
CHAPTER 9

A Game Theoretic Fault Detection Filter

THE FAULT DETECTION FILTER was introduced by Beard (Beard 1971) in his doctoral thesis

and later refined by Jones (Jones 1973) who gave it a geometric interpretation. Since then,

the fault detection filter has undergone many refinements. White (White and Speyer 1987)

derived an eigenstructure assignment design algorithm. Massoumnia (Massoumnia 1986)

used advances in geometric theory to derive a complete and elegant geometric version of a

fault detection filter and derived a reduced-order fault detector (Massoumnia et al. 1989).

Most recently, Douglas robustified the filter to parameter variations (Douglas 1993) and

(Douglas and Speyer 1996) and also derived a version of the filter which bounds disturbance

transmission (Douglas and Speyer 1995a). The backround of Appendix A, design methods

of Appendices Band C and the application to vehicle fault detection of Sections 2 through 5

all follow from these sources.

Common to all of these sources is an underlying structure of independent, invariant

subspaces. Most design algorithms, an exception being (Douglas and Speyer 1995a), rely
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168 Chapter 9: A Game Theoretic Fault Detection Filter

on spectral methods, that is, specifying eigenvalues and eigenvectors, since these methods

lead directly to the needed filter structure. Spectral methods, however, also limit the

applicability of fault detection filters to linear, tim&invariant systems and filters designed

by these methods can have poor robustness to parameter variations (Lee 1994).

For these reasons, we take a different approach to detection filter design. We look at the

fault detection process as a disturbance attenuation problem and convert the process into

a differential game which leads to the final design. The game is one in which the player is

a state estimate and the adversaries are all of the exogenous signals, save the fault to be

detected. The player attempts to exclude the adversaries from a specified portion of the

stat&space much in the same way that the invariant subspace structure of the fault detection

filter restricts state trajectories when driven by faults. The end result is an 'Hoo-type filter

which bounds disturbance transmission.

Since fault detection filters block transmission, it would seem reasonable to expect that

in the limiting case when the 'Hoo transmission bound is brought to zero, the game filter

no longer approximates, but actually becomes a fault detection filter. We will prove that

this is indeed the case. For linear tim&invariant (LTI) systems, we will show, in fact,

that the game filter becomes a Beard-Jones fault detector in the sense of (Douglas 1993):

faults other than the one to be detected are restricted to a subspace which is invariant and

unobservable.

The method developed here has wider applicability than current techniques since time

invariance is never assumed in the game solution. Thus, for a class of tim&varying systems,

results analogous to the LTI case exist in the limit as disturbance bounds are taken to

zero. It is also possible with this method to deal with model uncertainty by treating it as

another element in the differential game (Chichka and Speyer 1995, Mangoubi et al. 1994).

In this manner, sensitivity to parameter variations can be reduced. Finally, by using a game

theoretic approach, the designer has the freedom to choose the extent to which the game

filter behaves as an 'Hoo filter and the extent to which it behaves like a detection filter. This

flexibility is unique to this method of fault detection filter design.
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The development of game theoretic estimation closely followed the development of game

theoretic control theory. The most notable and the most cited (and most unreadable) work
•

in the latter was the paper by Doyle et al. (Doyle et aI. 1989). The ascendant of the work

presented here is the paper by Rhee and Speyer (Rhee and Speyer 1991) which derived the

two Riccati solution of (Doyle et aI. 1989) via the calculus of variations. It is hard to credit

the first derivation of the game theoretic estimator, though (Banavar and Speyer 1991) or

(Yaesh and Shaked 1993) are probable candidates.

In Sections 9.1 and 9.2, we pose a disturbance attenuation problem which models the

fault detection process for a large class of systems which includes some time-varying systems.

The solution to this problem leads to the game theoretic fault detection filter. In Section 9.3,

we analyze sufficient conditions for our game cost to be non-positive. This will enable us

to show the existence of the filter in the limit and analyze its structure. In Section 9.4,

we return to the LTI case and prove that the limiting detection filter is equivalent to

the Beard-Jones fault detection filter. In Section 9.5, we use the limiting form of the game

theoretic filter to derive a reduced-order estimator for fault detection. Finally, in Section 9.6

we go through an example which shows that the filter is an effective fault detector for finite

values of the disturbance attenuation bound and in the limit.

9.1 A Disturbance Attenuation Approach to Fault Detection

Consider a linear system in which q possible faults have been modeled:

x(t)

y(t)

q

= A(t)x(t) + B(t)u(t) + FI (t)IlI (t) + LFi(t)Pi(t)
i=2

= C(t)x(t) + v(t).

(9.1)

(9.2)

It is desired to detect the appearance of Ill, the target fault, in the presence of sensor

noise, v, and the possible presence of other faults Pi, i :/: I, the nuisance faults. Following

the standard assumptions of Appendix A, we will assume that each of the Fi's are monic

and that (C,A) is an observable pair. Also, since u is a known function of t E [to, tl), we

will drop the Eu term for convenience. We will also neglect to explicitly show the possible
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time dependence of the system matrices, though the reader should keep this possibility in

mind. For convenience, we define:

and use the definition of Fi (a.1O) so that the state equation becomes:

The definition that we propose is based upon disturbance attenuation. We use (a.11) and

define the corresponding residual signal Zl associated with J.Ll as the output signal. A

disturbance attenuation problem would be to limit the transmission of the nuisance faults

and the sensor noise to this output. For a fault detection filter problem we want to block

this transmission entirely.

Definition 9.1 (Fault Detection Filter Problem). Find an estimator such that:

and

Clearly, in the time-invariant case, the solution to the fault detection filter problem

as defined by Definition A.l solves the general fault detection filter problem that we

have defined above. Later on, we will show that these definitions are equivalent in the

time-invariant case by showing that the solution to Definition 9.1 solves the problem defined

by Definition A.!. We need this alternative definition to account for time-varying systems.

In such cases, we cannot talk about invariant subspaces and also observability becomes a

trickier concept. Thus instead of defining the filter structure, we must content ourselves

with merely describing its action.
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9.2 A Game Theoretic Filter for Fault Detection in a General Class of
Systems

We arrive at a solution to the fault detection filter problem as defined by Definition 9.1 by

first solving the disturbance attenuation problem. The solution to the fault detection filter

problem then comes when we take the limit of the disturbance attenuation solution. The

results that we find here, however, are valuable in their own right. As we will see, the game

filter that we get from the disturbance attenuation problem is itself a useful filter for fault

detection.

We begin by quantifying the problem objective with a disturbance attenuation function,

the ratio of the norm of the output to the norms of the inputs. For this problem, the function

is:

where NI ~ I - iII and M2, V, R I , Po are weighting matrices. The disturbance attenuation

problem is to find an estimator so that for all adversaries P,2, v E L2[tl, t2], x(O) E nn:

(9.3)

We will refer to "I as the disturbance attenuation bound. Once again, the assumptions that

we will make are: 1) (C,A) is a an observable pair 2) F;., i = l. .. q is monic 3) i, the

number of iterations of (a.9) needed to make CBi full rank is constant over the whole time

interval.

To solve (9.3), convert it into a differential game with cost function:

J = -lIx(to) - xollfto

+ £1 [II HIC(x - x)II~1 - "I (1IP,211~21 + IIvll~-l + IINI C(x - x)lIk1)] dt (9.4)

Note that TIo~ "IPol
. We want to find:

min max max max J < 0
i V iJ.2 %(10) -

(9.5)
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(9.6)

In anticipation of the steps which will be required for the game solution, we will rewrite

the sensor noise term IIvll~_l to the equivalent lIy - Cxll~_l:

J = -lIx(to) - xoll&o

+i tl
[IIHIC(x - x)lI~l - 'r (lIjL211~-l + lIy - Cxll~-l + IIN1C(x - x)lIhl)] dt

~ 2

This is a common step in the solution of quadratic minimization problems. The game

problem then becomes:

min max max max J < O.
x 1/ ~2 x(to) -

An interpretation of the maximization of the cost with respect to y is elusive given the

measurement equation (9.2), the presence of v in (9.2), and the interplay of the different

players in determining the state, x. Our view is taken from (Banavar and Speyer 1991)

which looks at this extremization as incorporating a "worst-case measurement" into the

game. There are other interpretations (see for instance (Yaesh and Shaked 1993)), but

ultimately the question of proper interpretation becomes an exercise in tail-chasing since

the mechanics of the solution remains the same as does the solution itself.

An element that is missing in our problem statement (9.4), (9.5), (9.6) is the target fault,

J.Ll. This is not an oversight. It would seem logical to include enhancing the transmission

of J.Ll as part of the game, but there is no obvious way to include such an objective in the

game cost. Moreover, extremizing the cost with respect to J.Ll leads to assumptions upon the

temporal behavior of the target fault. This can be quite detrimental to filter performance if

these assumptions are wrong (which is why fault detection filters are designed without any

such assumptions). Thus, since J.Ll is not part of the differential game, we set it to zero for

convenience when we work through the solution. This places the burden on the designer

to make sure the set of faults that he chooses for the filter design leads to a well-posed
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problem. Well-posedness is discussed in Section 9.1 and for LTI systems is easily checked

by Equation a.7.

9.2.1 Maximization with Respect to x(to) and (J.2

We will solve our problem in two steps beginning with the subproblem:

maxmaxJ < O.
f£2 :1:(10) -

The reasoning for this order of the extremizations is given in (Banavar and Speyer 1991).

We begin by appending the dynamics of the system to the cost with a Lagrange

multiplier, ).7:

J = -lIx(to) - xollho + rtI
[lI fhC(x - x)ll~lito

-"( (1I{L211~2-1 + Ily - Cxll~-l + IIN1C(x - x)lI~l) + ).7(Ax + Pl {L2 - x)] dt (9.7)

Integrate ).X by parts:

and then take the variation of (9.8) with respect to {L2 and x(to):

fJJ = - [(x(to) - xo?llo + )'(to?] fJx(to) - )'(tdTfJx(tl)

+ [t
1 {[(x _X)TCTjt[Q1H1C + "(y - Cx)TV-1C - "(x _ x)TCTNTR1N1C

Jto
+ ).T + ).TA] 6x + [-"({J.fMil +).TPl] 6{L2} dt (9.9)

The above implies that first-order necessary conditions for J to be maximized are:

).(h) = 0

).(to) - llo[x(to) - xo]

(9.lOc)

(9.10d)
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Substituting (9.lOa) into our dynamics (9.6) and using (9.lOb), we obtain a two point

boundary value problem:

{!}= [ -cT(iI[QdI[ _ ~~[RINl- ~V-l)C ~F~~Fr] { ~ }

+ { CT(iI[Q1iI[ - ~Nf~INdCx _ ~cTV-ly} (9.11)

If we assume solutions x* and ,X* to (9.11) and a quadratic form of the optimal return

function, then:

,X* = n(x* - xp) (9.12)

o =

where xp is a measurement dependent variable which will be shown to reduce to the estimate

of the optimal state. Using (9.12) and the first equation of (9.11), the second equation of

(9.11) becomes:

[
. T 1 A AT T ( A TAT T 1) ]n + A n + nA + :;nFIM2FI n + C HI QIHI - ~NI RINI - ~V- C x*

. T T AT AT TTl-nxp - nip - A nxp - C (HI QIH1 - ~NI RINI)CX + ~c V- y (9.13)

Now, add and subtract

and

to (9.13) to get:

o= [iI+ATn+nA+~nFIM2Frn+CT (iIfQIiI[-~N[RINl-~V-l)cJ (x*-xp)

-nxp + nAxp - [cT (iI[QliI[ - ~N[RINI - ~CTV-l) c] (x - xp)

+~CTV-I(y - Cx) (9.14)

Thus, if we set:

. T 1 A AT T ( ATAT T )
-ll = A II + llA + :;llFIM2F1 II + C HI QIH1 - ~Nl RINI - -yv- 1 C (9.15)

llxp = llAxp-CT (iI[QliI[-~N[RlNl--YV-l) C(x- xp)+~CTV-l(y-Cx)(9.16)
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(9.14) is satisfied identically. (9.15) is an estimator Riccati equation. If we set:

n = 'Yp-l,

we can convert (9.15) into a Ricca.ti equation:

. T T -1 T 1 A TAT A AT

P = PA + PA - PC (V + N1 R1N1 - -HI QIH1 )CP + FIM2Fl (9.17)
'Y

as seen in (Banavar and Speyer 1991), (Rhee and Speyer 1991) and (Doyle et al. 1989).

(9.16) looks like an estimator, but its final form will not become apparent until we solve

the second half of the game problem.

9.2.2 Minimization with Respect to x and Maximization with Respect to y

The first part of our game solution led to optimal values for J.L and x(to):

1 A AT
J.L* = -F1M 2Fl A

'Y
x(to)* = no1A(tO) + xo

If we substitute these optimal values into the cost function (9.4) we obtain a new cost, J,

which is written as:

J = -IIA(to)II~-l +
o

J~l [IIX - xll~T(1ffQJiJ -"(NfRIN1)C - IIAII~FIM2FT - 'Ylly - CXII~-l] dt (9.18)

The game is then:

minmaxJ < 0
:t 11 -

subject to the dynamic equation (9.16). We begin towards the solution to this game by

adding the identically zero term:

2 2 (hd 2IIA(to)lIn(to)-l -IIA(tl)lIn(tl)-l + J
to

dt IIA(t)lIn-1dt = 0

to (9.18). After applying the boundary condition for A at tl (9.lOc) and carrying out the

differentiation of the IIAII~-l term, we get:

J = i t1
[II(X - x)II~(1iTQdlt-"(NTR1Nl)C -IIAlllF1M2FT - 'Ylly - Cxll~-lto 1 1 .., 1

+ .xT n-1.>7 + ATtI-lA + ATn-1.x] dt + IIA(t )11 2
o n-1(to)-no1
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j =

Note that (9.19) provides a boundary condition for (9.15):

n(to) = no

Applying this boundary condition and substituting the differential equation for A, (9.lOb),

into (9.19) leads to:

J = {t
1

[AT (_All-I _ n-IAT _ FiM 2F'[ + iI-I) A
ito

T T(AT' T )+ (x - x) C HI QIHI - ,NI RINI C(x - x)

T T(AT AT) 1- (x - x) C HI QIHI - ,NI RINI cn- A

T I T(AT' T )- A n- C HI QIHI - ,NI RINI C(x - x)

- ,(y - Cxfy-I(y - Cx)

+ (y - Cxfy-Icn-IA+ ATn-lcTy-I(y - Cx)] dt (9.20)

From (9.15) the differential equation for n-I is:

iI-I = _n-liIn-1 (9.21a)

1 T 1 1 A AT 1 T AT' TIl
= rr A +An- +-FIM2Fl +n- C (HI QIHI-,NI RINI-,y- )Cn- (9.21b),

After we insert (9.21) into (9.20) and cancel terms, we are left with what turns out to be a

pair of quadratic terms:

1:1

{[n-1A - (x - x)r CT (iI'[QdII - ,N'[RINI ) C [n-IA-(X - x)]

- , [Cn-IA+ (y-Cx)r y-I [cn-IA+(y-CX)]}dt (9.22)

Now, use the solution for the optimal value of A (9.12) and substitute into (9.22) to get:

J = £1 [(x - xpfcT (iI'[QdII - ,N'[RINI) C(x - xp)

- ,(y - CXpfV-I(y - Cxp)] dt (9.23)

Given the cost (9.23) and the dynamics (9.16), the solutions to this game are:

x· = xp

y. = CXp

(9.24a)

(9.24b)
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From (9.24) we can rewrite (9.16) as:

(9.25)

Since II is positive-definite for 'Y > 0, we can rewrite (9.25):

(9.26)

Alternatively, the analyst could use (9.17) and:

This form of the filter is equivalent to (9.26); however, experience has shown that numerical

problems are more likely to be seen when trying to find a solution to (9.17) than (9.15)

when I is brought to extremely small values. For convenience, we will write x instead of x·
when referring to the optimal state estimate with the understanding that it is the estimate

that comes from the game solution which is being used.

9.2.3 Steady-State Results

In many cases, it is desired to extend the finite-time solutions of game theoretic problems

to the steady-state (or infinite horizon) condition. For linear-quadratic problems, the

detectability and stabilizablity of (C, A, B) ensures the existence of a unique, positive

semi-definite, stabilizing solution of the Riccati equation in steady-state. Unfortunately,

no such conditions exist for game-theoretic problems, except in special case where the A

matrix is asymptotically stable (Green and Limebeer 1995, Lemma 3.7.3).

On the other hand, when it has possible to find a steady-state solution to the disturbance

attenuation problem, it has been shown (Green and Limebeer 1995) that this solution will

be in the form of the estimator given by (9.26) with II found via the solution of the algebraic

Riccati equation:
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9.2.4 Finding the Limiting Solution

The solution of the fault detection filter problem exists at the limit of the game solution

when "y is taken to zero. Finding the solution or even showing that it exists in the limit,

however, is not a straightforward matter. In both versions of the game Riccati equation,

(9.15) and (9.17), there are terms which go to infinity as "y goes to zeroA similar limit

has been studied in the linear quadratic regwator problem (Kwakemaak and Sivan 1972)

where the cost function is always non-negative. These results are not directly applicable

here since the game cost can be either positive or negative. Furthermore, it is well known

(Doyle et al. 1989) that for game Riccati equations, "y has a greatest upper bound gamma

at or below which the equation has no positive-definite solution. When 'Y :5 gamma any

number of different phenomena can occur, for example, eigenvalues on the imaginary axis,

which make positive-definite solutions impossible.

By decreasing the noise weighting V to zero along with "y, that is, V - 0 as "y - 0,

we can find solutions to (9.15) and (9.17) for smaller and sma.ller "y. While solutions are

obtainable for a range of"Y E (0,00] where "Y = 00 corresponds to the Kalman filter, what

is needed is a solution for when "Y = O. The solution follows from a pair of techniques from

singular optimal control theory which are discussed in the next section.

9.3 The Limiting Case Solution via Singular Optimal Control Techniques

9.3.1 Conditions for Game Cost Non-Positivity: A Game LMI

In this section, we will find sufficient conditions for the non-positivity of the game cost.

These conditions fallout after we manipulate the cost function and then set x to its optimal

strategy found in Section 9.1. The game cost then becomes a single quadratic form:

(t l

J(x, x(to), jJ,2, v) = ito eW{dt

where { is some linear vector combination of the game players. The non-negativity of the

cost hinges on the sign definiteness of W, giving rise to a linear matrix inequality. This
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technique was first seen in the singular optimal control theory (Bell and Jacobsen 1973)

and (Clements and Anderson 1978) and the derivation seen here follows in that vein.

We begin with the cost function as given by (9.7). Note that the (x - x) terms have

been combined:

J = -lIx(to) - xollho +

1:1[1I(x - x)II~(HrQdfl-'YNrRlNdC - "Y1lf£211i,i1 - "Ylly - CXII~-I] dt (9.27)

We now append the dynamics of the system to (9.27) through the Lagrange Multiplier

(x - x)Tn:

J = -lIx(to) - xollho + rt
1

[1I(x - x)II~(HTQIH1-'YNTRIN1)Clto 1 1

- "Y1lf£2I1iti1 - "Ylly - Cxll~-1 + (x - xfll(Ax + F1f£2 - x)] dt

Add and subtract to (9.8) the terms (x - x)TnAx and (x - x)Tni. Collect terms to get:

J = -lIx(to) - xollbo + £1 {1I(x - i)II~A+CT(HrQIH1-'YNrRIN1)C
-f'lljl211~-1 - f'lly - Cxll~-l

2

+ (x - x)TllFdl2 - (x - xfll(x - i) + (x - x)T [llAx - ni]} dt (9.28)

Note, we have moved nA into the weighting of II(x - x)1I2 . More terms will appear in the

weighting of lI(x-i)1I 2 as we manipulate the cost function. Now, integrate (x-x)Tn(x-i)

by parts:

J = -lIx(to) - ioll~o-n(to) -lIx(tI) - x(tdll~(h) +

+£1 {1I(x - x)II~+nA+cT(HrQIH1-'YNrRINdC
- f'1If£211~-1 - f'lIy - Cxll~-l + (x - x)TnF1f£2

2

+ (x - xf [OAi - oi] + (x - i)TO(x - x)} dt (9.29)

Substitute the state equation for ± (9.6) and add and subtract xTATn(x - i):
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2 • 2
J = -lIx(to) - xollno-n(to) -lIx(td - x(tl)lIn(tl)

+~l {1I(x - x)II~+nA+ATn+cT(ifrQd/l-""NrR1Nl)C
- 'Yllit211i,-1 - 'Ylly - Cxll~_l

2

+ (x - x)TnP1it2 + itfprn(x - x)T

+(x - xf [-ni + nAx] + [-ni + nAx]T (x - x)} dt (9.30)

(9.32)

We are now going to rewrite the lIy - Cxll~_l term by adding and subtracting CX inside

of the term so that it reads II(y - Cx) - C(x - x)II~_l' Expand this quadratic term out and

collect terms so that we end up with:

J = -llx(ta) - xall~o-n(to) -lIx(tl) - x(tl)II~(tl)

+1t1

{1I(x - x)II~+nA+ATn+cT(HTQ1Hl-"'fNTR1Nl-"'fV-l)Cto 1 1

- 'Yllit211i,-1 - 'Ylly - Cxll~-l + (x - x)TnPl it2 + itrprn(x - xf
2

+ (x - xf [-IIi + IIAx + 'YCTV-1(y - Cx)]

- [ni + nAx + 'YCTV-l(y - Cx)]T (x - x)} dt (9.31)

Using (9.25) we can eliminate a pair of terms in (9.31). We are then left with a quadratric

in the form:

where

{

(x-x) }
{= it2

(y - ex)

and

W__6. [W (n) 0 ]o -'YV-1

and where Wen) is given by

W (II) ~ [or(HiQ1Hl - ~v-
l
_ ~~:'Nl ) C +ATII +IIA +iI -~~2-l] (9.33)
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Clearly W is negative semi-definite for IT ~ 0 such that:

W(IT) < 0

ITo - IT(to) ~ 0

IT(tl) ~ 0

181

(9.34a)

(9.34b)

(9.34c)

Hence, we need only pay attention to the smaller LMI, W (IT).

For, > 0, it is easy to see that the Riccati equation (9.15) of the previous section is

embedded in (9.33). In fact, the solution of (9.15) is the solution of W(IT) which minimizes

its rank (Schumacher 1983). Thus with (9.33) and (9.25), we retain the results of the

previous section, but in a form which can be easily analyzed in the limit ,- O. If we define

V = lim,·y.....o,V, sufficient conditions for J ~ 0 in the limit as , - 0 are:

o = ITPI

o > tI + ATIT + ITA + CT (iITQdII - V-I) C

(9.35a)

(9.35b)

along with the boundary conditions (9.34b) and (9.34c).

Condition (9.35a) shows that in the limit, the Riccati matrix IT has a non-trivial null

space which contains the image of the nuisance failure map, Pl. Moreover, those familiar

with singular optimal control theory will recognize (9.35) as conditions seen previously for

the singular LQ regulator. See, for example, (Bell and Jacobsen 1973)). This tells us, first

of all, that the limiting form of this game filter is a singular filter. It is likely that similar

results hold for all game theoretic (?too) filters or controllers. Secondly, singular optimal

control provides a wealth of results and insights which we can apply to the analysis of this

filter. This is, in fact, what we will do next.

9.3.2 A Riccati Equation for the Limiting Form of the Game Theoretic Filter

In Appendix A many components for the general fault detection filtering problem are derived

using the Goh transformation. In this section, we will again use the Goh transformation

on the nuisance fault input space to obtain a Riccati equation for the limiting case game
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filter. The existence of the solution to this equation gives the condition for the existence

of the game solution in the limit. Because this Riccati Matrix must also have a non-trivial

null space, we will not be able to use the solution to this Riccati equation directly in a

game filter, but this matrix will prove to be useful when we look at reduced-order detection

filters.

We start with the game cost for the limiting case:

J* = lim J = l tl (li x - xll~iITQ iI C -lly - Cxll-v2-I) dt1'-0 to I I I

--1 ~ () 1where Y = lim1'_o ,Y - . Now, define a new nuisance fault vector, PI and a new state

PI ~ rt
{J,2 dt

1to

al ~ x - PlPl == X - BlPl

(9.36)

(9.37)

Note that we have defined a matrix Bl ~ Fl. The reason for the numbered subscripts will

become apparent later. Differentiating (9.37) produces a new state equation

and a new game cost

* rt l
[ • 2 • T T' T •

J = lto 110'1 - xIlCTH[QIHIC + (0'1 - x) C HI Ql H l CB1Pl

+pTBTcTiITQ1iI1CB1P1 -lly - Cal 11;-1 - (y - C(1)Ty-1CB1P1

-pTBTCTy-1(y - Cal) - IIp111~rcTv-IcBJ dt

(9.38)

(9.39)

Because HI is a projector constructed so that HlCFl = 0, the cost (9.39) is simplified as:

J* = ~I [110'1 - xll~TiIrQliIlC -lly - Call1~-1 - (y - Cal)rv-lCBlPl

-pfB[Crv-l(y - Cad -IIPdl~rcTv-IcBJ dt.

Now, if BTcrv- l CB1 > 0, we can solve the following differential game:

minmaxJ* < °x PI -
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subject to (9.38). Because of its similarity to the derivation given in Section 9.2, we do not

provide the solution here. A starting point is to convert y - Co into (y - Cx) +C(o - x).

The solution leads to the lliccati equation:

with the boundary condition:

S(to) = O.

(9.40)

(9.41)

It may happen, however, that CBl = 0, which would make Brcrv-lcBl = 0 and

which would invalidate our Riccati equation (9.40). The remedy to this situation is to

perform the same transformation as before but on the PI input space via the recursion

equations:

Pi = itPi-ldt
to

Bi = ABi- l - Bi- l

The process stops once a Bi is found such that CBi =1= O. The game is then:

mjnmp~J* = £1 [IlOi - xll~T1irQ1H1C -lly - COill~-1 - (y - CodTv-lCBiPi

-pTBTcTV-l(y - COi) -IiPill~rcrv-lcBJ dt (9.42)

subject to:

(9.43)

The general form of the Goh Riccati equation is then:

-8 = SA + ATS + CT(HiQIHl - V-l)C

+~(ABi - BircTV-lcBi](BTcTV- l CBi)-l [(ABi - Bi?S- B[cTV-lcj (9.44)

The following theorem shows that (9.44) is a lliccati equation for the limiting form of

the game theoretic filter.
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Theorem 9.1. The solution S to (9.44) satisfies the sufficient conditions for non-positivity

of the game cost, that is, (9.35a) and (9.35b).

Proof. (The proof follows Bell and Jacobson (Bell and Jacobsen 1973, pg. 121). Due to

its importance, we list it here.) Clearly, (9.44) implies that:

(9.45)

which is (9.35a). Now, pre-multiply (9.44) by Bi and add -BiS to both sides of the

resulting equation to get:

Rearranging terms leads to a differential equation in BTS with (9.41) as the boundary

condition:

-!i[BTS] = BTSAdt I I

+BTS(ABi - Bd(BTcrv-1CBi)-1 [(ABi - BdTS - Crv-1CBi]. (9.47)

The solution to (9.47) given (9.41) is:

B[(t)S(t) = 0, (9.48)

The necessary condition (9.35a) actually requires that prS(t) = O. However, B I = PI and

the following proposition tell us that (9.48) implies (9.35a). •
Proposition 9.2. Let i E .N be the smallest number such that CBi :F O. Then, the

solution, S, to (9.81) is such that

SBj = 0,

Proof. See (Moylan and Moore 1971). The proof given there is identical to the one just

used to show that SBi = O. Induction is then used to show that SBj = 0 is also true for

all j < i. •
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In this section, we return to time-invariant case and show that for these systems the solution

to the fault detection filter problem as stated in Definition 9.1 also solves the problem as

stated by Definition A.l. Thus, we can conclude that the limiting form of the game theoretic

filter is a Beard-Jones fault detection filter.

Beard-Jones filters are constructed from invariant subspaces and so we will need to find

an invariant subspace that is constructed by the game filter in order to prove our claim.

This will require that we not only restrict ourselves to the time-invariant case, but also

that we restrict our attention to the infinite-horizon problem. Hence, IT = 0 and (9.35b)

becomes:

(9.49)

When we specialize our analysis in this manner, we find that the required invariant subspace

is the kernal of II.

Theorem 9.3. Ker II is a subspace which solves the fault detection filter problem

Proof. The three conditions listed by Definition A.l are subspace inclusion, output

separability and (C, A)-invariance. Condition (9.35a) clearly implies subspace inclusion.

Since we are trying to detect only one fault, output separability is satisfied trivially. Thus,

all that remains is to show (C, A)-invariance.

From Wonham (Wonham 1985), a necessary and sufficient condition for Ker II to be

(C, A)-invariant is that:

A(Ker II n Ker C) C Ker II

Therefore, let x E A(Ker II n Ker C). That is, there exists a vector ~ such that:

x = A~ and II~ = C~ = O.

Now consider (9.35b). If we post-multiply (9.35b) by ~ we get:
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Since II ~ 0, this means that:

which implies that:

Chapter 9: A Game Theoretic Fault Detection Filter

IIA~ = IIx = 0 ~ x E Ker II

Therefore, A(Ker II n Ker C) C Ker II and so Ker II is (C, A)-invariant. •
Remark 1. In practice, it is not necessary to use the limiting form of the filter. In many

Hoo designs, "y is not taken to its smallest possible value, but left at one which results in

an acceptable compromise between all of the (usually competing) design objectives. The

virtue of a game theoretic approach to fault detection filter design is that it provides a knob

with which to make the filter more like a Beard-Jones filter (small "y and small V) or more

like a sensor noise attenuating ?too filter (large "y and V). •

Remark 2. It should be noted that a Beard-Jones fault detection filter can detect all of

the I1j's. The filter that we propose here can detect only one fault. •
Remark 3. Lee and Gibson derive a filter for fault detection via a minimax solution

in (Lee 1994). Their results are similar to ours except that they do not investigate the

relationship between their filter and fault detection filters and they do not look at limiting

solutions. •
In Section 9.1 we noted that unobservability subspaces are used in current fault detection

filter design methods because they allow the designer to specify (within complex conjugate

symmetry) all of the eigenvalues of the filter. Such design freedom exists with these

subspaces because they include any invariant zero directions which arise out of the triple

(C, A, PI). It remains to be seen where the game theoretic filter places invariant zeros. If

all of the zeros are placed in Ker II, then Ker II would be a detection space since it would

be a (C, A)-invariant subspace containing the invariant zeros. It turns out, however, that

only the right-half plane and purely imaginary zeros are contained in KerIT.
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Theorem 9.4. Let V+ be the subspace spanned by the invariant zero directions that

correspond to the invariant zeros lying in the right-half plane. Let VO be the corresponding

subspace for purely imaginary zeros. The (C, A)-invariant subspace, Ker n, created by the

game-theoretic fault detection filter is such that

-+V c Kern.

If (A, FI) is stabilizable, then

V+ +VO c Kern

Proof. Our proof is essentially the same as the one given in (Francis 1979), though

modified to fit the particulars of our problem. The arguments that we present here rely on

geometric control theory, which means that we will have to spend a fair amount of time

defining subspaces and mappings between these subspaces. Once this is done, however, the

actual proof comes together quickly.

We begin by defining a new subspace, V·, the maximal (A,FI)-invariant subspace

contained in Ker C. V· is the dual of the minimal (C, A)-invariant subspace W. defined

by Theorem A.l and in a similar manner it can be found as the limit of an iteration

(Wonham 1985):

Va = KerC

Vi+1 = KerC n A-I(Im FI + Vi)

The notation A-I should be understood as an inverse mapping and not an inverse of the

matrix A. That is:

To be (A, FI)-invariant means that if J1. were a control input then for any x(ta) E V· there

exists a matrix K such that J1. = K x and:
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This is not to say that we are specifying the time history of J.L(t) to be a linear feedback of

the states. It is just a way of illustrating the meaning of V·. In fact we do not need all of

the space V·, but a portion of it. This portion, it turns out, corresponds to the invariant

zeros. We define the following factor spaces:

x = X/(V· n w.)

V = v·/(v·nw.)

The significance of these factor spaces is through the relationship between V and the

(C, A, Fd invariant zeros. If M is the failure input space and K : M - X is a feedback

matrix which makes V* an (A, Fl)-invariant subspace, the spectrum of A+FlK induced on

V is precisely the set of invariant zeros of the triple (C, A, FI ). The invariant zero directions

span V. Given that we are trying to prove a result about the invariant zeros, the space V

will clearly playa key role in our proof.

The equivalence of V and the space spanned by the invariant zero directions follows

from a pair of results from geometric control theory. The first, which can be found in

(Morse 1973), is that the space V* n W* is equal to the maximal controllability subspace,

which we will label R*. R* is the largest (A, Fl)-invariant subspace on which the spectrum

of A + FIK can be arbitrarily specified, hence R* ~ V*. Moreover, R* is the dual to the

unobservability spaces, or detection spaces, which we described earlier. The second result

is that the factor space V* /R*, which is our space V, is the space spanned by the invariant

zero directions. This result can be found in many places, in particular (Wonham 1985).

Define V+ to be the subspace of Von which the restriction of A +FIK yields eigenvalues

with positive real parts. Va is the corresponding space for purely imaginary eigenvalues and

V - the space for eigenvalues with negative real parts. Let M : X - X be the canonical

projection. Therefore:

V+ = MV+,

and
- -+ .-:0 --
V=V +V +V .
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Finally, let L : V - X and L :V - X be natural insertions.

To aid our understanding, we will make use of a commutative diagram. Commutative

diagrams are a common tool in abstract algebra and show, pictorily, the relationships

between the different subspaces and the maps which take vectors from one space to another.

For this proof the corresponding commutative diagram is given by Figure 9.1.

A+F}K
X---.....;----· X

v
AKX---------

-AKV--------·· V

Figure 9.1: Commutative diagram for fault detection filter structure.

Through the actions of M and L on the invariant subspaces X and V we can infer the

existence of a number of induced mappings. AK : X - X is the map induced by A + FlK

on X. From Figure 9.1, AK is related to A + FlK via:

(9.50)

AK is the restriction of AK to V. Its existence is guaranteed by the AK-invariance of V

and it is related to AK by:

(9.51)
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Finally, the map C is the unique solution to:

CM=C

Its existence and uniqueness is guaranteedby the fact that (V· n w.) c Ker C.

We can now begin with the actual proof. We begin by asserting that:

(V· nw.) c KerTI.

(9.52)

(9.53)

We know that this is true because Ker TI is a (C, A)-invariant subspace containing the range

of PI and W. is the smallest of all such subspaces. Hence, W. C Ker TI, which implies

(9.53). From (9.53) we can assert that there exists a unique symmetric matrix fi such that:

(9.54)

Using (9.54),(9.50), and (9.52), we can rewrite (9.49) as:

Because M is a canonical projector, it has a right inverse which means that we can rework

the above inquality into:

(9.55)

We need now need to go one step further and consider the system restricted to the

subspace V. Pre-multiply (9.55) by r? and post-multiply by L. Since L is insertion map

of a space which lies in Ker C, it follows that C L = O. Thus, from (9.51) we can rewrite

(9.55) as:

(9.56)

Now, let Aj be the jth eigenvalue of AK such that Re A > 0 and let Zjio' ji = 1 ... jio .•• Qj

be one of the corresponding generalized eigenvectors. Here Qj is the algebraic multiplicity

of Aj. Pre-multiply (9.56) by Z;iO' the conjugate transpose of Zjio' and post-multiply by Zjio

to get:
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The latter inequality implies that fiLzjiO = 0 since fi is positive semi-definite. As stated

earlier, the eigenvalues of AK are the invariant zeros of the triple (C, A, Pd, meaning that

LZjio is the invariant zero direction. We have just shown that this direction lies in the

kernal of fi which is sufficient to claim that it lies in the kernal of n itself. Since Zj'o was

chosen arbitrarily out of the set of generalized eigenvalues, this holds for all Zji in the set.

Since Aj was chosen arbitrarily out of the set of unstable eigenvalues of AK' this holds for

all such eigenvalues. This proves the first half of our theorem.

To prove the second half of our theorem we need to make the additional assumption

that (A, PI) is stabilizable. This new assumption is fairly benign and was also made by

(Banavar and Speyer 1991). (A, PI) stabilizable implies that (A+ tIK, tI) and (AK , M PI)

are stabilizable. The latter is proven in (Wonham 1985)). Now let Ak =iw be an eigenvalue

of AK and let Zjko' ik = 1 ... iko ... Clk be one of the corresponding generalized eigenvectors.

Pre-multiplying (9.55) by zJko 77 and post-multiplying by LZjko leads to:

zjkoL
T

(AKfi + fiAK) Lzjko = (2 Re A) ZJkoL
T

fiLzjko = 0

which implies

zjkoLT (AKfI + fIAK) = zJko LTfI(-AI + AK) = 0

We also know that fiPIM = 0 since TIPI = O. Hence we can augment the above equation

to read:

zjkoLTfI [AK - >..I, tIM] = 0

This implies that zIko L
TfI = 0, since the stabilizability assumption implies [AK - AI, tIM]

is full rank. From this we can conclude that Lzjko E Ker fI which, by using the same

arguments as before, leads to the conclusion that the invariant zero directions corresponding

to the purely imaginary zeros lie in the kernal of n. •
Even though invariant zeros will not destabilize the game-theoretic filter as was just

shown, it is still possible that a left-half plane zero could be in a location which is undesirable.

This potential shortcoming is mitigated somewhat by the fact that zeros are rare for

non-square systems.
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9.5 Fault Detection with the Limiting Form of the Game Theoretic Filter

In this section, we will show that a reduced-order fault detector can be derived from the

limiting form of the game theoretic filter. The results from this section are more easily

applied to time-invariant systems, but we will give an overview of how to apply these

results to time-varying systems.

The reduced-order filter falls out from the fact that positive semi-definite, symmetric

matrices such as n always have non-singular, transformations - say r - that are orthonormal

(rTr = 1) and that convert the matrix into the form:

rnrT= [n 0]00' (9.57)

where n is positive definite. From (9.57), we can derive transformations on system matrices

which will allow us to factor out the portion of the state-space which corresponds to Ker n.

First define:

Because ITtl = 0 implies rntl = 0, we can immediately conclude that:

T' [n 0] [Fll ] -rnr rFI = 0 0 F22 = nFll = O.

Which, since n is positive-definite, implies:

Fll = O.

Now, using r we can partition the state-space as:

. {ill} r'11 = in = X.

Pre-multiply (9.25) by r and make use of the identity rTr = I to get:

(9.58)
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The transformed filter equation (9.58) is seen to be:
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From (9.59) we get a dynamic equation for 7]1:

and a static equation for "'2:

Define

so that the substitution of (9.62) and (9.61) into (9.60) gives us an estimator for "'1:

(9.60)

(9.61)

(9.62)

(9.63)

To see that the reduced-order estimator (9.63) is unaffected by the nuisance fault iL2,
we will derive the error equation for the reduced-order filter. Define:

~ = { ~~ } ~ rx,

We begin by premultiplying the dynamic equation (9.6) by the Riccati matrix TI. Since

UF1 = 0, we get:

TI±=TIAx.

This can be pre-multiplied by r and manipulated into:

[ TI 0] { ~1 } = [TI 0] [Au A12
] { ~1 }.o 0 112 0 0 A21 A 22 112

(9.64)

As with the estimator equation, (9.64) shows that only a portion of the state-space possesses

dynamics:

(9.65)
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Using (9.65) to get an error equation would leave terms in '72 or e2. In anticipation of this,

we transform the measurement equation:

(9.66)

and use (9.61) to solve for e2:

(9.67)

Subtract (9.65) from (9.60) and substitute (9.66) for y:

Using (9.67) and collecting terms, we can turn the previous equation into:

h = [All - rr-1C[V-\I - C2K )Cl - A 12K Cl] el

+ [rr-1crv-1u - C2K) + A12K] v. (9.68)

Note that the nuisance fault, P-2, appears nowhere in the estimator (9.63) nor in the

error equation (9.68). Thus, in the limit, we get a reduced-order estimator completely

uninfluenced by the nuisance faults. The term (CJ"V-1C2)-1 appears in various places in

the reduced-order estimator. This inverse will always exist since V is positive definite and

since the assumption of (C, A) observability guarantees that C2 will have full column rank.

Remark 4. The reduced-order filter derived here is similar to the residual generator

derived by Massoumnia, et al. in (Massoumnia et al. 1989). An important difference,

however, is that Massoumnia begins his design process by factoring out the reachable

space of the nuisance faults. As a result, he has the freedom to use any kind of filter

design technique for the lower dimensional state-space. The trade-off, however, is that the

system reduction in Massoumnia's filter is sensitive to the inexactness of the plant model.

Variations in the plant will change the reachable subspace and may, as a result, degrade

the performance of the reduced-order detector. In the game filter, the order reduction
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comes at the end of the design process. Thus, there is no design freedom left to tune the

reduced-order filter, but the game formulation used to obtain the filter makes it possible to

account for model uncertainties.

The Goh transformation and corresponding Riccati equation greatly extend our ability

to analyze the reduced-order estimator. In fact with the Goh Riccati equation we can show

that there always exists a stabilizing solution for the reduced order estimator. Applying the

transformation r to (9.44), we get:

-rsrT = rSrTrArT+ rATrTrsrT

+ rcT(iIfQdIl - V-l)crT + f' (BTcrv-lCBi ) -1 f'T

where, for notational convenience, f' is defined as

Define:

fBi = [ ;;: ] .
As in section 9.4, the necessary condition SBi = 0 will lead to Bll = 0 since rSrTrBi =
o => SBll = 0 and S is positive-definite. Also, if we carry the transformation through,

a number of terms fall out because the projector HI has been constructed so that:

=>

=>

=>

• T
BlCr rBi = 0

[HlCl HlC2] [ B~2 ] = 0

HlC2B12 = 0 (9.69)

We we show later that B i can always be augmented so that B12 is an invertible square

matrix. Hence (9.69) implies:

(9.70)

Using (9.70) and working through all of the transformations leads to:

[ -8 0] = [SAll SA12] + [A}l~ 0]o 0 0 0 A 12S 0
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(9.71)

o =

-S = Cr(HrQ1ih - V-1)Cl +SAll + A[lS

+ (SA12B12 - SBll - Crv-1C2B12) (B'[;Crv-1C2B12)-1

x (SA12B12 - SEll _ Crv-1C2B12)T

o = -Crv-
1
C2+ SA12 - (SA 12B12 - SEll - crv-Ic!B12)

(
T TT7-I )-1 T TT7-IC

X BI2 C2V C2B12 B12C2V 2

T--I T--I ( T TT7-I )-1 T TT7-1-c2V C2 + C2V C2B12 BI2C2V C2BI2 BI2C2V C2.

(9.72)

(9.73)

(9.74)

However, if we post-multiply (9.74) by B I 2 and cancel terms we obtain the identity 0 = O.

If we post-multiply (9.73) by BI2 we obtain:

0= SEll => Ell = O.

Thus, we need only (9.72), which thanks to (9.75) can be simplified to:

(9.75)

-S =

(9.76)

Now if i=l, then Bi = PI and the rank of PI equals the dimension of the kernal of S.

BI2 = FI2 will then be square and, moreover, it will be invertible since PI was assumed

monic. Given this, we can simplify (9.76) to:

-S = cf (iIfQdIl - V-I) Cl +SAll + A[IS

+ (SA12 - Crv-1C2) (Crv-IC2) -1 (SA12 - Crv-1C2)T (9.77)

S(to) = 0 (9.78)

where the boundary condition comes from (9.41). This leads us to the key result of this

section.
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Theorem 9.5. The solution S to (9.77) gives a stabilizing solution for the reduced-order

estimator (9.63).

Proof. Using the same transformation to derive both (9.77) and (9.63) will ensure that

S is of proper dimension for (9.63). Substitute S into (9.63) directly for II. The resulting

estimator is:

where K ~ (Crv-1C2)-lCrv-1. Clearly, the stability of the estimator depends upon the

closed-loop state matrix, (All - rs-1crv-1(I - C2K) + A12K]Cd. Now, if we go back to

(9.77), multiply out the quadratic, and use the definition for K, we get:

- - T75-S = S(A ll - A12KC1) + (All - A12KC1) S

+ Cr [HrQ1H1- V-1(I - C2K)] C1 +SA12(CrV-1C2)-1 Af2S, (9.79)

If we add and subtract Crv-1(I - C2K)C1 to (9.79) and rearrange terms we get:

-5 = 5 [All - A12KC1 - 5-1
Crv-

1
(I - C2K)C1]

+ [All - A12KC1 - S-lCrv-1(I - C2K)C1rS

+ Cr [HrQ1H1 + V-1(I - C2K )] C1 + SA12(Crv-1C2)-1 Af2S, (9.80)

Note that Crv-1 (1 - C2K)C1 is symmetric. (9.80) implies:

which by Lyapunov's direct method (Brogan 1991) implies that

is stable. For time-invariant systems, this implies that the closed-loop eigenvalues lie in the

open left-half plane.
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What happens, however, when i > 1 and dim(Ker S) > Rank B i ? The matrix B 12 will

no longer be square and the reduced-order Riccati equation will be stuck in the form of

(9.76) which is not the same as what is needed in the proof for stability (9.77). It would

seem that we cannot guarantee stability in the general case.

It turns out, however, that by augmenting the failure map in the original problem

statement, we can always convert the reduced-order Riccati equation into the desired form

(9.77). The necessary augmentation turns out to be:

The new game problem for the limiting case is:

subject to:

where 712 is the augmented failure signal which has as many inputs as there are columns in

Fl. Note, that here we have gone back to the pre-transformed problem where the state is x,

not D:i. We will show that this new problem leads to a Riccati equation which is equivalent

to (9.44). In this equation, however, the reduced-order version is easily seen to reduce to

the desired form (9.77). The equivalence of the two equations then implies that the same

reduced form holds for both.

The augmented failure map, F 1 is such that CF1 # 0, so the transformation process

converges after one iteration. The solution to this game leads to a Goh Riccati equation:

-8 = SA + ATS + CT(iIiQdI1 - V-1)C

+ [S(AF1 - Fd - Crv-1CF1] (FiCrv-1CFd-1

x [(AF1 - Flfs - Ficrv-1C] (9.81)
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with a boundary condition given by (9.41). The solution, S, to (9.81) is such that

dim(Ker8) = Rank Fl'

Hence, after the transformation and defining:

the reduced-order Riccati equation:
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-8 = Cr (HrQ1H l - V-I) Cl + SAll + AE8

+ (SA12F12-CrV-1C2F12)(Fi2Crv-lC2F12) -1(SA12F12-Crv-1C2F12)T .

can be simplified to (9.77) because F12 is square and invertible. We know that F 12 is square

and invertible because the construction of F l ensures that Fl has full column rank and that

the size of Ker S, which determines the order reduction, is equal to this column rank.

Proposition 9.6. The Goh Riccati equation of the augmented system (9.81) is equivalent

to the Goh Riccati equation of the original system (9.44).

Proof. It is immediate that

(9.82)

If we examine the term SAFi - F l in (9.81):

S(AF I - F l ) = SA [Bi, Bi- l , ... , Bll + S [.8i' .8i-l, ... , .81]

= [SABi - S.8i , SABi- l - S.8i, ... , SAB I - S.8l ]

= [SABi - SBi, SBi, SBi- l , ... , SB2] .

Because of Proposition 9.2, this simplifies to

(9.83)

Given, (9.82) and (9.83), the Goh Riccati equation for the augmented system (9.81) reduces

to (9.44). •
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Remark 5. The proposed "augmentation" is simply a restatement of the problem.

Reduced-order filters for the time-varying case are much harder to come by since the

transformation matrix, f, will now be a function of time. In this case, the only likely

option left to the analyst is to use the results of (Oshman and Bar-Itzhack 1985) which give

differential equations for the eigenvectors and eigenvalues of the solution to a time-varying

Riccati equation. From here the reduced-order Riccati matrix, the transformed system

equation and finally the reduced-order filter can be formed through a transformation matrix

based upon the eigenvectors. Needless to say, the computation required here will be quite

intensive. The state and measurement matrices will also have to be transformed at each

time step and only then can the filter be formed and propagated. The point here is that it

is possible to find a reduced filter for the time-varying case, though the effort may outweigh

the benefits. Since the full-order filter is always available, this is not a serious problem.

The analyst has many options when designing a game theoretic filter. In the case

of the full-order filter he has the freedom to choose the different weighting matrices and

"y. For reduced-order filters, he can use either the solution to the Goh Riccati equation

(9.44) or the solution of linear matrix inequality (9.33) with "y = 0 to find the needed

transformation matrix and reduced-order filter gain. He also has the reduced-order Riccati

equation (9.77). Moreover, he can mix the two approaches, for example, by using the LMI

to find the transformation matrix and using the reduced-order Goh Riccati equation to find

the gain. This flexibility is important, because the solution to the Goh equations may be

ill-conditioned when several iterations of the Goh transformation are needed to generate

the Riccati equation. The appearance of powers of A in the resulting equation may cause

problems with the numerical solution.

9.6 Application to AVeS: An Engine Air Mass Sensor Fault Detection
Filter

To demonstrate the effectiveness of the game theoretic filter, we will apply our results

to an example derived from (Douglas et al. 1995). In that report, a fault detection and
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identification system consisting of a bank of Beard-Jones fault detection filters was designed

a for a single automobile using the methodology of (Douglas and Speyer 1996). Since we

are only trying to provide a design example, we will not attempt to repeat the entire FDI

system construction of (Douglas et aI. 1995), but will merely design a game theoretic filter

for one of the subproblems given in (Douglas et aI. 1995): the monitoring of the engine air

mass sensor.

In (Douglas et al. 1995), the nonlinear dynamics of a single vehicle was linearized about

at straight line path at the constant speed of 25::. The resulting linear dynamics were then

further reduced via spectral separation and balanced realizations until a 2-input, 7-output,

7th-order state-space model representing the longitudinal dynamics was found:

x = Ax+Bu

Y = Cx+Du+v.

The measurements are:

Ym
Yw
Yx

Y = Yz
Yq

Yy/.

YYr.

Engine Manifold Air Mass (kg)
Engine Speed (~)

longitudinal acceleration (;,)
heave acceleration (~).

Pitch Rate (~).

Forward Symmetric Wheel Speed (~).

Rear Symmetric Wheel Speed (~~).

(9.84)

The inputs are:

(9.85)

(Douglas et al. 1995) for details. Given that we have only 7 states, we will not be able to

monitor all of the sensor and actuator faults with a single filter. In (Douglas et al. 1995),
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the 9 failures were divied up among 4 fault detection filters with some of the failures included

in more than one filter for dynamical reasons. To keep our example simple, we will apply

the game theoretic filter to only one of the failure sets, which is designated "Filter 1" in

(Douglas et a1. 1995). In that filter, the following three failures were grouped together:

FYm Air Mass Sensor Failure

Fy", Engine Speed Sensor Failure

FYi Forward Acceleration Sensor Failure

In this example we will attempt to detect the air mass sensor failure, J.LYm' given the

possible presence of an engine speed sensor failure, J.Ly"" and forward acceleration sensor

failure, J.LYi' For comparision, the filter designed in (Douglas et al. 1995) was able to detect

and identify each of the three faults. As we noted before, a limitation of the game theoretic

filter is that, in its present form, it can only look for one fault per filter and in this example

we see this limitation brought to the forefront. Finally, we should also note that the filter

we design here will detect J.LYm in the presence of any other failure that enters the system

in the same way as J.LYw and J.LYi or in the presence of any failure whose reachable subspace

lies in the sum of the reachable subspaces of Fy", and FYi'

The failure model for this example is:

y = Cx+v,

where the system matrices are:

-0.0521 -0.2213 0.2681 -0.0121 0.0136 0.0084 -0.0078
-0.3007 -8.0277 -19.0734 -1.1013 0.0795 0.2471 0.0378
-0.3263 -19.7571 -51.0638 -3.2675 -4.8766 -2.4258 0.0040

A = 0.0454 2.4036 15.7922 -2.1857 6.4655 -0.2062 0.0495
0.0219 1.1136 8.6428 -7.1817 -0.6526 -0.2171 0.9316
0.0116 0.5928 3.8335 -1.0926 -0.6513 -0.9851 5.9628
0.0154 0.7868 4.8494 -1.4900 -1.0329 -6.5688 -2.5996

(9.86)

(9.87)
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0.0075 0.4605 0.3710 0.1023 0.0513 0.0340 -0.0137
0.7318 2.7938 -2.8640 0.1680 -0.0415 -0.0491 -0.0029
0.0028 0.1711 -0.2654 0.0765 -0.0161 0.0093 -0.0008

C = OOסס.0 -0.0007 -0.0005 -0.0216 -0.0496 -0.0438 0.0697
-0.0000 -0.0024 0.0050 0.0111 0.0205 -0.0027 0.0009

0.4214 -0.1440 0.0371 0.2203 -0.1764 -0.0129 0.1051
0.4211 0.1318 -0.4410 -0.2741 -0.0304 -0.0734 0.0585

For simplicity, the inputs u will be disregarded.

What remains is to calculate Fy", and Fyii ' Following the the modeling techniques

described in Section 9.1, we begin by augmenting the measurment equation to reflect the

presence of the engine speed and accelerometer sensor failures:

x = Ax (9.88)

y = Cx + Ey",my", + EyiimYii + v. (9.89)

where

Ey", = [ 0 1 0 0 0 0 Or
EYii = [ 0 0 1 0 0 0 o]T

We then calculate !Y", as the solution of Ey", = C !Y", and !Yii as the solution to EYii = C !Yii'

The second column of the failure map is then obtained by multiplying !Yii and !Yii by the

state matrix A. We then have the following failure maps:

and

0.2107
0.2986
0.3791
1.7301

-2.3516
-13.8538
-9.8358

-0.0681
-1.1171
14.0532
-9.9008

-13.4314
-43.7274
118.5002
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0.0873
0.9262
0.2544

-3.0910
4.0831

24.1122
17.1083

0.0209
7.7252

-99.5538
35.2772
33.4690
80.5043

-200.5111

For the purposes of the filter design we combine the two failure maps into a single

complementary failure map:

Since CFYm is full rank we do not need to go into a Goh iteration sequence to form the

projector fh. Thus, this projector is simply:

A A AT" -1 " T
HI = 1- (CFym ) [(CFym ) (CFym )) (CFym )

0.9986 -0.0000 0.0000 0.0098
-0.0000 0.0000 0.0000 -0.0000
0.0000 0.0000 0.0000 -0.0000

= 0.0098 -0.0000 -0.0000 0.6340
-0.0008 0.0000 -0.0000 0.0062
0.0165 -0.0000 -0.0000 -0.4785

-0.0317 -0.0000 -0.0000 -0.0540

9.6.1 Full-Order Filter Design

-0.0008
0.0000

-0.0000
0.0062
0.9995
0.0102

-0.0179

0.0165
-0.0000
0.0000

-0.4785
0.0102
0.3620
0.0397

-0.0317
-0.0000
-0.0000
-0.0540
-0.0179
0.0397
0.0058

(9.90)

Equation 9.15, the Riccati equation in terms of II, was used for this example. To bring

sensor noise weighting, V (= III), to zero with the disturbance bound, it is assumed that II

is some multiple of,. By trial and error, it was found that:

II = 1 X 10-8 ,
II
- = 0.8,,
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gave the results seen in Figure 9.2. For the parameters above, the solution of (9.15) is:

II=

0.0108
-0.0001

0.0009
0.0043

-0.0035
0.0011
0.0003

-0.0001
0.0044

-0.0003
-0.0033
-0.0034

0.0005
-0.0004

0.0009
-0.0003

0.0014
0.0020
0.0011
0.0000
0.0001

0.0043
-0.0033

0.0020
0.0059
0.0025
0.0000
0.0005

-0.0035
-0.0034

0.0011
0.0025
0.0051

-0.0009
0.0003

0.0011
0.0005
0.0000
0.0000

-0.0009
0.0002
0.0000

0.0003
-0.0004

0.0001
0.0005
0.0003
0.0000
0.0000

(9.91)

resulting in a gain:

-0.0000
0.0003

-0.0003
-0.0006

0.0015
0.0066
0.0035

0.0037
0.0218

-0.1411
0.1147
0.1110
0.2818

-1.2066

-0.0344
-0.0470
-0.1145
-0.1078

0.3183
1.7919
0.1269

-0.0002
0.2636
0.3172

-0.3230
-0.5540
-2.4235

6.9371

0.0000
-0.0004
-0.0007

0.0006
0.0012
0.0050

-0.0120

-0.0003
0.3208
0.3878

-0.3935
-0.6768
-2.9591

8.4546

0.0007
0.2517
0.2879

-0.3032
-0.5083
-2.2383

6.5149
(9.92)

When applied to the 7th-order car model, the result is a stable filter with closed-loop

poles at: -2, 128, 332.1, -458867.7, -11, 157.0, -856.2, -259.7, -9.1 and -0.31. As

Figure 9.2 shows, the filter achieves roughly 80 db. of separation in transmission between

the target fault (an engine air mass sensor failure) and the larger of the two nuisance

faults. As a comparison, Figure 9.3 plots the results of the Beard-Jones filter design from

(Douglas et a1. 1995) for the same set of faults. The closed-loop poles for this filter were

selected to be: -3, -4, -5, -6, -7, -8 and -9.

A comparison of the two filters shows that they both do an adequate job of separating

the target fault and the nuisance faults. The Beard-Jones filter has less separation, but it

also amplifies the target fault signal. For the residual processing stage of fault detection

and identification, this might prove to be useful side effect. Moreover, the game theoretic

filter achieves its impressive transmission separation at the cost of extremely high gains.

This is due the agressively low value of -y chosen for this design example. Higher values

of -y can be chosen which achieve less separation but also result in smaller gains. We will

also show, in the next section, how to design a reduced-order filter which achieves our fault

detection goals and which also possesses very reasonable gains.
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Singular Value Plot of Game Theoretic Filter
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Figure 9.2: Game Theoretic Filter Singular Value Plot of Air Mass Fault Signal versus
Singular Values of Engine Speed and Accelerometer Faults (solid line - output
due to I-tYm; dashed lines - outputs due to I-tyw and I-tYit),

Another factor to consider is the issue of sensor noise transmission, As (Lee 1994)

points out, Beard-Jones filters can have fairly poor noise properties. This is demonstrated

by Figure 9.4 which shows that the largest singular value for noise tranmission is consistently

larger than the singular value for the target fault transmission. On the other hand,

Figure 9.5 shows that the game theoretic filter achieves separation between sensor noise

and target fault transmission at frequencies above 10= for all of the the noise channels

except for the one which comes into the filter dynamics in the same way as the target fault

itself. This noise signal is indistinguishable from the target fault and its singular value

plot is identical to the target faults over all frequencies. Separating the fault signal from

measurement noise will then have to come in the residual evaluation stage. Typically, this
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Singular Value Plot of Douglas Version of BJ Fiher
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Figure 9.3: Beard-Jones Filter Singular Value Plot of Air Mass Fault Signal versus Singular
Values of Engine Speed and Accelerometer Faults (solid line - output due to
J.LYm; dashed lines - outputs due to J.Ly", and J.Lyfi)·

involves making assumptions about the failure signal and about the statistics of the sensor

noise. See for example (Douglas et aI. 1995) and (Emami-Naeini et aI. 1988).

9.6.2 Reduced-Order Filter Design via the Goh Riccati Equations

We now repeat the example, but now we will design a lower-order filter using the Goh Riccati

equations. The first step is to derive the transformation matrix, r. Since the transformation

is determined via the null space of the full-order Riccati matrix, the design process begins by

finding the solution to the full-order Goh Riccati equation (9.44). Because GFI is full-rank,

we are spared the step of going through a Gob iteration to set up tbe correct Gob Riccati

equation.
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Singular Value Plot of Douglas Version of BJ Filter
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Figure 9.4: Beard-Jones Filter Singular Value Plot of Air Mass Fault Signal versus Singular
Values of Engine Speed and Accelerometer Faults (solid line - output due to
J..LYm; dashed lines .. nuisance faults, dot-dashed lines - noise).

Using the same weightings as in the full-order design, we find that the solution to the

Goh Riccati equation (9.44) is:

21.8547 -0.2217 -0.0277 -0.0358 0.0271 0.0141 0.0114
63.2776 -0.8201 -0.0969 -0.0807 0.1369 0.0093 0.0352

-21.9515 0.2891 0.0331 0.0270 -0.0496 -0.0023 -0.0122
s= -61.5141 0.8211 0.0953 0.0749 -0.1416 -0.0047 -0.0345

-76.2310 0.9668 0.1138 0.0996 -0.1586 -0.0148 -0.0421
10.9799 -0.1357 -0.0162 -0.0148 0.0216 0.0028 0.0060

-6.5160 0.0860 0.0101 0.0081 -0.0146 -0.0007 -0.0036
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Singular Value Plot of Game Theoretic Filter
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Figure 9.5: Game Theoretic Filter Singular Value Plot of Air Mass Fault Signal versus
Nuisance Faults and Noise (solid line - output due to /-LlIm; dashed lines - nuisance
faults, dot-dashed lines - noise).

Using the QR decompostion we find obtain a transformation matrix:

-0.1801
-0.5215

0.1809
0.5070
0.6283

-0.0905
0.0537

0.8639
-0.0913

0.0982
0.4348

-0.1984
0.0797
0.0312

0.0800
-0.6879
-0.6580
-0.2304
-0.1801
-0.0416

0.0166

-0.0329
-0.4917

0.7204
-0.3580
-0.3258

0.0575
-0.0237

-0.3166
-0.0018
-0.0020

0.4084
-0.5190
-0.3232

0.5992

0.3369
0.0687
0.0693

-0.4414
0.3693

-0.5328
0.5118

-0.0035
-0.0056
-0.0312
-0.1051

0.1467
0.7695
0.6118

(9.93)

Using this transformation, we reduce our state-space to a third-order system, that is, we

find the matrices All, C1 etc. From here we employ the reduced-order system matrices in
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the reduced order Goh Riccati equation, (9.81). The soltution to (9.81) using (9.93) is:

[

-0.0417
S = 0.0216

-0.3085

0.0216
-0.0073
0.1923

-0.3085 ]
0.1923

-2.1336
(9.94)
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Figure 9.6: Reduced-Order Goh Filter Residual due to step in JLA z (fault to be detected).

with a corresponding gain:

[

-4.8971 0.0001 0.0000 -213.6617 39.9079 154.1616
L = -1.4088 0.0000 0.0001 -98.3020 24.3178 73.0444

0.2842 -0.0001 0.0002 21.6742 -3.5535 -16.2795

30.1926 ]
11.9234

-1.9279
(9.95)

The closed-loop eigenvalues are: -7.0976, -23.3114 and -35.2309. To demonstrate the

effectiveness of the reduced-order filter a linear simulation of the system was run for two

cases: one with a engine air mass sensor fault input (modeled as a step) the other with a

engine speed sensor fault input (also a step). Figures 9.7 and 9.6 show that the reduced-order
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Figure 9.7: Reduced-Order Goh Filter Residual due to step in I-£wg (nuisance fault).

filter responds to the air mass sensor fault input and is relatively insensitive to the engine

speed sensor fault.

9.7 Discussion

By solving the fault detection problem via disturbance attenuation, we obtain a game

theoretic filter that bounds the transmission of disturbances and nuisance faults. By going

to the limit of this solution, we get a fault detection filter which in the time-invariant

case is equivalent to the Beard-Jones fault detection filter. That is, the presence of the

nuisance faults is restricted to an invariant subspace that can be made unobservable through

a projection. This unobservable subspace can be factored out of total space to get a

lower-order system which is uninfluenced by the nuisance faults. The same factoring process
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can then be applied to the game filter to get a reduced-order fault detector for the newly

reduced state-space. Extensions of this latter result exist for the time-varying case, though

the computation involved may be intensive.

The game theoretic approach to fault detection filter design is more flexible than current

design methods. The designer can choose the degree to which the game filter possesses the

structure of the Beard-Jones filter. This allows him to make tradeoffs between nuisance fault

blocking and sensor noise rejection. The linear quadratic game used to solve the disturbance

attenuation problem admits time-varying systems and can be used to incorporate parameter

uncertainty into the filter design. Recent extensions of robust control such as designs which

constrain pole-placement and designs with multiple objectives, for example, the so-called

mixed ?t2/?too problems, suggest that the same can be done here. The latter is of particular

interest since it appears to be a logical way to detect and identify multiple faults with a

single game theoretic filter.

Finally, we have shown that the limiting form of the game filter is a singular filter.

Since any disturbance attenuation problem can be solved in the same manner as this one,

it is likely that this result applies to all such problems. That is, the limiting form of a

disturbance attenuation problem is a singular optimization problem. This makes applicable

a wealth of results from singular control and it provides a new way to understand ?too

problems by looking at them as "almost" singular optimal control problems.



CHAPTER 10

Conclusions

ANALYTIC REDUNDANCY is a viable approach to vehicle health monitoring. The fault

detection filters developed here perform well in a high-fidelity nonlinear simulation. The

filter residuals quickly and clearly respond to the introduction of faults even in the presence

of significant vehicle nonlinearities from both longitudinal and lateral modes. Two candidate

residual processing systems both effectively automate fault announcement. A Bayesian

neural network examines the fault detection filter residual for activity characteristic of a

static pattern associated with a fault. A fault and an associated probability of occurance are

announced by the neural network soon after the fault is introduced in the vehicle nonlinear

simulation. A modified Shiryayev sequential probability ratio test extended to include

multiple hypotheses examines the filter residuals and tests for a fault hypotheis change.

Both systems respond well to hard and soft failures in the presence of sensor noise, dynamic

disturbances and vehicle nonlinearities.

By directing development of the project components in parallel and seeing significant

progress in all areas, we are able to identify several important areas for future work: model

213
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refinement, robust fault detection filter design, time-varying fault detection filter design,

system integration and platoon health monitoring.

Model Refinement: This year, a refined nonlinear vehicle model and simulation was

completed. This model allows for arbitrarily changing road gradients for each of the

four wheels. Work will now continue by developing uncertainty models associated with

process disturbances such as rough and hilly roads, winds, system parameter uncertainty

and unmodeled dynamics. Through a good working relation with the Berkeley PATH

researchers, model fidelity will be improved further using empirically derived data. Fidelity

of the modeled nonlinearities and uncertainties is very important for a realistic assessment

of any health monitoring system performance.

Robust Fault Detection Filter Design: Development of robust fault detection filters

will continue with two directions of investigation. First, the system will be examined

for the possibility of treating nonlinearities and disturbances as pseud<rfault directions.

This approach effectively decouples the nonlinearity or disturbance from fault identifying

residuals. Second, parameter uncertainty in the linearized vehicle dynamics is modeled as an

input-output decomposition. This allows model uncertainty to be treated as a disturbance.

Time-Varying Detection Filter Design: Automated vehicles engaged in merge and

split maneuvers may follow a trajectory that induces time-varying vehicle dynamics. The

notion of a fault detection filter for time-varying systems was introduced in the game

theoretic fault detection filter development described in this report. It is expected that

these notions will be extended to invariant subspace filter structures.

System Integration: Having developed preliminary fault detection and isolation system

designs for one longitudinal and one lateral mode, work will procede by considering several

other design points and then combining all the designs into one integrated package.

Platoon Health Monitoring: Work will begin towards extending the health monitoring

system for one vehicle to include the presence of multiple vehicles in a controlled platoon
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configuration. Sensors required for control such as distance measurements will be included

in the fault set. Transmission of vehicle sensor outputs will be transmitted to all vehicles.

Feasibility and performance of an expanded health monitoring system will be evaluated in

an extended nonlinear simulation.




