Wc-Wn, where:
(@25mph, Wc = N(U+C) + (N-1)Fa +Z, and:

150 ft. min. R, N=no. lanes; w = widening req'd.,
Case II, prov. Wc = width of pave. on curve;

for passing) U= track width, out-out, tires; 
C = lateral clearance of vehicle, 2-3 ft.;

Fa = width of front overhang, ft.;
Z = extra width allowance for driving

difficulty on curves, 2 ft.
Horizontal Clearance to Obstructions

Sight along inside of curves Function of Degree of curvature, D, and Stopping Sight Distance, S
Distance M=(5730/D)*(1-Cos S*D/200)
Vertical

Alignment:
Control Speed Decreases 7% + on Upgrades, See AASHTO, Figures III-27A-C, pages 229-231
Grades Increases 5% on Downgrades 

Critical Distance Required for no See AASHTO, Figure III-31, pg.238
Length  more than 10 mph speed reduction

on Upgrade
Curves Function of Driver's Eye Height, See AASHTO, pages 281-295

Object on Pavement Height
Cross

Section:
Lane Wv + 4.5 ft., 13 ft. for 102'' Trucks

Width More for Double & Triple Combinations
Shoulder Safe Clearance for Stopped Vehicles 12 ft. for heavy truck traffic

Width 
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    Long Island Expressway

Base Conditions, HOV NO BUILD

Total PVs SU Trk.Trlr. Buses
Section From/To PCE@4.0 *   Capacity is based on 4500 pcphpl

NewHydePk Rd. to Exit 34  to  37 vph 11,113 752 12 60 **  Capacity is based on 2200 pcphpl
Willis Avenue pcph 14,408 11,113 3,008 48 239 *** Based on actual number of vehicles(not PCEs),

     (PVs and buses only)

HOV
Lane 1 For each; Lanes 2 through 4

 1 HOV/3  GULs PVs and Buses(PCEs) Mixed(PCEs)
PVs SU Trk Tlr Bus Total PVs SU Trk Tlr Bus Total

% Vehicle Distribution by Lane- Demand 86.4% 0.0% 0.0% 13.6% No. PCEs v/c** 75.8% 23.8% 0.4% 0.0% No. PCEs v/c**
Demand -pcph 1521 0 0 239 1760 0.8 3197 1003 16 0 4216 1.9
Demand - No. Occpts @ 1.2PV;2.0HOV; 1.0Tks;30Bus/Van 3042 1793 3836 251 4
Vehicle Mix Per Lane @ Capacity 1521 239 1760 1181 1003 16 2200 1.0

Avg. Vehicle Occupancy 2.0 30.0 3.2 1.0 1.0
Total No. of  Passengers(PVs and buses only) 4,835 3,836
% Vehicle Distribution by Lane-Capacity 86.4% 0.0% 0.0% 10.9% 53.7% 45.6% 0.7% 0.0%
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              Table A-8
    FORECAST 2024 PEAK HOUR TRAFFIC OPERATIONS

Long Island Expressway 
Scenario #1, Passenger Vehicles in Separate AHS Lane

AHS GUL GUL
OPTION A. Lane 1 Lane 2 Lane 3
1AHS Lane, 2 GULs PVs Only Mixed(PCEs) Mixed(PCEs)

PVs SU Trk Tlr Bus Total PVs SU Trk Tlr Bus Total PVs SU Trk Tlr Bus Total
% Vehicle Distribution by Lane- Demand 100.0% 0.0% 0.0% 0.0% No. PCEs v/c* 62.8% 34.0% 0.5% 2.7% No. PCEs v/c** 62.8% 34.0% 0.5% 2.7% No. PCEs v/c**
Demand -pcph 5557 0 0 0 5557 1.2 2778 1504 24 119 4426 2.0 2778 1504 24 119 4426 2.0
Demand - No. Occpts @ 1.20 PV; 1.0 Tks;30 Bus/Van 6668 3334 376 6 895 3334 376 6 895
Vehicle Mix Per Lane @ Capacity 4500 4500 1.0 553 1504 24 119 2200 1.0 553 1504 24 119 2200 1.0

Avg. Vehicle Occupancy 1.5 6.0 1.0 1.0 30.0 6.0 1.0 1.0 30.0
Total No. of  Passengers(PVs and buses only) 6,668 4,229 4,229
% Vehicle Distribution by Lane-Capacity 100.0% 0.0% 0.0% 0.0% 25.1% 68.4% 1.1% 5.4% 25.1% 68.4% 1.1% 5.4%

AHS AHS GUL
OPTION B. Lane 1 Lane 2 Lane 3
2 AHS Lanes; 1 GUL PVs Only SU +TrkTlr+Buses(PCEs) Remaining(PCEs)

PVs SU Trk Tlr Bus Total PVs SU Trk Tlr Bus Total PVs SU Trk Tlr Bus Total
% Vehicle Distribution by Lane- Demand 100.0% 0.0% 0.0% 0.0% No. PCEs v/c* 0.0% 91.3% 1.4% 7.2% No. PCEs v/c* 100.0% 0.0% 0.0% 0.0% No. PCEs v/c**
Demand -pcph 5557 0 0 0 5557 1.2 0 3008 48 239 3295 5557 0 0 0 5557 2.5
Demand - No. Occpts @ 1.20 PV; 1.0 Tks;30 Bus/Van 6668 752 12 1791 6668
Vehicle Mix Per Lane @ Capacity 4500 4500 1.0 4500 0.7 2200 2200 1.0

Avg. Vehicle Occupancy 1.5 1.0 1.0 30.0 3.0
Total No. of  Passengers(PVs and buses only) 6,668 1,791 6,668
% Vehicle Distribution by Lane-Capacity 100.0% 0.0% 0.0% 0.0% 0.0% 54.1% 0.9% 4.3% 100.0% 0.0% 0.0% 0.0%

AHS AHS AHS
OPTION C. Lane 1 Lane 2 Lane 3
3 AHS Lanes PVs Only SU +TrkTlr+Buses(PCEs) Remaining(PCEs)

PVs SU Trk Tlr Bus Total PVs SU Trk Tlr Bus Total PVs SU Trk Tlr Bus Total
% Vehicle Distribution by Lane- Demand 100.0% 0.0% 0.0% 0.0% No. PCEs v/c* 0.0% 91.3% 1.4% 7.2% No. PCEs v/c* 100.0% 0.0% 0.0% 0.0% No. PCEs v/c*
Demand -pcph 5557 0 0 0 5557 1.2 0 3008 48 239 3295 5557 0 0 0 5557 1.2
Demand - No. Occpts @ 1.20 PV; 1.0 Tks;30 Bus/Van 6668 752 12 1791 6668
Vehicle Mix Per Lane @ Capacity 4500 4500 1.0 4500 0.7 4500 4500 1.0

Avg. Vehicle Occupancy 1.5 1.0 1.0 30.0 1.5
Total No. of  Passengers(PVs and buses only) 6,668 1,791 6,668
% Vehicle Distribution by Lane-Capacity 100.0% 0.0% 0.0% 0.0% 0.0% 54.1% 0.9% 4.3% 100.0% 0.0% 0.0% 0.0%
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                Table A-9
    FORECAST 2024 PEAK HOUR TRAFFIC OPERATIONS

Long Island Expressway 

    Scenario #2, Mixed Vehicles in AHS Lane(s)

AHS GUL GUL
OPTION A. Lane 1 Lane 2 Lane 3
1AHS Lane, 2 GULs Mixed(PCEs) Mixed(PCEs) Mixed(PCEs)**

PVs SU Trk Tlr Bus Total PVs SU Trk Tlr Bus Total PVs SU Trk Tlr Bus Total
% Vehicle Distribution by Lane- Demand 77.1% 20.9% 0.3% 1.7% No. PCEs v/c* 77.1% 20.9% 0.3% 1.7% No. PCEs v/c** 77.1% 20.9% 0.3% 1.7% No. PCEs v/c**
Demand -pcph 3704 1003 16 80 4803 1.1 3704 1003 16 80 4803 2.2 3704 1003 16 80 4803 2.2
Demand - No. Occpts @ 1.20 PV; 1.0 Tks;30 Bus/Van 4445 251 4 597 4445 251 4 597 4445 251 4 597
Vehicle Mix Per Lane @ Capacity 3402 1003 16 80 4500 1.0 1102 1003 16 80 2200 1.0 1102 1003 16 80 2200 1.0

Avg. Vehicle Occupancy 1.3 1.0 1.0 30.0 4.0 1.0 1.0 30.0 4.0 1.0 1.0 30.0
Total No. of  Passengers(PVs and buses only) 5,042 5,042 5,042
% Vehicle Distribution by Lane-Capacity 75.6% 22.3% 0.4% 1.8% 50.1% 45.6% 0.7% 3.6% 50.1% 45.6% 0.7% 3.6%

AHS AHS GUL
OPTION B. Lane 1 Lane 2 Lane 3
2 AHS Lanes; 1 GUL Mixed(PCEs) Mixed(PCEs) Mixed(PCEs)

PVs SU Trk Tlr Bus Total PVs SU Trk Tlr Bus Total PVs SU Trk Tlr Bus Total
% Vehicle Distribution by Lane- Demand 77.1% 20.9% 0.3% 1.7% No. PCEs v/c* 77.1% 20.9% 0.3% 1.7% No. PCEs v/c* 77.1% 20.9% 0.3% 1.7% No. PCEs v/c**
Demand -pcph 3704 1003 16 80 4803 1.1 3704 1003 16 80 4803 1.1 3704 1003 16 80 4803 2.2
Demand - No. Occpts @ 1.20 PV; 1.0 Tks;30 Bus/Van 4445 251 4 597 4445 251 4 597 4445 251 4 597
Vehicle Mix Per Lane @ Capacity 3402 1003 16 80 4500 1.0 3402 1003 16 80 4500 1.0 1102 1003 16 80 2200 1.0

Avg. Vehicle Occupancy 1.3 1.0 1.0 30.0 1.3 1.0 1.0 30.0 4.0 1.0 1.0 30.0
Total No. of  Passengers(PVs and buses only) 5,042 5,042 5,042
% Vehicle Distribution by Lane-Capacity 75.6% 22.3% 0.4% 1.8% 75.6% 22.3% 0.4% 1.8% 50.1% 45.6% 0.7% 3.6%

AHS AHS AHS
OPTION C. Lane 1 Lane 2 Lane 3
3 AHS Lanes Mixed(PCEs) Mixed(PCEs) Mixed(PCEs)

PVs SU Trk Tlr Bus Total PVs SU Trk Tlr Bus Total PVs SU Trk Tlr Bus Total
% Vehicle Distribution by Lane- Demand 77.1% 20.9% 0.3% 1.7% No. PCEs v/c* 77.1% 20.9% 0.3% 1.7% No. PCEs v/c* 77.1% 20.9% 0.3% 1.7% No. PCEs v/c*
Demand -pcph 3704 1003 16 80 4803 1.1 3704 1003 16 80 4803 1.1 3704 1003 16 80 4803 1.1
Demand - No. Occpts @ 1.20 PV; 1.0 Tks;30 Bus/Van 4445 251 4 597 4445 251 4 597 4445 251 4 597
Vehicle Mix Per Lane @ Capacity 3402 1003 16 80 4500 1.0 3402 1003 16 80 4500 1.0 3402 1003 16 80 4500 1.0

Avg. Vehicle Occupancy 1.3 1.0 1.0 30.0 1.3 1.0 1.0 30.0 1.3 1.0 1.0 30.0
Total No. of  Passengers(PVs and buses only) 5,042 5,042 5,042
% Vehicle Distribution by Lane-Capacity 75.6% 22.3% 0.4% 1.8% 75.6% 22.3% 0.4% 1.8% 75.6% 22.3% 0.4% 1.8%
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               Table A-10
       FORECAST 2024 PEAK HOUR TRAFFIC OPERATIONS

Long Island Expressway 

Scenario #3, Exclusive AHS Lane for Passenger Vehicles, Light Trucks and Transit Vehicles

AHS GUL GUL
OPTION A. Lane 1 Lane 2 Lane 3
1AHS Lane, 2 GULs PVs +SU+Buses(PCEs) Mixed(PCEs) Mixed(PCEs)

PVs SU Trk Tlr Bus Total PVs SU Trk Tlr Bus Total PVs SU Trk Tlr Bus Total
% Vehicle Distribution by Lane- Demand 77.4% 20.9% 0.0% 1.7% No. PCEs v/c* 76.9% 20.8% 0.7% 1.7% No. PCEs v/c** 76.9% 20.8% 0.7% 1.7% No. PCEs v/c**
Demand -pcph 5557 1504 0 119 7180 1.6 2778 752 24 60 3614 1.6 2778 752 24 60 3614 1.6
Demand - No. Occpts @ 1.20 PV; 1.0 Tks;30 Bus/Van 6668 376 895 3334 188 6 448 3334 188 6 448
Vehicle Mix Per Lane @ Capacity 2877 1504 119 4500 1.0 1364 752 24 60 2200 1.0 1364 752 24 60 2200 1.0

Avg. Vehicle Occupancy 2.3 1.0 30.0 2.4 1.0 1.0 30.0 2.4 1.0 1.0 30.0
Total No. of  Passengers(PVs and buses only) 7,563 3,782 3,782
% Vehicle Distribution by Lane-Capacity 63.9% 33.4% 0.0% 2.7% 62.0% 34.2% 1.1% 2.7% 62.0% 34.2% 1.1% 2.7%

AHS AHS GUL
OPTION B. Lane 1 Lane 2 Lane 3
2 AHS Lanes; 1 GUL PVs +SU+Buses(PCEs) PVs +SU+Buses(PCEs) Mixed(PCEs)

PVs SU Trk Tlr Bus Total PVs SU Trk Tlr Bus Total PVs SU Trk Tlr Bus Total
% Vehicle Distribution by Lane- Demand 77.4% 20.9% 0.0% 1.7% No. PCEs v/c* 77.4% 20.9% 0.0% 1.7% No. PCEs v/c* 76.6% 20.7% 1.0% 1.6% No. PCEs v/c**
Demand -pcph 3704 1003 0 80 4787 1.1 3704 1003 0 80 4787 1.1 3704 1003 48 80 4834 2.2
Demand - No. Occpts @ 1.20 PV; 1.0 Tks;30 Bus/Van 4445 251 597 4445 251 597 4445 251 12 597
Vehicle Mix Per Lane @ Capacity 3418 1003 80 4500 1.0 3418 1003 80 4500 1.0 1070 1003 48 80 2200 1.0

Avg. Vehicle Occupancy 1.3 1.0 30.0 1.3 1.0 30.0 4.2 1.0 1.0 30.0
Total No. of  Passengers(PVs and buses only) 5,042 5,042 5,042
% Vehicle Distribution by Lane-Capacity 75.9% 22.3% 0.0% 1.8% 75.9% 22.3% 0.0% 1.8% 48.6% 45.6% 2.2% 3.6%

AHS AHS AHS
OPTION C. Lane 1 Lane 2 Lane 3
3 AHS Lanes PVs +SU+Buses(PCEs) PVs +SU+Buses(PCEs) Mixed(PCEs)

PVs SU Trk Tlr Bus Total PVs SU Trk Tlr Bus Total PVs SU Trk Tlr Bus Total
% Vehicle Distribution by Lane- Demand 77.4% 20.9% 0.0% 1.7% No. PCEs v/c* 77.4% 20.9% 0.0% 1.7% No. PCEs v/c* 76.6% 20.7% 1.0% 1.6% No. PCEs v/c*
Demand -pcph 3704 1003 0 80 4787 1.1 3704 1003 0 80 4787 1.1 3704 1003 48 80 4834 1.1
Demand - No. Occpts @ 1.20 PV; 1.0 Tks;30 Bus/Van 4445 251 597 4445 251 597 4445 251 12 597
Vehicle Mix Per Lane @ Capacity 3418 1003 80 4500 1.0 3418 1003 80 4500 1.0 3370 1003 48 80 4500 1.0

Avg. Vehicle Occupancy 1.3 1.0 30.0 1.3 1.0 30.0 1.3 1.0 1.0 30.0
Total No. of  Passengers(PVs and buses only) 5,042 5,042 5,042
% Vehicle Distribution by Lane-Capacity 75.9% 22.3% 0.0% 1.8% 75.9% 22.3% 0.0% 1.8% 74.9% 22.3% 1.1% 1.8%
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           Table A-11
       FORECAST 2024 PEAK HOUR TRAFFIC OPERATIONS

Long Island Expressway 

Scenario #4, Exclusive AHS Lane for all Commercial and Transit Vehicles

AHS GUL GUL
OPTION A. Lane 1 Lane 2 Lane 3
1AHS Lane, 2 GULs SU+ Trk Tlr+Buses(PCEs) PVs Only PVs Only

PVs SU Trk Tlr Bus Total PVs SU Trk Tlr Bus Total PVs SU Trk Tlr Bus Total
% Vehicle Distribution by Lane- Demand 0.0% 91.3% 1.4% 7.2% No. PCEs v/c* 100.0% 0.0% 0.0% 0.0% No. PCEs v/c** 100.0% 0.0% 0.0% 0.0% No. PCEs v/c**
Demand -pcph 0 3008 48 239 3295 5557 0 0 0 5557 2.5 5557 0 0 0 5557 2.5
Demand - No. Occpts @ 1.20 PV; 1.0 Tks;30 Bus/Van 752 12 1791 6668 6668
Vehicle Mix Per Lane @ Capacity 4500 0.7 2200 2200 1.0 2200 2200 1.0

Avg. Vehicle Occupancy 1.0 1.0 30.0 3.0 3.0
Total No. of  Passengers(PVs and buses only) 1,791 6,668 6,668
% Vehicle Distribution by Lane-Capacity 0.0% 91.3% 1.4% 7.2% 100.0% 0.0% 0.0% 0.0% 100.0% 0.0% 0.0% 0.0%

AHS AHS GUL
OPTION B. Lane 1 Lane 2 Lane 3
2 AHS Lanes; 1 GUL SU+ Trk Tlr+Buses(PCEs) PVs Only PVs Only

PVs SU Trk Tlr Bus Total PVs SU Trk Tlr Bus Total PVs SU Trk Tlr Bus Total
% Vehicle Distribution by Lane- Demand 0.0% 91.3% 1.4% 7.2% No. PCEs v/c* 100.0% 0.0% 0.0% 0.0% No. PCEs v/c* 100.0% 0.0% 0.0% 0.0% No. PCEs v/c**
Demand -pcph 0 3008 48 239 3295 5557 0 0 0 5557 1.2 5557 0 0 0 5557 2.5
Demand - No. Occpts @ 1.20 PV; 1.0 Tks;30 Bus/Van 752 12 1791 6668 6668
Vehicle Mix Per Lane @ Capacity 4500 0.7 4500 4500 1.0 2200 2200 1.0

Avg. Vehicle Occupancy 1.0 1.0 30.0 1.5 3.0
Total No. of  Passengers(PVs and buses only) 1,791 6,668 6,668
% Vehicle Distribution by Lane-Capacity 0.0% 91.3% 1.4% 7.2% 100.0% 0.0% 0.0% 0.0% 100.0% 0.0% 0.0% 0.0%

AHS AHS AHS
OPTION C. Lane 1 Lane 2 Lane 3
3 AHS Lanes SU+ Trk Tlr+Buses(PCEs) PVs Only PVs Only

PVs SU Trk Tlr Bus Total PVs SU Trk Tlr Bus Total PVs SU Trk Tlr Bus Total
% Vehicle Distribution by Lane- Demand 0.0% 91.3% 1.4% 7.2% No. PCEs v/c* 100.0% 0.0% 0.0% 0.0% No. PCEs v/c* 100.0% 0.0% 0.0% 0.0% No. PCEs v/c*
Demand -pcph 0 3008 48 239 3295 5557 0 0 0 5557 1.2 5557 0 0 0 5557 1.2
Demand - No. Occpts @ 1.20 PV; 1.0 Tks;30 Bus/Van 752 12 1791 6668 6668 0 0 0
Vehicle Mix Per Lane @ Capacity 4500 0.7 4500 4500 1.0 4500 0 0 4500 1.0

Avg. Vehicle Occupancy 1.0 1.0 30.0 1.5 1.5
Total No. of  Passengers(PVs and buses only) 1,791 6,668 6,668
% Vehicle Distribution by Lane-Capacity 0.0% 91.3% 1.4% 7.2% 100.0% 0.0% 0.0% 0.0% 100.0% 0.0% 0.0% 0.0%
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Table A-12
FORECAST 2024 PEAK HOUR TRAFFIC OPERATIONS

VEHICLE-MILES & PERSON-HOURS SUMMARY
Long Island Expressway

Scenario # 1 Scenario #2 Scenario # 3 Scenario #4
No Build Options Options Options Options

(1HOV/3GUL) A B C A B C A B C A B C
No. of AHS Lanes 0 1 2 3 1 2 3 1 2 3 1 2 3
No. GULs 4 2 1 0 2 1 0 2 1 0 2 1 0
Hrly Roadway Capacity 8,800 8,900 11,200 13,500 8,900 11,200 13,500 8,900 11,200 13,500 8,900 11,200 13,500

 Vehicle Classification VEHICLE-MILES
AHS
Passenger Vehicles 0 67,500 67,500 135,000 51,030 102,060 153,090 43,155 102,540 153,090 0 67,500 135,000
Single Unit Trucks 0 0 0 45,120 15,045 30,090 45,135 22,560 30,090 45,135 45,120 45,120 45,120
Tractor Trailers 0 0 0 720 240 480 720 0 0 720 720 720 720
Buses 0 0 0 3,585 1,200 2,400 3,600 1,785 2,400 3,600 3,585 3,585 3,585

AHS VMT Total  0 67,500 67,500 184,425 67,515 135,030 202,545 67,500 135,030 202,545 49,425 116,925 184,425

GULs
Passenger Vehicles 75,960 16,590 33,000 0 33,060 16,530 0 40,920 16,050 0 66,000 33,000 0
Single Unit Trucks 45,120 45,120 45,120 0 30,090 15,045 0 22,560 15,045 0 0 0 0
Tractor Trailers 720 720 720 0 480 240 0 720 720 0 0 0 0
Buses 3,585 3,570 3,570 0 2,400 1,200 0 1,800 1,200 0 0 0 0

GUL VMT Total  125,385 66,000 82,410 0 66,030 33,015 0 66,000 33,015 0 66,000 33,000 0
Roadway Total VMT 125,385 133,500 149,910 184,425 133,545 168,045 202,545 133,500 168,045 202,545 115,425 149,925 184,425

 Vehicle Classification PERSON-HOURS
AHS
Passenger Vehicles 0 3,334 3,334 6,668 2,223 4,445 6,668 3,334 4,445 6,668 0 3,334 6,668
Single Unit Trucks 0 0 245 245 126 251 377 188 251 377 245 245 245
Tractor Trailers 0 0 4 4 2 4 6 0 0 6 4 4 4
Buses 0 0 584 584 299 597 896 448 597 896 584 584 584

AHS PHT Total  0 3,334 4,167 7,501 2,649 5,297 7,946 3,970 5,293 7,946 833 4,167 7,501

GULs
Passenger Vehicles 7,275 3,334 3,334 0 4,445 2,223 0 3,334 2,223 0 6,668 3,334 0
Single Unit Trucks 377 376 0 0 251 126 0 188 126 0 0 0 0
Tractor Trailers 6 6 0 0 4 2 0 6 6 0 0 0 0
Buses 897 895 0 0 597 299 0 448 299 0 0 0 0

GUL PHT Total  8,554 4,611 3,334 0 5,297 2,649 0 3,976 2,653 0 6,668 3,334 0
Roadway Total PHT 8,554 7,945 7,501 7,501 7,946 7,946 7,946 7,946 7,946 7,946 7,501 7,501 7,501

Using a 15 mile long section
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Table A-13
FORECAST  2024 PEAK HOUR TRAFFIC OPERATIONS

New York State Thruway
Base Conditions, NO BUILD

Total PV's SU Trk.Trlr Buses No. of***
From To PCEs@3.0 89.2% 7.0% 0.8% 3.0% Passengers *   Capacity is based on 4500 pcphpl

Exit      16 18 vph 2552 201 23 86 7,190 **  Capacity is based on 2200 pcphpl
Newburgh, NY                   pcph 3482 2552 603 69 258 *** Based on actual number of vehicles(not PCEs),

     (PVs and buses only)

Lane 1 Lane 2
  2 GULs Mixed (PCEs) Mixed (PCEs)

PVs SU Trk Tlr Bus Total PVs SU Trk Tlr Bus Total
% Vehicle Distribution by Lane- Demand 73.3% 17.3% 2.0% 7.4% No. PCEs v/c* 73.3% 17.3% 2.0% 7.4% No. PCEs v/c**
Demand - pcph 1276 302 35 129 1741 1276 302 35 129 1741
Demand - No. Occpts @ 1.20 PV; 1.0 Tks;48 Bus 1531 101 12 2064 1531 101 12 2064
Vehicle Mix Per Lane @ Capacity 2200 0.8 2200 0.8

Avg. Vehicle Occupancy 1.2 1.0 1.0 48.0 1.2 1.0 1.0 48.0
Total No. of Passengers(PVs and buses only) 3,595 3,595
% Vehicle Distribution by Lane-Capacity 73.3% 17.3% 2.0% 7.4% 73.3% 17.3% 2.0% 7.4%
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Table A-14
FORECAST  2024 PEAK HOUR TRAFFIC OPERATIONS

New York State Thruway
Scenario #1, Passenger Vehicles in Separate AHS Lane

AHS GUL GUL
OPTION A. Lane 1 Lane 2 Lane 3
1 AHS Lane, 2 GULs PVs Only Mixed(PCEs) Mixed(PCEs)

PVs SU Trk Tlr Bus Total PVs SU Trk Tlr Bus Total PVs SU Trk Tlr Bus Total
% Vehicle Distribution by Lane- Demand 100.0% 0.0% 0.0% 0.0% No. PCEs v/c* 57.8% 27.3% 3.1% 11.7% No. PCEs v/c* 57.8% 27.3% 3.1% 11.7% No. PCEs v/c**
Demand - pcph 1276 0 0 0 1276 638 302 35 129 1103 638 302 35 129 1103
Demand - No. Occpts @ 1.20 PV; 1.0 Tks;48 Bus 1531 766 101 12 2064 766 101 12 2064
Vehicle Mix Per Lane @ Capacity 4500 0.3 2200 0.5 2200 0.5

Avg. Vehicle Occupancy 1.2 1.2 1.0 1.0 48.0 1.2 1.0 1.0 48.0
Total No. of Passengers(PVs and buses only) 1,531 2,830 2,830
% Vehicle Distribution by Lane-Capacity 100.0% 0.0% 0.0% 0.0% 57.8% 27.3% 3.1% 11.7% 57.8% 27.3% 3.1% 11.7%

AHS AHS GUL
OPTION B. Lane 1 Lane 2 Lane 3
2 AHS Lanes, 1 GUL PVs Only SU +TrkTlr+Buses(PCEs) Remaining(PCEs)

PVs SU Trk Tlr Bus Total PVs SU Trk Tlr Bus Total PVs SU Trk Tlr Bus Total
% Vehicle Distribution by Lane- Demand 100.0% 0.0% 0.0% 0.0% No. PCEs v/c* 0.0% 64.8% 7.4% 27.7% No. PCEs v/c* 100.0% 0.0% 0.0% 0.0% No. PCEs v/c**
Demand - pcph 1276 0 0 0 1276 0 603 69 258 930 1276 0 0 0 1276
Demand - No. Occpts @ 1.20 PV; 1.0 Tks;48 Bus 1531 201 23 4128 1531
Vehicle Mix Per Lane @ Capacity 4500 0.3 4500 0.2 2200 0.6

Avg. Vehicle Occupancy 1.2 1.0 1.0 48.0 1.2
Total No. of Passengers(PVs and buses only) 1,531 4,128 1,531
% Vehicle Distribution by Lane-Capacity 100.0% 0.0% 0.0% 0.0% 0.0% 64.8% 7.4% 27.7% 100.0% 0.0% 0.0% 0.0%

AHS AHS AHS
OPTION C. Lane 1 Lane 2 Lane 3
3 AHS Lanes PVs Only SU +TrkTlr+Buses(PCEs) Remaining(PCEs)

PVs SU Trk Tlr Bus Total PVs SU Trk Tlr Bus Total PVs SU Trk Tlr Bus Total
% Vehicle Distribution by Lane- Demand 100.0% 0.0% 0.0% 0.0% No. PCEs v/c* 0.0% 64.8% 7.4% 27.7% No. PCEs v/c* 100.0% 0.0% 0.0% 0.0% No. PCEs v/c*
Demand - pcph 1276 0 0 0 1276 0 603 69 258 930 1276 0 0 0 1276
Demand - No. Occpts @ 1.20 PV; 1.0 Tks;48 Bus 1531 201 23 4128 1531
Vehicle Mix Per Lane @ Capacity 4500 0.3 4500 0.2 4500 0.3

Avg. Vehicle Occupancy 1.2 1.0 1.0 48.0 1.2
Total No. of Passengers(PVs and buses only) 1,531 4,128 1,531
% Vehicle Distribution by Lane-Capacity 100.0% 0.0% 0.0% 0.0% 0.0% 64.8% 7.4% 27.7% 100.0% 0.0% 0.0% 0.0%
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Table A-15
FORECAST  2024 PEAK HOUR TRAFFIC OPERATIONS

New York State Thruway
Scenario #2,  Mixed Vehicles in AHS Lane(s)

AHS GUL GUL
OPTION A. Lane 1 Lane 2 Lane 3
1 AHS Lane, 2 GULs Mixed(PCEs) Mixed(PCEs) Mixed(PCEs)**

PVs SU Trk Tlr Bus Total PVs SU Trk Tlr Bus Total PVs SU Trk Tlr Bus Total
% Vehicle Distribution by Lane- Demand 73.3% 17.3% 2.0% 7.4% No. PCEs v/c* 73.3% 17.3% 2.0% 7.4% No. PCEs v/c** 73.3% 17.3% 2.0% 7.4% No. PCEs v/c**
Demand - pcph 851 201 23 86 1161 851 201 23 86 1161 851 201 23 86 1161
Demand - No. Occpts @ 1.20 PV; 1.0 Tks;48 Bus 1021 67 8 1376 1021 67 8 1376 1021 67 8 1376
Vehicle Mix Per Lane @ Capacity 4500 0.3 2200 0.5 2200 0.5

Avg. Vehicle Occupancy 1.2 1.0 1.0 48.0 1.2 1.0 1.0 48.0 1.2 1.0 1.0 48.0
Total No. of Passengers(PVs and buses only) 2,397 2,397 2,397
% Vehicle Distribution by Lane-Capacity 73.3% 17.3% 2.0% 7.4% 73.3% 17.3% 2.0% 7.4% 73.3% 17.3% 2.0% 7.4%

AHS AHS GUL
OPTION B. Lane 1 Lane 2 Lane 3
2 AHS Lanes, 1 GUL Mixed(PCEs) Mixed(PCEs) Mixed(PCEs)

PVs SU Trk Tlr Bus Total PVs SU Trk Tlr Bus Total PVs SU Trk Tlr Bus Total
% Vehicle Distribution by Lane- Demand 73.3% 17.3% 2.0% 7.4% No. PCEs v/c* 73.3% 17.3% 2.0% 7.4% No. PCEs v/c* 73.3% 17.3% 2.0% 7.4% No. PCEs v/c**
Demand - pcph 851 201 23 86 1161 851 201 23 86 1161 851 201 23 86 1161
Demand - No. Occpts @ 1.20 PV; 1.0 Tks;48 Bus 1021 67 8 1376 1021 67 8 1376 1021 67 8 1376
Vehicle Mix Per Lane @ Capacity 4500 0.3 4500 0.3 2200 0.5

Avg. Vehicle Occupancy 1.2 1.0 1.0 48.0 1.2 1.0 1.0 48.0 1.2 1.0 1.0 48.0
Total No. of Passengers(PVs and buses only) 2,397 2,397 2,397
% Vehicle Distribution by Lane-Capacity 73.3% 17.3% 2.0% 7.4% 73.3% 17.3% 2.0% 7.4% 73.3% 17.3% 2.0% 7.4%

AHS AHS AHS
OPTION C. Lane 1 Lane 2 Lane 3
3 AHS Lanes Mixed(PCEs) Mixed(PCEs) Mixed(PCEs)

PVs SU Trk Tlr Bus Total PVs SU Trk Tlr Bus Total PVs SU Trk Tlr Bus Total
% Vehicle Distribution by Lane- Demand 73.3% 17.3% 2.0% 7.4% No. PCEs v/c* 73.3% 17.3% 2.0% 7.4% No. PCEs v/c* 73.3% 17.3% 2.0% 7.4% No. PCEs v/c*
Demand - pcph 851 201 23 86 1161 851 201 23 86 1161 851 201 23 86 1161
Demand - No. Occpts @ 1.20 PV; 1.0 Tks;48 Bus 1021 67 8 1376 1021 67 8 1376 1021 67 8 1376
Vehicle Mix Per Lane @ Capacity 4500 0.3 4500 0.3 4500 0.3

Avg. Vehicle Occupancy 1.2 1.0 1.0 48.0 1.2 1.0 1.0 48.0 1.2 1.0 1.0 48.0
Total No. of Passengers(PVs and buses only) 2,397 2,397 2,397
% Vehicle Distribution by Lane-Capacity 73.3% 17.3% 2.0% 7.4% 73.3% 17.3% 2.0% 7.4% 73.3% 17.3% 2.0% 7.4%
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Table A-16
FORECAST  2024 PEAK HOUR TRAFFIC OPERATIONS

New York State Thruway
Scenario #3, Exclusive AHS Lane for Passenger Vehicles, Light Trucks and Transit Vehicles

AHS GUL GUL
OPTION A. Lane 1 Lane 2 Lane 3
1 AHS Lane, 2 GULs PVs +SU+Buses(PCEs) Mixed(PCEs) Mixed(PCEs)

PVs SU Trk Tlr Bus Total PVs SU Trk Tlr Bus Total PVs SU Trk Tlr Bus Total
% Vehicle Distribution by Lane- Demand 74.8% 17.7% 0.0% 7.6% No. PCEs v/c* 71.9% 17.0% 3.9% 7.3% No. PCEs v/c** 71.9% 17.0% 3.9% 7.3% No. PCEs v/c**
Demand - pcph 1276 302 0 129 1707 638 151 35 65 888 638 151 35 65 888
Demand - No. Occpts @ 1.20 PV; 1.0 Tks;48 Bus 1531 101 2064 766 50 12 1032 766 50 12 1032
Vehicle Mix Per Lane @ Capacity 4500 0.4 2200 0.4 2200 0.4

Avg. Vehicle Occupancy 1.2 1.0 48.0 1.2 1.0 1.0 48.0 1.2 1.0 1.0 48.0
Total No. of Passengers(PVs and buses only) 3,595 1,798 1,798
% Vehicle Distribution by Lane-Capacity 74.8% 34.0% 0.0% 14.5% 71.9% 17.0% 3.9% 7.3% 71.9% 17.0% 3.9% 7.3%

AHS AHS GUL
OPTION B. Lane 1 Lane 2 Lane 3
2 AHS Lanes, 1 GUL PVs +SU+Buses(PCEs) PVs +SU+Buses(PCEs) Mixed(PCEs)

PVs SU Trk Tlr Bus Total PVs SU Trk Tlr Bus Total PVs SU Trk Tlr Bus Total
% Vehicle Distribution by Lane- Demand 74.8% 17.7% 0.0% 7.6% No. PCEs v/c* 74.8% 17.7% 0.0% 7.6% No. PCEs v/c* 70.5% 16.7% 5.7% 7.1% No. PCEs v/c**
Demand - pcph 851 201 0 86 1138 851 201 0 86 1138 851 201 69 86 1207
Demand - No. Occpts @ 1.20 PV; 1.0 Tks;48 Bus 1021 67 1376 1021 67 1376 1021 67 23 1376
Vehicle Mix Per Lane @ Capacity 4500 0.3 4500 0.3 2200 0.5

Avg. Vehicle Occupancy 1.2 1.0 48.0 1.2 1.0 48.0 1.2 1.0 1.0 48.0
Total No. of Passengers(PVs and buses only) 2,397 2,397 2,397
% Vehicle Distribution by Lane-Capacity 74.8% 17.7% 0.0% 7.6% 74.8% 17.7% 0.0% 7.6% 70.5% 16.7% 5.7% 7.1%

AHS AHS AHS
OPTION C. Lane 1 Lane 2 Lane 3
3 AHS Lanes PVs +SU+Buses(PCEs) PVs +SU+Buses(PCEs) Mixed(PCEs)

PVs SU Trk Tlr Bus Total PVs SU Trk Tlr Bus Total PVs SU Trk Tlr Bus Total
% Vehicle Distribution by Lane- Demand 74.8% 17.7% 0.0% 7.6% No. PCEs v/c* 74.8% 17.7% 0.0% 7.6% No. PCEs v/c* 70.5% 16.7% 5.7% 7.1% No. PCEs v/c*
Demand - pcph 851 201 0 86 1138 851 201 0 86 1138 851 201 69 86 1207
Demand - No. Occpts @ 1.20 PV; 1.0 Tks;48 Bus 1021 67 1376 1021 67 1376 1021 67 23 1376
Vehicle Mix Per Lane @ Capacity 4500 0.3 4500 0.3 4500 0.3

Avg. Vehicle Occupancy 1.2 1.0 48.0 1.2 1.0 48.0 1.2 1.0 1.0 48.0
Total No. of Passengers(PVs and buses only) 2,397 2,397 2,397
% Vehicle Distribution by Lane-Capacity 74.8% 17.7% 0.0% 7.6% 74.8% 17.7% 0.0% 7.6% 70.5% 16.7% 5.7% 7.1%
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Table A-17
FORECAST  2024 PEAK HOUR TRAFFIC OPERATIONS

New York State Thruway
Scenario #4, Exclusive AHS Lane for all Commercial and Transit Vehicles

AHS GUL GUL
OPTION A. Lane 1 Lane 2 Lane 3
1 AHS Lane, 2 GULs SU+ Trk Tlr+Buses(PCEs) PVs Only PVs Only

PVs SU Trk Tlr Bus Total PVs SU Trk Tlr Bus Total PVs SU Trk Tlr Bus Total
% Vehicle Distribution by Lane- Demand 0.0% 64.8% 7.4% 27.7% No. PCEs v/c* 100.0% 0.0% 0.0% 0.0% No. PCEs v/c** 100.0% 0.0% 0.0% 0.0% No. PCEs v/c**
Demand - pcph 0 603 69 258 930 1276 0 0 0 1276 1276 0 0 0 1276
Demand - No. Occpts @ 1.20 PV; 1.0 Tks;48 Bus 201 23 4128 1531 1531
Vehicle Mix Per Lane @ Capacity 4500 0.2 2200 0.6 2200 0.6

Avg. Vehicle Occupancy 1.0 1.0 48.0 1.2 1.2
Total No. of Passengers(PVs and buses only) 4,128 1,531 1,531
% Vehicle Distribution by Lane-Capacity 0.0% 47.3% 5.4% 20.2% 100.0% 0.0% 0.0% 0.0% 100.0% 0.0% 0.0% 0.0%

AHS AHS GUL
OPTION B. Lane 1 Lane 2 Lane 3
2 AHS Lanes, 1 GUL SU+ Trk Tlr+Buses(PCEs) PVs Only PVs Only

PVs SU Trk Tlr Bus Total PVs SU Trk Tlr Bus Total PVs SU Trk Tlr Bus Total
% Vehicle Distribution by Lane- Demand 0.0% 64.8% 7.4% 27.7% No. PCEs v/c* 100.0% 0.0% 0.0% 0.0% No. PCEs v/c* 100.0% 0.0% 0.0% 0.0% No. PCEs v/c**
Demand - pcph 0 603 69 258 930 1276 0 0 0 1276 1276 0 0 0 1276
Demand - No. Occpts @ 1.20 PV; 1.0 Tks;48 Bus 201 23 4128 1531 1531
Vehicle Mix Per Lane @ Capacity 4500 0.2 4500 0.3 2200 0.6

Avg. Vehicle Occupancy 1.0 1.0 48.0 1.2 1.2
Total No. of Passengers(PVs and buses only) 4,128 1,531 1,531
% Vehicle Distribution by Lane-Capacity 0.0% 47.3% 5.4% 20.2% 100.0% 0.0% 0.0% 0.0% 100.0% 0.0% 0.0% 0.0%

AHS AHS AHS
OPTION C. Lane 1 Lane 2 Lane 3
3 AHS Lanes SU+ Trk Tlr+Buses(PCEs) PVs Only PVs Only

PVs SU Trk Tlr Bus Total PVs SU Trk Tlr Bus Total PVs SU Trk Tlr Bus Total
% Vehicle Distribution by Lane- Demand 0.0% 64.8% 7.4% 27.7% No. PCEs v/c* 100.0% 0.0% 0.0% 0.0% No. PCEs v/c* 100.0% 0.0% 0.0% 0.0% No. PCEs v/c*
Demand - pcph 0 603 69 258 930 1276 0 0 0 1276 1276 0 0 0 1276
Demand - No. Occpts @ 1.20 PV; 1.0 Tks;48 Bus 201 23 4128 1531 1531
Vehicle Mix Per Lane @ Capacity 4500 0.2 4500 0.3 4500 0.3

Avg. Vehicle Occupancy 1.0 1.0 48.0 1.2 1.2
Total No. of Passengers(PVs and buses only) 4,128 1,531 1,531
% Vehicle Distribution by Lane-Capacity 0.0% 47.3% 5.4% 20.2% 100.0% 0.0% 0.0% 0.0% 100.0% 0.0% 0.0% 0.0%
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Table A-18
FORECAST 2024 PEAK HOUR TRAFFIC OPERATIONS

VEHICLE-MILES & PERSON-HOURS SUMMARY
New York State Thruway

Scenario # 1 Scenario #2 Scenario # 3 Scenario #4
No Build Options Options Options Options

A B C A B C A B C A B C
No. of AHS Lanes 0 1 2 3 1 2 3 1 2 3 1 2 3
No. GULs 2 2 1 0 2 1 0 2 1 0 2 1 0
Hrly Roadway Capacity 4400 8900 11200 13500 8900 11200 13500 8900 11200 13500 8900 11200 13500

 Vehicle Classification VEHICLE-MILES
AHS
Passenger Vehicles 0 39,556 39,556 79,112 26,381 52,762 79,143 39,556 52,762 79,143 0 39,556 79,112
Single Unit Trucks 0 0 18,693 18,693 6,231 12,462 18,693 9,362 12,462 18,693 18,693 18,693 18,693
Tractor Trailers 0 0 2,139 2,139 713 1,426 2,139 0 0 2,139 2,139 2,139 2,139
Buses 0 0 7,998 7,998 2,666 5,332 7,998 3,999 5,332 7,998 7,998 7,998 7,998

VMT Total  0 39,556 68,386 107,942 35,991 71,982 107,973 52,917 70,556 107,973 28,830 68,386 107,942

GULs
Passenger Vehicles 79,112 39,556 39,556 0 52,762 26,381 0 39,556 26,381 0 79,112 39,556 0
Single Unit Trucks 18,724 18,724 0 0 12,462 6,231 0 9,362 6,231 0 0 0 0
Tractor Trailers 2,170 2,170 0 0 1,426 713 0 2,170 2,139 0 0 0 0
Buses 7,998 7,998 0 0 5,332 2,666 0 4,030 2,666 0 0 0 0

VMT Total  108,004 68,448 39,556 0 71,982 35,991 0 55,118 37,417 0 79,112 39,556 0
Roadway Total VMT 108,004 108,004 107,942 107,942 107,973 107,973 107,973 108,035 107,973 107,973 107,942 107,942 107,942

 Vehicle Classification PERSON-HOURS
AHS
Passenger Vehicles 0 804 804 1,609 536 1,073 1,609 818 1,073 1,609 0 804 1,609
Single Unit Trucks 0 0 104 104 35 70 106 54 70 106 104 104 104
Tractor Trailers 0 0 12 12 4 8 13 0 0 12 12 12 12
Buses 0 0 2,133 2,133 723 1,446 2,169 1,103 1,446 2,169 2,133 2,133 2,133

PHT Total  0 804 3,053 3,857 1,299 2,598 3,897 1,975 2,589 3,896 2,249 3,053 3,857

GULs
Passenger Vehicles 1,825 833 848 0 1,111 555 0 819 555 0 1,695 848 0
Single Unit Trucks 120 110 0 0 73 36 0 53 36 0 0 0 0
Tractor Trailers 14 13 0 0 9 4 0 13 13 0 0 0 0
Buses 2,461 2,245 0 0 1,497 748 0 1,103 748 0 0 0 0

PHT Total  4,421 3,201 848 0 2,689 1,344 0 1,988 1,353 0 1,695 848 0
Roadway Total PHT 4,421 4,006 3,900 3,857 3,988 3,942 3,897 3,964 3,942 3,896 3,944 3,900 3,857
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Table A-19
FORECAST 2024 PEAK HOUR TRAFFIC OPERATIONS

New Jersey Turnpike
Base Conditions, NO BUILD

Total PVs SU Trk.Trlr. Buses No. of ***
Section PCE@3.0 66.8% 7.5% 15.7% 10.0% Passengers *    Capacity is based on 4500 pcphpl

West Spur  16W+18W pcph 8,951 5,981 669 1,401 899 21,865 **  Capacity is based on 2200 pcphpl
East Spur  16E+18E pcph 11,797 7,883 882 1,847 1,185 28,818 *** Based on actual number of vehicles(not PCEs),
Combined pcph 20,748 13,864 1,551 3,248 2,085 50,683       (PVs and buses only)

GUL GUL GUL
Lane 1 Lane 2 Lane 3

3 GULs for East and West Spurs
6 GULs for Combined Section Mixed(PCEs) Mixed(PCEs) Mixed(PCEs)

Section PVs SU Trk Tlr Bus Total PVs SU Trk Tlr Bus Total PVs SU Trk Tlr Bus Total
% Vehicle Distribution by Lane- Demand 66.8% 7.5% 15.7% 10.0% No. PCEs v/c* 66.8% 7.5% 15.7% 10.0% No. PCEs v/c** 66.8% 7.5% 15.7% 10.0% No. PCEs v/c**

West Spur 16W + 18W Demand -pcph 1,994 223 467 300 2,984 1.4 1,994 223 467 300 2,984 1.4 1,994 223 467 300 2,984 1.4
Demand - No. Occpts @ 1.25 PV; 1.0 Tks;48 Bus 2,492 74 156 4,796 2,492 74 156 4,796 2,492 74 156 4,796
Vehicle Mix Per Lane @ Capacity 1,210 223 467 300 2,200 1.0 1,210 223 467 300 2,200 1.0 1,210 223 467 300 2,200 1.0

Avg. Vehicle Occupancy 2.1 1.0 1.0 48.0 2.1 1.0 1.0 48.0 2.1 1.0 1.0 48.0
Total No. of Passengers(PVs and buses only) 7,288 7,288 7,288
% Vehicle Distribution by Lane-Capacity 55.0% 10.1% 21.2% 13.6% 55.0% 10.1% 21.2% 13.6% 55.0% 10.1% 21.2% 13.6%

East Spur 16E + 18E Demand -pcph 2,628 294 616 395 3,932 1.8 2,628 294 616 395 3,932 1.8 2,628 294 616 395 3,932 1.8
Demand - No. Occpts @ 1.25 PV; 1.0 Tks;48 Bus 3,285 98 205 6,321 3,285 98 205 6,321 3,285 98 205 6,321
Vehicle Mix Per Lane @ Capacity 895 294 616 395 2,200 1.0 895 294 616 395 2,200 1.0 895 294 616 395 2,200 1.0

Avg. Vehicle Occupancy 3.7 1.0 1.0 48.0 3.7 1.0 1.0 48.0 3.7 1.0 1.0 48.0
Total No. of Passengers(PVs and buses only) 9,606 9,606 9,606
% Vehicle Distribution by Lane-Capacity 40.7% 13.4% 28.0% 18.0% 40.7% 13.4% 28.0% 18.0% 40.7% 13.4% 28.0% 18.0%

Lanes 1 & 2 Lanes 3&4 Lanes 5 & 6
Combined Demand -pcph 4,621 517 1,083 695 6,916 1.6 4,621 517 1,083 695 6,916 1.6 4,621 517 1,083 695 6,916 1.6

Demand - No. Occpts @ 1.25 PV; 1.0 Tks;48 Bus 5,777 172 361 11,117 5,777 172 361 11,117 5,777 172 361 11,117
Vehicle Mix Per Lane @ Capacity 2,105 517 1,083 695 4,400 1.0 2,105 517 1,083 695 4,400 1.0 2,105 517 1,083 695 4,400 1.0

Avg. Vehicle Occupancy 2.7 1.0 1.0 48.0 2.7 1.0 1.0 48.0 2.7 1.0 1.0 48.0
Total No. of Passengers(PVs and buses only) 16,894 16,894 16,894
% Vehicle Distribution by Lane-Capacity 47.9% 11.8% 24.6% 15.8% 47.9% 11.8% 24.6% 15.8% 47.9% 11.8% 24.6% 15.8%
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Table A-20
FORECAST 2024 PEAK HOUR TRAFFIC OPERATIONS

New Jersey Turnpike
Scenario #1, Passenger Vehicles in Separate AHS Lane, Option A

AHS GUL GUL
OPTION A. Lane 1 Lane 2 Lane 3
1 AHS Lane, 2 GULs PVs Only Mixed(PCEs) Mixed(PCEs)

Section PVs SU Trk Tlr Bus Total PVs SU Trk Tlr Bus Total PVs SU Trk Tlr Bus Total
% Vehicle Distribution by Lane- Demand 100.0% 0.0% 0.0% 0.0% No. PCEs v/c* 50.2% 11.2% 23.5% 15.1% No. PCEs v/c** 50.2% 11.2% 23.5% 15.1% No. PCEs v/c**

West Spur 16W + 18W Demand -pcph 2,991 0 0 0 2,991 1,496 335 701 450 2,980 1.4 1,496 335 701 450 2,981 1.4
Demand - No. Occpts @ 1.25 PV; 1.0 Tks;48 Bus 3,739 1,869 112 234 7,192 1,869 112 234 7,192
Vehicle Mix Per Lane @ Capacity 4,500 0.7 716 335 701 450 2,200 1.0 715 335 701 450 2,200 1.0

Avg. Vehicle Occupancy 1.3 2.6 1.0 1.0 48.0 2.6 1.0 1.0 48.0
Total No. of Passengers(PVs and buses only) 3,739 9,061 9,061
% Vehicle Distribution by Lane-Capacity 100.0% 0.0% 0.0% 0.0% 32.5% 15.2% 31.8% 20.4% 32.5% 15.2% 31.8% 20.4%

East Spur 16E + 18E Demand -pcph 3,942 0 0 0 3,942 1,971 441 924 593 3,928 1.8 1,971 441 924 593 3,928 1.8
Demand - No. Occpts @ 1.25 PV; 1.0 Tks;48 Bus 4,928 2,464 147 308 9,480 2,464 147 308 9,480
Vehicle Mix Per Lane @ Capacity 4,500 0.9 243 441 924 593 2,200 1.0 243 441 924 593 2,200 1.0

Avg. Vehicle Occupancy 1.3 10.1 1.0 1.0 48.0 10.1 1.0 1.0 48.0
Total No. of Passengers(PVs and buses only) 4,928 11,944 11,944
% Vehicle Distribution by Lane-Capacity 100.0% 0.0% 0.0% 0.0% 11.0% 20.0% 42.0% 26.9% 11.0% 20.0% 42.0% 26.9%

Lanes 1 & 2 Lanes 3&4 Lanes 5 & 6
Combined Demand -pcph 6,932 0 0 0 6,932 3,466 776 1,624 1,043 6,908 1.6 3,466 776 1,624 1,043 6,909 1.6

Demand - No. Occpts @ 1.25 PV; 1.0 Tks;48 Bus 8,665 4,333 259 541 16,680 4,333 259 541 16,680
Vehicle Mix Per Lane @ Capacity 9,000 0.8 958 776 1,624 1,043 4,400 1.0 958 776 1,624 1,043 4,400 1.0

Avg. Vehicle Occupancy 1.3 4.5 1.0 1.0 48.0 4.5 1.0 1.0 48.0
Total No. of Passengers(PVs and buses only) 8,665 21,013 21,013
% Vehicle Distribution by Lane-Capacity 100.0% 0.0% 0.0% 0.0% 21.8% 17.6% 36.9% 23.7% 21.8% 17.6% 36.9% 23.7%
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Table A-20
FORECAST 2024 PEAK HOUR TRAFFIC OPERATIONS

New Jersey Turnpike
Scenario #1, Passenger Vehicles in Separate AHS Lane, Option B

AHS AHS GUL
OPTION B. Lane 1 Lane 2 Lane 3
2 AHS Lanes, 1 GUL PVs Only SU +TrkTlr+Buses(PCEs) Remaining(PCEs)

Section PVs SU Trk Tlr Bus Total PVs SU Trk Tlr Bus Total PVs SU Trk Tlr Bus Total
% Vehicle Distribution by Lane- Demand 100.0% 0.0% 0.0% 0.0% No. PCEs v/c* 0.0% 22.5% 47.2% 30.3% No. PCEs v/c* 100.0% 0.0% 0.0% 0.0% No. PCEs v/c**

West Spur 16W + 18W Demand -pcph 2,991 0 0 0 2,991 0 669 1,401 899 2,969 2,991 0 0 0 2,991 1.4
Demand - No. Occpts @ 1.25 PV; 1.0 Tks;48 Bus 3,739 223 467 14,388 3,739
Vehicle Mix Per Lane @ Capacity 4,500 0.7 4,500 0.7 2,200 2,200 1.0

Avg. Vehicle Occupancy 1.3 1.0 1.0 48.0 1.7
Total No. of Passengers(PVs and buses only) 3,739 14,388 3,739
% Vehicle Distribution by Lane-Capacity 100.0% 0.0% 0.0% 0.0% 0.0% 22.5% 47.2% 30.3% 100.0% 0.0% 0.0% 0.0%

East Spur 16E + 18E Demand -pcph 3,942 0 0 0 3,942 0 882 1,847 1,185 3,914 3,942 0 0 0 3,942 1.8
Demand - No. Occpts @ 1.25 PV; 1.0 Tks;48 Bus 4,928 294 616 18,964 4,928
Vehicle Mix Per Lane @ Capacity 4,500 0.9 4,500 0.9 2,200 2,200 1.0

Avg. Vehicle Occupancy 1.3 1.0 1.0 48.0 2.2
Total No. of Passengers(PVs and buses only) 4,928 18,964 4,928
% Vehicle Distribution by Lane-Capacity 100.0% 0.0% 0.0% 0.0% 0.0% 22.5% 47.2% 30.3% 100.0% 0.0% 0.0% 0.0%

Lanes 1 & 2 Lanes 3&4 Lanes 5 & 6
Combined Demand -pcph 6,932 0 0 0 6,932 0 1,551 3,248 2,085 6,884 6,932 0 0 0 6,932 1.6

Demand - No. Occpts @ 1.25 PV; 1.0 Tks;48 Bus 8,665 517 1,083 33,352 8,665
Vehicle Mix Per Lane @ Capacity 9,000 0.8 9,000 0.8 4,400 4,400 1.0

Avg. Vehicle Occupancy 1.3 1.0 1.0 48.0 2.0
Total No. of Passengers(PVs and buses only) 8,665 33,352 8,665
% Vehicle Distribution by Lane-Capacity 100.0% 0.0% 0.0% 0.0% 0.0% 22.5% 47.2% 30.3% 100.0% 0.0% 0.0% 0.0%
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Table A-20
FORECAST 2024 PEAK HOUR TRAFFIC OPERATIONS

New Jersey Turnpike
Scenario #1, Passenger Vehicles in Separate AHS Lane, Option C

AHS AHS AHS
OPTION C. Lane 1 Lane 2 Lane 3
3 AHS Lanes PVs Only SU +TrkTlr+Buses(PCEs) Remaining(PCEs)

Section PVs SU Trk Tlr Bus Total PVs SU Trk Tlr Bus Total PVs SU Trk Tlr Bus Total
% Vehicle Distribution by Lane- Demand 100.0% 0.0% 0.0% 0.0% No. PCEs v/c* 0.0% 22.5% 47.2% 30.3% No. PCEs v/c* 100.0% 0.0% 0.0% 0.0% No. PCEs v/c*

West Spur 16W + 18W Demand -pcph 2,991 0 0 0 2,991 0 669 1,401 899 2,969 2,991 0 0 0 2,991
Demand - No. Occpts @ 1.25 PV; 1.0 Tks;48 Bus 3,739 223 467 14,388 3,739
Vehicle Mix Per Lane @ Capacity 4,500 0.7 4,500 0.7 4,500 0.7

Avg. Vehicle Occupancy 1.3 1.0 1.0 48.0 1.3
Total No. of Passengers(PVs and buses only) 3,739 14,388 3,739
% Vehicle Distribution by Lane-Capacity 100.0% 0.0% 0.0% 0.0% 0.0% 22.5% 47.2% 30.3% 100.0% 0.0% 0.0% 0.0%

East Spur 16E + 18E Demand -pcph 3,942 0 0 0 3,942 0 882 1,847 1,185 3,914 3,942 0 0 0 3,942
Demand - No. Occpts @ 1.25 PV; 1.0 Tks;48 Bus 4,928 294 616 18,964 4,928
Vehicle Mix Per Lane @ Capacity 4,500 0.9 4,500 0.9 4,500 0.9

Avg. Vehicle Occupancy 1.3 1.0 1.0 48.0 1.3
Total No. of Passengers(PVs and buses only) 4,928 18,964 4,928
% Vehicle Distribution by Lane-Capacity 100.0% 0.0% 0.0% 0.0% 0.0% 22.5% 47.2% 30.3% 100.0% 0.0% 0.0% 0.0%

Lanes 1 & 2 Lanes 3&4 Lanes 5 & 6
Combined Demand -pcph 6,932 0 0 0 6,932 0 1,551 3,248 2,085 6,884 6,932 0 0 0 6,932

Demand - No. Occpts @ 1.25 PV; 1.0 Tks;48 Bus 8,665 517 1,083 33,352 8,665
Vehicle Mix Per Lane @ Capacity 9,000 0.8 9,000 0.8 9,000 0.8

Avg. Vehicle Occupancy 1.3 1.0 1.0 48.0 1.3
Total No. of Passengers(PVs and buses only) 8,665 33,352 8,665
% Vehicle Distribution by Lane-Capacity 100.0% 0.0% 0.0% 0.0% 0.0% 22.5% 47.2% 30.3% 100.0% 0.0% 0.0% 0.0%
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Table A-21
FORECAST 2024 PEAK HOUR TRAFFIC OPERATIONS

New Jersey Turnpike
Scenario #2, Mixed Vehicles in AHS Lane(s), Option A

AHS GUL GUL
OPTION A. Lane 1 Lane 2 Lane 3
1 AHS Lane, 2 GULs Mixed(PCEs) Mixed(PCEs) Mixed(PCEs)**

Section PVs SU Trk Tlr Bus Total PVs SU Trk Tlr Bus Total PVs SU Trk Tlr Bus Total
% Vehicle Distribution by Lane- Demand 66.8% 7.5% 15.7% 10.0% No. PCEs v/c* 66.8% 7.5% 15.7% 10.0% No. PCEs v/c** 66.8% 7.5% 15.7% 10.0% No. PCEs v/c**

West Spur 16W + 18W Demand -pcph 2,991 335 701 450 4,476 1,496 167 350 225 2,238 1.0 1,496 167 350 225 2,238 1.0
Demand - No. Occpts @ 1.25 PV; 1.0 Tks;48 Bus 3,739 112 234 7,194 1,869 56 117 3,597 1,869 56 117 3,597
Vehicle Mix Per Lane @ Capacity 4,500 1.0 2,200 1.0 2,200 1.0

Avg. Vehicle Occupancy 1.3 1.0 1.0 48.0 1.3 1.0 1.0 48.0 1.3 1.0 1.0 48.0
Total No. of Passengers(PVs and buses only) 10,933 5,466 5,466
% Vehicle Distribution by Lane-Capacity 66.8% 7.5% 15.7% 10.0% 66.8% 7.5% 15.7% 10.0% 66.8% 7.5% 15.7% 10.0%

East Spur 16E + 18E Demand -pcph 3,942 441 923 593 5,899 1.3 1,971 221 462 296 2,950 1.3 1,971 221 462 296 2,950 1.3
Demand - No. Occpts @ 1.25 PV; 1.0 Tks;48 Bus 4,928 147 308 9,482 2,464 74 154 4,741 2,464 74 154 4,741
Vehicle Mix Per Lane @ Capacity 2,543 441 923 593 4,500 1.0 1,221 221 462 296 2,200 1.0 1,221 221 462 296 2,200 1.0

Avg. Vehicle Occupancy 1.9 1.0 1.0 48.0 2.0 1.0 1.0 48.0 2.0 1.0 1.0 48.0
Total No. of Passengers(PVs and buses only) 14,410 7,205 7,205
% Vehicle Distribution by Lane-Capacity 56.5% 9.8% 20.5% 13.2% 55.5% 10.0% 21.0% 13.5% 55.5% 10.0% 21.0% 13.5%

Lanes 1 & 2 Lanes 3&4 Lanes 5 & 6
Combined Demand -pcph 6,932 776 1,624 1,042 10,374 1.2 3,466 388 812 521 5,187 1.2 3,466 388 812 521 5,187 1.2

Demand - No. Occpts @ 1.25 PV; 1.0 Tks;48 Bus 8,665 259 541 16,676 4,333 129 271 8,338 4,333 129 271 8,338
Vehicle Mix Per Lane @ Capacity 5,558 776 1,624 1,042 9,000 1.0 2,679 388 812 521 4,400 1.0 2,679 388 812 521 4,400 1.0

Avg. Vehicle Occupancy 1.6 1.0 1.0 48.0 1.6 1.0 1.0 48.0 1.6 1.0 1.0 48.0
Total No. of Passengers(PVs and buses only) 25,341 12,671 12,671
% Vehicle Distribution by Lane-Capacity 61.8% 8.6% 18.0% 11.6% 60.9% 8.8% 18.5% 11.8% 60.9% 8.8% 18.5% 11.8%
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Table A-21
FORECAST 2024 PEAK HOUR TRAFFIC OPERATIONS

New Jersey Turnpike
Scenario #2, Mixed Vehicles in AHS Lane(s), Option B

AHS AHS GUL
OPTION B. Lane 1 Lane 2 Lane 3
2 AHS Lanes, 1 GUL Mixed(PCEs) Mixed(PCEs) Mixed(PCEs)

Section PVs SU Trk Tlr Bus Total PVs SU Trk Tlr Bus Total PVs SU Trk Tlr Bus Total
% Vehicle Distribution by Lane- Demand 66.8% 7.5% 15.7% 10.1% No. PCEs v/c* 66.8% 7.5% 15.7% 10.1% No. PCEs v/c* 66.8% 7.5% 15.7% 10.1% No. PCEs v/c**

West Spur 16W + 18W Demand -pcph 1,994 223 467 300 2,984 1,994 223 467 300 2,984 1,994 223 467 300 2,984 1.4
Demand - No. Occpts @ 1.25 PV; 1.0 Tks;48 Bus 2,493 74 156 4,800 2,493 74 156 4,800 2,493 74 156 4,800
Vehicle Mix Per Lane @ Capacity 4,500 0.7 4,500 0.7 1,210 223 467 300 2,200 1.0

Avg. Vehicle Occupancy 1.3 1.0 1.0 48.0 1.3 1.0 1.0 48.0 2.1 1.0 1.0 48.0
Total No. of Passengers(PVs and buses only) 7,293 7,293 7,293
% Vehicle Distribution by Lane-Capacity 66.8% 7.5% 15.7% 10.1% 66.8% 7.5% 15.7% 10.1% 55.0% 10.1% 21.2% 13.6%

East Spur 16E + 18E Demand -pcph 2,628 294 616 395 3,933 2,628 294 616 395 3,933 2,628 294 616 395 3,933 1.8
Demand - No. Occpts @ 1.25 PV; 1.0 Tks;48 Bus 3,285 98 205 6,320 3,285 98 205 6,320 3,285 98 205 6,320
Vehicle Mix Per Lane @ Capacity 4,500 0.9 4,500 0.9 895 294 616 395 2,200 1.0

Avg. Vehicle Occupancy 1.3 1.0 1.0 48.0 1.3 1.0 1.0 48.0 3.7 1.0 1.0 48.0
Total No. of Passengers(PVs and buses only) 9,605 9,605 9,605
% Vehicle Distribution by Lane-Capacity 66.8% 7.5% 15.7% 10.0% 66.8% 7.5% 15.7% 10.0% 40.7% 13.4% 28.0% 18.0%

Lanes 1 & 2 Lanes 3&4 Lanes 5 & 6
Combined Demand -pcph 4,621 517 1,083 695 6,916 4,621 517 1,083 695 6,916 4,621 517 1,083 695 6,916 1.6

Demand - No. Occpts @ 1.25 PV; 1.0 Tks;48 Bus 5,777 172 361 11,120 5,777 172 361 11,120 5,777 172 361 11,120
Vehicle Mix Per Lane @ Capacity 9,000 0.8 9,000 0.8 2,105 517 1,083 695 4,400 1.0

Avg. Vehicle Occupancy 1.3 1.0 1.0 48.0 1.3 1.0 1.0 48.0 2.7 1.0 1.0 48.0
Total No. of Passengers(PVs and buses only) 16,897 16,897 16,897
% Vehicle Distribution by Lane-Capacity 66.8% 7.5% 15.7% 10.0% 66.8% 7.5% 15.7% 10.0% 47.8% 11.8% 24.6% 15.8%
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Table A-21
FORECAST 2024 PEAK HOUR TRAFFIC OPERATIONS

New Jersey Turnpike
Scenario #2, Mixed Vehicles in AHS Lane(s), Option C

AHS AHS AHS
OPTION C. Lane 1 Lane 2 Lane 3
3 AHS Lanes Mixed(PCEs) Mixed(PCEs) Mixed(PCEs)

Section PVs SU Trk Tlr Bus Total PVs SU Trk Tlr Bus Total PVs SU Trk Tlr Bus Total
% Vehicle Distribution by Lane- Demand 66.8% 7.5% 15.7% 10.1% No. PCEs v/c* 66.8% 7.5% 15.7% 10.1% No. PCEs v/c* 66.8% 7.5% 15.7% 10.1% No. PCEs v/c*

West Spur 16W + 18W Demand -pcph 1,994 223 467 300 2,984 1,994 223 467 300 2,984 1,994 223 467 300 2,984
Demand - No. Occpts @ 1.25 PV; 1.0 Tks;48 Bus 2,493 74 156 4,800 2,493 74 156 4,800 2,493 74 156 4,800
Vehicle Mix Per Lane @ Capacity 4,500 0.7 4,500 0.7 4,500 0.7

Avg. Vehicle Occupancy 1.3 1.0 1.0 48.0 1.3 1.0 1.0 48.0 1.3 1.0 1.0 48.0
Total No. of Passengers(PVs and buses only) 7,293 7,293 7,293
% Vehicle Distribution by Lane-Capacity 66.8% 7.5% 15.7% 10.1% 66.8% 7.5% 15.7% 10.1% 66.8% 7.5% 15.7% 10.1%

East Spur 16E + 18E Demand -pcph 2,628 294 616 395 3,933 2,628 294 616 395 3,933 2,628 294 616 395 3,933
Demand - No. Occpts @ 1.25 PV; 1.0 Tks;48 Bus 3,285 98 205 6,320 3,285 98 205 6,320 3,285 98 205 6,320
Vehicle Mix Per Lane @ Capacity 4,500 0.9 4,500 0.9 4,500 0.9

Avg. Vehicle Occupancy 1.3 1.0 1.0 48.0 1.3 1.0 1.0 48.0 1.3 1.0 1.0 48.0
Total No. of Passengers(PVs and buses only) 9,605 9,605 9,605
% Vehicle Distribution by Lane-Capacity 66.8% 7.5% 15.7% 10.0% 66.8% 7.5% 15.7% 10.0% 66.8% 7.5% 15.7% 10.0%

Lanes 1 & 2 Lanes 3&4 Lanes 5 & 6
Combined Demand -pcph 4,621 517 1,083 695 6,916 4,621 517 1,083 695 6,916 4,621 517 1,083 695 6,916

Demand - No. Occpts @ 1.25 PV; 1.0 Tks;48 Bus 5,777 172 361 11,120 5,777 172 361 11,120 5,777 172 361 11,120
Vehicle Mix Per Lane @ Capacity 9,000 0.8 9,000 0.8 9,000 0.8

Avg. Vehicle Occupancy 1.3 1.0 1.0 48.0 1.3 1.0 1.0 48.0 1.3 1.0 1.0 48.0
Total No. of Passengers(PVs and buses only) 16,897 16,897 16,897
% Vehicle Distribution by Lane-Capacity 66.8% 7.5% 15.7% 10.0% 66.8% 7.5% 15.7% 10.0% 66.8% 7.5% 15.7% 10.0%
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Table A-22
FORECAST 2024 PEAK HOUR TRAFFIC OPERATIONS

New Jersey Turnpike
Scenario #3, Exclusive Lane for Passenger Vehicles, Light Trucks and Transit Vehicles, Option A

AHS GUL GUL
OPTION A. Lane 1 Lane 2 Lane 3
1 AHS Lane, 2 GULs PVs +SU+Buses(PCEs) Mixed(PCEs) Mixed(PCEs)

Section PVs SU Trk Tlr Bus Total PVs SU Trk Tlr Bus Total PVs SU Trk Tlr Bus Total
% Vehicle Distribution by Lane- Demand 79.2% 8.9% 0.0% 11.9% No. PCEs v/c* 57.8% 6.5% 27.1% 8.7% No. PCEs v/c** 57.8% 6.5% 27.1% 8.7% No. PCEs v/c**

West Spur 16W + 18W Demand -pcph 2,991 335 0 450 3,776 1,496 167 701 225 2,588 1.2 1,496 168 701 225 2,589 1.2
Demand - No. Occpts @ 1.25 PV; 1.0 Tks;48 Bus 3,739 112 7,200 1,869 56 234 3,600 1,869 56 234 3,600
Vehicle Mix Per Lane @ Capacity 4,500 0.8 1,107 167 701 225 2,200 1.0 1,107 168 701 225 2,200 1.0

Avg. Vehicle Occupancy 1.3 1.0 48.0 1.7 1.0 1.0 48.0 1.7 1.0 1.0 48.0
Total No. of Passengers(PVs and buses only) 10,939 5,469 5,469
% Vehicle Distribution by Lane-Capacity 79.2% 8.9% 0.0% 11.9% 50.3% 7.6% 31.8% 10.2% 50.3% 7.6% 31.8% 10.2%

East Spur 16E + 18E Demand -pcph 3,942 441 0 593 4,976 1.1 1,971 221 924 296 3,411 1.6 1,971 221 924 296 3,411 1.6
Demand - No. Occpts @ 1.25 PV; 1.0 Tks;48 Bus 4,928 147 9,482 2,464 74 308 4,741 2,464 221 924 4,741
Vehicle Mix Per Lane @ Capacity 3,466 441 593 4,500 1.0 760 221 924 296 2,200 1.0 760 221 924 296 2,200 1.0

Avg. Vehicle Occupancy 1.4 1.0 48.0 3.2 1.0 1.0 48.0 3.2 1.0 1.0 16.0
Total No. of Passengers(PVs and buses only) 14,410 7,205 7,205
% Vehicle Distribution by Lane-Capacity 77.0% 9.8% 0.0% 13.2% 34.5% 10.0% 42.0% 13.5% 34.5% 10.0% 42.0% 13.5%

Lanes 1 & 2 Lanes 3&4 Lanes 5 & 6
Combined Demand -pcph 6,932 776 0 1,042 8,750 3,466 388 1,624 521 5,999 1.4 3,466 388 1,624 521 5,999 1.4

Demand - No. Occpts @ 1.25 PV; 1.0 Tks;48 Bus 8,665 259 16,676 4,333 129 541 8,336 4,333 129 541 8,336
Vehicle Mix Per Lane @ Capacity 9,000 1.0 1,867 388 1,624 521 4,400 1.0 1,867 388 1,624 521 4,400 1.0

Avg. Vehicle Occupancy 1.3 1.0 48.0 2.3 1.0 1.0 48.0 2.3 1.0 1.0 48.0
Total No. of Passengers(PVs and buses only) 25,341 12,669 12,669
% Vehicle Distribution by Lane-Capacity 79.2% 8.9% 0.0% 11.9% 42.4% 8.8% 36.9% 11.8% 42.4% 8.8% 36.9% 11.8%
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Table A-22
FORECAST 2024 PEAK HOUR TRAFFIC OPERATIONS

New Jersey Turnpike
Scenario #3, Exclusive Lane for Passenger Vehicles, Light Trucks and Transit Vehicles, Option B

AHS AHS GUL
OPTION B. Lane 1 Lane 2 Lane 3
2 AHS Lanes, 1 GUL PVs +SU+Buses(PCEs) PVs +SU+Buses(PCEs) Mixed(PCEs)

Section PVs SU Trk Tlr Bus Total PVs SU Trk Tlr Bus Total PVs SU Trk Tlr Bus Total
% Vehicle Distribution by Lane- Demand 79.2% 8.9% 0.0% 11.9% No. PCEs v/c* 79.2% 8.9% 0.0% 11.9% No. PCEs v/c* 50.9% 5.7% 35.8% 7.7% No. PCEs v/c**

West Spur 16W + 18W Demand -pcph 1,994 223 0 300 2,517 1,994 223 0 300 2,517 1,994 223 1,401 300 3,918 1.8
Demand - No. Occpts @ 1.25 PV; 1.0 Tks;48 Bus 2,493 74 4,800 2,493 74 4,800 2,493 74 467 4,800
Vehicle Mix Per Lane @ Capacity 4,500 0.6 4,500 0.6 276 223 1,401 300 2,200 1.0

Avg. Vehicle Occupancy 1.3 1.0 48.0 1.3 1.0 48.0 9.0 1.0 1.0 48.0
Total No. of Passengers(PVs and buses only) 7,293 7,293 7,293
% Vehicle Distribution by Lane-Capacity 79.2% 8.9% 0.0% 11.9% 79.2% 8.9% 0.0% 11.9% 12.5% 10.1% 63.7% 13.6%

East Spur 16E + 18E Demand -pcph 2,628 294 0 395 3,317 2,628 294 0 395 3,317 2,628 294 1,847 395 5,164 2.3
Demand - No. Occpts @ 1.25 PV; 1.0 Tks;48 Bus 3,285 98 6,325 3,285 98 6,320 3,285 98 616 6,320
Vehicle Mix Per Lane @ Capacity 4,500 0.7 4,500 0.7 SU,TT,Bus

Avg. Vehicle Occupancy 1.3 1.0 48.0 1.3 1.0 48.0 Volumes
Total No. of Passengers(PVs and buses only) 9,610 9,605 Exceeds
% Vehicle Distribution by Lane-Capacity 79.2% 8.9% 0.0% 11.9% 79.2% 8.9% 0.0% 11.9% Capacity

Lanes 1 & 2 Lanes 3&4 Lanes 5 & 6
Combined Demand -pcph 4,621 517 0 695 5,833 4,621 517 0 695 5,833 4,621 517 3,248 695 9,081 2.1

Demand - No. Occpts @ 1.25 PV; 1.0 Tks;48 Bus 5,777 172 11,115 5,777 172 11,120 5,777 172 1,083 11,120
Vehicle Mix Per Lane @ Capacity 9,000 0.6 9,000 0.6 SU,TT,Bus

Avg. Vehicle Occupancy 1.3 1.0 48.0 1.3 1.0 48.0 Volumes
Total No. of Passengers(PVs and buses only) 16,891 16,897 Exceeds
% Vehicle Distribution by Lane-Capacity 79.2% 8.9% 0.0% 11.9% 79.2% 8.9% 0.0% 11.9% Capacity
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Table A-22
FORECAST 2024 PEAK HOUR TRAFFIC OPERATIONS

New Jersey Turnpike
Scenario #3, Exclusive Lane for Passenger Vehicles, Light Trucks and Transit Vehicles, Option C

AHS AHS AHS
OPTION C. Lane 1 Lane 2 Lane 3
3 AHS Lanes PVs +SU+Buses(PCEs) PVs +SU+Buses(PCEs) Mixed(PCEs)

Section PVs SU Trk Tlr Bus Total PVs SU Trk Tlr Bus Total PVs SU Trk Tlr Bus Total
% Vehicle Distribution by Lane- Demand 79.2% 8.9% 0.0% 11.9% No. PCEs v/c* 79.2% 8.9% 0.0% 11.9% No. PCEs v/c* 50.9% 5.7% 35.8% 7.7% No. PCEs v/c*

West Spur 16W + 18W Demand -pcph 1,994 223 0 300 2,517 1,994 223 0 300 2,517 1,994 223 1,401 300 3,918
Demand - No. Occpts @ 1.25 PV; 1.0 Tks;48 Bus 2,493 74 4,800 2,493 74 4,800 2,493 74 467 4,800
Vehicle Mix Per Lane @ Capacity 4,500 0.6 4,500 0.6 1,994 223 1,401 300 4,500 0.9

Avg. Vehicle Occupancy 1.3 1.0 48.0 1.3 1.0 48.0 1.3 1.0 1.0 48.0
Total No. of Passengers(PVs and buses only) 7,293 7,293 7,293
% Vehicle Distribution by Lane-Capacity 79.2% 8.9% 0.0% 11.9% 79.2% 8.9% 0.0% 11.9% 50.9% 5.7% 35.8% 7.7%

East Spur 16E + 18E Demand -pcph 2,628 294 0 395 3,317 2,628 294 0 395 3,317 2,628 294 1,847 395 5,164 1.1
Demand - No. Occpts @ 1.25 PV; 1.0 Tks;48 Bus 3,285 98 6,320 3,285 98 6,320 3,285 98 616 6,320
Vehicle Mix Per Lane @ Capacity 4,500 0.7 4,500 0.7 1,964 294 1,847 395 4,500 1.0

Avg. Vehicle Occupancy 1.3 1.0 48.0 1.3 1.0 48.0 1.7 1.0 1.0 48.0
Total No. of Passengers(PVs and buses only) 9,605 9,605 9,605
% Vehicle Distribution by Lane-Capacity 79.2% 8.9% 0.0% 11.9% 79.2% 8.9% 0.0% 11.9% 43.6% 6.5% 41.0% 8.8%

Lanes 1 & 2 Lanes 3&4 Lanes 5 & 6
Combined Demand -pcph 4,621 517 0 695 5,833 4,621 517 0 695 5,833 4,621 517 3,248 695 9,081 1.0

Demand - No. Occpts @ 1.25 PV; 1.0 Tks;48 Bus 5,777 172 11,120 5,777 172 11,120 5,777 172 1,083 11,120
Vehicle Mix Per Lane @ Capacity 9,000 0.6 9,000 0.6 4,540 517 3,248 695 9,000 1.0

Avg. Vehicle Occupancy 1.3 1.0 48.0 1.3 1.0 48.0 1.3 1.0 1.0 48.0
Total No. of Passengers(PVs and buses only) 16,897 16,897 16,897
% Vehicle Distribution by Lane-Capacity 79.2% 8.9% 0.0% 11.9% 79.2% 8.9% 0.0% 11.9% 50.4% 5.7% 36.1% 7.7%
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Table A-23
FORECAST 2024 PEAK HOUR TRAFFIC OPERATIONS

New Jersey Turnpike
Scenario #4, Exclusive AHS Lane for all Commercial and Transit Vehicles, Option A

AHS GUL GUL
OPTION A. Lane 1 Lane 2 Lane 3
1 AHS Lane, 2 GULs SU+ Trk Tlr+Buses(PCEs) PVs Only PVs Only

Section PVs SU Trk Tlr Bus Total PVs SU Trk Tlr Bus Total PVs SU Trk Tlr Bus Total
% Vehicle Distribution by Lane- Demand 0.0% 22.5% 47.2% 30.3% No. PCEs v/c* 100.0% 0.0% 0.0% 0.0% No. PCEs v/c** 100.0% 0.0% 0.0% 0.0% No. PCEs v/c**

West Spur 16W + 18W Demand -pcph 0 669 1,401 899 2,969 2,991 0 0 0 2,991 1.4 2,991 0 0 0 2,991 1.4
Demand - No. Occpts @ 1.25 PV; 1.0 Tks;48 Bus 223 467 14,388 3,739 3,739
Vehicle Mix Per Lane @ Capacity 4,500 0.7 2,200 2,200 1.0 2,200 2,200 1.0

Avg. Vehicle Occupancy 1.0 1.0 48.0 1.7 1.7
Total No. of Passengers(PVs and buses only) 3,739 3,739
% Vehicle Distribution by Lane-Capacity 0.0% 22.5% 47.2% 30.3% 100.0% 0.0% 0.0% 0.0% 100.0% 0.0% 0.0% 0.0%

East Spur 16E + 18E Demand -pcph 0 882 1,847 1,185 3,914 3,942 0 0 0 3,942 1.8 3,942 0 0 0 3,942 1.8
Demand - No. Occpts @ 1.25 PV; 1.0 Tks;48 Bus 294 616 18,964 4,927 4,928
Vehicle Mix Per Lane @ Capacity 4,500 0.9 2,200 2,200 1.0 2,200 2,200 1.0

Avg. Vehicle Occupancy 1.0 1.0 48.0 2.2 2.2
Total No. of Passengers(PVs and buses only) 4,927 4,928
% Vehicle Distribution by Lane-Capacity 0.0% 22.5% 47.2% 30.3% 100.0% 0.0% 0.0% 0.0% 100.0% 0.0% 0.0% 0.0%

Lanes 1 & 2 Lanes 3&4 Lanes 5 & 6
Combined Demand -pcph 0 1,551 3,248 2,085 6,883 6,932 0 0 0 6,932 1.6 6,932 0 0 0 6,932 1.6

Demand - No. Occpts @ 1.25 PV; 1.0 Tks;48 Bus 517 1,083 33,352 8,665 8,665
Vehicle Mix Per Lane @ Capacity 9,000 0.8 4,400 4,400 1.0 4,400 4,400 1.0

Avg. Vehicle Occupancy 1.0 1.0 48.0 2.0 2.0
Total No. of Passengers(PVs and buses only) 8,665 8,665
% Vehicle Distribution by Lane-Capacity 0.0% 22.5% 47.2% 30.3% 100.0% 0.0% 0.0% 0.0% 100.0% 0.0% 0.0% 0.0%
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Table A-23
FORECAST 2024 PEAK HOUR TRAFFIC OPERATIONS

New Jersey Turnpike
Scenario #4, Exclusive AHS Lane for all Commercial and Transit Vehicles, Option B

AHS AHS GUL
OPTION B. Lane 1 Lane 2 Lane 3
2 AHS Lanes, 1 GUL SU+ Trk Tlr+Buses(PCEs) PVs Only PVs Only

Section PVs SU Trk Tlr Bus Total PVs SU Trk Tlr Bus Total PVs SU Trk Tlr Bus Total
% Vehicle Distribution by Lane- Demand 0.0% 22.5% 47.2% 30.3% No. PCEs v/c* 100.0% 0.0% 0.0% 0.0% No. PCEs v/c* 100.0% 0.0% 0.0% 0.0% No. PCEs v/c**

West Spur 16W + 18W Demand -pcph 0 669 1,401 899 2,969 2,991 0 0 0 2,991 2,991 0 0 0 2,991 1.4
Demand - No. Occpts @ 1.25 PV; 1.0 Tks;48 Bus 223 467 14,388 3,739 3,739
Vehicle Mix Per Lane @ Capacity 4,500 0.7 4,500 0.7 2,200 2,200 1.0

Avg. Vehicle Occupancy 1.0 1.0 48.0 1.3 1.7
Total No. of Passengers(PVs and buses only) 14,388 3,739 3,739
% Vehicle Distribution by Lane-Capacity 0.0% 22.5% 47.2% 30.3% 100.0% 0.0% 0.0% 0.0% 100.0% 0.0% 0.0% 0.0%

East Spur 16E + 18E Demand -pcph 0 882 1,847 1,185 3,914 3,942 0 0 0 3,942 3,942 0 0 0 3,942 1.8
Demand - No. Occpts @ 1.25 PV; 1.0 Tks;48 Bus 294 616 18,964 4,928 4,928
Vehicle Mix Per Lane @ Capacity 4,500 0.9 4,500 0.9 2,200 2,200 1.0

Avg. Vehicle Occupancy 1.0 1.0 48.0 1.3 2.2
Total No. of Passengers(PVs and buses only) 18,964 4,928 4,928
% Vehicle Distribution by Lane-Capacity 0.0% 22.5% 47.2% 30.3% 100.0% 0.0% 0.0% 0.0% 100.0% 0.0% 0.0% 0.0%

Lanes 1 & 2 Lanes 3&4 Lanes 5 & 6
Combined Demand -pcph 0 1,551 3,248 2,085 6,883 6,932 0 0 0 6,932 6,932 0 0 0 6,932 1.6

Demand - No. Occpts @ 1.25 PV; 1.0 Tks;48 Bus 517 1,083 33,352 8,665 8,665
Vehicle Mix Per Lane @ Capacity 9,000 0.8 9,000 0.8 4,400 4,400 1.0

Avg. Vehicle Occupancy 1.0 1.0 48.0 1.3 2.0
Total No. of Passengers(PVs and buses only) 33,352 8,665 8,665
% Vehicle Distribution by Lane-Capacity 0.0% 22.5% 47.2% 30.3% 100.0% 0.0% 0.0% 0.0% 100.0% 0.0% 0.0% 0.0%
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Table A-23
FORECAST 2024 PEAK HOUR TRAFFIC OPERATIONS

New Jersey Turnpike
Scenario #4, Exclusive AHS Lane for all Commercial and Transit Vehicles, Option C

AHS AHS AHS
OPTION C. Lane 1 Lane 2 Lane 3
3 AHS Lanes SU+ Trk Tlr(PCEs) PVs Only PVs Only

Section PVs SU Trk Tlr Bus Total PVs SU Trk Tlr Bus Total PVs SU Trk Tlr Bus Total
% Vehicle Distribution by Lane- Demand 0.0% 22.5% 47.2% 30.3% No. PCEs v/c* 100.0% 0.0% 0.0% 0.0% No. PCEs v/c* 100.0% 0.0% 0.0% 0.0% No. PCEs v/c*

West Spur 16W + 18W Demand -pcph 0 669 1,401 899 2,970 2,991 0 0 0 2,991 2,991 0 0 0 2,991
Demand - No. Occpts @ 1.25 PV; 1.0 Tks;48 Bus 223 467 14,388 3,739 3,739
Vehicle Mix Per Lane @ Capacity 4,500 0.7 4,500 0.7 4,500 0.7

Avg. Vehicle Occupancy 1.00 1.00 48.00 1.3 1.3
Total No. of Passengers(PVs and buses only) 14,388 3,739 3,739
% Vehicle Distribution by Lane-Capacity 0.0% 22.5% 47.2% 30.3% 100.0% 0.0% 0.0% 0.0% 100.0% 0.0% 0.0% 0.0%

East Spur 16E + 18E Demand -pcph 0 882 1,847 1,185 3,914 3,942 0 0 0 3,942 3,942 0 0 0 3,942
Demand - No. Occpts @ 1.25 PV; 1.0 Tks;48 Bus 294 616 18,964 4,928 4,928
Vehicle Mix Per Lane @ Capacity 4,500 0.9 4,500 0.9 4,500 0.9

Avg. Vehicle Occupancy 1.00 1.00 48.00 1.3 1.3
Total No. of Passengers(PVs and buses only) 18,964 4,928 4,928
% Vehicle Distribution by Lane-Capacity 0.0% 22.5% 47.2% 30.3% 100.0% 0.0% 0.0% 0.0% 100.0% 0.0% 0.0% 0.0%

Lanes 1 & 2 Lanes 3&4 Lanes 5 & 6
Combined Demand -pcph 0 1,551 3,248 2,085 6,884 6,932 0 0 0 6,932 6,932 0 0 0 6,932

Demand - No. Occpts @ 1.25 PV; 1.0 Tks;48 Bus 517 1,083 33,352 8,665 8,665
Vehicle Mix Per Lane @ Capacity 9,000 0.8 9,000 0.8 9,000 0.8

Avg. Vehicle Occupancy 1.00 1.00 48.00 1.3 1.3
Total No. of Passengers(PVs and buses only) 33,352 8,665 8,665
% Vehicle Distribution by Lane-Capacity 0.0% 22.5% 47.2% 30.3% 100.0% 0.0% 0.0% 0.0% 100.0% 0.0% 0.0% 0.0%
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Table A-24
FORECAST 2024 PEAK HOUR TRAFFIC OPERATIONS

VEHICLE-MILES & PERSON-HOURS SUMMARY
New Jersey Turnpike -East Spur

Scenario # 1 Scenario #2 Scenario # 3 Scenario #4
No Build Options Options Options Options

A B C A B C A B C A B C
No. of AHS Lanes 0 1 2 3 1 2 3 1 2 3 1 2 3
No. GULs 3 2 1 0 2 1 0 2 1 0 2 1 0
Hrly Roadway Capacity 6,600 8,900 11,200 13,500 8,900 11,200 13,500 8,900 11,200 13,500 8,900 11,200 13,500

 Vehicle Classification VEHICLE-MILES
AHS
Passenger Vehicles 0 19,710 19,710 39,420 12,715 26,280 39,420 17,330 0 36,100 0 19,710 39,420
Single Unit Trucks 0 0 4,410 4,410 2,205 2,940 4,410 2,205 0 4,410 4,410 4,410 4,410
Tractor Trailers 0 0 9,235 9,235 4,615 6,160 9,240 0 0 9,235 9,235 9,235 9,235
Buses 0 0 5,925 5,925 2,965 3,950 5,925 2,965 0 5,925 5,925 5,925 5,925

VMT Total  0 19,710 39,280 58,990 22,500 39,330 58,995 22,500 0 55,670 19,570 39,280 58,990

GULs
Passenger Vehicles 13,425 2,430 11,000 0 12,210 4,475 0 7,600 0 0 22,000 11,000 0
Single Unit Trucks 4,410 4,410 0 0 2,210 1,470 0 2,210 0 0 0 0 0
Tractor Trailers 9,240 9,240 0 0 4,620 3,080 0 9,240 0 0 0 0 0
Buses 5,925 5,930 0 0 2,960 1,975 0 2,960 0 0 0 0 0

VMT Total  33,000 22,010 11,000 0 22,000 11,000 0 22,010 0 0 22,000 11,000 0
Roadway Total VMT 33,000 41,720 50,280 58,990 44,500 50,330 58,995 44,510 0 55,670 41,570 50,280 58,990

 Vehicle Classification PERSON-HOURS
AHS
Passenger Vehicles 0 524 524 1,049 821 1,095 1,048 821 0 1,069 0 524 1,049
Single Unit Trucks 0 0 31 31 25 33 31 25 0 32 31 31 31
Tractor Trailers 0 0 66 66 51 68 65 0 0 103 66 66 66
Buses 0 0 2,017 2,017 1,580 2,107 2,017 1,580 0 2,057 2,017 2,017 2,017

PHT Total  0 524 2,639 3,163 2,478 3,303 3,162 2,426 0 3,261 2,114 2,639 3,163

GULs
Passenger Vehicles 1,643 821 821 0 821 548 0 821 0 0 1,642 821 0
Single Unit Trucks 49 49 0 0 25 16 0 25 0 0 0 0 0
Tractor Trailers 103 103 0 0 51 34 0 103 0 0 0 0 0
Buses 3,161 3,160 0 0 1,580 1,053 0 1,580 0 0 0 0 0

PHT Total  4,955 4,133 821 0 2,478 1,651 0 2,529 0 0 1,642 821 0
Roadway Total PHT 4,955 4,657 3,460 3,163 4,955 4,954 3,162 4,955 0 3,261 3,757 3,460 3,163

Using a 5 mile long section
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Table A-24 
FORECAST 2024 PEAK HOUR TRAFFIC OPERATIONS

VEHICLE-MILES & PERSON-HOURS SUMMARY
New Jersey Turnpike - Combined Section

Scenario # 1 Scenario #2 Scenario # 3 Scenario #4
No Build Options Options Options Options

A B C A B C A B C A B C
No. of AHS Lanes 0 2 4 6 2 4 6 2 4 6 2 4 6
No. GULs 6 4 2 0 4 2 0 4 2 0 4 2 0
Hrly Roadway Capacity 13,200 17,800 22,400 27,000 17,800 22,400 27,000 17,800 22,400 27,000 17,800 22,400 27,000

 Vehicle Classification VEHICLE-MILES
AHS
Passenger Vehicles 0 13,864 13,864 27,728 11,116 18,484 27,726 13,864 0 27,564 0 13,864 27,728
Single Unit Trucks 0 0 3,102 3,102 1,552 2,068 3,102 1,552 0 3,102 3,102 3,102 3,102
Tractor Trailers 0 0 6,496 6,496 3,248 4,332 6,496 0 0 6,496 6,496 6,496 6,496
Buses 0 0 4,170 4,170 2,084 2,780 4,170 2,084 0 4,170 4,170 4,170 4,170

VMT Total  0 13,864 27,632 41,496 18,000 27,664 41,494 17,500 0 41,332 13,768 27,632 41,496

GULs
Passenger Vehicles 12,630 3,832 8,800 0 10,716 4,210 0 7,468 0 0 17,600 8,800 0
Single Unit Trucks 3,102 3,104 0 0 1,552 1,034 0 1,552 0 0 0 0 0
Tractor Trailers 6,498 6,496 0 0 3,248 2,166 0 6,496 0 0 0 0 0
Buses 4,170 4,172 0 0 2,084 1,390 0 2,084 0 0 0 0 0

VMT Total  26,400 17,604 8,800 0 17,600 8,800 0 17,600 0 0 17,600 8,800 0
Roadway Total VMT 26,400 31,468 36,432 41,496 35,600 36,464 41,494 35,100 0 41,332 31,368 36,432 41,496

 Vehicle Classification PERSON-HOURS
AHS
Passenger Vehicles 0 333 333 667 578 444 667 578 0 731 0 333 667
Single Unit Trucks 0 0 19 19 17 13 20 17 0 22 20 20 20
Tractor Trailers 0 0 40 40 36 28 42 0 0 72 42 42 42
Buses 0 0 1,235 1,235 1,112 855 1,283 1,112 0 1,407 1,283 1,283 1,283

PHT Total  0 333 1,628 1,961 1,743 1,341 2,011 1,707 0 2,232 1,344 1,678 2,011

GULs
Passenger Vehicles 1,155 578 578 0 578 385 0 578 0 0 1,155 578 0
Single Unit Trucks 34 35 0 0 17 11 0 17 0 0 0 0 0
Tractor Trailers 72 72 0 0 36 24 0 72 0 0 0 0 0
Buses 2,223 2,224 0 0 1,112 741 0 1,111 0 0 0 0 0

PHT Total  3,485 2,908 578 0 1,743 1,162 0 1,779 0 0 1,155 578 0
Roadway Total PHT 3,485 3,242 2,205 1,961 3,486 2,503 2,011 3,485 0 2,232 2,500 2,255 2,011
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Figure A-3
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%T = -0.74(ADT/1000) + 35.5
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y = m(x) + b
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Figure A-4
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&16&BFigure A-6: Graph 1•ational Transportation Statistics for 1990
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&16&BFigure A-6: Graph 1•ational Transportation Statistics for 1990
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&16&BFigure A-6: Graph 1•ational Transportation Statistics for 1990
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&16&BFigure A-6: Graph 1•ational Transportation Statistics for 1990
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&16&BFigure A-6: Graph 1•ational Transportation Statistics for 1990
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&16&BFigure A-6: Graph 1•ational Transportation Statistics for 1990
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&16&BFigure A-6: Graph 1•ational Transportation Statistics for 1990
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&16&BFigure A-6: Graph 1•ational Transportation Statistics for 1990
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&16&BFigure A-6: Graph 1•ational Transportation Statistics for 1990
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&16&BFigure A-6: Graph 1•ational Transportation Statistics for 1990
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&16&BFigure A-6: Graph 1•ational Transportation Statistics for 1990
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&16&BFigure A-6: Graph 1•ational Transportation Statistics for 1990
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&16&BFigure A-6: Graph 1•ational Transportation Statistics for 1990
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&16&BFigure A-6: Graph 1•ational Transportation Statistics for 1990
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Figure A-9
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APPENDIX B: ANALYSIS OF COMMERCIAL AND TRANSIT MARKETS FOR AHS
SERVICES (PRINCETON UNIVERSITY)

B.0 EXECUTIVE SUMMARY

As described in the Abstract of the Technical Report Documentation Page, this task was performed
as two efforts.  The Executive Summary that follows represents the second of two parallel studies.
The detailed results are reported in the remainder of Appendix B.

This section investigates how commercial and mass transit versions, as opposed to privately-
owned, single-vehicle-equivalent (SVE) versions, of AHS can serve the commercial segments
of the nation's transportation demand.

The analyses are user-oriented.  They focus on the user (shippers and transit riders) demand
for transportation.  They seek to determine the extent to which those user needs are met by
the services offered by public or private commercial operators of the various representative
system configurations (RSC) of AHS.  These analyses identify which AHS technologies have
the best chance of providing user benefits to transportation providers (carriers, operators) and
market-competitive services that will be purchased by transportation users (shippers, riders).

The analyses use various data bases that explicitly represent the existing spatial and temporal
characteristics of commercial and transit transportation markets.   It is these fundamental
characteristics that AHS must serve competitively if AHS is to achieve a significant market
penetration.

Separate analyses are carried out for each of the following commercial an transit market
segments:

Inter-city Commercial Freight Traffic
Intra-city Commercial Freight Traffic
Commercial For-hire Inter-city Passenger Transport, and
AHS - based Urban Transit

Identified in each market segment were the fundamental market characteristics that could be
better served with an AHS as compared to conventional technology.  For example, the
demand for inter-city freight transportation is widely distributed geographically.  There exist no
major corridor that serves even just a few origins and destinations.  In general each stretch of
road serves a large watershed of widely dispersed origins and destinations.  For this reason,
the initial stages of an infrastructure-based AHS is relegated to being able to serve only a short
stretch of most shipments that travel over that segment.  On the other hand, a vehicle-based
AHS that can be used ubiquitously across the conventional highway infrastructure can serve
essentially the entire trip length of all shipments served by even the first truck so equipped.
Thus, a vehicle-based-RSC AHS has an enormous advantage in the initial stages of
implementation.

For each of the market segments, the full array of AHS Representative System Configurations
were analyzed to determine the extent to which they could effectively serve these markets.
For those that were deemed to have the potential of achieving a significant market penetration
an attempt was made at establishing some fundamental market parameters and potential
market size.  The perspective taken was to assume that the RSCs were operated by private or
public entities that would offer to transport freight or passengers for a fee.  The analyses were
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conservative in that they focused on only AHS's opportunities to serve existing demand.  No
attempt was made to try to forecast the growth or changes in demand that may be stimulated
by the availability of the superior transportation services offered by AHS.

The analyses reached the following conclusions and findings:

For Commercial AHS Service of Inter-city Freight:

• The commercial freight inter-city market has most of its driving cycle on rural,
uncongested interstate highways.

• Class 8 trucks, on average, log more than 125,000 miles per year of travel, of which
100,000 is on the interstate highway system.

• The market for class 8 trucks (over 33,000 pounds) is approximately 20,00 per year.

• Motor carriers have aggressively bought new technology that provides improved
safety, comfort and convenience for the driver and advanced communication
systems that improve the management of the truck fleet.

• A vehicle-borne, infrastructure-free RSC 2-type system that would be usable on
much of the nations interstate and expressway highway system without any
infrastructure improvement would be extremely attractive to motor carriers (and the
inter-city bus industry).  A good price point for these systems would be a capital
outlay of about $5,000 , and a maintenance cost of less than $500 per year.  At this
level this adds about one cent per mile to a truck's operating costs.

• At a 50% market penetration of new sales, there is a $250 million annual market for
a $5,000 vehicle-borne RSC-2 type system that is installed as optional equipment
on new class-8 trucks.  Conversions of existing trucks increases proportionately the
size of this market.

• An infrastructure-based, RSC 8-12-type AHS has a clear evolutionary path starting
with dense 1,200 mile corridor along I-80 between Chicago and Salt Lake City.
Each mile of such a system could serve as many as 1.8 million truck movements
per year if the economics are right.  Because such a system would serve only a
small portion of the driving cycle of most trucks using the system, the on-vehicle
hardware costs can't be amortized over as many miles as an RSC 2, infrastructure-
free system.  It will be paramount to keep the on-vehicle costs extremely low so as
not to stifle market entry by those trucks that could otherwise use the system.

• Future evolu tions of an RSC 10-11-type AHS could grow to an 11,000 mile system
that could serve roughly 50% of the current truck-served, inter-city freight market.

• Even by assuming a 100% market penetration, the 11,000 mile RSC 8-12-type
AHS would only generate toll revenues of $110,000 per route mile at toll rates of
$.10 per mile.  This level of tolls can service the capital debt of about $1 million per
mile.  It is unlikely that motor carriers would be willing to pay AHS tolls that are
much greater than $.10 per mile

• A driverless, SVE, RSC-8/9-type, Phase 3 AHS concept could serve a substantial
amount of LTL demand.  If toll charges are limited to approximately $.10 per vehicle
mile, then, LTL demand patterns, shipment size, vehicle costs and existing freight
rates suggest that each mile of such a system could serve as many as 600,000 of
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these shipments per year.  Assuming a 50% market penetration, traffic densities on
a Phase 3 network could generate toll revenues of about $30,000 per route-mile
per year.

• Comparing the basic economics of the market for a driverless, RSC-2-type AHS
with an infrastructure-intensive RSC 10-11-type AHS suggests that an RSC 2-type
system is much more attractive to the inter-city freight industry.  It's on-board costs
can deliver benefits over much more of the driving cycle, the system has a much
lower cost of entry (infrastructure does not have to be built), and even a mature
RSC 10-11-type AHS does not serve enough volume, even at a large toll
($.10/mile) to service the cost of the infrastructure.  This finding suggests that R&D
investment focused on reducing the cost of reliable vehicle-borne, infrastructure-
free RSC-2 type systems is the best way to have AHS successfully serve the inter-
city freight market.

For Commercial AHS Service of Intracity Freight:

• Intra-city freight and the collection and distribution of inter-city freight are extremely
difficult to serve with automation.  The small shipment size and the multiple stop
character of the operation are not conducive to automation.

• As with inter-city commercial bus operation, the driver performs more functions than
simply driving the truck.  The driver is the service interface with the customer.

• The geographic diffusivity of this traffic is such that much of the intra-city goods
movement driving cycle takes place on road segments that are not compatible with
an RSC-2 type AHS.  Because each vehicle logs relative low annual mileage
vehicle-borne AHS hardware can be amortized only over those few miles.  An
infrastructure-intensive RSC  8-12-type AHS serve even less of the driving cycle.

• AHS does not seem to be particularly attractive to this market.
For Commercial AHS Service of the Inter-city Passenger Market:

• The commercial inter-city market is small in comparison with the inter-city
passenger market served by the private automobile.

• The only likely short term commercial inter-city passenger market for AHS is that of
inter-city bus.  This is a very small market.  Only 1,000 new inter-city buses are sold
each year. However, the driving cycle of an inter-city bus is similar to that of an
inter-city truck.  Thus, it could provide a good secondary market for an RSC 2-type
AHS that was designed to serve the inter-city freight market.

• The bus market is less conducive to a driverless AHS because the driver provides
substantial benefits other than driving.

• An infrastructure intensive AHS has better opportunities than commercial freight to
serve geographically contained sub-markets, because commercial buses can be
managed to operate in constrained corridors.  Such a system could better serve
geographic segments of the automobile market because the driving cycle of a
particular automobile is much more geographically constrained than that of an inter-
city truck.
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• The large inter-city market is served by the private automobile.  Unfortunately, on
average, the private automobile travels too few miles on inter-city expressways to
justify spending even a modest amount for an RSC 1/2 type system.  However,
there may exist some significant sub-markets, such as traveling salesmen, that
could easily justify investment in an RSC 1/2 type system.  Such systems also
become more attractive if they could be used for the daily commute portion of the
automobile's driving cycle.

For Commercial AHS Service of the For-hire, Intra-city Passenger Market (Transit):

Three major AHS technologies were analyzed for potential service of intra-city passenger
traffic: automation of conventional mass transit, dual-mode transit and guideway-captive small
vehicle automated guideway transit.  For conventional transit, automation of the exclusive bus
lane leading to the Lincoln Tunnel served as a case study.  For dual-mode and analysis was
performed that assessed the service potential of an state-wide dual-mode system in New
Jersey.  The following conclusions were reached:

Conventional Mass Transit-Automation of the Lincoln Tunnel - I-495 Exclusive Bus Lane:

• This system has the enormous people moving capacity of over 30,000 people per
hour

• Technology requ irement are relatively modest

• Infrastructure requirements are very modest

• Such a system is potentially the best candidate for an early successful
implementation

Dual-mode "Mini-bus" System for New Jersey.

• This analysis shows that a relatively small 538 mile dual-mode AHS network could
serve more than 70% of NJ's work trips that are currently taken by auto and are
greater than 5 miles in length.  This is a very strong finding.  It needs to be
moderated somewhat because we only analyzed ability to serve.  We did not
attempt to determine how many of those trips would likely divert to a dual-mode
system if such a system were to be built and the service offered.

• This analysis does highlight the fact that many work trips are close by in origin,
destination and time.  A service that would easily enable dynamic ride-sharing
through the use of automation has a large market potential.  It can attain
enormously high average occupancy levels that can reach 4.5 passengers per
vehicle in the peak period.

• Because NJ's work trip patterns are thought to be similar to those that exist in many
metropolitan areas, the dual-mode concept may have wide applicability.

Analysis of Driverless AHS Transit Opportunities:

• In summary, driverless AHS systems would require an exclusive AHSway as
envisioned in RSC 9-12.

• The driverless feature is not attractive to providers of inter-city passenger
transportation and intra city freight transportation because the driver provides
substantial services beyond those of "driving" that can not otherwise be automated.
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• On the other hand, inter city freight and intra-city passengers can do without a
driver, if the difficulties of access can be dealt with.  In these situations, a driverless
AHS may gain a significant cost advantage while providing comparable user
service.

Conclusions for the Transit Market:

• Urban transit, that is, for-hire, intra-city passenger transportation is only a small
fraction of intra-city person transportation which is dominated by the private
automobile.  Nationally, transit serves only 3% of intra-city person trips.

• Only the express bus sub-market of transit is conducive to the early stages of AHS.
A particularly attractive example of such a system is the exclusive counter-flow bus
lane leading to the Lincoln Tunnel.  This is the busiest bus corridor in the US

• There are several fundamental characteristics that make the Lincoln Tunnel XBL a
particularly good application for AHS.  First, there is a monumental problem on the
horizon if a substantial capacity improvement is need in this facility.  There is no
place to put another access lane and the cost of boring another tube is enormous.
Thus, capacity through automation would surely be the most cost effective solution.
Even without need for capacity improvement, automation would smooth out the
flow of buses and improve the travel time reliability of the buses.  The application is
on a very short corridor, less than five (5) miles, and the same busses use the
facilities repeatedly.  The institutional challenges are "minimal".  All buses are the
property of NJDOT and were purchased with PANYNJ money.  NJDOT and
PANYNJ have authority over all operations and construction in the corridor.  For
these major reasons, this is an excellent candidate "early winner" for AHS

• A Dual-mode service over a 750 mile NJ AHS network could provide auto-like
service 780,759 passengers (71 %) out of NJ's  1,116,985 daily auto-based work
trips that are greater than 5 miles in length.  A $.10 per passenger mile fare would
generate annual revenues of about $800 million.  It may well be that fares would
need to be more like $.20 -$.25 per mile for such a system to begin to contribute to
the debt service payments for the AHSway.

• The average vehicle occupancy is 4.68 passengers per dual-mode vehicle.  This is
an enormous average vehicle occupancy, especially when compared with that of
the current automobile's value of 1.1 for work trips.  Because of this high average
vehicle occupancy, the densest link on the network needs to serve a maximum of
only 2,000 vehicles per hour.

• Dual-mode is an interesting transit concept for a mature AHS.  It needs to have
access to an rather extensive network of AHSways in order to serve a significant
portion of urban/suburban travel demand.

• A driverless AHS transit application could piggy-back onto the economies of scale
associated with private vehicle development and the AHSway construction.

• A driverless AHS transit system could serve metropolitan trip demand nearly as well
as dual-mode without the need of drivers and with less confusion in the collection
and distribution.  This concept make more sense as the size of the network of
AHSways grows, thus, reducing the access problem.
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B.1 BACKGROUND AND APPROACH TO THE COMMERCIAL & TRANSIT MARKET
SEGMENT

This section investigates how commercial and mass transit versions, as opposed to privately-
owned, single-vehicle-equivalent (SVE) versions, of AHS can serve various segments of the
nation's existing transportation demand.

The analyses are user-oriented.  They focus on the user demand for transportation and
attempt to determine the extent to which those user needs are met by the service capabilities
that could be offered by public or private commercial operators of various representative
system configurations (RSC) of AHS.  Analyses are carried out that seek to determine which
AHS technologies have the best chance of providing competitive services that will be
purchased by the nation's transportation providers (carriers, operators) and users (shippers,
riders).  The analyses use various data bases that explicitly represent the existing spatial and
temporal characteristics of these markets.   It is these fundamental transportation
characteristics that AHS must serve competitively if AHS is to achieve a significant penetration
into the commercial and transit markets.

The analyses focus on major transportation market segments.  The demand for transportation
can be classified into market segments that are served by transportation technologies that
meet their particular needs.  These market segments can best be visualized as areas in a two-
dimensional space of commodity (people, freight) and geography (intra-city, inter-city), as is
depicted in figure B1.  For example, the mass transit serves people traveling within cities, while
the less-than-truck load carriers serve portions of the inter-city freight market.
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Figure B1.  Transportation Market Segments Analyzed in the C & T Section
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The supply side of transportation is the technology itself and how it operates to serve the
demand.  It models the operational and service characteristics of the various technologies that
compete to serve the demand.  In the AHS context, it encompasses the various RSCs.

This commercial & transit section focuses on the RSCs, operated by private or public entities, that
would offer to transport freight or passengers for a fee.  These markets are now served by the
following modes.  The private automobile and mass transit serve the intra-city movement of
people.  Local pick-up & delivery trucks serve the intra-city movement of freight. Many modes
serve the inter-city movement of freight. The special needs of very large inter-city shipments of
low-valued commodities and small shipments of very high-valued commodities probably can't be
served competitively by any of the AHS RSCs.  This leaves truck-load (TL), less-than-truck load
(LTL), and rail intermodal as the only modes that serve inter-city freight demands that may be
susceptible to diversion to AHS.  Commercial bus traffic is the only form of inter-city personal
travel that can conceivably be served by a for-hire AHS.  Private automobile inter-city travel can be
served by a SVE of AHS, but this analysis is not part of this section.  It was assumed that AHS
could not effectively compete for inter-city air passengers.

Our analyses are conservative.  They focus on only AHS's opportunities to serve existing
demand, even though one should forecast the demand that will exist for transportation at the
future time when AHS will be providing service.  This is a very challenging task.  A precise
forecast is nearly impossible to generate, on the other hand, the fundamental character of the
demand doesn't change very much, especially when viewed from the needs of the user.  That
is, certainly the geographic patterns of the demand evolve over time, as well as the numbers
and types of unique users, but the general demands of the market place do not.  To reflect
opportunities created by the introduction of service-improving technologies like AHS, the
forecasted demand can be considered as a combination of the existing demand plus its
expansion over time and finally latent demand, demand that will be created by new efficiencies
and opportunities delivered by the new technology.  For example, the freight and passenger
demands of 45 years ago in 1949 were fundamentally not very different than those that exist
today in 1994 from a user point of view.  People had to go to work, shop; global logistics
existed.  Today's underlying demand is quite similar, but the scale is expanded and new
markets have been created and served.  Extrinsic effects such as population growth and a
growth in real disposable income account for a large portion of the scale increases in the
demand for transportation.  The new markets were a response to the new service
opportunities.

Estimating the share of the demand that a particular modal technology will capture is also
challenging.  For a new technology, much of its early demand is due to a modal shift of traffic
from existing modes.  Following some modicum of success the new technology begins to be
capable of generating some latent demand associated with the extension of old and the
creation of new markets.  Only after the technology is mature, can the latent demand evolve to
become a major contributor to the market success of the technology.

This demand evolution was experienced by our current transportation technologies.  The large
increase in inter-city passenger transportation that was afforded by the creation of the
interstate highway system and the development of air transportation technology evolved
progressively.  It first shifted the horse & buggy and train trips, then expanded the scope and
scale of those trips and finally created new trip demands that could never have been served by
those displaced technologies.  Thus, a complete market study of a new technology can be
structured in three progressively more difficult steps.  The first focuses on diversions from
existing modes, the second scales those shifts to reflect future expansions of the economy and
the third attempts to identify the new markets that will emerge as a result of the fundamental
service advantages of the new technology.  Of these three steps only the first can be carried
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out with some confidence; and then only if one has access to existing demand data.  The
second step requires assumptions, that contain a great deal of uncertainty, about many macro
economic variables such as general economic growth and changes in disposable income.  The
third, the identification of latent demand is extremely speculative.

This report focuses on only the first of these market studies, that of service to existing user
demands.  In such a study it is important to focus on the needs of the eventual users and not
on the contemporary supply-side technologies that currently serve that demand.  Simply
because certain commodities move in large trucks today doesn't necessarily mean that the
underlying demand for that commodity is for shipment in large, intermittent volumes.  In fact, it
may be that the shipper is better served by smaller, more frequent, deliveries of this good in a
more "just-in-time" manner.  It may simply be that the economies of the current mix of
transport technologies made it more economical for the shipper to absorb inventory
inefficiencies in return for a volumetric economy of scale.  The economic tradeoff between
inventory levels and shipment size may have significant implications on the relative
competitiveness of the various representative system configurations (RSC) of AHS.  A
driverless AHS concept alleviates much of the driver productivity economies that are the
motivating economic forces for ever increasing truck sizes and weights in our existing highway
system.  Users may prefer smaller rather than larger AHS vehicles.  This is not such a radical
notion. One need only look back to the end of the last century at the transport of people to
work in cities.  The technology was evolving to ever-larger electric trolleys that took increasing
advantage of the labor productivity of trolleys operated by a single person.  From a
transportation supply-side perspective, one would have thought that all of those goods
(people) wanted to travel together.  Not so!  The private automobile eliminated the cost of the
driver and it's associated economies of scale.  It thus enabled user-oriented non-stop no-wait
on-demand characteristics to become dominant.  With the growth in the  ubiquity of  travel
choices in space and time provided by an increasing highway infrastructure, the private
automobile unleashed a vast amount of latent demand that could not have been forecasted at
the turn of the century.  Many, if not most, of today's auto trips would be viewed as
unjustifiable from that perspective .
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B.2 OPPORTUNITIES FOR AHS SERVICE OF THE COMMERCIAL INTER-CITY
FREIGHT MARKET

B.2.1 Characteristics of Inter-City Commercial Freight Traffic

All modes of transportation, including truck, rail, air, water, and pipelines, serve the inter-city
freight market.  This market is extremely broad and heterogeneous, with almost each
commodity having needs that require specialized supply-side characteristics.  Many
commodities require special vehicles.  Certain modes serve only special groupings of
commodities, such as liquids in pipelines, large bulk commodities in water-borne vessels and
small packages in airlines.  Transportation technologies have evolved by making tradeoffs that
better serve the particular needs of certain commodities, while leaving other commodities to be
served by other technologies.  In this way, each has carved out a market in which it thrives.
The most basic tradeoff is between frequency/speed and volume.  This tradeoff is driven by
the economies of the vehicle/vessel, the way (roadway, waterway, railway, etc.) and the
operations (labor and energy).  Since one hasn't been able to devise an inexpensive, yet fast
mode of travel, the existing modes have evolved to provide services at various tradeoff levels
between speed and cost.  Thus, air transport is fast but expensive, and since "time-is-money"
they have evolved to serve high-valued commodities, i.e., those that have high inventory costs
(figure B2).  Motor carriers serve relatively high-valued goods.  Railroads and pipelines serve
moderately low-valued goods and waterways serve low-valued goods.  The figure below
depicts the relative range of inventory value / Origin-Destination volumes that are served by
current modes of freight transportation.  High valued goods have low O-D volumes and are
served by air.  Motor carriers serve relatively high time sensitive goods in markets having
moderate volumes.  In markets where volumes are higher, the economies of rail-highway
intermodal services have  diverted this traffic from the all-highway mode.  For goods having
lower values than conventional rail, pipeline and/or barge is the dominant mode.
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Figure B2.  Volume - Inventory Tradeoff for Major Modes of Freight Transportation
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In a gross sense, the 2.9 trillion ton-miles of inter-city freight transportation in 1991 was
modally distributed as follows: rail 37.4%, truck 26.3%, waterborne 16% and air 0.4%.  To
assess how much of this traffic AHS is likely to be able to serve, one must determine which of
these modes has service and cost characteristics that are likely to be comparable or worse
than AHS.  Certainly AHS has service and, will need, cost characteristics that are comparable
to inter-city motor carrier transportation.  If costs can be contained, AHS's service advantage
should allow it to compete with rail intermodal service.  Otherwise, AHS cannot compete with
air's fast service, or the low cost of general merchandise and unit train operations, inland barge
operation or pipeline operations.  Thus, only truck and possibly the intermodal portion of rail
traffic can be viewed as having any possibility of being served by an inter-city AHS.  While a lot
is excluded, these are still very large markets whose  combined volume is approximately 30%
of the nations inter-city ton-miles.

Now that we have identified the users that could benefit from the favorable service and cost
characteristics of AHS, one needs to understand the geographic scope that AHS operations
will need to serve in order to capture some of these markets.  If the traffic is concentrated on a
few corridors, then with rather modest geographic scope, one may be able to deliver
competitive AHS service; however, if the traffic is widely distributed, then one will need to
develop an evolutionary investment and operations plan that initially captures a significant sub-
market.  Once launched, an orderly geographic expansion of services can be planned.  This
can be accomplished by understanding the operational and geographic characteristics of truck
and rail-truck intermodal services.

B.2.1.1 General Characteristics of Inter-City Truck Operations

Inter-city truck operations have several characteristics that are very relevant to the design of
a commercial freight AHS operation.  The following general characteristics were obtained
from interviews with operating management from several inter-city TL and LTL companies.

B.2.1.1.1 Utilization Rates

Most class-8 tractors travel between 100,000 and 200,000 miles per year.  For most
companies the fleet average is roughly 125,000 miles per year per tractor.  Most of these miles
are driven on major highways.  For any particular tractor, that mileage is distributed over many
different road segments rather than being repetitively traversed over the same corridor.  This
observation has important consequences on the market potential of various  RSCs for inter-
city commercial freight.  Vehicle-intensive/infrastructure-free RSCs can provide service over
most of the tractor's driving cycle, and they can provide this service from the day that the
technology is installed in the tractor.  An infrastructure-intensive/vehicle-free RSC will serve
only a small portion of any trip but it can serve all trucks as soon as the infrastructure
investment is complete.  As more infrastructure is made available, more of each trucks driving
cycle can be served.  For RSCs that require both infrastructure and vehicle technologies,
opportunities are more limited.  Infrastructure has to be built and on-board hardware has to be
acquired whose value is limited to the portion of the driving cycle that travels over the
infrastructure.

B.2.1.1.2 Driver Turnover

Driver retention is a major headache for inter-city trucking companies.  Driver turnover rates
are typically around 100% per year.  Working conditions are not very good.  The irregularity of
shipment origins and destinations makes it difficult for drivers to be assigned to loads that
allow them to return home on a regular basis.  The monotony of driving coupled with the need
to react instantly to the rare emergency situation places high stress on the driver.  Taken
together, today's truck driver has a poor work environment which manifests high turnover
rates.  Motor carriers have instituted many programs to try to improve working conditions.  The
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investment in satellite communications, anti-lock brakes and cruise control are not only justified
by direct safety and performance benefits, but also by the improvement in working conditions
for drivers.

B.2.1.1.3 Investment in New Technology

Motor carriers are in many ways leading in the implementation of in-vehicle IVHS technology.
Qualcomm has sold its satellite-based communications and tracking system to more than 315
trucking companies.  85,000 inter-city trucks are so equipped today.  Also, essentially all new
class-8 trucks are equipped with the standard option of anti-lock brakes and cruise control.
Computers are replacing log books in most truck cabs and electronic documents and permits
are speeding trucks through weigh stations and border crossings.  Thus, the industry has a
track record for investing in technology that improves safety, productivity and driver comfort
and convenience.

B.2.1.1.4 The Cost of a Truck Driver

The current market rate of pay for an inter-city truck driver is between $.27 and $.32 per mile
plus benefits.  Those with more experience get the higher rate.  Union drivers and those
transporting hazardous materials generally get a little more.  Fringe benefits, which include
vacation, medical insurance and social security payments can increase the driver cost by as
much as 30%.  Management overhead on the driver can add another 20%.  This brings the
total cost of the driver to the $.40 - $.50 per mile range.

B.2.1.1.5 Market Size

The inter-city truck market is served primarily by class-8 (over 33,000 pounds) tractor-trailers.
There are some 2 million of these trucks registered in the US.  Domestic sales of new class 8
trucks  were 108,000 in 1992 with a 5-year average between 1988 and 1992 being 112,000.

B.2.1.2 O-D and Geographic Characteristics of Inter-City Freight Traffic

A phased implementation plan for infrastructure-intensive RSCs should focus first on the most
densely used truck corridors and progressively grow until a point when diminishing returns no
longer justify additional investment.  A first estimate of such a staged implementation can be
obtained by studying the geographic distribution characteristics of inter-city truck and rail-truck
intermodal traffic.

The geographic distribution of inter-city truck and intermodal freight traffic was studied using
the Princeton Transportation Network Model and Geographic Information System (PTNM/Iris)
Erera, 1994.  This is a general purpose network analysis software package that has
convenient computer graphic network editing and presentation modules.  It executes on Iris
series Silicon Graphics workstations.  It contains a detailed network description of the North
American highway infrastructure and routines that route traffic over the network, given demand
data that specifies shipment origins and destinations.  The traffic flow analysis uses a shortest
path computation to assign the traffic demand to the network.  The software outputs bi-
directional volumes on each link of the network that it readily displays using traffic density
maps.

The network used was the US portion of the PC*Miler ver. 7.0 highway network.  This network
is widely used in the motor carrier industry to route trucks and compute driving distances
between arbitrary locations in North America.  This network is composed of more than 80,000
links representing some 450,000 miles of roads.  Link attributes include distance, road type,
number of lanes and tolls and its range of node attributes allow many traffic data bases to be
readily assigned to the network.  Nodes represent over 200,000 places.  Node attributes
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include latitude, longitude, place name, state, 5-digit ZIP code, and standard point location
code.

Data depicting recent inter-city freight movement is not readily available.  The best data is the
Interstate Commerce Commission's Rail Carload Waybill Sample.  Federal statutes require
each class-1 railroad to submit to the ICC detailed movement data on 2.5% of its terminated
carload shipments.  Data elements include origin, destination, shipment size, commodity and
revenue.  Since no similar statutory requirement exists for the trucking industry, there are no
good public data sources that contain detailed truck shipment information.  The last nation
commodity flow survey was conducted in 1977.  Results of a new commodity flow survey are
to be released in early 1995.  Private data sources do exist.  They are notoriously biased;
however, they are the "only game in town".  It was assumed that while biased, these data
sources properly reflected the geographic distribution of truck traffic.  Volumes were adjusted
so as to match national ton-mile totals.

B.2.1.2.1 Description of the Inter-City Freight O-D Data Sets

B.2.1.2.1.1 ICC Carload Waybill Sample (CWS)

The best inter-city freight data is the freight railroad "Carload Waybill Sample" collected and
maintained by the Interstate Commerce Commission, (Mody, 1993).  This "2.5%" sample of
individual carload movements has been collected on an annual basis since 1973.  It contains
numerous attributes for each sampled movement including origin, destination, commodity,
shipment size and the freight revenue obtained by the railroad for transporting the shipment.
This is the best publicly available freight database.  Much of conventional rail freight traffic is
transported in volumes that are too large to be serviced by an AHS; however, rail intermodal
traffic which is contained in this data base could be served by an AHS.

There are 144,207 intermodal shipment data records out of 396,851 data records in the 1992
CWS.   These represent some 6 million trailer movements  for the year 1992.

B.2.1.2.1.2 Private Data Sources for Motor Carrier Traffic

While no government agency maintains data on nation-wide motor carrier traffic, there does
exist some private sources for some of that traffic.  Each of these sources suffers from a major
flaw in that they are subsets of the total motor carrier picture and not a sound statistical sample
of all nationwide movements.  This is a severe limitation; however, one has no alternative.

The best of these data is the National Motor Truck Data Base (NMTDB) truck stop survey
sponsored by the Association of American Railroads.  This survey, conducted by Forest Baker
between the years 1977 and 1988, surveyed drivers at strategically located truck stops mainly
in the western part of the country.  These surveys capture truck origin, destination and
commodity.  The main value of this data is that it does capture a good representation of the
length of haul and geographic distribution of the traffic that flows through these truck stops.
There are 108,650 shipment records in the NMTDB.

A second source of O-D motor carrier traffic data is the file obtained from a freight payment
firm, called the TRANZACT file.  This file contains excerpts from the actual computer-encoded
bills of lading that have been submitted to this freight payment firm.  As such these data are
more reliable since the source is the actual movement records that the shipper has authorized
payment for transportation.  The limitation of this data source is that it's relationship to the
broader movement of all motor carrier traffic is unknown.

The  file contains 543,535 shipment records.   The file contains a carrier code that classifies
the carrier as either a truck-load (TL) carrier or a less-than-truck load (LTL) carrier.  This code
was used to segregate the data into two distinct files; one that represents the shipper demand
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served by TL carriers and the other to represent the demand served by LTL motor carriers.
Each of these files were factored to reflect 1992 gross ton-mile totals reported by DOT.

B.2.1.2.2 Geographic Distribution of Inter-City Freight Traffic

The traffic data was flowed over the US highway network using the PTNM/GIS.  The results of
that traffic assignment process is displayed graphically in the form of traffic density charts
contained in figures B3 through B6.  In each figure the line thickness is proportional to the
volume of traffic moving over that section of highway.  The line thickness along any segment is
made up of two bands, one drawn on each side of the link to represent the volume of traffic in
each direction.  When facing along one direction, the line thickness to the right of the link is
proportional to the link volumes traveling in the facing direction.  The line thickness to the left is
proportional to the link volume in the opposite direction.  This graphic feature readily exhibits
the road segments that serve many trips as well as the prevailing direction of those trips.

Figure B3 displays the traffic density map of annual nation-wide truck-load traffic from the
NMTDB file.  It is recognized that this data source is biased by the limited survey locations
where these data are collected.  Fig. B5 shows this bias.  Flows are much higher in corridors
containing the survey stations.  This is particularly evident on the I-80 corridor in the western
portion of the US, the I-5 corridor along the west coast in California, and the I-70 corridor in the
midwest.  Two of the major survey locations are at truck stops on I-80 in Utah, I-5 in central
California, and I-70 in Ohio.  Since the is no survey location along I-95 this explains the low
volumes displayed by this data source.  These biases suggest that the NMTDB data may not
be the best data source for a national freight analysis; however, it does exhibit some of the
fundamental characteristics of the geographic distribution of long-haul freight traffic in the US.
One of the major characteristics is the extent to which a great deal of traffic is concentrated on
relatively few corridors.  This is a good finding for AHS because it suggests that there are
corridors of concentrated traffic density that can be designated as the initial segments of an
evolving AHS network.

Figure B4 displays the traffic density map of the rail portion of annual nation-wide rail-truck
intermodal traffic from the ICC waybill sample.  These data were flowed on the highway
network to depict the road segments that would be utilized if the rail portion of this traffic were
to divert to the highway.  The map shows that the railroads have diverted a great deal of east-
west long haul traffic away from the highway mode.  The traffic density map readily shows
that:

1. the flows are rather balanced directionally, this is a response to the market place
which has adjusted back-haul rates so as to generate balanced flows.

2. the dominant flows are east-west and not north-south.  This is in part due to the
fact that a significant portion of the intermodal rail traffic is part of trade flows
from the Far East.

3. flows are much larger in the western portion of the United States than in the
eastern portion. This is also a response to existing market forces that are such
that intermodal traffic is competitive at relatively large lengths of  haul.  Rail
intermodalism has become market dominant in distances
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above 1000 miles.  Significant volumes of these trip lengths mostly occur
between the west and the midwest portion of the US.

4. The traffic flows show a concentration in the western portion of I-80, I-70 and I-
10.

Figure B5 displays the traffic density map of annual nation-wide truck load traffic from the TL
TRANZACT traffic file.  These data are thought to be more representative of the nationwide
distribution of truckload traffic because their source is a broad cross-section of the nations
shippers.  These data have been scaled to represent total annual ton-miles as reported by
DOT (DOT, 1993).  The measure of flow used in this, as well as the next, figure is truck loads,
or more precisely, trailer equivalent units, TEUs.  This conversion from ton-miles per mile
makes the traffic density chart easier to relate to common knowledge.

The traffic densities displayed in Fig. B5 show that the highest density long-haul corridor is the
I-80 corridor spanning the Chicago and New York metropolitan areas.  Other dense corridors
include the I-81 corridor through the Shennendoah Valley, the I-70 corridor to St. Louis and
through to Kansas City and the I-5 corridor in California.  The east-west corridors are relatively
lightly traversed, in part because much of their former truck-load traffic has been diverted to rail
intermodal.  The I-80 corridor serves consistent densities of over 750,000 truck loads west
bound and over 900,000 truck loads east bound per year.  This compares to truck load
volumes in the 500,000 - 700,000 range in the I-81 and I-70 corridors and the 500,000 range
in the I-5 corridor.

Figure B6 displays the traffic density map of annual nation-wide less-than-truck load traffic from
the LTL TRANZACT file.  Readily evident from comparing the volumes in this figure with those
shown in the previous figure is that LTL volumes are substantially less.  TL volumes are
approximately five (5) times those of LTL volumes.  The geographic distribution of the LTL traffic
is similar to that of TL.  But there are differences.  The highest density corridor is the I-81 which
serves between 140,000 and 180,000 TEUs as compared to the I-80 corridor in the midwest that
serves between 140,000 and 170,000 TEUs per year.  The I-70 is also a heavily used corridor
to/from St. Louis.

B.2.1.2.3 Summary of O-D Characteristics of Inter-City Freight

In summary, the geographic distribution of existing freight traffic that could be served by AHS is
what one would expect.  These corridors connect the major metropolitan areas of the northeast
and the west coast.  I-80 is a major corridor along with I-95 in the northeast and I-81 through
Virginia.  The traffic  density charts contained in figures B3 through 6 convey the feeling that
there does exist a rational evolutionary path for the construction of an infrastructure-based
AHS whose initial modestly long corridors could serve a significant market.  While I-95 is one of
these corridors, it has high density over a rather short portion of its length.  The I-80 and I-81
corridors have similarly large volumes over much longer stretches.  More importantly, these
stretches are through less developed land that may be more conducive to the construction of
AHS infrastructure.
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A O-D characteristic that does not show up on the traffic density chart is how trucks serve a
sequence of loads in time.  Operationally, the linking of trips tends to be more like Brownian
motion rather than "back-and-forth".  This is especially for truck-load drivers that often don't
know their next load until they are about to serve it.  The linking of trips that get the driver back
home even once a week is a major challenge for most motor carriers.  This characteristic
implies that for even the highest density corridor, "many trucks will use that corridor some of
the time, but few will use it much of the time".  Furthermore, this suggests that any
infrastructure-intensive AHS will not be able to require any significant in-vehicle investment;
otherwise, most trucks that could use the system some of the time will have difficulty using it
enough to justify amortizing much of an in-vehicle investment.

B.2.2 Freight Traffic Analysis of Evolutionary Inter-City AHS  Networks

If AHS is to require the modification of existing, or the building of new, infrastructure, then an
important question is: How extensive does that infrastructure need to be to serve the demand
patterns of shippers that are currently using conventional truck or intermodal transportation?  A
second question is: How should that infrastructure evolve in order to serve the most demand at
each stage of the evolutionary process?  These are critical questions when considering RSC
8-13.  Each require a dedicated AHSway.

The purpose of this analysis was to determine the freight market potential of an evolutionary
sequence of rural interstate AHS network segments that would best serve existing inter-city
freight movements.  A contiguous set of the higher density links were selected to form
progressively larger AHS networks.  The analysis re-flowed each of the traffic data bases on
each of the evolved networks.  In re-flowing the data, each link of the AHS network was given
some routing preference that reflected the attractiveness of AHS service.  The re-flowing
process re-computed a new best O-D route for each shipment.  This produced traffic density
data for the new AHS network, and the remaining conventional network.  Also computed was
the total ton-miles on each evolving AHS network.  In flowing the traffic, it was assumed that
all trips could use the AHS, if it were reasonable for a portion of the trip.  This provided an
upper bound on the market potential of each evolutionary AHS network to serve each of the
traffic classes, TL, LTL, and rail-truck intermodal.  In terms of the RSCs, what is modeled here
is reflective of RSCs 8-12 with the additional stipulation that either all vehicles are equipped
with the needed on-vehicle AHS hardware or that this an infrastructure-only AHS system.  If all
trucks are not so equipped, then the market potential has to be scaled back proportionally
using the market penetration percentages reflecting the installation of on-board equipment.

B.2.2.1 Evolution to a Full AHS Interstate Network

In structuring the analysis that would select the evolutionary order in which corridors were to
be converted to AHS, it was decided to begin with an ultimate interstate system AHS and then
to work backwards to determine the evolutionary priority.  The assignment of the flow of
current shipper demands to the full interstate AHS system readily identifies the most intensely
used corridors.  These can then be progressively assembled to provide an evolutionary plan
for network expansion.

As a first-cut, the full interstate AHS was taken as the union of the current interstate highway
system, plus all toll roads.  Critical links were added in places where the network was
disconnected.  All other roadways were retained as access roadways to the interstate AHS.
This network was created by altering the link attributes of the PC*Miler network using the
PTNM/Iris software.  Figure B7 is a national map of that network with its access roads.  The
AHS portion represents 44,590 route miles .  Mileages by state are given in table B1.  Texas
has the largest mileage followed by California, Illinois, Ohio, Pennsylvania, New York and
Florida.  Not surprisingly, the small northeastern states have the shortest route miles.
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Table B1.  State Mileages of the Interstate AHS Network

State Mileage State Mileage State Mileage State Mileage

TX

CA

IL

OH

PA

NY

FL

MI

GA

MT

AZ

MO

3287.6

2482.6

2021.1

1607.8

1604.4

1502.8

1461.3

1241.7

1238.3

1196.0

1168.0

1160.7

IN

VA

TN

NM

NC

CO

UT

OK

WY

AL

MN

LA

1134.5

1078.0

1064.9

1013.8

997.5

956.2

933.6

928.3

913.3

903.8

902.6

896.0

KS

SC

KY

IA

WA

OR

SD

MS

WI

ID

ND

MA

859.2

799.0

796.9

790.4

763.0

719.9

681.4

680.1

640.0

598.6

572.2

559.9

WV

AR

NV

MD

NE

NJ

ME

CT

VT

NH

RI

DE

DC

547.2

544.5

530.9

486.0

483.1

462.6

366.8

340.5

330.3

218.5

74.4

40.7

10.5
B.2.2.2 Traffic Flow Analyses

The traffic flow analysis used the shortest path traffic assignment software of the PTNM/Iris to
assign each O-D pair to the network.  The objective of the shortest path is a "best-route"
objective that tends to favor the AHS segments while minimizing total travel time.

The routing model used in assigning traffic to the highway network is based on a simple driver
route choice behavior model.  It finds the route from origin to destination that minimizes the
sum of the weighted distance, (D), times the  link service quality, (LSQ)), where the sum is
taken over the links that make up the path from origin to
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destination.  The link service quality, LSQ, is a relative measure of the speed and quality of a
road segment.  Implicitly included in the measure are tolls, speed limit, type of road, type of
traffic control devices and road geometry. Explicit values of LSQ are assigned to
homogeneous groupings of road segments.  For example, Interstate highways have an
LSQ=1.0, Toll roads have LSQ=1.1, divided highways have an LSQ=1.3.  No formal calibration
procedure has been used to assign these values.  They have simply evolved to be values that
consistently generate the route that truck drivers tend to use between any given O-D pair.
These values tend to properly tradeoff distance and differential route quality between different
road types.
Presented with the opportunity to use an AHS infrastructure, one needs to anticipate how
drivers will perceive the benefits of an AHS roadway relative to the conventional highway
system.  Such a roadway would probably be a tolled facility and thus the LSQ should be close
to 1.1; however, the AHS facility will provide enhanced safety and comfort.  It's use may also
increase the driver's hours-of-service limit and thus provide substantial productivity
opportunities that easily outweigh the negative implications of tolls.  After much consternation,
an LSQ of 0.9 was selected for the AHS facilities.  This implies that a motor carrier would be
willing to travel up to an additional mile for each 10 miles driven on the AHS facility.  For many
trips the AHS-best route is equivalent to the best route using the conventional parallel roadway
segments.  For other trips, this value of LSQ implies that a trucker would be willing to travel up
to one mile farther for each 10 miles of travel on the AHS.

The fully allocated mileage costs for a class-8 truck is about $1.25 per mile.  The LSQ
measure of .9 for AHS segments implies that the AHS can deliver to the driver net benefits
valued in excess of 12.5 cents per mile plus the cost of AHS tolls and the cost of amortizing
any needed on-vehicle hardware.  Otherwise the driver would choose a 10% shorter route on
a conventional road, if it existed.  This is a fairly large value of perceived benefit.  Safety
benefits are not expected to be sufficiently high to completely compensate for this extra cost;
however, comfort benefits and possible extensions of hour of service limitations could yield
sufficient value to allow LSQ=.9  to be a realistic value for an AHS.

The routing model assumes that all truck drivers have the same LSQ.  This is a major
simplification.  In reality each driver has his own LSQ.  Some would have LSQs greater than
1.0 which would mean that they would not use AHS.  The AHS is assumed to be built near the
right-of-way of existing conventional expressways.  Thus, the equal distance conventional
alternative would be chosen.  Those drivers that had LSQs less than one would divert
accordingly, given the opportunity.  For those driver's whose value of LSQ is closer to 1.0, then
the attractiveness of the AHS system based on an LSQ=.9 has been overestimated .  For
those with less, the AHS use has been underestimated, but it is unlikely that LSQ would be
less than .9, unless there is some large perceived benefit of AHS that has been overlooked.  In
the end, the sum result is similar to that achieved from the much simpler approach of using
one value of LSQ for all truck drivers.

Analyses were conducted using the following four freight traffic databases: the ICC rail
intermodal traffic sample for year 1992, and both the less-than-truckload (LTL) and truck-load
(TL) portions of the TRANSACT file that had been factored so that their total ton-mile levels
matched 1992 totals reported by DOT.  The ICC waybill data contains an expansion factor that
reflects actual 1992 totals.

Three similar analyses were performed for each of the databases.  The analyses began by
assigning the entire database to the national AHS network using the PTNM/Iris.  This analysis
assumes that all of the traffic is technologically capable of using any portion of the AHS
network.  The origin and destination of each shipment is kept constant, but the traffic is routed
on the best route on the AHS with its network of conventional access roads.  The routes are
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computed by the shortest path module of the PTNM/Iris assignment process.  Volumes on the
links traversed by each shipment are accumulated to provide total volumes by direction on
each link of the network.

The first analysis is a traffic flow analysis on the entire interstate AHS network.  This provides
estimates of the ultimate market potential of AHS and the geographic distribution of that
market.  This analysis produces traffic flows that are very similar to the geographic distributions
that were discussed in section B.2.1.2.2.  Since the whole interstate highway system is
transformed into an AHS,  routes change very little.

The second analysis, an AHS minimal-network analysis,  focuses on those links of the AHS
which serve the most traffic.  Bi-directional link volumes are summed, sorted in descending
order, multiplied by the link distance and then summed cumulatively.  This provides a
convenient way to identify the minimal AHS network that serves a desired percentage of the
total traffic volume (in terms of unit-distance, e.g. trailer-miles).  The results are presented in
table B2 which lists the minimum AHS network length to serve 20%, 50%, and 80% of the
traffic volume served by the complete interstate AHS network.  Geographic network maps are
also presented that depict the actual links that comprise each of those minimal networks.  The
results of these analyses identified a four phased evolution of a nationwide AHS highway
infrastructure.  The first stage is a 1,209 mile segment that serves the highest volumes in our
analysis.  The second is a 5,214 mile system.  The third is an 11,255 mile system and the final
is the complete 44,590 mile interstate AHS that serves all states.

The third analysis re-flowed each of the traffic data bases on each of the evolved network.
Each link of the AHS network was given an attractive LSQ =.9 so that traffic tended to be
attracted to the AHS corridors.  This provides high-side estimates of  the ultimate inter-city
freight traffic potential of each of the evolutionary networks.

B.2.2.3 Results for Each of the Databases

B.2.2.3.1 Analysis of Rail Intermodal Traffic

The intermodal traffic shipments contained in the 1992 ICC Carload Waybill statistics were
assigned, using the PTNM/Iris to the national highway network containing the interstate AHS.
Results of that traffic assignment are presented in figure B4 in the form of a nationwide traffic
density map.  The geographic distribution of this traffic is discussed in section B.2.1.2.2 above.

AHS Minimal-Network Analysis
Even though a total of 44,500 miles of road were designated to contain the interstate AHS,
only a relatively small portion of those miles would be needed to serve the bulk of the rail
intermodal traffic, if that traffic were all to be diverted to the AHS system.  Table B2 shows that
only 6% of the AHS route miles are needed to serve the most dense 20% of the rail intermodal
traffic .  Figure B8 highlights those links of the network.  It indicates that the I-80 corridor
between Salt Lake City and Chicago is the principal long haul corridor, with dense corridors
emerging from Los Angeles and in West Texas.  20.18% of the route miles are needed to
serve 50% of the freight intermodal traffic.  Figure B9 highlights these links which provide
service between Chicago and San Francisco and Los Angeles and between Los Angeles and
Houston. The only dense Eastern corridor is between Akron and Toledo.  Only 20,845 miles or
46.7% of the national AHS system is needed to serve 80% of the rail intermodal traffic.  Figure
B10 highlights those links and shows clearly how the western portion of the AHS provides
most of the service.  Interconnected are each of the major western cities with each of the
major midwestern gateways.  Only the Chicago-Scranton corridor with a spur towards
Washington, D.C. is needed in the eastern part of the of the US in order to capture 80% of the
intermodal rail traffic.
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Table B2.  Minimum Miles of AHS Needed to Serve a Fixed Percentage
of the Total Traffic Served by the Interstate AHS Network

%
Capture

NMTDB
Miles

NMTDB
%of AHS

Rail
Miles

Rail
%of AHS

TL
Miles

TL
%of AHS

LTL
Miles

LTL 
%of AHS

20% 1,180.4 2.65 2,648.9 5.94 2,273.6 5.10 2,368.1 5.31

50% 4,930.2 11.06 9,000.5 20.18 7,999.2 17.94 8,294.1 18.60

80% 15,481.4 34.72 20,845.1 46.75 17,959.4 40.28 19,106.5 42.84

B.2.2.3.2 Analysis of NMTDB Traffic

Traffic Flow Analysis
The 108,650 movement records contained in the National Motor Transport Data Base
(NMTDB) were assigned to the AHS network using the PTNM/Iris.  The geographic distribution
of this traffic are similar to those discussed in section B.2.1.2.2 above.

AHS Minimal-Network Analysis
Table B3 shows that the top 20% of the traffic volume is served by 1,180 route miles or 2.65%
of the interstate AHS.  This is significantly smaller than that required to
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serve the top 20% of the intermodal rail traffic.  Figure B11, which highlights those major links
is similar to that of the rail intermodal in the west, but replaces the west Texas segments with a
corridor between Toledo and Cleveland and a short segment in northern Indiana.  It must be
remembered that the NMTDB is a biased subset focusing on extremely long-haul trucking that
could be diverted to intermodal rail.  This bias arises because the data came from surveys
conducted at rest stops that are located on known long-haul corridors.
Fifty percent of the NMTDB traffic is served by a 4,930 mile network or 11.06% of the total.
This is again lower than that of rail intermodal, indicating a more concentrated pattern of traffic
for extremely long-haul truck traffic.  Figure B12 highlights these corridors which are better
developed in the east along I-80 and I-70 and in the west along I-80 and I-40.  There is also a
segment going from Chicago heading toward the Twin Cities.

Almost 15,500 miles of AHS are needed to serve 80% of the NMTDB traffic.  These links are
displayed in figure B13.  They show east-west corridors that are contiguous through all but the
most northern part of the west and extend to as far as Boston in the east.  The Southeast is
conspicuously absent from participation in the top 80% of the traffic flow.

B.2.2.3.3 Analysis of TRANZACT Truckload Traffic

AHS Minimal-Network Analysis
The TRANZACT database for shipments of greater than 10,000 pounds were flowed as truck-
load shipments on the interstate AHS.  As with the other data bases the flows were
geographically distributed in a manner similar to those displayed in figure B5.  These flows are
substantially different than those of rail intermodal and the NMTDB.  Significantly more traffic is
moving over the network in the eastern part of the country.  This is where lengths-of-haul are
shorter and less attractive to rail intermodal services.

Table B3 presents the distribution of route miles as more of the traffic is captured by the AHS.
Figure B14 displays the corridors that serve the top 50% of the truckload shipments.  These
represent 8,000 route miles or 17.9% of the total.  The I-80 corridor is fully developed in the
west.  In the midwest, Chicago to Pittsburgh, Oklahoma City to Nashville, and Kansas City to
Harrisburg are the primary east-west corridors.  Atlanta, Memphis and St. Louis to Chicago are
the north-south corridors.

It is not until one extends to the 80% level does New England begin to participate in the
network as is shown in figure B15.  There is still a great deal of concentration in the traffic on
the network since a mere  40%, or 18,000 miles of interstate AHS is needed to serve 80% of
the traffic.  Most of the major cities are served except for those in the northwest, New England,
southeastern seaboard and Florida.
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B.2.2.3.4 Analysis of Less-Than-Truckload Traffic

AHS Minimal-Network Analysis
The less-than-truckload traffic required 8,300 miles or 18.6% of the network to serve the top
50% of flow.  This is almost 50% more than that required to serve 20% of the rail intermodal
traffic.  The corridors are displayed in figure B16.  The network is more fully developed in the
Northeast especially in the New York metropolitan region.  It also has an I-75 segment
between Northern Florida and Chicago.

To serve 80% of the less-than-truckload traffic, 19,100 route miles, or 42.8% of the total, are
needed.  Compared with TL traffic, the LTL traffic is more diffuse as would be expected from
traffic that has, on average, shorter length of haul.  Figure B17 displays the corridors that
extend from Chicago all the way to Minneapolis, Jacksonville and Boston.  In the west the I-5,
I-80, I-40 and I-10 corridors are all developed.  This map has the most developed I-95 corridor.

B.2.2.4 A Phased Evolution to an Interstate AHS

The 20%, 50% and 80% networks from the previous analyses were combined to define an
evolving sequence of longer AHS networks consisting of roughly 1,200, 5,000 and 11,000
route miles.  These networks were created by taking the common segments from the previous
analysis.

Phase 0 is taken to be the nation's highways as they exist today.  Phase 1 is a 1,209 mile
corridor along I-80 between the outskirts of Salt Lake City, UT and to the Iowa - Illinois border
west of Chicago.  This corridor was selected as Phase 1 even though it isn't the most densely
used corridor.  It was selected because it was a very dense corridor that serves freight
movements that have a particularly long length of haul.  The corridor is also located in a more
rural portion of the country.  Its construction would probably face less opposition than what
might confront some other corridors.  The corridor serves significant amounts of the traffic
contained in all four of the freight traffic data bases.  This corridor is depicted in the map
contained in figure B18.

Phase 2 extends the Phase 1 corridor across I-80 to the outskirts of San Francisco and Los
Angeles to the west and to the New York metropolitan region to the east.  It also branches
south from Chicago along I-75 and west from Nashville to Ft. Worth along I-40.  Figure B19
displays this network.

Phase 3 extends Phase 2 to corridors along I-90 and I-40 in the west and along I-81 and I-95
in the east.  This is a very sparse network, yet it serves all but eight (8) of the lower-48 states.
Figure B20 depicts the alignment of this network.

The TRANZACT TL and LTL traffic data bases were flowed over each of the Phased
implementations of the AHS network.  An LSQ of .9 was used to reflect the attractiveness of
the AHS corridors.  The attractiveness of the AHS corridors tended to attract traffic that would
have otherwise traveled on neighboring corridors paralle l
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conventional highways.  This is particularly striking for the Phase 1 corridor.  It attracted long
haul traffic away from I-90 and I-70.  In fact volumes along this corridor are 50% higher than
they are with either no AHS or the full 44,000 mile interstate AHS.  The distribution of TL and
LTL traffic on the Phase 1 network as well as the rest of the conventional highway system are
shown in figures B21 and 22.  Figures B23 and 24 display the traffic volumes of TL and LTL
traffic on the Phase 2 AHS networks.  Figures B25 and 26 display the traffic volumes of TL and
LTL traffic on the Phase 3 AHS networks.  In comparing and contrasting these maps it is
important to keep in mind that the scale for the TL maps is 5 times the scale of the LTL maps.
It is interesting to note that when Phase 3 is built, the density on the Phase 1 I-80 corridor
decreases substantially because traffic to/from the Pacific Northwest is diverted back to the
shorter I-90 route.  Thus, the network is already beginning to exhibit some characteristics of
diminishing returns.  The network may already be large enough to serve the real needs of
interstate commercial movements.
A summary of the key statistics from the flow analysis are presented in table B3.  The table
clearly points out the following:

Even with an LSQ = .9, the traffic as a whole does not travel much farther.  There is very little
difference in total TEU-miles between the no-build alternative (Phase 0) and Phase 3.

The Phase 1 network is able to attract very high flows.  On average, each segment of the AHS
could be used by as many as 1.8 million trucks per year carrying intercity freight.  (The
combination of TL and LTL).

The Phase 3 network also has the potential to serve a large volume of trips.  On average, 1.1
million trucks per year would be served by each segment of the network.

While the volumes are high, they may not be high enough to generate sufficient revenue to
offset the cost of construction and maintenance.  Assume that each truck pays tolls at a rate
$.10 per mile driven on the AHS.  If the traffic density reported in table B3 were achieved,
those tolls would only generate $180,000 per mile per year.  This level of revenue could
support at most a capital expenditure of $2 million per mile.  One cannot build much highway
infrastructure with that amount of revenue.  As the system gets larger, the average density of
use becomes less, as is the ability to generate toll revenues that could repay the capital costs
of the initial construction.

In conclusion, there are evolutionary paths that exist by which the nation could evolve to build
an interstate AHS.  There exist dense, relatively short corridors that could serve long-haul
markets and help AHS score an important early success; however, the basic economics of an
infrastructure-intensive system are very tenuous.  The volume with trucks alone is large but not
large enough to generate enough toll revenues to pay for the infrastructure needs of a RSC
10-11-type AHS.
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Table B3.  Utilization Potential of the Evolving AHS Network
for Truck-Load and Less-Than-Truck-Load Traffic

Phase &
traffic base

Miles of AHS Total
TEU-Miles
(000,000)

Off-AHS
TEU-Miles
(000,000)

On-AHS
TEU -Miles
(000,000)

Avr. TEU
on AHS

Phase 0 - TL 0.0 20,531 20,531 0 0

Phase 0-LTL 0.0 3,222 3,222 0 0

Phase 1 - TL 1,209.0 20,589 18,671 1,918 1,587

Phase 1-LTL 1,209.0 3,233 2,942 291 240

Phase 2 - TL 5,213.9 20,655 13,891 6,764 1,298

Phase 2-LTL 5,213.9 3,245 2,004 1,241 238

Phase 3-TL 11,254.6 20,668 10,196 10,472 930

Phase 3 LTL 11,254.6 3,250 1,320 1,930 172

B.2.3 The Market for Vehicle-Borne, Infrastructure-Free RSC 2-Type AHS

B.2.3.1 Market Characteristics

The comfort, convenience and safety attributes of automated operation are significant
motivators for truck drivers and their companies to invest in vehicle-borne AHS equipment that
could be used ubiquitously over the rural segments of the conventional interstate highway
system.  Currently the motor carrier industry is investing significant amounts of capital in
intelligent systems that improve safety, driver comfort and carrier operations.  Investments in
anti-lock brakes, cruise control and two-way satellite communication systems are common
place.  Anti-lock brakes deliver primarily a safety benefit, cruise control delivers primarily a
driver comfort benefit and satellite communication systems deliver primarily an operational
efficiency benefit.  It is the direct benefits that these technologies have delivered that has
fostered their market penetration.

The benefits are so compelling and available at such a reasonable cost that anti-lock brakes
and cruise control are standard options that are included in almost every large (class 8) truck
sold today.  Qualcomm has sold over 85,000 OmniTRACKS two-way satellite communication
units to more than 315 trucking companies.  These units, which provide continuous and
ubiquitous two-way communications, monitoring and tracking of trucks, cost about $4,000 per
truck for the hardware.  Actual communication charges are extra.  At these prices these
systems sell.  These proven results suggest that there is a strong potential market for vehicle-
borne AHS technologies that provide safety and driver comfort amenities over a wide expanse
of the driving cycle.

The important common characteristic of each of these existing technologies is that each
provides benefits over most of the driving cycle.  Anti lock brakes provide a safety
enhancement to the motor carrier at all times.  Cruise control can be used on essentially all
roads to deliver comfort and convenience benefits over short and long stretches of travel.  The
valuable element of the OmniTRACKS system is that, because it is satellite-based, it monitors
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and maintains communications across the country.  Similarly, a pure vehicle-based  RSC 2-
type AHS system would be able to deliver comfort and safety benefits over most of the driving
cycle.  These benefits would be available to all trucks that purchased the on-board equipment;
even the first truck.  It is thus quite reasonable to surmise that the safety benefits will motivate
the carriers, and the job enhancement aspects will motivate the drivers to invest in RSC 2-type
vehicle borne technologies if they are affordable.

The beauty of RSC 2-type vehicle borne AHS technologies is that they are not dependent on
investments in the infrastructure to deliver the safety,  comfort, and convenience benefits.
Thus, the costs are modular.  They are incurred directly by the end user who gains the direct
benefit.  It would be difficult to imagine how an infrastructure-based cruise control system
could have been successful, because incremental investments could not have delivered
incremental benefits.  In fact, Qualcomm was able to incrementally offer incremental
communications by renting space on existing satellites rather than having to establish it's own
satellite infrastructure prior to entering the market.  Similarly, the safety and convenience
aspects of a vehicle-borne RSC 2 are benefits that could easily motivate motor carriers and
independent truck driver to invest.  The big question remains as to whether the market size for
an RSC 2-type system is sufficiently large that units can be affordably priced and enable the
developer to recover his R&D costs as well as make a profit.

The market opportunities for such equipment are favorable simply because the productivity of
the equipment is so large for motor carriers and for inter-city commercial bus operations.
Drivers for these firms spend a lot of time and travel many miles on our nation's interstate
highway system.  Most of that mileage is driven on highways that are not in urban areas.
These freeways are not normally congested.  They are rural in nature.  These drivers use the
highway system ubiquitously, almost as a random process rather than a repetitive driving
back-and-forth over the same pavement.  Thus, a system that is oriented to the infrastructure
is burdened with the need to invest in much of that wide expanse of infrastructure before users
can begin to capture much of the benefit.  Such a system cannot require much capital
investment by the truck or inter-city bus owner because this cost cannot be distributed over
much of the driving cycle.   A system that is vehicle-based delivers to its driver benefits that
accrue continuously from the beginning for each mile traveled over suitable highways.  Since
the total cost of the technology is primarily capital cost with little operating and maintenance
costs, the higher the utilization, the lower the per-mile costs.  Truck drivers, inter-city bus
drivers, and traveling salesmen have enormous benefit opportunities.

Assuming that this technology requires only investment in on-board sensors and actuators,
one can readily justify investment in the technology.  An RSC 2-type system could deliver
benefits over much of the driving cycle that are greater than that of cruise control.  Thus, on
inter-city hauls one could expect that these systems could be used more than 80% of the time.
Given that a class-8 truck logs roughly 125,000 miles per year, this system could deliver
benefits to an owner-operator during over 100,000 miles of travel per year   A carrier who uses
team or relay drivers may have even more to gain.  He may be able to double the annual
utilization of this equipment without incurring additional capital costs.

Assume that the on-board RSC 2-type AHS equipment has a 5 year life and requires annual
maintenance of 10% of its capital cost.  At a 12% cost of capital, a $5,000 system would add
only one, (1), cent per mile to the operating costs of an owner-operator that logs 125,000 miles
per year.  That driver would capture about 100,000 miles of safety and comfort benefits.
Demonstrated safety improvements could reduce insurance premiums sufficiently that the
incremental cost of such equipment would be essentially zero.

As postulated, the relationship between capital costs and per-mile incremental costs is linear.
A $10,000 system would add about two (2) cents per mile to the operating cost.  For fleet
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owners that use tandem or relay drivers the cost per mile is proportionally less for trucks that
are used more intensely.  For a truck that logs 200,000 miles per year, a $5,000 system would
add only about 0.6 cents per mile to the trucks operating costs.  Thus, one could expect that
those first to invest in such a technology will be commercial operators that make the highest
annual use of the nations interstate highways.

B.2.3.2 Market Size Estimate

The current market for inter-city trucks is approximately 100,000 units per year.   With a 50%
market penetration at a unit price of $5,000, this provides an annual market size of $250
million per year in the domestic class 8 truck market.  Class 6 and 7 are also active in the inter-
city motor carrier market.  Their average domestic sales for the past 5 years have been 17,500
and 66,000, respectively.

B.2.4 Driverless Automated Freight System: Opportunities to Serve Smaller
Shipment Size

RSC 8-12 provide the opportunity for driverless operation.  These RSCs are particularly
attractive to the commercial and transit sector because of their potential for major reduction in
driver labor costs derived from driverless operation.  Each of these RSCs has an exclusive
roadway and its associated entrance and exit facilities that interface with the conventional road
system.  These facilities could be expanded by connecting the entrances and exits to /from off-
line terminals where captive vehicles could be loaded and unloaded.  Additional off-line
terminals could be constructed at strategic locations to facilitate interfaces with inter-modal
operations.  These off-line terminals could interface with conventional trucking or rail operation
in a cross-dock type of operation or they could be facilities that could integrate directly into the
shipping facility of a major sourcing location for raw materials, a manufacturer, or a distributor.

The significant advantages that such an operation delivers are the elimination of driver labor
cost and its associates hours-of-service constraints.  Thus ultra long-haul shipments could be
dispatched from a terminal and travel non-stop, except for refueling, to its destination.  For
shipments having trip length greater than 500 miles, this would substantially reduce the transit
time because the 10-hours of service limitation on drivers would not be applicable.  For
extremely time-sensitive shipments that would normally have used team drivers, a comparable
level of service would be provided at a savings of two units of labor costs.  With labor costs
running at $0.40-$0.50 per-mile, this can be seen as a significant benefit.  If the on-board
hardware costs could be kept low, say below about 5 cents per mile, this would still leave
substantial benefits that could justify tolls of upwards of 25 cents per mile for class 8-type large
combination vehicles operating in an RSC-10/11-type system.  A benefit spread of greater
than $0.10 per mile combined with the travel time, reliability and safety benefits can be
significant motivators for high volume shippers like UPS and other LTL operators to construct
the necessary facilities to connect their terminals to an RSC 10/11-type of interstate AHS.

There may also be a significant latent market for such driverless operation if the per unit cost
of the on-vehicle AHS system is low enough.  In these situations market forces may be such
that smaller shipments do not need to be consolidated and then dispersed but instead can be
dispatched directly from origin to destination in smaller RSC 8/9 single vehicle equivalent
(SVE- type system.  If it costs little more to ship direct rather than consolidate, ship, and
disperse, then the market will ship direct.  This is in concert with the basic trends of shippers to
desire smaller, more frequent shipments rather than large infrequent shipments.  The tangible
benefits of just-in-time shipments to reduce inventories and improve manufacturing efficiency
would benefit from this driverless small vehicle freight concept.
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The opportunities of such a concept were investigated using the LTL shipment data.  It was
found that indeed a large percentage of LTL shipments are small enough to fit in SVEs.  The
average shipment size for the 139 million LTL shipments in 1992 was found to be  926
pounds, (Eno, 1992).  This is a substantial market.  In converting the TRANZACT data to
TEUs it was assumed the an average LTL TEU was 20,000 pounds.  By further assuming that
half of the TEUs could be disassembled back to their original size before consolidation,
consisting of an average of ten (10), 1,000 pound shipments transportable in SVEs, them.
Assume that 50% of these are diverted to the driverless system; then, each mile, of the more
extensive Phase 3 AHS network described in table B3, could serve an average of 850,000
SVE LTL shipments per year.  This is a sizable volume from which one might be able to
extract a toll that is on the order of $.10 per mile.  At this level these SVEs would contribute to
the capital and operating costs of such a system but only on the margin.  Even by using all of
the optimistic assumptions above, a driverless SVE concept could generate tolls that could
service no more than a $850,000 per mile capital debt.  At that, this concept could only evolve
as the network grew to provide service to much of the country.  Operationally, the shipments
would still need to be collected and distributed using conventional means.  Pick-up and
delivery terminals would need to be located in a cross-dock fashion with the off-line terminals
connecting the RSC 8 AHS.  This concept needs for many such terminals to be constructed so
as to minimize the collection and distribution distances.  Thus, it begins to make sense only
after the AHS has grown to provide service over a sizable region.

In freight transportation, one has to be careful not to "cube-out" as well as not to exceed
weight limits.  The volumetric constraint is not as important a constraints to the LTL shippers
because their shipments are already severely restricted in size.  The kinds of commodities
served by the LTL industry are not of the type that typically cube-out before they weigh-out.
The cube-out traffic could not be effectively served because of the size limitations of the RSC
8-type systems.

LTL freight rates vary widely; however, their average in 1992 was 24.82 cents per ton-mile
whereas truck load carrier collected only 9.96 cents, (Eno, 1993).  This demonstrates that
small volume shippers are willing to pay a substantial premium to keep shipments small.
Within LTL, smaller shipments pay higher prices than larger shipment.  We can gain some
idea about what shipment sizes could be could be economically served by a driverless AHS.  If
we assume that LTL shippers are willing to pay roughly $.25 per ton-mile, then at what point
does the LTL operator have sufficient revenue to route shipments on the driverless AHS.  It
can be assumed that the operation and vehicle capital costs of a driverless, RSC 8-type, SVE-
sized vehicle could be as little as 50 cents per mile, not including any toll charges for the use of
the AHS system.  These freight rates imply that only shipment sizes greater than three tons, or
6,000 pounds, could take advantage of the direct driverless operation.  This would provide
revenues of $.75 per mile, leaving $.25 per ton mile for tolls, profit, and other expenses, after
paying the vehicle costs of $.50 per mile.  The flow of LTL traffic on the Phase 3 network
reported in table B4 indicates an average annual utilization of each mile of the network by
roughly 600,000 LTL shipments averaging 6,000 pounds.  If  one could capture 50% of that
market and be able to charge tolls of $.10 per vehicle mile, this would generate $30,000 per
route mile of annual toll revenue for the RSC 8-type AHS.  By considering the freight rates that
shippers might be willing to pay and the vehicle costs, the amount of infrastructure capital
costs that such a system could defray may be at most $300,000 per route mile.  This is hardly
enough to finance even a 10% share of the capital costs of building such a system.  Note that
consideration of freight rates and operating costs, suggests that this type of system will not be
able to serve very small shipments weighing 1,000 pounds, but will instead require
consolidation of shipments to 6,000 pounds.  This increased size is dangerous to the concept
because a 6,000 pound payload is at or above the design limit of an SVE.
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In summary, existing freight traffic demand in the LTL sector suggest that shipment sizes and
freight rates are such that a driverless SVE RSC-8/9-type AHS concept could serve this
demand.  However, such a concept only begins to make sense when the geographic size of
the AHS network becomes large.  Further more, if toll charges are limited to approximately
$.10 per vehicle mile, then, even using optimistic estimates, the market size is not large
enough to pay for more than a small portion of the capital costs of such a network.  If one
considers what shippers currently pay for LTL service, each mile of the Phase 3 AHS would
serve an on average 300,000 driverless vehicles a year that could be expected to contribute
toll revenues of about $30,000 per route-mile per year.

B.2.5 Major Conclusions for AHS Service of Inter-City Freight

B.2.5.1 Conclusion for Commercial  Freight Transportation

• The commercial freight inter-city market has most of its driving cycle on rural,
uncongested interstate highways.

• Class 8 trucks, on average, log more than 125,000 miles per year of travel, of which
100,000 is on the interstate highway system.

• The market for class 8 trucks (over 33,000 pounds) is approximately 20,00 per year.

• Motor carriers have aggressively bought new technology that provides improved
safety, comfort and convenience for the driver and advanced communication
systems that improve the management of the truck fleet.

• A vehicle-borne, infrastructure-free RSC 2-type system that would be usable on
much of the nations interstate and expressway highway system without any
infrastructure improvement would be extremely attractive to motor carriers (and the
inter-city bus industry).  A good price point for these systems would be a capital
outlay of about $5,000 , and a maintenance cost of less than $500 per year.  At this
level this adds about one cent per mile to a truck's operating costs.

• At a 50% market penetration of new sales, there is a $250 million annual market for
a $5,000 vehicle-borne RSC-2 type system that is installed as optional equipment
on new class-8 trucks.  Conversions of existing trucks increases proportionately the
size of this market.

• An infrastructure-based, RSC 8-12-type AHS has a clear evolutionary path starting
with dense 1,200 mile corridor along I-80 between Chicago and Salt Lake City.
Each mile of such a system could serve as many as 1.8 million truck movements
per year if the economics are right.  Because such a system would serve only a
small portion of the driving cycle of most trucks using the system, the on-vehicle
hardware costs can't be amortized over as many miles as an RSC 2, infrastructure-
free system.  It will be paramount to keep the on-vehicle costs extremely low so as
not to stifle market entry by those trucks that could otherwise use the system.

• Future evolutions of an RSC 10-11-type AHS could grow to an 11,000 mile system
that could serve roughly 50% of the current truck-served, inter-city freight market.

• Even by assuming a 100% market penetration, the 11,000 mile RSC 8-12-type
AHS would only generate toll revenues of $110,000 per route mile at toll rates of
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$.10 per mile.  This level of tolls can service the capital debt of about $1 million per
mile.  It is unlikely that motor carriers would be willing to pay AHS tolls that are
much greater than $.10 per mile

• A driverless, SVE, RSC-8/9-type, Phase 3 AHS concept could serve a substantial
amount of LTL demand.  If toll charges are limited to approximately $.10 per vehicle
mile, then, LTL demand patterns, shipment size, vehicle costs and existing freight
rates suggest that each mile of such a system could serve as many as 600,000 of
these shipments per year.  Assuming a 50% market penetration, traffic densities on
a Phase 3 network could generate toll revenues of about $30,000 per route-mile
per year.

• Comparing the basic economics of the market for a driverless, RSC-2-type AHS
with an infrastructure-intensive RSC 10-11-type AHS suggests that an RSC 2-type
system is much more attractive to the inter-city freight industry.  It's on-board costs
can deliver benefits over much more of the driving cycle, the system has a much
lower cost of entry (infrastructure does not have to be built), and even a mature
RSC 10-11-type AHS does not serve enough volume, even at a large toll
($.10/mile) to service the cost of the infrastructure.  This finding suggests that R&D
investment focused on reducing the cost of reliable vehicle-borne, infrastructure-
free RSC-2 type systems is the best way to have AHS successfully serve the inter-
city freight market.

B.3 OPPORTUNITIES FOR AHS-BASED INTRA-CITY COMMERCIAL FREIGHT

B.3.1 Characteristics of Intra-City Commercial Freight Traffic

The intra-city commercial freight market, often called urban goods movement, is made up of
two major segments, the distribution of goods from warehouses and consolidation centers to
commercial establishments and the collection of refuse.  They involve either delivery or pick-up
functions that are facilitated by the driver.  Routes have one trip end as a terminal.  Distribution
or pick-up points are dispersed along "traveling salesman"-type routes.  Individual shipments
tend to be small.  Vehicle capacities need to be able to accommodate many individual
shipments.  These are distributed along a route.  The routes taken by existing intra-city freight
traffic tends to be on local streets and arterials.  Cumulative volumes are very large, but they
are widely distributed geographically across each metropolitan area.  Driving is done
throughout the day, not just in congested periods.  The market is not controlled by a major
corporate entity.  It is a collection of many small players.  The trucks that serve this market,
class 2-7, accumulate annual mileages that are in the 20,000 - 50,000 mile range,  much less
than half that of inter-city trucks.  The reason for the low mileage is that the driving speeds of
intra-city trucks are substantially less than inter-city trucks and a significant amount of the
driver's time is spent in performing pick-up and delivery functions.

There is a real lack of hard data on intra-city freight transportation that can be used to provide
quantitative support for the qualitative findings made above.  There exists no national
database for local truck movements.  Companies involved in intra-city distribution have their
own proprietary data bases.  We were unable to locate a database that contained an
ensemble of data for intra-city freight movement for any metropolitan area.

B.3.2 Implications on AHS Service of Intra-City  Goods Movement

It is difficult to envision the kind of AHS that could serve a significant portion of the intra-city
freight market.  Its geographic diffusivity and its many stop pick-up/delivery operation makes
each of the RSCs not particularly attractive to this market.  Vehicle-borne RSC 2-type AHS is
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not envisioned to operate on arterials and local streets.  Thus very little of a truck's driving
cycle could benefit from such a system.  Combined with the fact that these trucks don't travel
nearly as far as their inter-city counterparts, an intra-city truck could legitimately distribute the
cost of such a system on an order-of-magnitude less miles, roughly 10,000 miles.  This makes
an RSC 2 type system at least 10  times more expensive to an intra-city truck driver.  For an
RSC 8-13 type system to be useful to this market it would need to have an extensive network
of intra-city freeways so equipped.  Small pockets of this market could be found to be properly
concentrated and have narrowly defined repetitive movement; however, these sub markets are
the exception.

Thus, AHS, at least in its early stages, is not particularly attractive to, or well suited to serve,
the intra-city freight market. At best, this market would be served by AHS only in its later
stages of development.

B.3.3 Conclusions  for Intra-City  Freight Movement

• Intra-city freight and the collection and distribution of inter-city freight are extremely
difficult to serve with automation.  The small shipment size and the multiple stop
character of the operation are not conducive to automation.

• As with inter-city commercial bus operation, the driver performs more functi ons than
simply driving the truck.  The driver is the service interface with the customer.

• The geographic diffusivity of this traffic is such that much of the intra-city goods
movement driving cycle takes place on road segments that are not compatible with
an RSC-2 type AHS.  Because each vehicle logs relative low annual mileage
vehicle-borne AHS hardware can be amortized only over those few miles.  An
infrastructure-intensive RSC  8-12-type AHS serve even less of the driving cycle.

• AHS does not seem  to be particularly attractive to this market.

B.4 OPPORTUNITIES FOR AHS-BASED COMMERCIAL FOR-HIRE INTER-CITY
PASSENGER TRANSPORTATION

B.4.1 Characteristics of the Current Inter-City Passenger Market

The commercial, for-hire, inter-city transportation market is but a small portion of the total inter-
city passenger-mile market.  In 1991, the private automobile served 80.7% of the 2 trillion inter-
city passenger-mile market.  The commercial, for-hire inter-city passenger carriers served only
18.6% of that market.  Air transportation is the dominant technology.  Its 16.8% share of the
total market was 90% of the commercial market.  The other commercial modes, rail and bus,
have an infinitesimal share of the market.  Commercial rail's share of the market, which is
served almost entirely by Amtrak, is only slightly larger than that of private air (as opposed to
commercial air).  Commercial rail served only 13.7 billion passenger-miles, while private air
served 13.1 billion.  Each had about 0.7% of the total inter-city passenger market.  In 1991
there was a total of 4,204 inter-city bus operating companies .  Most of them are small charter
operators.  There were 31 class 1 inter-city bus operating companies that offer scheduled
service.  Of these, most are small.  The industry is dominated by a single national carrier,
Greyhound.  In total, these companies operated 20,855 buses and served 23.5 billion
passenger-miles, or 1.2% of the inter-city people travel market.  The replacement rate is
approximately 2,000 buses per year.  At its current levels, this is not a very large market.  Each
bus is an extremely productive entity.  They log over 100,000 miles per year, most of which is
traveled on the Interstate highway system.  Consequently, a vehicle-borne, infrastructure-free
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RSC 2-type AHS system, that can operate throughout the Interstate highway system, can
deliver benefits during 100,000 miles of bus use per year.  Even a relative expensive system
could have attractive per mile costs.

In addressing the commercial market for AHS in the service of inter-city passenger demand,
two approaches can be considered.  One is to investigate how a commercial, public carrier
using AHS technology could better serve the current inter-city bus patrons and to determine
what AHS technological nuances would give such a technology a service advantage.  The
second is to study how AHS could penetrate each of the existing inter-city commercial carrier
sub-markets individually.  This second approach will be pursued first and will be combined with
an analysis of the private car market to build a picture of the suitability of AHS in the total inter-
city passenger market.  Once completed, a separate investigation will be made as to how, in
terms of a mix of public and private mechanisms, AHS can deliver inter-city passenger service.

In focusing on existing commercial inter-city passenger sub-markets, neither the bus or the rail
market provide much of an opportunity, by themselves, for a nation-wide AHS.  The inter-city
bus mode is extremely diffuse with very low volume.  Only through the provision of substantial
public subsidy is the rail mode able to maintain a national network for which significant
concentration exists only on the Boston - Washington corridor.  It is only in that market for which
it may be worthwhile to search for a significant AHS market, although it may be contrary to
good public policy to divert traffic from rail.

The long-haul air market provides no opportunity for AHS patronage.  Its travel time
advantages are simply too overwhelming.  The short-haul portion of existing air service;
however,  may be a source of some modest commercial inter-city passenger traffic for AHS on
an incremental basis.  If the inter-city linkages of AHS were economically justified by other
markets, then diversion of short-haul air passengers may deliver incremental users to an inter-
city AHS.

With the infrastructure in place, one can envision that the door-to-door service capabilities of
AHS could erode the under 250 mile portion of the air transportation market; however, this
market is not very large.  Only 10% of the inter-city air passenger trips are 250 miles or less,
much of which is in the Northeast corridor.  These passengers are extremely sensitive to travel
time, otherwise they would have not taken a plane for such a short distance.  They have plenty
of competitive choices including Metroliner services in the Northeast.  It would be the
additional comfort, convenience and door-to-door service offered by the private vehicle
segment of AHS that could capture some part of this market.  More of it would be captured
outside the Northeast corridor where short-haul air transport does not have good rail service
competition.

B.4.2 The Inter-City Passenger Market for Vehicle-Borne, Infrastructure-Free RSC 2-
Type AHS

In total, the existing commercial inter-city passenger market is not expected to contribute more
than a small amount on incremental demand for an inter-city AHS.  What demand is served
will not have sufficient substance to impart any significant special technological needs.  Even if
we assume that an RSC 2-type AHS has a 50% penetration of the sales of new inter-city
buses, this amounts to the sale of only 1,000 units per year.  This is certainly too small of a
market on which to build an RSC 2-type AHS; however, it can complement the inter-city freight
market.  The technology that is needed for an RSC 2-type AHS for inter-city passenger
transport is the same as that needed by a freight-oriented RSC 2-type AHS.  Thus, the inter-
city market is an incremental market that contributes to the total market for RSC 2 type
systems.   As is presented above in section B.2, the annual market for RSC 2-type AHS for
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inter-city freight transportation is an order-of-magnitude larger, approximately 10,000 units per
year at the 50% market penetration rate.

Of course, the largest potential market for RSC 1/2-type AHS is the private automobile.  The
good news is that there is an enormous amount of inter-city travel served by the private
automobile, 1.8 trillion passenger-miles.    Most of that travel is on the interstate highway
system.  The bad news is that any one vehicle's annual mileage in inter-city travel is small.
Average vehicle occupancy for the majority of those trips is high, greater than 2.0.  Trips tend
to be short however, there are some very long vacation trips.  The average inter-city mileage
for a private automobile is roughly 5,000 miles per year.  Even for an RSC 1/2-type system
that could serve much of those 5,000 miles, for the average car, this is a very low annual
mileage over which to distribute the on-vehicle capital costs of an RSC 1/2-type system.
Quantifiable benefits of $.10 per mile would only substantiate a capital investment of about
$2,000  This assumes a five year life, a 10% interest rate and modest annual maintenance
costs.  Only for special users such as "traveling salesmen" and others who log a lot of miles on
the interstate system, could the cost be distributed over sufficient use to be easily justified.
While even a small penetration of this extremely large market provides some significant
volume of potential users, the economics for the private automobile are substantially worse
than that of the inter-city bus and class 8 motor carrier.

B.4.3 Market Growth

Market growth in the commercial inter-city passenger area is expected to be slightly larger than
growth in the economy in general.  Most of the growth can be expected in the airline sector.
The airline sector has been growing at an annual rate that is about one percentage point
greater than the economy as a whole.  The trends in inter-city rail continue to increase, but at a
rate slower than airlines.  Inter-city bus has been decreasing  (Eno, 1992).

B.4.4 Latent Demand

It has been difficult to identify some possible sources for latent demand in commercial inter-city
passenger transportation.  While one can envision AHS causing a significant increase in inter-
city travel in private, personal AHS vehicles, it is more difficult to conceptualize a commercial
inter-city passenger operation that could be spawned by AHS.

If the public could become accustomed to the provision of remote customer services, as they
have done for short trips in elevators, then, driverless operation could create a market for a
more moderate-sized AHS "bus" that could provide a higher frequency, more demand-
responsive service over that of existing buses and trains.  Such a service would, if anything,
draw its traffic from existing auto users as opposed to creating a brand new transportation
market.  One might be able to provide more inter-city mobility to the very young and the very
old; however, their fundamental inter-city travel demands are modest, at best.

A fundamental problem is that in the commercial inter-city passenger market, the driver serves
a greater purpose than simply driving the vehicle.  The driver provides general oversight,
customer service, a significant element of security and is available to respond to emergency
and unexpected situations.  Each of these is very difficult, if not impossible, to deliver through
remote means.  Consequently, it seems very unlikely that a corporate entity would dispatch a
group of passengers on a long journey without a human representative on board.  Without the
labor savings benefits of driverless operations, an AHS inter-city bus operation has essentially
the same cost and service characteristics of existing operations; thus, there is little to motivate
the creation of latent demand.  This suggests that driverless AHS buses are not practical
commercially for customer service reasons.
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In summary, we simply have not been able to envision a latent inter-city travel market that
could be created by an AHS inter-city bus operation; although, one is rarely a sufficient
visionary to see these markets in advance.

B.4.5 Conclusions for the Commercial Inter-City Passenger Market

Table B4 summarizes some of the major characteristics facing the commercial inter-city
market.

Table B4.  Major Characteristics of the Commercial Inter-City Passenger Market

Existing Mode 1992 Market Size
(billion p-m)

Opportunities for AHS Notes

Inter-city bus 24 An RSC 2 system would
be very attractive to this
market

Major portion of  bus fleet
could covert to AHS
operation

Inter-city rail 14 Little shift to private AHS
vehicle, some markets
could convert to inter-city
AHS bus operation

AHS incursion into this
market causes some
public policy problems

Air passenger 340 Small opportunities for
private vehicle AHS in
short haul non- Northeast
corridor markets

Private air 13 No real competitive
opportunity for AHS

The major conclusions are:

• The commercial inter-city market is small in comparison with the inter-city
passenger market served by the private automobile.

• The only likely short term commercial inter-city passenger market for AHS is that of
inter-city bus.  This is a very small market.  Only 1,000 new inter-city buses are sold
each year. However, the driving cycle of an inter-city bus is similar to that of an
inter-city truck.  Thus, it could provide a good secondary market for an RSC 2-type
AHS that was designed to serve the inter-city freight market.

• The bus market is less conducive to a driverless AHS because the driver provides
substantial benefits other than driving.

• An infrastructure intensive AHS has better opportunities than commercial freight to
serve geographically contained sub-markets, because commercial buses can be
managed to operate in constrained corridors.  Such a system could better serve
geographic segments of the automobile market because the driving cycle of a
particular automobile is much more geographically constrained than that of an inter-
city truck.
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• The large inter-city market is served by the private automobile.  Unfortunately, on
average, the private automobile travels too few miles on inter-city expressways to
justify spending even a modest amount for an RSC 1/2 type system.  However,
there may exist some significant sub-markets, such as traveling salesmen, that
could easily justify investment in an RSC 1/2 type system.  Such systems also
become more attractive if they could be used for the daily commute portion of the
automobile's driving cycle.

B.5 OPPORTUNITIES FOR AHS-BASED TRANSIT

B.5.1 Characteristics of the For-Hire, Intra-City Passenger Market

Urban transit, that is, for-hire, intra-city passenger transportation is only a small fraction of
intra-city person transportation which is dominated by the private automobile.  Nationally,
transit serves only 3% of intra-city person trips.  These trips can be broadly classified into three
sub-markets.  The first market is composed of the transit trips that take place in the New York
metropolitan region.  This market serves roughly half of all US transit trips.  It stands alone.
The second market serves those trips that do not have access to the private automobile.
These trips are predominantly short, less than 10 miles and are made by the poor, young,
and/or elderly.  The third is composed of longer distance commuter trips in dense corridors.
These trips are typically served by express buses or rail rapid transit, have patrons that have
higher income levels and are typically work-related.

Of these existing markets, only the express bus sub-market is conducive to the early stages of
AHS where only one or a few corridors may be automated.  A particularly attractive example of
such a system is the exclusive counter-flow bus lane leading to the Lincoln Tunnel.  This
example will be discussed more thoroughly, below.

In the future, it may be that a more dense network of AHS could provide services that could
entice automobile drivers to leave their private cars at home.  To this end an analysis of the
service potential of a dual-mode AHS operating on a dense metropolitan network is also
presented.

B.5.2 Conventional Mass Transit- Automation of the  Lincoln Tunnel  - I-495
Exclusive Bus Lane

B.5.2.1 Description of the Current Operation

The Port Authority of New York and New Jersey, in conjunction with the New Jersey
Department of Transportation, operate an east-bound counter-flow exclusive bus lane, (XBL),
along a 2.5 mile stretch of I-495 leading from the New Jersey Turnpike through the Lincoln
Tunnel to the Port Authority bus terminal located on 8th Avenue in Manhattan.  Used is the left
most west-bound lane.  It is separated from on-coming west-bound traffic by temporary cones
that are deployed every morning.  The permanent concrete New Jersey-type barrier separates
the XBL from the three east-bound lanes.  The lane leads to an exclusive, bus-only lane in the
Lincoln Tunnel.  Tolls are collected electronically, requiring no stopping at the toll plaza. .

The XBL is in operation from 6:30 am to 10:00 am on weekday mornings.  It serves an
average of 1600 buses per morning at a peak rate of approximately 700 buses per hour.  This
one lane serves about 65,000 riders every morning, about 30,000 during the peak hour.  It
saves riders an average of about 20-25 minutes of delay in accessing and traveling through
the Lincoln Tunnel.  This facility is the most productive bus-only lane in the US.  It performs the
people moving capacity of 10 lanes of automobiles.

At present the facility is at capacity for two reasons.  Wide variations in the spacing of buses
caused in part by varying driver responses to speed variations along the XBL limit its capacity
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to 700-800 buses per hour.  Speed variations exist at the downward helix, passing through the
toll plaza, at the entrance to the tunnel and on the upgrade leading to the exit on the
Manhattan side of the tunnel.  The most severe capacity constraint exists in the bus terminal
on the Manhattan side of the tunnel.  Here the bottleneck is caused by buses maneuvering for
docking space.  This causes backups.  It is a classic entry/exit problem.  Neither bottleneck
has had a simple solution.  Drivers need to be more consistent and responsive and better real
time communications, management and control are needed to route buses through the bus
terminal.

B.5.2.2  AHS Opportunities for the Lincoln Tunnel

AHS could contribute to the alleviation of both bottle necks.  An AHS system could maintain
better spacing of buses even with speed variations and a real-time information system could
better guide the buses to and from their loading docks in the terminal.

From a market perspective this application of AHS has a number of fortunate characteristics.
The buses that use the facility tend to use it on a daily basis.  Thus on-board AHS equipment
of the RSC 2-type can get high utilization.  Since the entire corridor is less than 3 miles long,
any infrastructure-based AHS equipment need be deployed only along a short corridor.
Benefits accrue to an extremely large number of users because of the high patronage of the
buses.  A 25% increase in capacity of the XBL would serve an equivalent number of travelers
as are served currently by all 3 of the conventional east-bound lanes.  The travelers who would
benefit from the system are more representative of the whole population than those that
currently drive automobiles through the tunnel.

There are several fundamental characteristics that make the Lincoln Tunnel XBL a particularly
good application for AHS.  First, there is a monumental problem on the horizon if a substantial
capacity improvement is need in this facility.  There is no place to put another access lane and
the cost of boring another tube is enormous.  Thus, capacity through automation would surely
be the most cost effective solution.  Even without need for capacity improvement, automation
would smooth out the flow of buses and improve the travel time reliability of the buses.  The
application is on a very short corridor, less than five (5) miles, and the same busses use the
facilities repeatedly.  Less than 1500 buses would need to be AHS-equipped  The institutional
challenges are probably as limited as possible.  All buses are the property of NJDOT and were
purchased with PANYNJ money.  NJDOT and PANYNJ have authority over all operations and
construction in the corridor.  For these major reasons, this is an excellent candidate "early
winner" for AHS

B.5.2.3  Simulation of AHS Bus Operation on the Lincoln Tunnel XBL

In order to better understand the capacity issues on the XBL and to demonstrate that higher
capacity could be achieved, we developed a simulation of the XBL's operation.  The simulation
consists of a 3-dimensional model of the XBL's roadway system.  A driver simulation model
that controls the throttle and brakes of each bus "drives" along the XBL.  A vehicle-follower
mode has been implemented that determines if the bus should operate in a leader mode or a
follower mode.  Under the leader mode the control system regulates speed according to a
desired speed profile.  In the vehicle-follower mode, the vehicle maintains spacing and
regulates its speed relative to the vehicle directly ahead.

B.5.2.4  Simulation Results

The simulations indicate that even with randomly arriving buses at the New Jersey Turnpike
end, the XBL can easily accommodate an increase in demand to as much as 1600 vehicles
per hour by controlling the bus speed to a minimum of 20 miles per hour along the tightest part
of the helix.
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B.5.3 Analysis of a Dual-Mode "Mini-Bus" System for New Jersey

B.5.3.1 Characteristics of Dual-Mode Transit

Dual-mode is a concept that has a history of more than 20 years.  The term "Dual-mode"
refers to a transit system whose vehicles are capable of both computer controlled automatic
operation on a fixed guideway and manual operation (with driver) on the regular street network
[3].  It has the advantage of the automated operation's improved safety, travel time reliability
and, in driverless operation, the potential to lower labor costs while simultaneously keeping the
flexibility of door-to-door service.  The operation of a dual-mode system is depicted in figure
B27.

Dual-Mode

Collection

Distribution

Line-Haul

Figure B27.  Dual-Mode Service Concept
It is assumed in this report that single-vehicle-equivalent (SVE) sized, low-capacity, 6 - 12
passenger vehicles perform the neighborhood pickup of passengers with a common
destination, use the Automated Highway System (AHS) for line-haul operation to the vicinity of
destination, and distributes passengers to destination by conventional operation on the local
street network.  Drivers do not need to accompany vehicles on the automated portion.

With such an operational concept, it is possible to provide the door-to-door service which have
service characteristics that are comparable to the private auto.  Applications in Santa Clara,
California and Milwaukee, Wisconsin were studied extensively in the middle 1970s.  The
conclusions of those studies indicated promise for the concept; however, technological
development of the automated portion of the concept was not pursued.

We chose to re-evaluate the concept, this time within the context of a region-wide
implementation throughout the state of New Jersey.  New Jersey, being the most densely
populated state has travel patterns that are common to most metropolitan areas.  It has dense
major corridors as well as a wide expanse of diffuse suburban-to-suburban travel patterns that
are dispersed over a large area.  We also chose New Jersey because we had a
comprehensive journey-to-work trip file that exhibited both the spatial and temporal
characteristics of auto-based trips to work.  A basic question that was not answered by the
early dual-mode studies was: is there in fact demand for dual-mode's service capabilities?
Dual-mode requires that at least a few people wish to travel from about the same location to
about the same location at about the same time.  Without this commonality in trip demand,
dual-mode has no trips to serve irrespective of its technological capabilities.  This question can
only be addressed using a demand data base that reflects both spatial and temporal
characteristics.

B.5.3.2 Analysis Procedure and Results
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The analysis procedure involves three separate steps to examine the applicability of dual-
mode system and to inspect the market potential.  These is the work-trip demand file
generation, the dual-mode demand aggregation model, and the graphical user interface
(PTNM/Iris).  Following are the description of each of these three steps.

B.5.3.2.1 The Work-Trip Demand File Generation

A dual-mode system would operate throughout the day; however, its peak service will be
provided in serving trips to and from work.  Our focus is thus on dual-mode's service to the
journey to and from work.  Detailed data precisely describing both the geographic (origin-
destination) and the temporal (departure time) of work trips in any region are not available.
However, such a demand file can be generated synthetically by assigning individual trips to
randomly selected arrival-at-work times from distributions that reflect the actual times at which
workers of a certain time arrive at work.  These times can be projected backwards using
expected travel times to yield specific departure times for each trip.  This produces individual
work-trip data which has a precise origin and destination, an exact (to the second) departure
time.  Taken over all trips this procedure yields a reasonable representation of journey-to-work
trip activity in a region, (Velussi, 1992).

This procedure was used to generate a work-trip data file for New Jersey as follows: first, the
1990 journey-to-work census file for New Jersey was used to the source of specific origin and
destination for each work trip.  Only the auto-based trips were selected.  It was felt that long
distant transit trips that are currently served by commuter bus and rail would not be diverted to
a dual-mode operation.  Second,  an employment type was assigned to each trip based on the
trip's destination and that destination's distribution of employment by type as defined by
employment location file of NJ's Department of Commerce.  Employment types were
aggregated into three sectors of employment, professional, manufacturing, and service.
Origins and destinations were aggregated to 1020 demand points that corresponded to the
PC-Miler version 7 link-node network representation of NJ's highway system.  Finally, an
arrival time for each trip was selected using a random drawing from desired arrival time
distributions for each trip type.  A trip departure time was appended to each trip in the file by
computing the nominal travel time between origin and destination and subtracting it from the
desired arrival time.  Trips destined to New York City were removed from the file.  It was
deemed that these trips should be taking the train to New York.

The final product is a file of trips with each record containing origin node, departure time, and
destination node.  Such a file is created for the morning commute to work in NJ.  It contains
individual records on some 1.8 million intra-NJ trips.  Only the trips that were greater than 5
miles in length were retained for possible service by a state-wide NJ dual-mode system.  This
reduced the size of the trip file to 1.1 million individual trips.  If these trips are flowed over the
NJ highway network , assuming uncongested road conditions, they generate 15,200,000 car-
miles of travel every morning.  The geographic distribution of these trips is shown as a traffic
density chart in figure B28.  Only the high volume links are displayed.  Note that segments of
the Garden State Parkway serve over 25,000 trips in the north-bound direction every morning.

B.5.3.2.2 Analysis of Dual-Mode Network Flows

The Princeton Transportation Network Model, (PTNM/Iris) was used to view and
analyze the flows of dual-mode vehicles over the NJ dual-mode AHS network.  The PTNM
network used in the dual-mode analysis consisted of 3,360 directed links and 1,020 nodes.  As
a first step, it was assumed that all major highways in NJ were part of a dual-mode AHS.
Dual-mode trips were assigned to the NJ network.  Based on the traffic volumes, a more
limited RSC 9-type dual-mode AHS network was designed.  RSC 9 has new dedicated AHS
lane(s) with limited access and is exclusive to Single Vehicle Equivalents (SVE).  These
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vehicles that are commensurate with the 6-12 passenger capacity of the dual-mode vehicles
used in the analysis.  Dual-mode trips were reassigned to the combined dual-mode and
remaining NJ highway network.

The dual-mode network had  538 2-lane route miles plus segments along the NJ Turnpike and
Garden State Parkway (GSP) which extended its length to 754 2-lane route miles .  This dual-
mode AHS network could serve each weekday morning 1.3 million vehicle-miles with an
average occupancy of 4.48 passengers.  Figure B29  shows the dual-mode network of NJ
without NJ Turnpike and GSP extensions.  Figure B30  shows the dual-mode network of NJ
with NJ Turnpike and GSP extensions.

B.5.3.2.3 The Dual-Mode Service Model

The dual-mode service model searches trip file to find trips which have the same origin and
destination node and depart at about the same time.  The search for trips that have the same
origin and destination is synonymous with searching for trips that have similar geographic
origins and destinations, because trips have been assigned to modes.  In urbanized areas
these modes represent roughly a four square mile area.

The detailed steps of the model are as follows.

Step 1.  Delete non-divertable trips which are shorter than a pre-specified trip length.

Step 2.  Sort trip file by O/D and departure time.

Step 3.  Choose minimum group size (n), departure time window size (t), and dual-mode
vehicle loading capacity (c).

Step 4.  Aggregate individual trips into dual-mode trips based on n, t, and c.
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In Step 1, 5 miles was used as a minimum trip length.  As a result, trip file has reduced to 1.1
million records.  For Step 3, we tested values of 3, 5, 7 passengers for n, and 1, 3, 5 minutes
for maximum collection time, t, and 6, 12, for vehicle passenger capacity, c.

Tables B5 through B7 summarize the result of demand model implementation with various
combinations of n, t and c.  As measures of effectiveness, sum of passengers served, sum of
passenger-miles traveled, average dual-mode trip length in miles, sum of dual-mode vehicle
trips, and average occupancy rate as passengers per dual-mode vehicle are tabulated for
each combination of variables.

The tables reveal that as t increases, all measures of effectiveness increase consequently.  As
n increases, all measures of effectiveness except average occupancy rate decrease.  As c
increases, sum of passengers served, sum of passenger-miles traveled, and average
occupancy rate increase also, but sum of dual-mode vehicle trips decreases.  One interesting
result is that regardless of the value of c, average dual-mode trip length remains constant as
long as n and t keep the same value.  The other noteworthy fact is that the marginal benefit is
very small even if c increases from 12 passengers to unlimited passengers.  This fact suggests
that there is little need for vehicles that have passenger capacities greater than c = 12
passengers.

The model with minimum occupancy of 3 passengers, (n=3), maximum collection time of 3
minutes, (t=3), and maximum vehicle capacity of 6 passengers, (c=6) was chosen the
prototype dual-mode operation for the New Jersey dual-mode network.  The prototype can
serve 780,759 passengers (71 %) out of NJ's  1,116,985 daily auto-based work trips that are
greater than 5 miles in length.  The sum of passenger-miles traveled is 8,241,496 passenger-
miles and accordingly the average dual-mode trip length is 10.6 miles.

If each passenger paid fares of $.10 per mile, the dual mode system could generate revenues
of $800,000 per morning.  assuming that total daily ridership is a little over three (3) times
morning ridership and that there are an equivalent of 300 transit days per year, a $.10 per
passenger mile fare would generate annual revenues of about $800 million.  The fare would
probably need to be more than $.10 per mile before the farebox revenue could pay for all
operating costs and begin to contribute to the debt service on the capital cost of the AHSway.
Since the morning average occupancy is high, but only 4.48 then a $.10 per mile fare only
generates an average of $.45 per vehicle mile in the morning period.  One can expect slightly
lower results in the evening period and substantially poorer results in the off-peak period.
Also, no account has been made for the empty repositioning of vehicles.  Thus total daily
average occupancies can be expected to be substantially poorer, possibly as low as 3.0.  at
this level, each vehicle is generating only $.30 per mile of revenue.  Fully allocated costs of
operations, plus vehicle cost, minus driver costs are at least this amount.  It may well be that
fares would need to be more like $.20 -$.25 per mile for such a system to begin to contribute
to the debt service payments for the AHSway.
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Table B5 Summary of Result with Vehicle Capacity = 6

1) Sum of Passengers
2) Sum of Passenger-Miles
3) Average Trip Length ( miles )
4) Sum of Dual-mode Vehicle Trips
5) Av. Occupancy ( pass./veh )

Departure Time Window Size ( t)

1 Minute 3 Minute 5 Minute

Minimum
Group Size
(n )

3

1)     517,990
2)   4,998,143
3)             9.6
4)     125,212
5)            4.14

1)     780,759
2)   8,241,495
3)            10.6
4)     166,859
5)            4.68

1)    880,748
2)  9,688,551
3)           11.0
4)    178,862
5)           4.92

5

1)     275,559
2)   2,400,014
3)             8.7
4)      48,934
5)            5.63

1)     557,426
2)   5,336,308
3)             9.6
4)      96,658
5)            5.77

1)    687,493
2)  6,895,023
3)           10.0
4)    118,120
5)           5.82

7 NA NA

NA

Table B6 Summary of Result with Vehicle Capacity = 12

1) Sum of Passengers
2) Sum of Passenger-Miles
3) Average Trip Length ( miles )
4) Sum of Dual-mode Vehicle Trips
5) Av. Occupancy ( pass./veh )

Departure Time Window Size ( t )

1 Minute 3 Minute 5 Minute

Minimum
Group Size
( n )

3

1)     518,506
2)   5,003,077
3)             9.6
4)     116,145
5)            4.46

1)     781,763
2)   8,251,896
3)            10.6
4)     139,985
5)            5.58

1)    881,584
2)  9,698,351
3)           11.0
4)    140,914
5)           6.26

5

1)     279,275
2)   2,433,431
3)             8.7
4)      40,961
5)            6.82

1)     563,254
2)   5,396,186
3)             9.6
4)      71,527
5)            7.87

1)    693,412
2)  6,961,879.
3)           10.0
4)     82,014
5)           8.45

7

1)     167,677
2)   1,380,780
3)             8.2
4)      18,796
5)            8.92

1)     425,847
2)   3,868,794
3)             9.1
4)      44,091
5)            9.66

1)    564,798
2)  5,379,442
3)            9.5
4)     56,223
5)          10.05
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Table B7.  Summary of Result with Unlimited Loading Capacity

1) Sum of Passengers
2) Sum of Passenger-Miles
3) Average Trip Length ( miles )
4) Sum of Dual-mode Vehicle Trips
5) Av. Occupancy ( pass./veh )

Departure Time Window Size ( t )

1 Minute 3 Minute 5 Minute

Minimum
Group Size
( n )

3

1)     518,525
2)   5,003,246
3)             9.6
4)     114,401
5)            4.53

1)     781,781
2)   8,251,965
3)            10.6
4)     132,781
5)            5.89

1)    881,639
2)  9,698,779
3)           11.0
4)    128,345
5)           6.87

5

1)     279,325
2)   2,433,838
3)             8.7
4)      39,231
5)            7.12

1)     563,348
2)   5,397,084
3)             9.6
4)      64,350
5)            8.75

1)    693,524
2)  6,962,977
3)           10.0
4)     69,475
5)           9.98

7

1)     167,867
2)   1,382,198
3)             8.2
4)      17,106
5)            9.81

1)     426,278
2)   3,873,464
3)             9.1
4)      37,041
5)           11.51

1)    565,433
2)  5,385,931
3)            9.5
4)     43,860
5)          12.89

The sum of dual-mode vehicle trips is 166,859 trips log ging 1,875,151 vehicle miles.  The flow
volumes on the dual -mode guideway as well as on the major conventional roads is shown in
figures B31 and 32.  Figure B30 shows the total morning volumes in units of dual-mode
vehicles per link.  Figure B31 shows the peak period volumes.  For the entire morning period,
the most heavily use segment of the dual-mode roadway has a volume of only 4.982 vehicles.
This compares to the 28,000 peak flow rate that exists now with automobiles.  Figure B32
shows that the peak-hour flow is only 2320 dual-mode vehicles.  This could be accommodated
on an automated roadway that had capacities equivalent to today's conventional highway lane.

The dual-mode network is really not very congested.  It would not need to be any more than
one lane in each direction and still be able to serve these 780,000 passengers every morning.
In fact, figure B33 shows the distribution of link volumes in units of dual-mode vehicles per
hour for the most heavily used link  as well as the median link.  Values are given in 15-minute
increments during the morning travel period.  Note the buildup and dissipation of link
throughput as the morning progresses.

This enormous efficiency in moving people in New Jersey is accomplished by dual-mode's
simulated ability to attain a high average vehicle occupancy.  Among the, 49,467 trips (30 %)
are occupied by 3 passengers, 27,359 trips (16 %) by 4 passengers, 17,276 trips (10 %) by 5
passengers, and 72,757 trips (44 %) by full of 6 passengers.  Figures B34 through B37 display
the dual mode vehicle flows for vehicles occupied by 3,4,5, and 6 passenger, respectively.
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When the occupancy of all of these variously-occupied vehicles is averaged, the average
vehicle occupancy is 4.68 passengers per dual-mode vehicle.  This is an enormous average
vehicle occupancy, especially when compared with that of the current automobile's value of
1.1 for work trips.

This analysis concludes that the spatial and temporal patterns of NJ's current auto-served
work trips are compatible with dual-mode's service concept.  In fact, the potential average
occupancy is so large that a single lane, each direction, AHS, with a conventional lane
capacity of 2,000 vehicles per hour, serving dual mode vehicles, could serve 70% of NJ's work
trips of greater than 5 miles in length.  This could become an enormously efficient means of
serving much of New Jersey's journey to work needs, as well as that of other similar
metropolitan areas.  It has been shown that fare levels of about $.20-$.25 per mile may be
able to pay operating costs as well as begin to contribute to pay for the AHSway's capital
costs.  Our analysis has only showed that NJ's auto-based, work trip demand has spatial and
temporal patterns that could be served effectively, (travel times comparable to auto trips), by a
dual-mode system.  It has not demonstrated that any auto driver would indeed use the dual-
mode system.

B.5.3.2.4 Conclusions About a Dual-Mode AHS

• This analysis shows that a relatively small 538 mile dual-mode AHS
network could serve more than 70% of NJ's work trips that are currently
taken by auto and are greater than 5 miles in length.  This is a very strong
finding.  It needs to be moderated somewhat because we only analyzed
ability to serve.  We did not attempt to determine how many of those trips
would likely divert to a dual-mode system if such a system were to be built
and the service offered.

• This analysis does highlight the fact that many work trips are close by in
origin, destination and time.  A service that would easily enable dynamic
ride-sharing through the use of automation has a large market potential.
It can attain enormously high average occupancy levels that can reach
4.5 passengers per vehicle in the peak period.

• Because NJ's work trip patterns are thought to be similar to those that
exist in many metropolitan areas, the dual-mode concept may have wide
applicability.

B.5.4 Analysis of Driverless AHS Transit Opportunities

The dual-mode analysis performed above suggests that many of the trips served by the dual-
mode system could also be served by a driverless SVE, RSC 8-10-type AHS.  Vehicles would
remain captive to the AHS.  Off-line stations are where passengers board and alight vehicles.
Access to the stations would be by walking, convention mini-bus collection and distribution
services, kiss-ride and automobile park 'n ride.  Because riders collect and distribute
themselves to/from the stations, this concept has few of the trip coordination problems that
would plague a dual-mode system.  Vehicles with announced destinations would be waiting at
station platforms.  Passengers assemble themselves into vehicles much as they do when
selecting elevators on the ground floor of very tall buildings; find the correct elevator bank, find
the elevator with the open door, get in, dial your destination.  After a predetermined wait an the
platform, or as soon as the vehicle is at capacity, it is dispatched to its destination.  Your trip
may be non-stop or may involve a few intermediate stops.  Get out at the right stop.  This
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concept make more sense as the size of the network of AHSways grows, thus, reducing the
access problem.

There would be no need for any drivers.  What is needed is a large number of stations so as to
minimize the access problem.  Vehicles capacities similar to those investigated in the dual-
mode analysis should be appropriate.  Such a system is compatible with RSC 9-10 type SVE
systems.  RSC 8-type AHS probably does not have enough supervisory management to be
appropriate for this driverless transit concept.

In urban areas, trips are short and the passenger needs less personal service.  Security and
oversight may be provided more efficiently using remote sensing means, such as, surveillance
video, direct voice communications and emergency routing features that divert a vehicle
directly to an enforcement center or hospital.  Thus, an urban transit operation using driverless
SVEs , captive to an exclusive urban AHSway, could provide direct, on-demand, non-stop,
point-to-point passenger service without high labor costs.  From a user perspective this
substantial improvement in the quality of service could be truly competitive with the private
automobile; thus, attracting high ridership.  Because of the high AHS vehicle utilization rates
and the shared ride opportunities that a transit operation could achieve, the cost per ride of a
transit operation can be substantially less than that of a private AHS vehicle.  Neither has
driver labor costs.  They both have the same direct operating costs.  Because the capital cost
that can be spread over many more users that give the driverless AHS transit operation a
substantial cost advantage.  From the service side, it is identical, point-to-point on the
AHSway.  Transit still has a service shortfall in getting to and from the AHSway.  If the
AHSway is extensive with many transit stops, then walk access to the system may be
acceptable; otherwise, a more conventional mass transit or park-and-ride operation will be
needed for collection and distribution.

Such systems have been studied extensively over the past 25 years.  Unfortunately, transit
interests have not been able to advance the technology.  What is interesting today is that the
concept is entirely compatible with any of the RSCs that involve exclusive AHSways in urban
areas.  Driverless AHS transit could be an incremental investment on any such systems
requiring only the construction of the off-line stations.  Otherwise, the same private vehicles
could be purchased by a private or public operator and put into revenue service once the
stations were built.  Thus this application could piggy-back onto the economies of scale
associated with private vehicle development and the AHSway construction.

In summary, driverless AHS systems would require an exclusive AHSway as envisioned in
RSC 9-12.  The driverless feature is not attractive to providers of inter-city passenger
transportation and intra city freight transportation because the driver provides substantial
services beyond those of "driving" that can not otherwise be automated.  On the other hand,
inter city freight and intra-city passengers can do without a driver, if the difficulties of access
can be dealt with.  In these situations, a driverless AHS may gain a significant cost advantage
while providing comparable user service.

B.5.5 Conclusions for the Transit  Market

• Urban transit, that is, for-hire, intra-city passenger transportation is only a small
fraction of intra-city person transportation which is dominated by the private
automobile.  Nationally, transit serves only 3% of intra-city person trips.

• Only the express bus sub-market of transit is conducive to the early stage s of AHS.
A particularly attractive example of such a system is the exclusive counter-flow bus
lane leading to the Lincoln Tunnel.  This is the busiest bus corridor in the US
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• There are several fundamental characteristics that make the Lincoln Tunnel XBL a
particularly good application for AHS.  First, there is a monumental problem on the
horizon if a substantial capacity improvement is need in this facility.  There is no
place to put another access lane and the cost of boring another tube is enormous.
Thus, capacity through automation would surely be the most cost effective solution.
Even without need for capacity improvement, automation would smooth out the
flow of buses and improve the travel time reliability of the buses.  The application is
on a very short corridor, less than five (5) miles, and the same busses use the
facilities repeatedly.  The institutional challenges are "minimal".  All buses are the
property of NJDOT and were purchased with PANYNJ money.  NJDOT and
PANYNJ have authority over all operations and construction in the corridor.  For
these major reasons, this is an excellent candidate "early winner" for AHS

• A Dual-mode service over a 750 mile NJ AHS network could provide auto-like
service 780,759 passengers (71 %) out of NJ's  1,116,985 daily auto-based work
trips that are greater than 5 miles in length.  A $.10 per passenger mile fare would
generate annual revenues of about $800 million.  It may well be that fares would
need to be more like $.20 -$.25 per mile for such a system to begin to contribute to
the debt service payments for the AHSway.

• The average vehicle occupancy is 4.68 passengers per dual-mode vehicle.  This is
an enormous average vehicle occupancy, especially when compared with that of
the current automobile's value of 1.1 for work trips.  Because of this high average
vehicle occupancy, the densest link on the network needs to serve a maximum of
only 2,000 vehicles per hour.

• Dual-mode is an interesting transit concept for a mature AHS.  It needs to have
access to an rather extensive network of AHSways in order to serve a significant
portion of urban/suburban travel demand.

• A driverless AHS transit application could piggy-back onto the economies of scale
associated with private vehicle development and the AHSway construction.

• A driverless AHS transit system could serve metropolitan trip demand nearly as well
as dual-mode without the need of drivers and with less confusion in the collection
and distribution.  This concept make more sense as the size of the network of
AHSways grows, thus, reducing the access problem.
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