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Knowledge Gained on
AHS Throughput

4-1

• AHS automation technology can increase
throughput compared to manual driving

• AHS throughput is strongly influenced by:
- knowledge and consistency of braking performance
- percentage of heavy vehicles in traffic
- merging protocols
- conservatism of safety policies )+

- whether or not platoons are supported .\ L1c"1'1 , Ji""»~
"'~' flo- 1.4., 'h

• Throughput is not very sensitive to communication, ') 'oJ 'c~\,?,v"/"

sensing and processing time lags /
• Substantial market penetration is needed to achieve

noticeable throughput increases in mixed/manual traffic
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Knowledge Gained on
AHS Safety

~c_
ii·····························--......
NAHSC

Quantitative results for a wide variety of
conditions, demonstrating that:

• Maneuver coordination improves both safety and
throughput

• Alternate separation policies produce trade-offs
between probability and severity of crashes when
failures occur -
~~.--.,- <.-__.----

• Increasing speed reduces both safety and
throughput
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Knowledge Gained on AHS
Infrastructure Development

4-3

• AHS civil infrastructure costs per two-way mile can
range from near zero to:
- $36 million in high-density urban areas
- $6.5 million in intercity corridors
- $3.1 million in rural areas

• Increased intelligence at merges reduces length of
ramps needed

• In congested environments, impacts of AHS
entering and exiting traffic on manual traffic can be
substantial unless dedicated onloff ramps are used
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Knowledge Gained on AHS
Deployment Issues --NAHSC

• AHS infrastructure deployment can be addressed in the same
ways as conventional infrastructure deployment:
- benefit/cost comparisons with alternatives
- public costs and liabilities traded off against public benefits
- civil infrastructure costs dependent on local conditions

• There is a large step from partial to full automation in:

- driver roles
- technology

- liability
• That step must be taken before the level of automation is

sufficient to detract significantly from driver attentiveness
• Comprehensive obstacle/hazard detection and avoidance is

the primary technology impediment to full automation in
mixed traffic

WS3KNOW1.PPT(SES._1

Unresolved Concept Issues

4-5

• Absolute safety levels achievable and needed
• Enabling technology maturity and costs (especially for obstacle

detection and avoidance)
• Absolute throughput levels achievable and compatible with rest

of transportation network
• Relationship between public benefits (throughput) and individual

benefits (travel times)

• Complete definition of driver roles (capabilities) in normal and
abnormal conditions

• Infrastructure/vehicle deployment sequencing to avoid chicken!
egg problems

• Trade-ofts between vehicle-vehicle and vehicle-roadside
coordination of maneuvering and traffic flow

• Stakeholder priorities and willingness to pay
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Unresolved Design Details

• Selection of lane sensing technology
• Selection of range sensor technology
• Selection of communication technology
• Definition of user interface

• Roadway geometry

WS3KNOW, .PPT(SES.llIlMl)

Local Deployment Choices

4-7

Many aspects of AHS will be determined
based on specific local circumstances:
- who ownsloperates/maintains/regulates/pays

- roadway alignments (at grade, elevated, median or
periphery, etc.)

- access and egress ramp configurations and locations
- policies for mixing heavy and light duty vehicles
- interactions with local streets and highways

NAHSC will identify a range of options for
these, not a single solution
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ThroughputITravel Time
Analysis -- Summary

OOOSUM.PP'T(VIll61

Datta Godbole, Mark Miller
NAHSC Workshop #3
September 19, 1996

£A--rH-
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Objectives

• Assess strengths and weaknesses of key AHS
attributes
- Dedicated lane and mixed traffic analysis
- Distribution of intelligence & communication links
- Platoons or individual vehicles

• Determine sensitivity to design parameters
• Application scenarios for performance evaluation

- Single lane urban AHS
- Houston transit corridor (discussed in the breakout)

OOOSUM.PP'TCVlll61 5-2



AHS Attribute Combinations
for Throughput Analysis

• Autonomous individual vehicles
• Cooperative individual vehicles

- Low cooperation (emergency warning & maneuver
coordination only)

- High cooperation (continuous exchange of information)

• Cooperative platoons
- Low cooperation between platoons (inter-platoon), and

high cooperation within each platoon (intra-platoon)

• Non-uniform inter-vehicle spacing
- Autonomous & cooperative individual vehicles

• Based upon knowledge of braking capabilities

OO.SUM.PPT(.....) 5-3

Pipeline Capacity Analysis

• Assume single lane AHS pipe
• Calculate safe vehicle following distances for

different AHS attribute combinations such that
- No collisions in the absence of malfunctions
- If front vehicle applies maximum braking (in response to a

failure), then following vehicle should be able to stop
• Low relative velocity intra-platoon collisions can not be

completely avoided in case of hard braking failure.

• Spacings are sensitive to braking capability
variations among vehicles
- Non-uniform spacings, based on information of relative

braking capability of front vehicle, can increase capacity

OO.SUM.PPT(.....j 5-4



Pipeline Capacity vs. Speed

93% Passenger Vehicles, 6% Trucks, 1% Buses
5000,----,----,----,----,------,,------,,------,

10 Vehicle platoon

Speed (mph)

- Capacity increases with increasing level of cooperation
- Platooning results in highest pipeline capacity

DGOSUM.PPT(fl/Il8)

Effect of Entry on AHS
Pipeline Capacity

5-5

NAHSC

• Merging assumptions
- Cooperative vehicles and platoons can communicate

the location of gaps to the entering vehicles

- Pre-platoons can be formed at the on-ramp
- Traffic on the mainline can yield to the entering traffic

• Effects of different AHS modes of operation are
evaluated by

Maximum achievable throughput

Required entry-section lengths
Delays at ramp metering
Increased travel time for mainline traffic due to entry

• Need to investigate mainline flow control
strategies

DGOSUM.PPT(fl/Il8)
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NAHSC

Cooperative (non­
uniform spacing)

2 Vehicle platoon

10 Vehicle platoon

-..... ----
--. -.......

93% Passenger Vehicles, 6% Trucks, 1% Buses

3500

Throughputvs.Speed
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Speed (mph)

Example: The above throughput plot is obtained for representative values
of ramp metering delays, increase in travel time &entry section length.
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Travel Time Analysis
NAHSC

• Assumptions
10 mile segment of 3 lane highway

1 lane converted to automated traffic
Manual lane capacity 2000 vlhr (at 35 mph)
Free flow speed 60 mph
AHS volumes do not exceed capacity

• Conclusions
As AHS throughput increases

• Number of vehicles traveling under free flow conditions
increases

• Level of aggregate demand at onset of unstable traffic
conditions increases

OOOSUM.PPTI_1 5-8



Travel Time Analysis
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- For a given level of aggregate demand, higher levels of
DGOSUM.PPT(ll/Il8) AHS throughput corresponds to lower travel time 5·9

Mixed Traffic Throughput
Analysis

• Assumptions
- Driver behavior unchanged from today

- All light-duty vehicles

Random sequencing of automated and manual vehicles
- Manual throughput data from UMTRI ACC study

• Average speed 67 mph, headway 2.3 sec, 1600 veh/hr/ln

• Results
- Throughput is sensitive to

• Operating Speed

• Separation between two automated vehicles

• Merge derating factor

- Throughput might decrease initially at low market
penetration

DGOSUM.PPT(ll/Il8) 5-10



Mixed Traffic Analysis:
Sensitivity to Speed and Spacing

Merge Derating Factor - 25%

Uniform Spacing
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- Throughput benefits increase with market penetration
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Throughput Analysis
Summary

• Summary
- Most AHS attribute combinations result in increased

throughput and reduced travel time than current
highway systems

- Increases in inter-vehicle coordination result in
increased throughput

- Increase in AHS operating speed will ultimately reduce
throughput

- Platooning provides highest throughput

• Future work
- Analyze the effects of flow control strategies on

multilane AHS networks
- Determine impact of AHS on the entire transportation

system
OOOSUM.PPT(_1 5-12



ThroughputlTravel Time
Analyses -- Breakout

Mark Miller and Datta Godbole
NAHSC Workshop #3

September 19, 1996

IAMOWORKS.PPT(M81 5-13

Objectives & Outline

• .Qbjectives
- Assess strengths and weaknesses of different AHS

attribute combinations
- Determine sensitivity to design parameters
- Assess impact of mixed (automated+manual) traffic

on throughput

• Outline
- Pipeline capacity analysis based on safe spacing
- Capacity degradation due to entering traffic
- Travel time analysis
- Mixed traffic throughput evaluation

- Throughput evaluation for case studies: Houston

IAMOWORKS.PPT(M8)
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AHS Attribute Combinations

• Autonomous individual vehicles

• Cooperative individual vehicles
- Low cooperation (emergency warning & maneuver

coordination only)
- High cooperation (continuous exchange of information)

• Cooperative platoons
- Low cooperation inter-platoon, and high cooperation

intra-platoon

• Non-uniform inter-vehicle spacing
- Autonomous & cooperative individual vehicles

e Based on information about braking capabilities

MMeWORKS. PPT(WlI6)
5-15

Safe Spacing Design ~

for Pipeline Capacity Analysis ~;

• Calculate safe vehicle following distance
- If front vehicle applies maximum braking (in response to a

failure) then following vehicle should be able to stop
- Used to calculate inter-platoon separation and minimum

safe spacing between individual vehicles
e Low impact intra-platoon collisions can not be avoided in case of

hard braking

- No intra-platoon collisions in the absence of malfunctions

• Minimum safe spacing depends on
- Braking capabilities of the two vehicles
- Type of information available for control
- Sensing, actuation & communication delays
- Operating speed, speed-tracking accuracy

5-16



Pipeline Capacity Analysis

• Scenario: Single lane AHS pipe
- Using spacing design tools calculate minimum safe

inter-vehicle, intra-platoon & inter-platoon spacing
- Use above spacing with the corresponding speed to

calculate pipeline capacity

• Results
- Capacity vs. speed for each AHS attribute combination
- Effect of mixed classes of vehicles on capacity
- Sensitivity to design parameters

• Sensitive to braking capability and speed-tracking accuracy

• Less sensitive to delays

""OWOAKS.PPT(ll/ll6) 5-17

Pipeline Capacity vs. Speed
NAHSC

93% Passenger Vehicles, 6% Trucks, 1% Buses
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20

Speed (mph)

- Capacity increases with increasing level of cooperation
- Platooning results in highest pipeline capacity

MMOWORKS.PPT(ll/ll6) 5-18



Pipeline Capacity vs. Percent
of Trucks
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Braking Capability Distribution
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Se~nsitivity to Braking
Capability

- Spacing
highly
sensitive to
braking
capability

- Capacity can
be improved
by

• Restricted
access to the
highway
facility

e Non-uniform
inter-vehicle
spacing

90

..

80706050

Individual Vehicles - High Cooperation

(LDPVonly)

Speed (mph)

4000

1000L-_-'---,_...I--_-L.-_...J....-_--'--_-L-_--.J
20 30 40

MMeWORKS.PPT(ll/ll8)
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Capac:ity Improvement Using
NOln-Uniform Spacings

• Spacingis & capacity are highly sensitive to
differences in braking capability

• Braking capabilities are distributed over a wide
range rE!sulting in conservative inter-vehicle
following distances for uniform spacing design

• Capacit~, improvement using non-uniform
spacing design
- Inter-vehicle spacing is based on the information about

relativle braking capability of vehicles
- Requil'es vehicles to estimate their own braking

capabiility and communicate it to the following vehicle

MMeWORKS.PPT(llIll8) 5-22



Pipeline Capacity vs. Speed
Non-Uniform Spacings

93% Passenger Vehicles, 6% Trucks, 1% Buses
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Cooperative (non­
uniform spacing)

2 Vehicle platoon

Cooperative
(uniform spacing)
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AHS Entry:
Effect on Pipeline Capacity

• Merging disciplines
- Autonomous vehicles merging into AHS traffic with and

without yielding by the mainline traffic
- Cooperative vehicles merging into AHS traffic with

knowledge of gap locations
- Pre-platoons entering a platooned AHS, with the

entering platoon tagging behind an AHS platoon

• Effect of merging disciplines evaluated by
- Reduction in pipeline capacity
- Required ramp lengths (capped at 1.0 mile)
- Delays at ramp metering (capped at 2 minutes)
- Mainline traffic delays due to entering traffic

5-24



AHS Entry Analysis
(worst case)

• Autonornous individual vehicles (no cooperation)
- Lack olf cooperation results in long entry sections and

lower 1throughput: For 1.0 mile merging section,
pipelilJe capacity reduction =50%

• Autonornous individual vehicles (wi cooperation)
- By incorporating yielding to entering traffic, the

throuQlhput can be improved at the cost of travel time on
AHS: 1% increase in travel time per entry ramp
corresponds to a pipeline capacity reduction of25%
with 0.5 mile merging section

• Coopenltive individual vehicles & Platoons
- Throu!~hput increase achieved by

• Knowledge of gap locations

• Entl3ring vehicles tagged behind existing platoon
MMOWORKS.PPTllWlll 0 A 2~ min entry ramp delay results in 25% capacity reduction 5-25

Throughputvs.Speed
NAHSC

9:i% Passenger Vehicles, 6% Trucks, 1% Buses
4000,--,---,---,---,----.---....--_
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Cooperative (non­
uniform spacing)

2 Vehicle platoon

10 Vehicle platoon

--. -" ...........
-'--- .

-.........

1000

Cooperative
;~..... VI' (uniform-spacing)

Autonomous
(with cooporatlon)
Autonomous

5OO20l---30.l---40-'----50-'---60-'--~...J....70----'-60-.........J90(no cooperation)

Speed (mph)

- Int.er-vehicle coordination improves throughput
- Ne!ed to investigate gap management strategies
- Phltooning provides maximum throughput

-C3000
'E
S
CD 2500
..!.-il2000 .__ .....- _
it Manual-... . -------­
:::Io 1500 __ - - - ••...
~

3500

MMOWORKS.PPTllWlll



Travel Time Analysis
NAHSC

• Assumptions
- 10 mile segment of 3 lane highway

- 1 lane converted to automated traffic

- Manual lane capacity 2000 veh/hr at 35 mph

- Manual lane free-flow speed 60 mph
- Automated lane free-flow speed - 60 & 80 mph
- AHS volumes do not exceed capacity

_OWORKS.PPT(llIlI8)
5-27

Travel Time vs. Demand ~
Sensitivity to AHS Throughput~;
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Total Aggregate Demand

- For a given level of aggregate demand, higher levels
of AHS throughput correspond to lower travel time 5-28



Tra"el Time vs. Demand
Sen~;itivity to AHS Speed
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Tr;avel Time Analysis
Observations

• As AHS throughput increases
- Level ()f aggregate demand at which onset of unstable

traffic Iconditions begin increases
- NumbEer of vehicles traveling under free-flow conditions

increa!;e

• For a given level of aggregate demand
- Higher levels of AHS throughput correspond to lower

traveltime

• If free-flow speed on AHS is greater than manual
free-flo"" speed
- Travel time benefits are even greater than previous case

_OWORKS.PPTI_l
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Houston Case Study
(Ongoing Work)

5-31

• Approximately 10 mile stretch of 1-10 (Katy Freeway), 1-lane
reversible HOV facility west of Houston CaD

• Park & ride facility and slip ramps used for access and egress
in addition to primary western &eastern terminii

• Three demand scenarios projected for year 2020:
- 1750 vph, 3000 vph, 4000 vph (at peak demand points

along corridor) with 40/0bus, 960/0 light-duty vehicles
• Throughput in vehicles per hour

- Autonomous:
• 900-1650 (uniform), 1200-2200 (non-uniform)

- Cooperative:
• 1750-2350 (uniform), 2600-3400 (non-uniform)

• Low-level demand: cooperative, autonomous (non-uniform)
• Mid-level demand: cooperative (non-uniform)
• Platooning can satisfy all three demand levels

UUOWORKS.PPT(lIIll6)

Mixed Traffic Throughput
Analysis

• Assumptions
- Driver behavior unchanged from today
- All light-duty vehicles
- Random sequencing of automated and manual vehicles
- All manual throughput (UMTRI ACC study)

o Average speed 67mph, headway 2.3 sec, 1600 veh/hr

- Automated vehicle operate in autonomous mode
- Manual vehicle follows automated vehicle at the same

distance as another manual vehicle
- Automated vehicle follows manual vehicle no closer

than it would follow another automated vehicle



Mixed Traffic Throughput
Analysis (Cont...)

W"*=t>.0~:::'X';«~
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NAHSC

• Results
- Throughput vs market penetration of automated

vehicles as a function of
• Operating speed

• Degree of merging disturbances

• Inter-vehicle spacing

• Conclusions
- Benefits increase with market penetration
- Future work: Extend work to multiple vehicle classes

MMOWORKS.PPT(llIIl8)
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Mixed Flow Analysis
Sensitivity to Speed
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Mixed Traffic Analysis ~
Sensitivity to Merge Derating Factor ~;
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Mixed Traffic Analysis
Sensitivity to Spacing
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ThroughputlTravel Time
Analysis -- Summary

• Most AHS attribute combinations result in higher
throughput and reduced travel times over manual
highways

• Increased inter-vehicle maneuver cooperation
results in increased AHS capacity & throughput

• Increase in speed reduces throughput
• Platooning provides highest throughput

• Future work
- Analyze the effects of flow control
- Impact of AHS on the entire transportation network

MMOWORKS.PPT(\lIIl8)
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AHS Safety Analysis

Plenary Briefing

RSPLEN.PPT(9I96)

Raja Sengupta

Overview

6-1

~c
..-.._~

• Safety Objective: NO C\CC: ,d\,:v1f;'

- Design AHS for no c~lision in the absence of malfunctions and
improved safety in case of malfunctions or environmental hazards

• MOEs are used to quantify the design objective
- number of collisions per VMT, severity of each collision, number

of vehicles in each collision, etc.

• To determine system MOE values we need to know
- number of environmental hazards per VMT

number of component failures per VMT

- AHS emergency response strategies

• requires detailed design, extensive data collection

• At this stage, we need to understand how the key attributes influence
the safety properties of future AHS designs

RSPLEN.PPT(9I96) 6-2



Analysis Approach

---..~~. Assume"the-1nalfunction .bas occurred, i.e., define emergency
~ scenarios

- Hard Braking Emergency
- On a single dedicated lane AHS at full capacity, a vehicle

\~ brakes hard in response to a malfunction, until it stops
- Obstacle Avoidance

- A stationary obstacle appears suddenly on one lane of a
dedicated two lane AHS at full capacity

• Model emergency response strategies for relevant
combinations of key attributes
- Distribution of Intelligence, Separation Policy

• Autonomous, Low or High Cooperative Individual Vehicles, Co­
operative Platooned Vehicles

• Compare attribute combinations with each other

RSPLEN,PPT(9I96)

Response Strategies:
Differentiating Attribute Combinations

6-3

• Autonomous Individual Vehicles
- No warning to follower during emergency braking

- No cooperation for emergency lane change

• Low Cooperative Individual Vehicles
- Slower warning to follower during emergency braking
- Cooperation for emergency lane change

• High Cooperative Individual Vehicles
- Faster warning during emergency braking

- Cooperation and global coordination for emergency lane change

• Cooperative Platooned Vehicles
High Cooperative for intra-platoon following and Low

Cooperative for inter-platoon following

RSPLEN.PPT(9I96) 6-4



Analysis Method
NAHSC

• Inputs: AHS vehicle and system parameters
- Automated vehicle parameters

• probabilistic model of braking capability

• emergency detection delays, brake actuation delays

- operating speed, inter-vehicle spacing

- emergency response strategies

• Outputs: safety metrics
- collision velocity distribution for the first collision

- total collision probability (frequency)

- mean square collision velocity (severity)

• To obtain system MOE's multiply by malfunctions per VMT

RSPLEN.PPT(9I96) 6-5

Obstacle Avoidance Example
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decreased speed
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Relationship Between Safety &
Capacity (Light Duty Vehicles)

• Safety increases with cooperation

6-7
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Hard Braking Emergency:
Individual Vehicles & Platoons
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linter-vehicle cooperation Improves safety
• For medium pipeline capacity (3000 vphpl)

- collision frequency more important: Individual vehicle AHS
- collision severity more important: Platooned AHS

• For high pipeline capacity (5000 vphpl +)
- Platooning much safer in first forward collision

• In all cases safety decreases with increasing speed

• Future
- New alternative: Individual vehicles with non-uniform spacing (4500

vphpl)
- Multiple collisions
- Other safety scenarios
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AHS Safety Analysis

Breakout Briefing

Raja Sengupta
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Overview

6A-1

-­NAHSC

• Safety Objective:
- Design AHS for no collision in the absence of malfunctions and

improved safety in case of malfunctions or environmental hazards

• MOEs are used to quantify the design objective
- number of collisions per VMT, severity of each collision, number

of vehicles in each collision, etc.

• To determine system MOE values we need to know
- number of environmental hazards per VMT
- number of component failures per VMT
- AHS emergency response strategies

• requires detailed design, extensive data collection
• At this stage, we need to understand how the key attributes influence

the safety properties of future AHS designs

RSBRK.PPT(9Il3196) 6A-2



Analysis Approach

• Assume the malfunction has occurred, i.e., define emergency
scenarios
- Hard Braking Emergency

• On a single dedicated lane AHS at full capacity, a vehicle
brakes hard in response to a malfunction, until it stops

- Obstacle Avoidance
• A stationary obstacle appears suddenly on one lane of a

dedicated two lane AHS at full capacity

• Model emergency response strategies for relevant
combinations of key attributes
- Distribution of Intelligence, Separation Policy

• Autonomous, Low or High Cooperative Individual Vehicles, Co­
operative Platooned Vehicles

• Compare attribute combinations with each other and with a
baseline synthesized from available data

RSBRK.PPT(9Il3196) 6A-3

Response Strategies: ~
Differentiating Attribute Combinations ;;:: ...­

NAHSC
!&£

• Autonomous Individual Vehicles
- No warning to follower during emergency braking
- No cooperation for emergency lane change

• Low Cooperative Individual Vehicles
- Slower warning to follower during emergency braking
- Cooperation for emergency lane change

• High Cooperative Individual Vehicles
- Faster warning during emergency braking
- Cooperation and global coordination for emergency lane change

• Cooperative Platooned Vehicles
- High Cooperative for intra-platoon following and Low

Cooperative for inter-platoon following

RSBRK.PPT(9Il3196) 6A-4



Obstacle Avoidance:
Analysis Method

• Collision characteristics depend on following inputs
- maximum braking rate, brake actuation delay
- lane change distance and time

• depends on attribute combination
• longitudinal acceleration/deceleration capabilities

• lateral acceleration/deceleration capabilities
• lane width, vehicle length, lane speed differential

- AHS inter-vehicle spacing, speed
- obstacle detection range, false alarm and misdetection probability

• Outputs: safety metric for first collision
- mean square collision velocity

• To obtain system MOE's mUltiply by number of obstaclesNMT

RSBRK.PPT(9113196)

Obstacle Avoidance:
Safety & Detection Range
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Range to Obstacle (m)
*Mean Square Collision Velocity (mls)Z
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• Safety increases
with inter­
vehicle
cooperation

Low Cooperative

High Cooperative
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Obstacle Avoidance:
Safety and Speed

• Safety is
enhanced with
decreased speed
and increased
cooperation

Low Cooperative

High Cooperative . J. ,£
Ji~I'

~
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\ Q "6A-7
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56
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*Mean Square Collision Velocity (mls)2
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Hard Braking Emergency:
Analysis Method

~C... ---'.......

NAHSC

• Collision characteristics depend on following inputs
- variation in maximum braking rates of leader & follower
- AHS inter-vehicle spacing and speed
- delay in detection by the follower of hard braking
- brake actuation delays, velocity tracking errors

• Probabilistic model of braking capability variation
- new vehicle maximum braking rates for different models from

Consumer Reports 1995
- North American first quarter of 1996 production for different

models from Automotive News
- applied 10% degradation factor to the vehicle population at each

braking rate

RSBRK.PPT(9113196) 6A-8



Braking Capability Distribution
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Braking rate (g)

Hard Braking Emergency:
Analysis Method

6A-9
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• AHS inter-vehicle spacing
- Individual vehicle: select for no collision during hard braking

amongst a high percentage of the vehicle population
- Inter-platoon: select for zero inter-platoon collision during hard

braking
- Intra-platoon: select for stable, platoon operation

• no collision in the absence of malfunctions

• Delay in detection of hard braking by follower
• depends on attribute combination

• Outputs: safety metrics
- collision velocity distribution for first forward collision
- total collision probability (frequency)
- mean square collision velocity (severity)

• To obtain system MOE's multiply by number of malfunctions
perVMT

RSBRKPPT(1lI13196) 6A·10



Hard Braking Emergency:
Baseline Modelling

• Safety metrics are computed for manual vehicle following in
the hard braking emergency scenario at 65 mph, medium
density inter-urban traffic

• Variation in max. braking rates of leader & follower
• probabilistic model as described

• Inter-vehicle spacing and relative speed
• probabilistic model obtained from range, range rate data in

DOT-HS-808437 collected for vehicle following field tests

/--l--· Delay in detection of hard braking by the follower
SO\)I"',Ji,I,1 (./ • probabilistic model of driver reaction times obtained from

1..Ii '-- Taoka, ITE Journal, Vol 59, No.3, March 1989

A • Brake actuation delays same as automated vehicles

ASBAK.PPT(9/13196)

4.5 x 10'"

4

1.5

0.5

ASBAK.PPT(9/13196)

Hard Braking Emergency:
Individual Vehicles

;/ Typical Driver
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Relative Velocity at Collision (mls)
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• Safety
increases with
inter-vehicle co­
operation

• AHS compares
favorably with
even the fast
reacting alert
driver
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Hard Braking Emergency:
Safety & Speed for Individual Vehicles

3

Probability
0.003
0.017
0.054

/90mPh
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• Safety has
high negative
sensitivity to
speed

21
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Hard Braking Emergency:
Safety & Speed for ~l!!0ons
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• Safety in first
forward
collision
decreases
with increases
in speed, but
is significantly
less sensitive
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Hard Braking Emergency:
Intra-platoon Spacing

NAHSC

6A-15

• Smaller
intra-platoon
spacing
increases
safety by
reducing
collision
severity

High Cooperative
Individual Vehicle (35m)
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Relationship Between Safety &
Capacity (Light Duty Vehicles)

• Safety increases with cooperation

6A-16

654

...--Platoon Size
~~--

o

6

5

RSBRK.PPT(9Il3196)

·· ...1·\ ,... .---High coope~t·l~e
\ ,~,

1 "

1
\ ~ 1 m

2 \ \\
\ \ \

\~\\
Low Cooperative\ \ \

3 \ \.... \ \ \

~ Autonomous --\ \ \
(/) 4 \ 6rit

I \

\ --Intra-Platoon Spacing
\8m
I
I
I

\ Om
I
I71.-.- ..1.-__.........:..·...l-- ...I-- --'-- ~ __'

1000 2000 3000 4000 5000 6000 7000

Pipeline Capacity (vphpl)
*Mean square colllalon velocity (mla)2



Hard Braking Emergency:
Individual Vehicles & Platoons
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• One must
choose between
frequency and
severity at
medium
capacities (3000
vphpl)
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Severity** •
*Collialon probability during Iw'd inking emergency

- ....n aquu. collision velocity (mIa)2

Summary

6A·17

• AHS regulation of inter-vehicle spacing promises significant safety
improvements over present day conditions (12)

• Inter-vehicle cooperation improves safety (6,7,12,16)
• For medium pipeline capacity (3000 vphpl) (17)

- collision frequency more important: Individual vehicle AHS
- collision severity more important: Platooned AHS

• For high pipeline capacity (5000 vphpl +) (16)
- Platooning much safer in first forward collision

• For platooned operation, smaller intra-platoon spacings enhance
safety by reducing collision severity (15)

• In all cases safety decreases with increasing speed (13,14)
• Future Work

- New alternative: Individual vehicles with non-uniform spacing (4500
vphpl)

- MUltiple collisions
- Other emergency scenarios

RSBRK.PPT(9113196) 6A·18




