Summary of Current Knowledge from
AHS Concept Studies
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Knowledge Gained on
AHS Throughput

e AHS automation technology can increase
throughput compared to manual driving

e AHS throughput is strongly influenced by:
-~ knowledge and consistency of braking performance
-~ percentage of heavy vehicles in traffic
— merging protocols
— conservatism of safety policies
— whether or not platoons are supported N wﬂ;\ N

e Throughput is not very sensitive to communication, > v Cxe,_\/,w“" ‘
sensing and processing time lags

e Substantial market penetration is needed to achieve
noticeable throughput increases in mixed/manual traffic
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Quantitative results for a wide variety of
conditions, demonstrating that:

* Maneuver coordination improves both safety and
throughput

e Alternate separation policies produce trade-offs
between probability and severity of crashes when
failures occur

* Increasing speed reduces both safety and
throughput
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Knowledge Gained on AHS
Infrastructure Development —

* AHS civil infrastructure costs per two-way mile can
range from near zero to:

— $36 million in high-density urban areas
— $6.5 million in intercity corridors
— $3.1 million in rural areas

* Increased intelligence at merges reduces length of
ramps needed

* |n congested environments, impacts of AHS
entering and exiting traffic on manual traffic can be
substantial unless dedicated on/off ramps are used

WS3KNOW1 PPT(SES.9/96) 4-4




Knowledge Gained on AHS =3

- ]

e AHS infrastructure deployment can be addressed in the same
ways as conventional infrastructure deployment:

— benefit/cost comparisons with alternatives
— public costs and liabilities traded off against public benefits
— civil infrastructure costs dependent on local conditions
e There is a large step from partial to full automation in:
— driver roles
— technology
— liability
e That step must be taken before the level of automation is
sufficient to detract significantly from driver attentiveness

¢ Comprehensive obstacle/hazard detection and avoidance is
the primary technology impediment to full automation in
mixed traffic
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* Absolute safety levels achievable and needed

¢ Enabling technology maturity and costs (especially for obstacle
detection and avoidance)

* Absolute throughput levels achievable and compatible with rest
of transportation network

* Relationship between public benefits (throughput) and individual
benefits (travel times)

¢ Complete definition of driver roles (capabilities) in normal and
abnormal conditions

* Infrastructure/vehicle deployment sequencing to avoid chicken/
egg problems

e Trade-offs between vehicle-vehicle and vehicle-roadside
coordination of maneuvering and traffic flow

e Stakeholder priorities and willingness to pay
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* Selection of lane sensing technology

* Selection of range sensor technology

e Selection of communication technology
* Definition of user interface

* Roadway geometry
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Local Deployment Choices

Many aspects of AHS will be determined
based on specific local circumstances:

-~ who owns/operates/maintains/regulates/pays

- roadway alignments (at grade, elevated, median or
periphery, etc.)

— access and egress ramp configurations and locations

— policies for mixing heavy and light duty vehicles

— interactions with local streets and highways

NAHSC will identify a range of options for
these, not a single solution
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Throughput/Travel Time
Analysis -- Summary

Datta Godbole, Mark Miller  VATH
NAHSC Workshop #3
September 19, 1996
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Objectives

NARSC

» Assess strengths and weaknesses of key AHS
attributes
— Dedicated lane and mixed traffic analysis
— Distribution of intelligence & communication links
— Platoons or individual vehicles
* Determine sensitivity to design parameters

e Application scenarios for performance evaluation
— Single lane urban AHS
— Houston transit corridor (discussed in the breakout)
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AHS Attribute Combinations =3

for Throughput Analysis T

e Autonomous individual vehicles

* Cooperative individual vehicles

— Low cooperation (emergency warning & maneuver
coordination only)

— High cooperation (continuous exchange of information)

¢ Cooperative platoons

— Low cooperation between platoons (inter-platoon), and
high cooperation within each platoon (intra-platoon)

* Non-uniform inter-vehicle spacing

— Autonomous & cooperative individual vehicles
» Based upon knowledge of braking capabilities
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Pipeline Capacity Analysis

* Assume single lane AHS pipe

e Calculate safe vehicle following distances for
different AHS attribute combinations such that
— No collisions in the absence of malfunctions

— If front vehicle applies maximum braking (in response to a
failure), then following vehicle should be able to stop

e Low relative velocity intra-platoon collisions can not be
completely avoided in case of hard braking failure.

e Spacings are sensitive to braking capability
variations among vehicles

— Non-uniform spacings, based on information of relative
braking capability of front vehicle, can increase capacity
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Pipeline Capacity vs. Speed

NANHSC

93% Passenger Vehicles, 6% Trucks, 1% Buses
5000

«—10 Vehicle platoon

.- Cooperative gnon-
4 uniform spacing)

L—2 Vehicle platoon

" Pipeline” Capacity (veh/hr/In)

Teirrliee - . o ’
Uirs.. - Cooperative — Misb
=, k4 o “LU"’/

~ Autonomous
15%% % m % & 7 ™ %
Speed (mph)
-~ Capacity increases with increasing level of cooperation
- )Iatooning results in highest pipeline capacity
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Effect of Entry on AHS ﬁ
Pipeline Capacity

e Merging assumptions

— Cooperative vehicles and platoons can communicate

the location of gaps to the entering vehicles

— Pre-platoons can be formed at the on-ramp

— Traffic on the mainline can yield to the entering traffic
o Effects of different AHS modes of operation are

evaluated by

— Maximum achievable throughput

- Required entry-section lengths

— Delays at ramp metering

— Increased travel time for mainline traffic due to entry

* Need to investigate mainline flow control
strategies
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Throughput vs. Speed

93% Passenger Vehicles, 6% Trucks, 1% Buses
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— Example: The above throughput plot is obtained for representative values
of ramp metering delays, increase in travel time & entry section length.
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Travel Time Analysis

e Assumptions
—~ 10 mile segment of 3 lane highway
— 1 lane converted to automated traffic
— Manual lane capacity 2000 v/hr (at 35 mph)
— Free flow speed 60 mph
— AHS volumes do not exceed capacity
e Conclusions

— As AHS throughput increases

* Number of vehicles traveling under free flow conditions
increases

* Level of aggregate demand at onset of unstable traffic
conditions increases
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— For a given level of aggregate demand, higher levels of
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Travel Time Analysis
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Mixed Traffic Throughput ==X

Assumptions
— Driver behavior unchanged from today
— All light-duty vehicles
— Random sequencing of automated and manual vehicles
— Manual throughput data from UMTRI ACC study
* Average speed 67 mph, headway 2.3 sec, 1600 veh/hr/In
Results
— Throughput is sensitive to
* QOperating Speed
» Separation between two automated vehicles

* Merge derating factor 2 GWM,A ‘
— Throughput might decrease initially at low market / y 1@ JJ
penetration et
o
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Merge Derating Factor - 25%

Max Operating Speed = 67 mph Uniform Spacing
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— Throughput benefits increase with market penetration
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Throughput Analysis ==

e Summary

— Most AHS attribute combinations result in increased
throughput and reduced travel time than current
highway systems

— Increases in inter-vehicle coordination resuit in
increased throughput

— Increase in AHS operating speed will ultimately reduce
throughput

— Platooning provides highest throughput

e Future work

-~ Analyze the effects of flow control strategies on
multilane AHS networks

— Determine impact of AHS on the entire transportation
system

DG OSUM.PPT(/06) ' 5-12




Throughput/Travel Time
Analyses -- Breakout

Mark Miller and Datta Godbole
NAHSC Workshop #3
September 19, 1996
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¢ Objectives
— Assess strengths and weaknesses of different AHS
attribute combinations

— Determine sensitivity to design parameters

— Assess impact of mixed (automated+manual) traffic
on throughput

e Qutline
— Pipeline capacity analysis based on safe spacing
— Capacity degradation due to entering traffic
— Travel time analysis
— Mixed traffic throughput evaluation
— Throughput evaluation for case studies: Houston
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e Autonomous individual vehicles

e Cooperative individual vehicles

— Low cooperation (emergency warning & maneuver
coordination only)

- High cooperation (continuous exchange of information)

e Cooperative platoons

— Low cooperation inter-platoon, and high cooperation
intra-platoon

* Non-uniform inter-vehicle spacing

— Autonomous & cooperative individual vehicles
¢ Based on information about braking capabilities
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Safe Spacing Design eSS
for Pipeline Capacity Analysis

» Calculate safe vehicle following distance
— If front vehicle applies maximum braking (in response to a
failure) then following vehicle should be able to stop

— Used to calculate inter-platoon separation and minimum
safe spacing between individual vehicles

* Low impact intra-platoon collisions can not be avoided in case of
hard braking

— No intra-platoon collisions in the absence of malfunctions

* Minimum safe spacing depends on
- Braking capabilities of the two vehicles
— Type of information available for control
— Sensing, actuation & communication delays
— Operating speed, speed-tracking accuracy
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Pipeline Capacity Analysis

e Scenario: Single lane AHS pipe

— Using spacing design tools calculate minimum safe
inter-vehicle , intra-platoon & inter-platoon spacing

— Use above spacing with the corresponding speed to
calculate pipeline capacity
* Results
— Capacity vs. speed for each AHS attribute combination
— Effect of mixed classes of vehicles on capacity

— Sensitivity to design parameters
* Sensitive to braking capability and speed-tracking accuracy
¢ Less sensitive to delays
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93% Passenger Vehicles, 6% Trucks, 1% Buses
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— Capacity increases with increasing level of cooperation
— Platooning results in highest pipeline capacity
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Pipeline Capacity vs. Percent —'\\
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Braking Capability Distribution =—=
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Sensitivity to Braking SIS
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Capacity Improvement Using %

. Spacmgs & capaclty are hlghly sensitive to
differences in braking capability
* Braking capabilities are distributed over a wide
range resulting in conservative inter-vehicle
following distances for uniform spacing design

e Capacity improvement using non-uniform
spacing design
— Inter-vehicle spacing is based on the information about
relative braking capability of vehicles

— Requires vehicles to estimate their own braking
capability and communicate it to the following vehicle
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Pipeline Capacity vs. Speed %
Non-Uniform Spacings T
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AHS Entry'

. Merging disciplines
— Autonomous vehicles merging into AHS traffic with and
without yielding by the mainline traffic

—~ Cooperative vehicles merging into AHS traffic with
knowledge of gap locations

— Pre-platoons entering a platooned AHS, with the
entering platoon tagging behind an AHS platoon
o Effect of merging disciplines evaluated by
— Reduction in pipeline capacity
— Required ramp lengths (capped at 1.0 mile)
— Delays at ramp metering (capped at 2 minutes)
— Mainline traffic delays due to entering traffic
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AHS Entry Analysis
(worst case)

e Autonomous individual vehicles (no cooperation)

— Lack of cooperation results in long entry sections and
lower throughput: For 1.0 mile merging section,
pipeline capacity reduction = 50%

e Autonornous individual vehicles (w/ cooperation)

— By incorporating yielding to entering traffic, the
throughput can be improved at the cost of travel time on
AHS: 1% increase in travel time per entry ramp
corresponds to a pipeline capacity reduction of 25%
with 0.5 mile merging section

e Cooperative individual vehicles & Platoons
— Throughput increase achieved by
¢ Kncwledge of gap locations

¢ Entering vehicles tagged behind existing platoon
MIOWORSPPTE™ o A 2 min entry ramp delay results in 25% capacity reduction  s2s

Throughput vs. Speed

93% Passenger Vehicles, 6% Trucks, 1% Buses

4000
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Speed (mph)
— Inter-vehicle coordination improves throughput
- Need to investigate gap management strategies
-~ Platooning provides maximum throughput 5-26
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Travel Time Analysis

e Assumptions
— 10 mile segment of 3 lane highway
— 1 lane converted to automated traffic
-~ Manual lane capacity 2000 veh/hr at 35 mph
— Manual lane free-flow speed 60 mph
— Automated lane free-flow speed -- 60 & 80 mph
— AHS volumes do not exceed capacity
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Travel Time vs. Demand =<3
Sensitivity to AHS Throughput =—
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Travel Time vs. Demand =<3
Sensitivity to AHS Speed T
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Travel Time Analysis
Observatlons

e As AHS throughput increases

— Level of aggregate demand at which onset of unstable
traffic conditions begin increases

— Number of vehicles traveling under free-flow conditions
increase

e For a given level of aggregate demand

— Higher levels of AHS throughput correspond to lower
travel time

o |f free-flow speed on AHS is greater than manual
free-flow speed
— Travel time benefits are even greater than previous case
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Houston Case Study
(Ongoing Work)

reversible HOV facility west of Houston CBD

* Park & ride facility and slip ramps used for access and egress
in addition to primary western & eastern terminii

e Three demand scenarios projected for year 2020:

— 1750 vph, 3000 vph, 4000 vph (at peak demand points
along corridor) with 4%bus, 96% light-duty vehicles

* Throughput in vehicles per hour
— Autonomous:
e 900-1650 (uniform), 1200-2200 (non-uniform)
— Cooperative:
* 1750-2350 (uniform), 2600-3400 (non-uniform)
* Low-level demand: cooperative, autonomous (non-uniform)
* Mid-level demand: cooperative (non-uniform)
¢ Platooning can satisfy all three demand levels
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Mixed Traffic Throughput
Analysis

¢ Assumptions
— Driver behavior unchanged from today
— All light-duty vehicles
— Random sequencing of automated and manual vehicles
— All manual throughput (UMTRI ACC study)
* Average speed 67mph, headway 2.3 sec, 1600 veh/hr
— Automated vehicle operate in autonomous mode

— Manual vehicle follows automated vehicle at the same
distance as another manual vehicle

— Automated vehicle follows manual vehicle no closer
than it would follow another automated vehicle
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e Resulis

-~ Throughput vs market penetration of automated
vehicles as a function of

e Operating speed
* Degree of merging disturbances
 Inter-vehicle spacing
e Conclusions
— Benefits increase with market penetration
— Future work: Extend work to multiple vehicle classes
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Mixed Flow Analysis
Sensitivity to Speed

Merge Derating Factor = 25%
Uniform Spacing
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Mixed Traffic Analysis

Sensitivity to Merge Derating Factor ="
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Mixed Traffic Analysis
Sensitivity to Spacing
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Throughput/Travel Time =<

Analysis -- Summary =

* Most AHS attribute combinations result in higher
throughput and reduced travel times over manual
highways

* Increased inter-vehicle maneuver cooperation
results in increased AHS capacity & throughput

* Increase in speed reduces throughput

e Platooning provides highest throughput

¢ Future work
-~ Analyze the effects of flow control
— Impact of AHS on the entire transportation network
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AHS Safety Analysis
Plenary Briefing

Raja Sengupta  PATH
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Overview

e Safety Objective: ve uce (eats
— Design AHS for nocellision in the absence of malfunctions and
improved safety in case of malfunctions or environmental hazards
* MOEs are used to quantify the design objective
— number of collisions per VMT, severity of each collision, number
of vehicles in each collision, etc.
¢ To determine system MOE values we need to know
— number of environmental hazards per VMT
— number of component failures per VMT
— AHS emergency response strategies
* requires detailed design, extensive data collection

e At this stage, we need to understand how the key attributes influence
the safety properties of future AHS designs

RSPLEN.PPT(9/96) 62




Analysis Approach

2 . Assum”é““t.‘hé"‘\ﬁ__iaxlftlggt_i_o/r_l_tias occurred, i.e., define emergency
| scenarios
— Hard Braking Emergency

— On a single dedicated lane AHS at full capacity, a vehicle
brakes hard in response to a malfunction, until it stops

"~ —~ Obstacle Avoidance

— A stationary obstacle appears suddenly on one lane of a
dedicated two lane AHS at full capacity

* Model emergency response strategies for relevant
combinations of key attributes
— Distribution of Intelligence, Separation Policy

* Autonomous, Low or High Cooperative Individual Vehicles, Co-
operative Platooned Vehicles

e Compare attribute combinations with each other
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Response Strategies:

Differentiating Attribute Combinations
e ]

e Autonomous Individual Vehicles
— No warning to follower during emergency braking
— No cooperation for emergency lane change
* Low Cooperative Individual Vehicles
— Slower warning to follower during emergency braking
— Cooperation for emergency lane change

¢ High Cooperative Individual Vehicles

— Faster warning during emergency braking

— Cooperation and global coordination for emergency lane change
e Cooperative Platooned Vehicles

— High Cooperative for intra-platoon following and Low
Cooperative for inter-platoon following

RSPLEN.PPY(9/96)




Analysis Method

* Inputs: AHS vehicle and system parameters
~ Automated vehicle parameters
» probabilistic model of braking capability
¢ emergency detection delays, brake actuation delays
— operating speed, inter-vehicle spacing
— emergency response strategies
e Outputs: safety metrics
— collision velocity distribution for the first collision
— total collision probability (frequency)
— mean square collision velocity (severity)
* To obtain system MOE’s multiply by malfunctions per VMT

=N
Obstacle Avoidance Example —_<C
NARSC

o Safety is

enhanced with
decreased speed
and increased

cooperation
g
©
1)
‘ _ T Autonomous
Low Cooperative i
‘ . . y M ‘
7 ” - High Cooperative \ \J\ c\" OU«
Lane Speed (mph) N \,\C 4 Q\;\y
*Mean Square Collision Velocity (m/s)? \ '
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ere T

Relationship Between Safety &
Capacity (Light Duty Vehicles)
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* ' Inter-vehicle cooperation improves safety

e For medium pipeline capacity (3000 vphpl)
— collision frequency more important : Individual vehicle AHS
- collision severity more important: Platooned AHS

* For high pipeline capacity (5000 vphpl +)
— Platooning much safer in first forward collision

* In all cases safety decreases with increasing speed

* Future
— New alternative: Individual vehicles with non-uniform spacing (4500
vphpl)
— Multiple collisions
— Other safety scenarios
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AHS Safety Analysis

Breakout Briefing

Raja Sengupta

RSBRAK.PPT(9/13/96) 6A-1

Overview

e Safety Objective:

— Design AHS for no collision in the absence of malfunctions and
improved safety in case of malfunctions or environmental hazards

* MOEs are used to quantify the design objective

— number of collisions per VMT, severity of each collision, number
of vehicles in each collision, etc.

¢ To determine system MOE values we need to know
— number of environmental hazards per VMT
- number of component failures per VMT
— AHS emergency response strategies
* requires detailed design, extensive data collection

e At this stage, we need to understand how the key attributes influence
the safety properties of future AHS designs
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Analysis Approach

¢ Assume the malfunction has occurred, i.e., define emergency
scenarios
— Hard Braking Emergency

¢ On a single dedicated lane AHS at full capacity, a vehicle
brakes hard in response to a malfunction, until it stops
— Obstacle Avoidance

¢ A stationary obstacle appears suddenly on one lane of a
dedicated two lane AHS at full capacity

¢ Model emergency response strategies for relevant
combinations of key attributes

— Distribution of Intelligence, Separation Policy

* Autonomous, Low or High Cooperative Individual Vehicles, Co-
operative Platooned Vehicles

¢ Compare attribute combinations with each other and with a
baseline synthesized from available data
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Response Strategies: N

Differentiating Attribute Combinations =
NARSC

e Autonomous Individual Vehicles
— No warning to follower during emergency braking
— No cooperation for emergency lane change
* Low Cooperative Individual Vehicles
— Slower warning to follower during emergency braking
— Cooperation for emergency lane change
¢ High Cooperative Individual Vehicles
— Faster warning during emergency braking
— Cooperation and global coordination for emergency lane change
» Cooperative Platooned Vehicles

— High Cooperative for intra-platoon following and Low
Cooperative for inter-platoon following
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Obstacle Avoidance:
Analysis Method

e Collision characteristics depend on following inputs
— maximum braking rate, brake actuation delay
— lane change distance and time
e depends on attribute combination
 longitudinal acceleration/deceleration capabilities
« lateral acceleration/deceleration capabilities
e lane width, vehicle length, lane speed differential
~ AHS inter-vehicle spacing, speed
— obstacle detection range, false alarm and misdetection probability
e Outputs: safety metric for first collision
— mean square collision velocity

e To obtain system MOE’s muitiply by number of obstacles/VMT
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Obstacle Avoidance:
Safety & Detection Range
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Obstacle Avoidance:
Safety and Speed
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Hard Braking Emergency:
Analysis Method

¢ Collision characteristics depend on following inputs
— variation in maximum braking rates of leader & follower
— AHS inter-vehicle spacing and speed
— delay in detection by the follower of hard braking
— brake actuation delays, velocity tracking errors

* Probabilistic model of braking capability variation

— new vehicle maximum braking rates for different models from
Consumer Reports 1995

— North American first quarter of 1996 production for different
modeis from Automotive News

— applied 10% degradation factor to the vehicle population at each
braking rate
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Hard Braking Emergency:
Analysis Method

e AHS inter-vehicle spacing

— Individual vehicle: select for no collision during hard braking
amongst a high percentage of the vehicle population

— Inter-platoon: select for zero inter-platoon collision during hard
braking

— Intra-platoon: select for stable, platoon operation
¢ no collision in the absence of malfunctions
e Delay in detection of hard braking by follower
e depends on attribute combination
e Outputs: safety metrics
— collision velocity distribution for first forward collision
— total collision probability (frequency)
— mean square collision velocity (severity)
e To obtain system MOE’s multiply by number of malfunctions
per VMT
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Hard Braking Emergency:
Baseline Modelling

e Safety metrics are computed for manual vehicle following in
the hard braking emergency scenario at 65 mph, medium
density inter-urban traffic

e Variation in max. braking rates of leader & follower
e probabilistic model as described

* Inter-vehicle spacing and relative speed

¢ probabilistic model obtained from range, range rate data in
DOT-HS-808437 collected for vehicle following field tests

L . * Delay in detection of hard braking by the follower

o
()Q‘Oiy ” e« probabilistic model of driver reaction times obtained from
. 1V & Taoka, ITE Journal, Vol 59, No.3, March 1989
‘ * Brake actuation delays same as automated vehicles
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Hard Braking Emergency:
Safety & Speed for Individual Vehicles
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Hard Braking Emergency:
Intra-platoon Spacing
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Hard Braking Emergency:
Individual Vehicles & Platoons
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Summary

* AHS regulation of inter-vehicle spacing promises significant safety
improvements over present day conditions (12)

* Inter-vehicle cooperation improves safety (6,7,12,16)
¢ For medium pipeline capacity (3000 vphpl) (17)
— collision frequency more important : iIndividual vehicle AHS
— collision severity more important: Platooned AHS
* For high pipeline capacity (5000 vphpl +) (16)
— Platooning much safer in first forward collision
* For platooned operation, smaller intra-platoon spacings enhance
safety by reducing collision severity (15)
* In all cases safety decreases with increasing speed (13,14)
* Future Work
— New alternative: Individual vehicles with non-uniform spacing (4500
vphpl)
— Multiple collisions

— Other emergency scenarios
RSBRK.PPT{9/1/96) 6A-18







