
CHAPTER 8

Vehicle Nonlinear Equations of Motion

A SIX DEGREE OF FREEDOM NONLINEAR VEHICLE MODEL is developed independently of

the model used for the Berkeley simulation of Section 2 and described in (Peng 1992).

This effort is a continuation of the work reported in (Douglas et al. 1995). The original

motivation for an independent derivation was to be sure that all assumptions, definitions

and issues which underlie the Berkeley simulation model were well understood. This exercise

proved worthwhile in that some differences between the model described here and the

Berkeley model were uncovered. The most notable difference relates to assumptions made

in the Berkeley model that make it difficult to modify to allow for changes in road slope

and superelevation. These assumptions include small angle approximations, a planar road

surface and that the road gradient is the same for all four wheels. These modifications are

needed, for example, in the design and robustness evaluation of the health monitoring

system described in Sections 3 through 7. Various other vehicle models are available,

for example, in (Hedrick et al. 1993, Lukowski et al. 1990, Lukowski and Medeksza 1992,
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108 Chapter 8: Vehicle Nonlinear Equations of Motion

Peng 1992, Smith and Starkey 1992, Willumeit et al. 1992). But in each, some feature is

missing that is important to health monitoring applications.

A common and economical approach to vehicle dynamics model development is to make

simplifying assumptions and to neglect various features of the vehicle system when the

loss in fidelity does not significantly affect the application of the model. For example,

vehicle models developed by Smith et al. (Smith and Starkey 1992) use the load transfer

method to model the suspension characteristics. The load transfer method models a load

redistribution at the four suspension supports when the vehicle accelerates or corners. When

the vehicle accelerates, the load shifts between the front and the rear suspension supports.

When the vehicle corners, there is a lateral acceleration and the load shifts between the

left and right suspension supports. With the load transfer approach, development of the

governing equations is simplified because the suspension characteristics are not modeled

directly. Model fidelity is adequate when the road is smooth and flat and when a model of

the vertical motion is not important.

In the following model development, the approach is to derive the full equations of

motion while making as few approximations as possible. Simplifications as allowed by

specific applications are introduced later. Two features included here that are not part of

the Berkeley model are a steering system and a road noise model.

This section is organized as follows. Section 8.1 contains a derivation of the vehicle

longitudinal dynamics and the various subcomponents of the vehicle. In the longitudinal

model, motion is restricted to longitudinal and vertical translation and pitch rotation. The

applied forces and moments include those of the suspension model, the aerodynamics model,

the tire traction model, the brake model, and the engine model.

Section 8.2 deals with the derivation of the full six degree of freedom vehicle model.

All vehicle dynamics modes are included: longitudinal, lateral and vertical translations and

roll, pitch and yaw rotations. Including kinematic relations, the system of equations is 12th

order. In addition, subcomponents from the longitudinal model are generalized to the full

nonlinear model and a steering system and road noise model are added.
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Section 8.3 presents the simulation results of the longitudinal model and the full model.

In one simulation study, a comparison is made between the responses of the full nonlinear

model and nonlinear model modified with small angle approximations. The study shows

that small angle approximations do not contribute significant errors and are a reasonable

model simplification. In another simulation study, linearized models from various operating

points are obtained. Their responses are compared to those of the nonlinear model to find

the size of an acceptable linear operating region. The MatLab™ computer simulation codes

used in Section 8.3 are available in (Nguyen 1996).

8.1 NonLinear Longitudinal Vehicle Model

In order to gain a better understanding of vehicle dynamics and to have a simple model

for simulation, a longitudinal vehicle dynamics model is developed first. In the longitudinal

model, motion is restricted to longitudinal and vertical translation and pitch rotation. These

dynamics couple with the engine, brake, suspension, and wheel rotational dynamics .

8.1.1 Reference Frames

Figure 8.1 shows the definition of coordinates and variables of the longitudinal model.

First an Earth-fixed frame E with origin 0 is defined with unit vectors (fxd~yd~z), where

~y points into the page. Next define the vehicle-fixed frame, having the origin C at the

vehicle center of mass, with unit vectors (S,£y,£z) along the vehicle's principal axes. This

vehicle-fixed frame is obtained by rotating the Earth-fixed frame around its axis by an

angular displacement 0, the pitch angle. Finally two sets of road axes are used to describe

the road surface at the front and the rear wheels. These axes are described by the unit

vectors (~o' Lyo ' LZO) with i = 1 and 2 referring to front and rear wheels, respectively. These

road-fixed frames with unit vectors (~i'LlIi'LZO) are obtained by rotating the Earth-fixed

frame by an amount A&y. Hence the coordinate transformation matrices are

[

COS e 0 -;- sin e] [fx ]
o 1 0 ~y

sine 0 cose ~

(8.1)
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Figure 8.1: Vehicle configuration for the nonlinear longitudinal model.

[
;X,] =
-y,

[Zi

i = 1,2 (8.2)

Note that the subscript i will be used from now on to refer to quantities that have front

and rear components.

8.1.2 Vehicle Dynamics

The dynamic equations of motion are derived from Newton's law applied in an inertial

reference frame. The pitch dynamics are derived first. The longitudinal and vertical

translation dynamics follow.

Rotational Equations oj Motion

The angular velocity of the vehicle relative to the Earth-fixed frame is given by

(8.3)

(8.4)
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The rotational kinematic equation becomes

iJ = wI!

The angular acceleration follows by taking the time derivative of Equation (8.3),

Hence the rotational dynamic equation of motion is obtained from Euler's equation,

111

(8.5)

(8.6)

(8.7)
. My
wy = ­

I y

where My, which will be derived later in Section 8.1.5, is the y-axis component of the total

moment applied about the vehicle center of mass by suspension and aerodynamic forces and

I y is the moment of inertia of the sprung mass around the same y-axis. The sprung mass

is the portion of the vehicle that is supported by the suspension system. The remaining

portion which includes the drivetrain and the wheel assemblies is known as the unsprung

mass.

Translational Equations of Motion

Let PCM = x~ + z~z be the position vector from the Earth-fixed origin 0 to the vehicle

center of mass as seen in Figure 8.1, then the velocity of the mass center can be expressed

either in Earth-fixed or vehicle-fixed coordinates as

~CM = x~ + i~z

= vx~ +vz~z

Applying coordinate transformation Equation (8.1) to Equation (8.9), we obtain

~CM = (vx cos 9 + Vz sin 9)~ + (-vx sin 9 + Vz cos 8)~

The translational kinematic equations then follow immediately from (8.8) and (8.10)

i = -Vx sin9 + Vz cos 9

(8.8)

(8.9)

(8.10)

(8.11)

(8.12)
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The acceleration of the vehicle center of mass can be found by differentiating (8.9).

!! = Vx~ + Vzfz + Wllfy x (Vx~ + vzfz)

= (vx + WIIVz )~ + (Vz - WIIVx ) fz (8.13)

If the total external force, F = Fx~+Fzfz, applied to the vehicle is known, the translational

dynamic equations are obtained from Newton's second law,

Vx
Fx (8.14)= -wyvz + -
m

Vz
Fz (8.15)= wyvx+-
m

where m is the sprung mass of the vehicle. The vehicle unsprung mass is neglected

throughout this work. If it were not, the mass term in Equation (8.15) would need to

be modified to account for the vehicle unsprung mass. The forces Fx and Fz will be derived

later in Section 8.1.4.

8.1.3 Suspension Model

The suspension and tire assembly is modeled as shown in Figure 8.2. The spring and dashpot

in the upper portion represent the suspension, while the spring in the lower portion models

the tire stiffness. At any instant, the orientation of the tire spring Kw is assumed to be

normal to the road surface. The tire damping behavior and its mass are neglected. The

exclusion of the tire mass and its damping characteristic will allow a higher portion of

high-frequency noise to pass from the road to the sprung mass. Note that the suspension

height, hi, is defined as the distance along the vehicle axis f z measured from the tire center

to the vehicle center of mass and not as the length of the spring.

In simulations where the road surface is a straight line, as seen on the left half of

Figure 8.3, the relationship between the tire radius rWi and the suspension height hi can

be easily found using a geometric approach by summing all the vectors in a loop. The loop

starts from the vehicle center of mass, goes to the tip of the suspension, down to the road,

follows back along the road surface, and returns to the vehicle center of mass. Following
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Figure 8.2: Schematic view of suspension and tire models showing the front half of the
vehicle.

this path leads to:

i = {1,2} (8.16)

where Ii is the half wheelbase from the center of mass to the i th wheel, ~i represents

road variations which can be used to model bumps, potholes, road noise and any other

road irregularities, and b(x) is a function describing the road height at any location x.

Furthermore Ii is positive whereas 12 is negative since 12 points in the negative Q.x direction.

The reason for naming the wheelbase in a vector format is that the simulation code can be

written more compactly.

Using equations (8.1) and (8.2) to transform Equation (8.16), a relationship between

tire radius and the suspension height is found
"

rWj + ~cos(9 -~) = (z - b(x»cos~ -lisin(9 -~) - ~i i = {1,2} (8.17)

The relationship between the tire radius and the suspension height in situations involving

varying road surface can be found by going around a similar loop as seen on the right half of
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Figure 8.3: Geometric constraints involving the suspension height showing the front half of
the vehicle for planar and arbitrary road surfaces.

Figure 8.3. However, solving for the suspension height requires solving a nonlinear equation,

i = {I, 2} (8.18)

in which relative tire position ~Xi, the suspension height, and the wheel radius are not

independent. An additional equation is required to provide a relationship between the tire

radius and the suspension height in order to yield a unique solution in the equation above.

This additional equation comes from a single state equation using a force balance and the

assumption of a massless wheel. If the wheel is assumed to be massless, the total force

applied at the center of the wheel must vanish an any direction. Consider the all the forces

in the ~ direction. The tire force in the ~ direction must balance the suspension force

which is generated by the suspension spring and damper. This leads to the following state

equation involving the suspension height.

'.

i = {I, 2} (8.19)

where IK(-) and leO are functions describing the force response of suspension spring and
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damper, respectively. These functions will be specified in the next section. Depending on

the damping function, we can solve for it;. in closed-form if the function leO is invertible;

otherwise we will have to approximate.

With the addition of Equation (8.19), Equation (8.18) now contains two unknown but

dependent variables, which are the relative tire position and the wheel radius. There is no

closed-formed solution to Equation (8.18) if the road surface is arbitrary.

Two methods of solving this nonlinear equation have been examined. The first approach

uses a nonlinear equation solver routine to approximate the solution. The generality and

flexibility of the routine supplied with MatLab™ causes this application to require a

prohibitively long computation time. The second approach is to exploit some of the special

properties inherent in the system to make some approximations so that the relative tire

position and the wheel radius can be determined. Consider the most general situation

where the vehicle is traveling on an arbitrary road surface. By taking the dot product of

Equation (8.18) with unit vector ~, the relative tire position can be expressed as

LlXi = 1i cos () - hi sin () - (rWi + ~d sin Lli i={1,2} (8.20)

where r w• and Lli are functions of Xi. It is not possible to solve this equation analytically.

However, by examining the last term closely, one can make some reasonable assumptions

which permit an approximate solution. First the road variation is assumed to be zero.

Since the wheel stiffness constant is very high, it is reasonable to assume that the wheel

radius is equal to the nominal wheel radius at equilibrium. Furthermore to eliminate the

dependency of the road angle on the relative tire location, we will assume that the road

angle Ll i is approximately the same as at the position where the center of the wheel projects

down to the road surface. In the worst case scenario where the road elevation is taken to

be 15%, the deviation between the reallocation and the assumed location where the road

elevation is used is at most 5 cm. This is a very small distance for the road elevation to

vary significantly. Hence the solution for the relative tire position can be approximated as

'.

i = {1,2} (8.21)
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where the road angle ~i is evaluated at the projection of the wheel center down to the road

surface. This point can be expressed as x + li cos (J - hi sin (J.

Once the relative tire position is known, the approximate wheel radius can be obtained

from Equation (8.18) by taking the dot product with unit vector !z,e at the point of contact

between the tire and the road surface. This leads to:

where the road angle ~i is evaluated at the approximated tire position.

8.1.4 Forces

The forces developed in this section include the gravitational force, aerodynamic forces, and

suspension forces. The gravitational force on the vehicle is expressed as

E.g = -mg~z

= -Fg~z (8.22)

When the vehicle longitudinal speed is large or high wind speed is present, air drag plays

a significant role. The longitudinal drag is proportional to the square of the relative wind

speed, Vwr = Vw - Vx, that is, the difference between the wind speed and vehicle speed, and

has the same direction as the relative wind speed,

1 2
D = '2CDAjPaVwr£X

= D£X (8.23)

where CD is the drag coefficient, Af is the vehicle effective frontal area, and Pa is the air

density. The sign of the coefficient determines the direction of the drag force based on the

direction of the relative wind speed. In addition, there is also a lift component due to the

asymmetric shape of the top and bottom of the vehicle. The lift force can be described by

the following equation,

1 2
It. = '2CLAfPaVwr£z

= L£z (8.24)
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where CL is the lift coefficient. These drag and lift coefficients are specific to each vehicle.

However one can generalize to a class of vehicles, such as sedans, sport cars and vans. Data

for these coefficients obtained by Yip et al. (Yip et a1. 1992) for typical sedans is used in

the simulation. Both the drag and lift forces are assumed to act at the vehicle center of

mass.

Here the relative velocity is assumed to be negative. IT it were not, equations (8.23)

and (8.24) would have to be modified to account for situations where Vwr is positive.

Furthermore, there is also a vertical wind speed component along the vehicle vertical

direction, but it is ignored since the relative wind speed in this direction is small resulting

in a negligible force as compared to the suspension forces.

Given the suspension height, a nonlinear function is used to model the response of the

suspension spring which is governed by the following equation,

i = {1,2} (8.25)

where hOi is the uncompressed suspension height, which can be found once the vehicle height

at equilibrium is known.

The tire elastic characteristic is modeled as a linear spring having a stiffness constant

K w ,

i = {1,2} (8.26)

where Cdi and Cdi specify the slope in the first and second regions, respectively.

Let the force applied at the ground by the tire at the contact point between the road

surface and the tire be

'.

(8.27)i = {1,2}
1~I<w
h· >w, -
hi ~-w

where Two is the uncompressed tire radius, assuming each tire has the same properties.

The suspension damper is modeled as piecewise linear damper having discontinuous

slope at ±w as seen in Figure 8.4,

{

Cdihi

Fdi = CdiW + Cd~(hi.- w)
-CdiW + Cdi(hi + w)

i = {l,2} (8.28)
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Figure 8.4: Damper characteristic.

then the road normal force, N i , is simply the force exerted on the road by the tire.

i = {1,2} (8.29)

Furthermore the tire tractive force, FW/i' is a function of the normal force and the tire slip

ratio. Various tire models have been formulated. The longitudinal tire model by Bakker

et al. (Bakker et al. 1987, Bakker and Pacejka 1989) is used in the simulation discussed in

Section 8.3. The tire model is described in detail in Section 8.1.8.

With the external force known, the total force acting on the vehicle is obtained by

combining equations (8.22), (8.23), (8.24), (8.28) and (8.29). This leads to:

2

Fx = L [Fw/i cos(O - ~i) + Kw(Twi - Two) sin(O - ~i)] + Fg sin 0 + D (8.30a)
i=l

2

Fz = L [Fw/i sin(O - ~i) - Kw(Twi - Two) cos(O - ~i)] - Fg cosO + L (8.30b)
i=l

8.1.5 Moments About the Vehicle Center of Mass

The moment about the car center of mass is generated from two sources. The first source

is from the suspension force and the second is from the aerodynamic effect due to the

asymmetric shape of the vehicle. Since this section concerns pitch rotation only, only the

moment about the y-axis is needed. Knowing the forces at the suspension supports and the
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corresponding moment arms, the moment term generated by the suspension forces is given

as

where

Msus = (li~ - ~fz) x (Fw"!x + Ni'f.z)
2

= LMsusi&1I
i=l

(8.31)

The aerodynamic contribution to the moment about the car center of mass has been

investigated by Yip et ai. (Yip et al. 1992) and is given below

1 2
= 2CwIIA/PaLvwr&y

= Mwy&y (8.32)

where L is the wheelbase length and the y-axis moment coefficient, Cwy is determined

experimentally for each vehicle.

Hence the total moment applied about the car center of mass is the sum of the two

moment components given above in (8.31) and (8.32).

(8.33)

8.1.6 Brake Dynamics

The total brake torque, Too, applied to the wheels and the commanded brake torque, Tbc,

are presumed to be related by the following first order lag equation,

. Tbc - Too
Too=--­

70
(8.34)

"

where Tb is the time delay constant which models, to the first order, the dynamics of the

brake actuators and hydraulics. The total brake torque is then distributed between the

front and the rear tire according to a brake biasing constant, kb.
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(8.35a)

(8.35b)

Each torque Tbi is positive and is limited to a maximum value where wheel lockup occurs.

When the wheel angular velocity reaches zero, the brake torque is changed appropriately

to prevent the wheel from rotating backwards.

8.1. 7 Wheel Dynamics

Fwf

d
N

Figure 8.5: Wheel rotation.

In this model the wheels are assumed to be massless, but they are allowed to have nonzero

moment of inertia I w . Figure 8.5 shows the details of the wheel model which are used to

obtain the front and rear wheel rotational dynamic equations.

(T.d· - rF: f· - A·N -lIbi)• I W,W, <loll

W Wi = I
w

i={l,2} (8.36)

The applied torques are the engine torque, Td , and the brake torque, Tb• The road normal

force, N i , is offset to the front of the wheel by a distance d. Furthermore, the engine

torque applied to each wheel is a function of the total engine output torque, Te , which
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will be described in Section 8.1.9, and is distributed between the front and the rear wheels

according to a drive biasing constant, kd'

(8.37a)

(8.37b)

For example, set kd = 1 for front-wheel drive vehicles.

8.1.8 Tire Traction Model

The longitudinal tire tractive force, Fwli, is correlated with the tire normal force, N i =

-Kw(Tw, - Two), and its slip ratio, Ai, through the Magic Formula which was developed

by Bakker and Pacejka (Bakker et al. 1987, Bakker and Pacejka 1989). This model can

accurately fit experimental tire data through the use of twelve coefficients and will be

described shortly.

Finding the tire slip ratio requires knowing the wheel forward velocity parallel the road

surface. Let P w, be the position vector locating the wheel center,

i = {1,2} (8.38)

hence the wheel velocity follows by taking the inertial time derivative of the position vector

P w,'

i = {1,2} (8.39)

The wheel forward velocity can now be found by taking the dot product with the road unit

vector !.xi'

Vwf; = Pw;·!.xi

The slip ratio is defined as

i = {I, 2} (8.40)

Ai = 1 _ Vw I; ,
TwWw,

i = {I, 2} (8.41)
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Finally the tire tractive force can be expressed as a nonlinear function of the normal force

and slip ratio.

i ={1,2} (8.42)

Tractive Force I
F• I
. ~-- -I-

I
I
I

D I
I

-S. I

1 I Slip Ratio

----1--------- - ~~Q)---------

I
I
I

I --.vi -s,

./ I
I

Figure 8.6: Exaggerated plot of the Magic Formula, showing the influence of the coefficients.

As mentioned above, Bakker (Bakker et al. 1987, Bakker and Pacejka 1989) proposes

the following Magic Formula to fit the tire tractive force numerically. This formula has

been shown to accurately fit experimental tire data and has the form

(8.43)
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with

f(N, >') = y(x) + Sv

123

(8.44a)

(8.44b)

Figure 8.6, a plot of the tractive force versus the slip ratio, shows the physical meaning of

the coefficients in Equations (8.43) and (8.44). Since the tractive force is also a function

of the normal force, these coefficients may be related to the normal force with following

quantities.

D = al N 2+ a2 N (8.45a)

BCD = (a3 N2 + a4N )exp-asN (8.45b)

C = aD (8.45c)

E = a6N2 + a7N + as (8.45d)

B = BCD/CD (8.45e)

Sh = agN + alO (8.45f)

Sv = all (8.45g)

Once the experimental data for tire tractive force of a specific tire is collected, the quantities

ao to all can be obtained using various curve-fitting techniques.

8.1.9 Engine Model

A simple engine model taken from Smith and Starkey (Smith and Starkey 1992) is used

here. The output torque Te , is a function of the engine speed We, gear ratio (, drive train

efficiency 71, and throttle position TP. Thus,

Te = TP(71 [CI (~~r + C2 (~~) + C3] (8.46)

By choosing the coefficients CI, C2, and C3, engine torque curves can be closely approximated.

For a manual transmission, the engine speed is given by

We = (WwI front-wheel drive

rear-wheel drive

(8.47)

(8.48)
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The range of TP is between zero, for no output torque, and one, for maximum torque

output at a certain engine speed. In addition, the actual throttle position response to the

commanded throttle position is modeled as a first order lag,

T'P = ..;,..{T_P...:;,.c_-_T_P...:...)

where Tt is the throttle delay time constant.

8.2 Nonlinear Lateral and Longitudinal Model

(8.49)

The full six degree of freedom model includes longitudinal, lateral and vertical translations

and roll, pitch and yaw rotations. Including kinematic relations, the system of equations is

12th order. Development of the six degree of freedom model closely follows the derivation

where motion is restricted to the vertical plane. Subcomponents from the longitudinal

model are generalized to the full nonlinear model and a steering system and road noise

model are added.

8.2.1 Reference Frames

Using the longitudinal model as the stepping stone, we now can proceed to explore the

complex behavior of the vehicle's lateral and longitudinal dynamics. As seen before, the

first step is to define all the reference frames, which consist of the Earth-fixed frame, the

vehicle-fixed frame, and the four road frames associated with the four tires.

First the Earth-fixed reference frame E with origin 0 as seen in Figure 8.7 is defined

with unit vectors (,~x,~y,~J. A second frame C fixed in the vehicle with origin at the vehicle

center of mass is defined with unit vectors (fz,&y,~). As seen in Figure 8.8 this frame C

may be described by three successive rotations from frame E. First rotate the Earth-fixed

frame about gz axis by an amount c, which is known as yaw angle. This leads to frame

A with unit vectors (~,!!ydh)' Next rotate frame A about !!x by an amount </> to obtain

intermediate frame B with unit vectors (llx,Qy,1lz)' This angular rotation is called the roll

angle. Finally rotate frame B about Qy by an angular displacement e, which is the pitch

'.
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Figure 8.7: Representation of nonlinear vehicle model.
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Figure 8.8: Relationship between reference frames.

angle, to obtain the vehicle-fixed frame C. The corresponding coordinate transformation
I

matrices are given below:

[~ ] [ COSo
sin €

~][ ~]= -s~n€ cos€
0

[~ ] [~ o 0] [~ ]= cos¢ sin ¢
- sin¢ cos¢

[~ ] [=0 0 - sin 0 ][ ~ ]
= o 1 0 Qy

sin e 0 cos e Qz

(8.50)

(8.51 )

(8.52)

Now the transformation matrix from unit vectors in E to unit vectors in C reference frame

can be readily determined as:

[
~ ] = [ co~ e ~ - s~n e ] [~ co~ ¢ Si~¢ ] [ ~~~:€ ~~~ :

~z sin e 0 cos e 0 - sin ¢ cos ¢ 0 0

In addition, the inverse of the above transformation matrix is its transpose.

(8.53)

The road reference frame R with unit vectors (r.x,LII,L) for each tire is defined with

the origin located at the point of contact between the tire and the road surface. As shown

in Figure 8.9, the orientation of this frame R is such that the!:.z component coincides with

the road normal vector, which is specified at each tire location (x, y) and is given as
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Top View Side View

Road Surface

127

Figure 8.9: Definition of road frame.

Using the transpose of the transformation matrix of Equation (8.53), the I.z component can

be expressed in the vehicle-fixed reference frame as:

where

I.z = Tzx£X + Tzy£y + Tzz£z

Txx = n x (cos E: cos 0 - sin E: sin <p sin 0) + n y (sin E: cos 0 + cos E: sin <p sin 0) ­

n z cos <p sin 0

Txy = -nx sin Ecos <p + n y cos Ecos <p + n z sin <p

Txz = nx(cos Esin 0+ sin c sin <p cos 0) + ny(sin c sin 0 - cose sin <p cos 0) +

nz cos <p cos 0

(8.54)

(8.55)

(8.56)

(8.57)

A second unit vector r.x of frame R is chosen such that it is normal to the tire axis of

rotation and points in the direction of the tire heading.

Let r.x be expressed as

r.x = Txx£X + T%1I£Y + Txz£z

the components of r.x can be found by noting that

r.x' (- sin O£X + cos0£Y) = 0

I.z·r.x = 0

1Ir.x1l = 1

(8.58a)

(8.58b)

(8.58c)
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We can use the first property in Equation (8.58) to solve for T XII in terms of Txx and the

tire steering angle.

(8.59)

Invoking the second property in Equation (8.58) and Equation (8.59) to solve for T xz in

terms of T xx and the known components of L, leads to the following equation:

TXZ =
Tzx +TZII tan 8

Txx
Tzz

(8.60)

Note that T zz can never be zero because it would mean that the road surface is vertical with

respect to the vehicle body. Finally we can use the third property in Equation (8.58), that

is, Tix + Ti y + Tiz = 1 and Equations (8.59) and (8.60) to solve for Txx as:

1
T xx = -;===========:=

1+tan28+ (ru +r%!l taIl6 )2
ru

(8.61 )

Hence the solutions for Txy and Txz follow directly from equations (8.59), (8.60) and (8.61).

T xy =

T xz =

tan 8

1 + tan2 {) + (ru+r%!ltan6)2
ru

T zx + T ZII tan {)

(8.62)

(8.63)

Then reference frame R is completely specified based on the right-handed orthogonal axis

system and the third unit vector is given bY!:.1I = !:.z x!:.:t. Hence the unit vectors of the

road frame can be expressed compactly in terms of the vehicle-fixed unit vectors ~:

(8.64)

Furthermore if it may be assumed that each tire lies on an independent road surface, then

a subscript i is added. Subscripts i = {I, 2, 3, 4} refer to front right, front left, rear left, and

rear right tires respectively.
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8.2.2 Vehicle Dynamics
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The dynamic equations of motion are derived from Newton's law applied in an inertial

reference frame. The rotational dynamics are derived first. The translational dynamics

follow.

Rotational Equations oj Motion

With the angular rotations defined above, the angular velocity of the vehicle is given by:

(8.65)

Use the coordinate transformation matrices in (8.50) through (8.52) to obtain the vehicle

angular velocity in the vehicle-fixed coordinate frame as

~ = (¢cosO - i cos ¢sin O)fx + (8 + i sin ¢)£y + (¢sin (J + i cos ¢cosOkz

= Wxfx + Wyfy + Wzfz

Solving for i, ¢ and 0, the rotational kinematic equations of motion are:

(8.66)

i = ~ (-sinOwx + cosOwz) (8.67a)
cos

¢ = cos OWx + sin OWz (8.67b)

8 = tan ¢(sin OWx - cos OWz) + Wy (8.67c)

Furthermore the rotational dynamic equations are obtained from Euler's equations.

Wx
Mx IJI- Iz (8.68a)= Ix + wJlWZ Ix

wJI
MJI Iz - Ix

(8.68b)= T+wzwx I
II II

Wz
Mz Ix - III

(8.68c)= I; +WXwII Iz.

where Mx , Mil and Mz., which will be derived later in Section 8.2.5, are the total moment

applied about the (fx, £y and fz.) axes resulting from the susp~nsion and aerodynamic

interactions, and Ix, IJI and Iz. are the moments of inertia of the sprung mass about the

(fx, f y , fJ axes, respectively. The unsprung mass is neglected in this work.
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Translational Equations of Motion

Let PCM = x~ + Y~II + z~z be the position vector from the Earth-fixed origin 0 to the

vehicle center of mass as seen in Figure 8.7. Then the velocity of the mass center can be

expressed either in Earth-fixed or vehicle-fixed coordinates as

~CM = x~ + Yf.1J + i~

= Vx~ + vII~ + Vzfz

(8.69)

(8.70)

Applying Equation (8.53) to transform Equation (8.70) into an Earth-fixed frame leads to

~CM =

[vx (cos [COS 0 - sin [sin ¢ sin 0) - vlJ sin [COS ¢ + vz(cos [sin 0 + sin [sin ¢cos O)J~ +

[vx(sin [COS 0 + cos [sin ¢ sin f)) + vlJ cos [COS ¢ + vz(sin [sin 0 - cos [sin ¢ cos O)J f.1J +

[-Vx cos ¢ sin f) + v y sin ¢ + Vz cos ¢cos OJ ~z (8.71)

Hence the translational kinematic equations follow immediately from (8.69) and (8.71).

x = Vx (cos [ cos 0 - sin [ sin ¢ sin 0) - vlJ sin [ cos ¢ +

vz(cos [ sin 0 + sin [ sin ¢ cos 0)

Y = vx(sin[cosO+cos[sin¢sinO)+vlJcOS[COs¢+

V z (sin [sin 0 - cos [sin ¢ cos 0)

.i = -Vx cos ¢ sin 0 + VII sin ¢ + Vz cos ¢ cos 0

(8.72a)

(8.72b)

(8.72c)

The acceleration of the vehicle center of mass can be found by differentiating (8.70).

If the total external force applied to the vehicle is known,

."
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the translational dynamic equations are obtained from Newton's second law,
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V;r
F;r

(8.74a)= WZVII - WIIVZ + -
m

vII
FII (8.74b)= W;rVz - WzV;r + -
m

Vz
F z (8.74c)= WIIV;r - W;rVII + -
m

where m is the sprung mass of the vehicle. The forces are derived in Section 8.2.4.

8.2.3 Suspension Model

The suspension model for lateral and longitudinal vehicle motion is similar in every aspect

to the longitudinal model. The extension to the three dimensional model slightly changes

the geometric constraint equation corresponding to Equation (8.18) and is given below for

the most general case,

i={1,2,3,4} (8.75)

where Ii is the half wheelbase from the vehicle center of mass to the i th wheel, Si is the half

track width from the vehicle center of mass to the i th wheel, ~Xi and ~Yi are the relative

tire distances from the center of mass to the i th wheel, and the function b(x, y) describes

the road surface at location (x, y).

Solving for the relationship between r Wi and hi requires solving a nonlinear equation. In

the special case where the road surface is planar, it is possible to solve for the relationship

between the tire radius and the suspension height analytically as in the longitudinal model.

i = {1,2,3,4} (8.76) '.

In addition four state equations governing the suspension height at four wheels are needed:

i = {l,2,3,4} (8.77)

As stated in Section 8.1.3, solving for hi depends on the damping function leO.
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To solve for the wheel radius and the relative tire position for an arbitrary road surface,

requires making some approximations. Using the same concept as in Section 8.1.3, first

approximate the relative tire position which is denoted by aXi and aYi. These two relative

tire position locators can be found by taking the dot product of Equation (8.75) with unit

vectors ~ and ~ respectively. This leads to:

aXi = li(COS C cos 8 - sin c sin ¢ sin 8) + Si sin c cos ¢­

hi(cosc sin 8 + sincsin¢cos8) - (rWi + ~i)nXi'

L:iYi = Ii(sin c cos 8 + cose sin ¢ sin 8) + Si cose cos ¢­

hi (sin c sin 8 + cose sin ¢ cos 8) - (rWi + ~i)nYi'

i = {1,2,3,4}

i = {I, 2, 3, 4} (8.78)

Follo'\\ing the same approach in Section 8.1.3, assume that the road variation is zero, the

wheel radius is constant, and the road normal vector is evaluated at the point where wheel

center projects down to the road surface. This leads to the following equations where the

relative tire position locators can be approximated as:

L:iXi = Ii (cos € cos 8 - sin € sin ¢ sin 8) + Si sin € cos ¢ -

L:iYi = li (sin c cos 8 + cos c sin ¢ sin 8) + Si cos c cos ¢ -

i = {1,2,3,4}

i = {1,2,3,4}

(8.79)

(8.80)

Once the tire location is approximated, the wheel radius can be found by taking the dot

product of Equation (8.75) with unit vector r..z;, leading to:

i = {1,2,3,4} (8.81)

where the quantities nx ;, ny; and nZi are evaluated at the approximated tire location (x +

L:ixi, Y+ L:iYd·
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8.2.4 Forces
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The gravitational force on the vehicle is E.g = -mg~z. In addition to longitudinal wind lift

and drag forces,

It.
1 2

= 2CLA/Pavwrf.z

12
1 2

= 2CDA/PavwrQx

there is now a lateral wind component which comes from crosswinds, large passing vehicles

or fast lateral maneuvers. Moreover, these wind forces may have a considerable effect on

lateral vehicle dynamics. This side force is modeled here as:

(8.82a)

(8.82b)

Work by Yip et ai. (Yip et al. 1992) has correlated the force coefficients CL, CD and Cy

to the relative wind speed and its angle relative to the vehicle longitudinal axis. These two

variables are shown in Figure 8.10, and the analytical expressions for {3 and Vwr are given

as:

(8.83)

(8.84)

Let the force applied to each tire by the road be expressed as

where the tire tractive and side force are obtained from the tire model in Section 8.2.7 and

the tire normal force is simply

'.
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( ) ( )

Vwr

D

Mwz

Fs) ( )

Figure 8.10: Aerodynamic forces acting on the vehicle have three components.

Then the force components applied to the vehicle along its three principal axes (~,~y,~z)

can be expressed as:

4

Fx = L [Fwf,rxx + Fws.ryx - Kw(rw• - rwo)rzx]+ Fg cos </>sin 0 + D
i=l

4

Fy = 2: [FwJ. rxy + Fws,ryy - Kw(rw• - rwo)rzy ]- Fg sin </> + Fs
i=l

4

Fz = L [FwJ. rxz + Fws•ryz - Kw(rw, - rwo)rzz ]- Fg cos </> cos 0 + L
i=l

8.2.5 Moments About the Vehicle Center of Mass

(8.85)

(8.86)

(8.87)

Aerodynamics also contributes to the moment about the vehicle center of mass. Work by

Yip et al. (Yip et al. 1992) has correlated the aerodynamic moment to the relative wind

speed. The moment equation has a form similar to the aerodynamic force equation and is

given below in vector form,

1 2
= 2PaVwTAfL(Cwx~ + CwyGJ + Cwz~z)

= Mwx~ + MwyGJ + Mwz~

(8.88a)

(8.88b)

where L is the wheel base length, and the moment coefficients Cwx , Cwy and Cwz can be

correlated to the relative wind speed and its angle in equations (8.83) and (8.84).
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The total moment about the center of mass, which is contributed by the suspension

forces and the aerodynamic forces, is obtained below:

4

M = L{lifx - SiQy - hiQz ) X (Fwft!:t + FW8i r.y + Ni'LzJ + M W

i=l

(8.89)

Decomposing the moment equation into the three components about the vehicle principal

axes using Equation (8.53) leads to the following moment equations.

4

Mx = LMxi +Mwx (8.90a)
i=l

4

My = LMYi +Mwy (8.90b)
i=l

4

Mz = LMzi +Mwz (8.90c)
i=l

where

MYt = (Fwfi (-lirxzt + hirxx.) + FWSi (liryzt + hiryx.) - KW(rWi - rwo)(lirzzi + hirzx.))

A1zt = (Fwf,(lirXYi + Sirxx.) + Fwsi(lirYYi + Siryx.) - KW(rWi - rwo)(lirzYi + Sirzx,))

8.2.6 Brake Dynamics

The brake dynamics are modeled as a first order lag similar to that used in the longitudinal

model. The total brake torque Too is distributed between the front and the rear wheels

according to a brake biasing constant kb and is evenly divided between the left and the

(8.91)
front wheels
rear wheels

Tbl = Tb2 = ifToo)
11 11 l-kb 11
b3= b4= 2 be

Again Tbi is positive and is limited to a maximum value which is where wheel lockup occurs.

right wheels.

8.2.7 Wheel Dynamics and Tire Traction Model

The wheel dynamics are the same as that of the longitudinal model, however the tire

traction model requires an additional variable since a lateral force and self-aligning moment
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are present. This additional variable is known as the lateral slip angle Q and is defined

below. In Bakker's nonlinear tire model (Bakker et al. 1987, Bakker and Pacejka 1989,

Pacejka and Bakker 1991), the tire tractive force, side force and self-aligning moment are

functions of the normal force, the tire longitudinal slip ratio, and lateral slip angle. In order

to find the tire tractive, side force and self-aligning moment, define the longitudinal slip

and the slip angle. The longitudinal slip is defined in the same way as in the longitudinal

model, that is,

\. - 1- vwli
I\t - ,

rWiWW ,
i={l,2,3,4} (8.92)

The wheel forward velocity vwf; can be found by first finding the velocity at the center of

the tire.

i={1,2,3,4} (8.93)

Using Equation (8.64) we can transform Equation (8.93) to the road reference frame and

the wheel forward velocity follows directly.

i={1,2,3,4} (8.94)

The tire slip angle as seen in Figure 8.11 is defined as the angle between the wheel velocity

vector and the wheel heading vector. Thus,

i = {1,2,3,4} (8.95)

where Oi is the steering angle of each wheel.

The tractive force, side force and self-aligning moment can now be expressed as nonlinear

functions of the tire normal force, slip ratio, slip angle, and other variables such as road

surface conditions, and camber angle. The camber angle is defined as the inclination of



8.2 Nonlinear Lateral and Longitudinal Model

Figure 8.11: Top view of a tire under steering maneuver.
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Brake Force Side Force Self-aligning
Moment

D a I N'2 + a2N bI N2 + b2 cIN'2 + C2 N
BCD (a3N2 + a4N) exp-asN [b3 sin(b4 tan- l (bsN))] . (c3N2 + c4N) exp-csN .

(1- bIn) (1 - cdT'l)
C ao bo ao
E a6N2 + a7N + a8 b6 N2 + b7 N + b8 4a6N2+azN+as

I-C13hl
B BCD/CD BCD/CD BCD/CD
Sh agN + alO bg, ag,
Sv all (b lO N2 + bllN)r (a lON 2+ allN)r

Table 8.1: TIre model coefficIents.

the wheel plane from a plane perpendicular to the road surface and parallel to the vehicle

longitudinal axis.

The general formulation of the tire model developed by Bakker et ai. has the form:

with

y(x) = D sin (Ctan- l (Bx - E [Bx - tan- 1(Bx)]))

x = X+Sh

Y(X) = y(x) + Sv

(8.96)

(8.97a)

(8.97b)

where the variable Y(X) represents either the tire tractive force, side force or self-aligning

moment, and the variable X represents the corresponding slip ratio or slip angle. The

coefficients above may be related to the tire normal force and camber angle T' as in Table 8.1.

The above formulations are developed in cases of pure traction or pure cornering maneuvers.

When the vehicle experiences a combination of cornering and braking, equations relating the
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tractive force, side force and self-aligning moment to the slip quantities require modification.

Bakker (Bakker et al. 1987, Bakker and Pacejka 1989, Pacejka and Bakker 1991) provides

the following method. First, define normalized slip quantities as follows:

>..*
>..

=
>"rnax

0*
0

=
Ornax

(8.98)

(8.99)

where Amax and Omax are values where the tractive and side forces, respectively, reach a

maximum. Next define the correction factor u* as:

(8.100)

The modified equations for the tractive force, side force and self-aligning moment can be

expressed as:

Fx = ~Fxo(u*,N)
u*
0*

Fy = u* Fyo(u*, N)

0*
Mz = -Mzo(u*, N)

u*

(8.101)

(8.102)

(8.103)

where Fxo ' FyO and Mzo are functions that provide the tractive force, side force and

self-aligning moment as obtained from pure traction or pure cornering.

8.2.8 Engine Model

The same engine model described in Section 8.1.9 is used to develop the full six degree of

freedom vehicle model. Since this model consists of four tires instead of two, the front and

rear torque is divided evenly between the left and the right tires, resulting in the following

equations:

'.

front wheels
rear wheels

(8.104)
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8.2.9 Steering Model
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The type of steering model implemented in this work is a fixed-control steering model.

With this model, the angular displacement of the steering wheel is specified. The other

type of steering model is the free-control steering system in which the torque a.pplied to the

steering wheel is specified. This type of steering model is more complex since the steering

angular displacement must be solved as a function of the resultant moments and the current

angular displacement of the steering wheel. As shown in Figure 8.12, the steering system

is modeled as a lumped mass system described in Lukowski et ai. (Lukowski et al. 1990).

The governing equation for the front-wheel steering system is given below,

6= - C ws 8+ K ws (oc _ 0) + Kwp(Fwfl - F w f2) + M sa

2Iws 2Iws 2Iws
(8.105)

where Oc is the commanded angular displacement of the steering wheel, Iws is the moment

of inertia of front wheels about their steering axis, K ws and Cws are the steering rotational

stiffness and damping constants, M sa is the total self-aligning moment of the front wheels,

and K wp is the steering axis offset.

Figure 8.12: Lumped-mass representation of the steering system.
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8.2.10 Random Road Excitation Model

One method of introducing random road excitation to the vehicle simulation is to generate

a road noise profile at every point prior to the simulation. Such a method is developed by

Cebon et al. (Cebon and Newland 1983) using Fourier transform methods to generate a two

dimensional random road surface. However this approach is impractical, since it requires

storage of enormous amounts of data. A more efficient and elegant method is to generate

random road excitation on-line. With this scheme, the need to store all the road noise data

is eliminated except for a small segment used to correlate the noise input between the front

and the rear wheels. The method used here uses a first-order shaping filter approach and

is developed by Gill (Gill 1983).

The idea behind this approach is to shape the spectral density of first order processes

driven by stationary Gaussian white noise to closely approximate the measured road spectral

density. Another important road characteristic besides the spectral density of the tracks, is

the correlation between the left and right tracks. In order to achieve the above properties,

the road noise at the left and the right wheels can be expressed as functions of two

uncorrelated random processes ~M and 8M·

[
711 ] = [1 81] [ ~M ]
712 1 82 8M

(8.106)

The variable ~M describes the random road excitation at the point coinciding with the center

of mass between the left and right tracks. The variable 8M describes the noise difference

between the left and the right tracks. The constants 81 and 82 are the half track widths

from the car center to the left and right wheels respectively. Note that the constant 81 is

negative since it points in the negative ~ direction.

The random processes ~M and 8M are first order processes driven by white noise.

[
~M ] = Vx ["1'1 0] [~M ] + Vx [0'1 0] [WI ]
8M 0 "1'2 8M 0 0'2 W2

(8.107)

By specifying the constants "1'1, "1'2, 0'1 and 0'2, random road excitation may be generated with

spectral density and correlation functions closely matching the experimentally measured
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data. Furthermore, the the constants 0'1 and 0'2 may be redefined as functions of more

physically meaningful constants, for example,

0'1 = .j80211'(1 + a)

0'2 = 0'1 S2";;;

(8.108a)

(8.108b)

where So is the spectral intensity constant and a is the coherence constant. The values of

the coherence constant range from zero to one, where a value of zero indicates that there

is no correlation between the left and the right tracks and a value of one indicates that the

two tracks are completely correlated. For vehicles traveling straight ahead at a constant

speed vx , the random road noise at the rear wheels is that of the front wheels delayed by a

- time interval td = J.... The road noise at the rear wheels can be expressed as functions ofv",

the front wheels as follows:

(8.109)

8.3 Simulation Results

8.3.1 Longitudinal Model

Response of Vehicle to Various Inputs

In this section, the longitudinal model is subjected to various inputs and its responses

are examined. Figure 8.13 shows the vehicle speed and pitch angle in response to a step

throttle input when the vehicle is initially traveling at lOS:. As expected, the vehicle should

pitch upward, translating to a negative pitch angle in the simulation, when the vehicle is

accelerating. As time passes, the vehicle pitches downward slowly as the vehicle acceleration

decreases and speed increases. The reason for this behavior is that the moment caused by

the wind about the y-axis dominates at high speed and low acceleration. This moment ..

tends to pitch the car downward as a consequence of the asymmetric design of the vehicle

top and bottom. The three jumps apparent in the plot of the pitch angle, occur when the

lower gear switches to higher gear. This creates a discontinuity in engine output torque,

which causes the vehicle to jerk.
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After holding half-throttle for 60 seconds, the throttle is released and a step brake input

is applied for the next 15 seconds. Figure 8.14 shows the plots of the vehicle speed and pitch

angle as a total of 1000 N of brake force is applied to the wheels. The applied torque is about

10% of the maximum torque required to lock up the wheels, assuming a skidding coefficient

of friction of 0.7. As expected, the vehicle pitches down as it decelerates, corresponding to a

positive pitch angle. Again the small jumps in the pitch angle plot indicate the discontinuity

of engine output torque due to the gear changes before the throttle position reaches zero.

The vehicle is then simulated while traveling on an inclined road surface. There is no

throttle or brake input to the vehicle. Figure 8.15 shows the plots of the vehicle pitch angle

and speed when coasting down a 5% grade road. The vehicle speeds up as a result of the

gravitational force. The oscillations in the pitch angle plot reflect the fact that the vehicle

is not initially at equilibrium. The pitch angle plotted is referenced to the Earth-fixed

horizontal axis. The difference between the pitch angle and the angle of the road is known

as the relative pitch angle, a measurement of the vehicle pitch relative to the road surface.

As mentioned previously, this relative pitch angle does not vanish at steady state since there

is a wind generated moment about the vehicle center of mass when the vehicle is traveling

at high speed.

Next, a road disturbance is modeled. The vehicle is driven over a sharp sinusoidal bump

0.01 meters high and 0.3 meters wide while traveling at 27,:. The responses of the vehicle

height and pitch angle are plotted in Figure 8.16. The first sharp corner in the pitch angle

plot indicates the point where the front wheel reaches the bump and the second sharp corner

follows when the rear wheel passes over the bump. Looking at the vehicle height, one can

conclude that this is a reasonable response of the vehicle since a well maintained vehicle

with good shocks should not oscillate more than once or twice when it is disturbed from

equilibrium.

Finally, random road excitation is added to the front and the rear wheels. Since the

vehicle is traveling along a straight path, the road noise at the rear wheel is that of the

front wheel delayed by the time interval required for the rear wheel to reach to the former
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location of the front wheel. If the vehicle is traveling at a constant speed vx , the delay

time can be expressed as td = J.., where 1 is the distance between the front and the rear
v~

wheels. The vehicle height, pitch angle, and random road input at the front wheels are

plotted in Figure 8.17 while the vehicle is traveling at 27:C. As seen in the plot of the

vehicle height and the noise amplitude, the suspension system filters out the high frequency

noise but passes through the low frequency components of the noise. From the plot of

the pitch angle, one can also conclude that the pitch angle is more susceptible than the

vehicle height to high frequency noise, even thought it also does some filtering out of the

high frequency components. In addition, the simulated spectral density of the random

noise process obtained by averaging 100 realizations is plotted with the theoretical spectral

density in Figure 8.18. This random road excitation is typical of rough highway roads.
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Figure 8.13: Vehicle response due to a step throttle input.
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Figure 8.14: Vehicle response due to a step brake input subsequent to a step throttle input.

Small Angle Approximation

In steady-state, the magnitude of the pitch angle relative to the road surface, that is,

() - A, is at most on the order of 10-3 radian. The reason that the pitch angle does not

vanish is because there is a moment about the vehicle center of mass caused by the wind

at high speed. Furthermore, the maximum pitch angle relative to the road surface during

a transient response of the vehicle is on the order of 10-2 radian. Since the relative pitch

angle is small, we can make a first order approximation of the trigonometric functions

without degrading the model accuracy. For any angle x, the small angle approximation

of cos(x) is taken as one and that of sin(x) is taken as x. In the operating range of the

pitch angle whose magnitude is less than 10-2 radian, the maximum error resulted from
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Figure 8.15: Vehicle response when decending down a 5% grade road.

making small angle approximations is less than 0.1 percent. This is too small an error to

have any significant effect on the simulation accuracy. To verify this, the approximated

and non-approximated systems are simulated by initially setting the relative pitch angle

to a maximum value, which is taken to be 0.05 radian. The responses of the states of the

approximated and non-approximated systems are compared for any significant deviations.

As seen in Figure 8.19, there is no notable difference between the original model and the

one using small angle approximations.

Knowing that making a small angle approximation on the relative pitch angle does not

reduce the simulation accuracy, we would also like to investigate the consequences of making

an approximation on the absolute pitch angle, which is referenced from the Earth-fixed

horizontal axis. This might reduce the simulation accuracy if the elevation of the road is

large, since the absolute pitch angle is the sum of the road angle and the vehicle pitch

angle relative to the road. According to transportation literature, a typical road grade

limit for highways is around 10 to 15 percent. To take a worst case scenario, we will use

a maximum road grade of 15% and a maximum relative pitch angle of 0.05 radian as used

previously. This will constrain the maximum limit of the absolute pitch angle to about 0.2
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Figure 8.16: Vehicle response when passing over a sinusoidal bump.

radian. Setting the road elevation to the maximum allowable limit of 15% and the absolute

pitch angle to 0.2 radians, the vehicle is simulated as it is initially traveling at 27:C with

the nominal throttle position of 22.555% of the maximun throttle position. Comparing the

response of the approximated system to the non-approximated system, we found that there

are no significant deviations between the two models. The deviation in all states is below

two orders of magnitude. Figure 8.20 shows the vehicle pitch angle and velocity as well as

the longitudinal velocity. There are no visible differences between the approximated and

non-approximated systems.

In conclusion, it is permissible to use a small angle approximation on the pitch angle.

By making a small angle approximation, we can save about 5 percent in computational

time. The reason that the computational gain is not significant is because we only save one

multiplication operation for each cosine term. For each sine term, we still have to use one

multiplication operation regardless of whether we make a small angle approximation or not.
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Figure 8.17: Vehicle response due to random road excitation.

Linearization at a Nominal Operating Point

147

A linear model of the vehicle operating at some nominal point (xo, uo), where Dxo, uo) = Q,

is needed to implement the fault detection and identification filter. Due to the complexity

of the nonlinear model, it is impractical to linearize the system analytically. Therefore the

linearized system is obtained numerically. The process to linearize the system numerically

is described below.

First, a nominal operating point needs to be specified where the linearized model is

obtained. This nominal point can be found by specifying the inputs and simulating the

system to reach steady state. It takes about 300 seconds for the system to reach steady

state. After obtaining the nominal operating point, a numerical linearization process can

be implemented to obtain the linearized model.
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Figure 8.18: Power spectral densities of simulated and theoretical random noise processes.

Starting with the nonlinear system jz = [(;f, y), one would like to linearize this system

at some nominal point (xo, uo). Using Taylor's expansion, one can expand the nonlinear

system around with ;f = ;fa + i. and y = Yo +Y as

~ = [(;fa, Yo) +Z:f(;f, y) I ;f =;fa i. + Vuf(;f, y) I ;f =;fa Y+ higher order terms

y = Yo Y = Yo

By neglecting the higher order terms and noting that [(XO,1.£O) vanishes, the linearized

system becomes
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Figure 8.19: Effect of making a small angle approximation of the relative pitch angle.

A = S!.:rf(~,y) I ~ = ~

Y=Yo

B = V,J(;f, y) I ;f = ~

Y=Yo

As mentioned previously, analytically calculating the gradient of the nonlinear system is

impractical. Therefore an approximation scheme will be used.

Using the central difference method, the A and B matrix coefficients are approximated

as

'" f,(±o + [ox]j,YQ) - f,(±o - [oxh,YQ)
20x

'" f,(±o' Yo + [ou]j) - h(~,Yo - [ou]j)
20x

where the notation [ox]; denotes a vector with zero elements everywhere except for the jth

element which has the value ox.
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Figure 8.20: Effect of making a small angle approximation of the absolute pitch angle.

Care must be taken in choosing the perturbation values 8x and 8u. Truncation errors

due to finite significant digits in digital computers will result if perturbation size is too

small; whereas error produced by nonlinearities will result if the perturbation size is too

large. Each coefficient should be plotted versus the perturbation size and each coefficient

should be chosen individually within the region where the curve remains flat. Figure 8.21

shows a typical plot of one coefficient versus perturbation size in which the curve can be

characterized by three regions. In region I, errors are induced by finite computer word

length and indicate that the perturbation size is too small. In region III, errors are induced

by model nonlinearities and indicate that the perturbation size is too large. The most

accurate representation of each coefficient lies in region II where the error curve is flat. In

our experience, typical values for the normalized perturbation sizes of 6x and 6u range from
XO \l()

10-6 to 10-3 for the central differences method.

The system is linearized at a highway speed of 27:C or 65mph. To maintain at this
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speed, the throttle position is set at 22.555% of the maximum throttle position. Figure 8.22

shows the transient responses of the vehicle when the throttle input is perturbed upward

by 15 percent. The responses of the linearized system match very well to those of the

nonlinear system. In addition, the vehicle steady-state responses are plotted in Figure 8.23.

However, the steady state responses of the linearized system deviate from the nonlinear

model considerably for large perturbations. By comparing all of the states of the linearized

and nonlinear systems, we found that deviation errors between the linearized and nonlinear

systems at steady state are below 10 percent for a 15 percent increase or 15 percent decrease

in throttle position input. This corresponds to a range of speed from 25.5:: to 28.5':.

Furthermore the brake input is also perturbed to compare the accuracy of the linearized

model to that of the nonlinear model. Figure 8.24 shows that the maximum perturbation

size for the brake input is 34 N such that the deviation errors of the states between the

two models are less than 10 percent. As evident in the plots, the responses of the system

to a brake perturbation are much more linear than those due to a throttle perturbation.
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This is not surprising since the brake torque is related to the brake input through a linear

first order dynamics; whereas the engine torque is not only controlled by throttle position

but is also a nonlinear function of the wheel speed. If we eliminate the engine model and

specify the engine torque directly, the deviation errors between the two models are less than

3 percent for the same range of speed.
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Figure 8.22: Transient response of the linearized and nonlinear systems with a perturbed
throttle input (+15%).

8.3.2 Lateral and Longitudinal Model

Response of Vehicle to Various Inputs

The longitudinal response of the vehicle was analyzed in Section 8.3.1, therefore it is only

necessary to investigate the vehicle lateral modes at this point. First the vehicle is stimulated

with a step steering input of 0.01 radian while the vehicle is initially traveling at 27:C

at its corresponding nominal throttle position of 22.555% of maximum throttle position.
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Figure 8.23: Effect of perturbation size on numerical derivative computation.

Figure 8.25 shows the vehicle roll angle, yaw velocity and path. As the vehicle turns left,

the vehicle should roll to the right, for a positive roll angle, and the yaw velocity should

increase to reach a constant in steady state as seen in Figure 8.25. At this speed, a turn

of 0.01 radian is considered to be a medium cornering maneuver which generates a lateral

acceleration of about 0.2g. If the vehicle is allowed to reach steady state, a constant steering

angle of 0.01 radian will steer the vehicle around a constant radius of 310 meters.

Next, lateral response is examined as a pulse of crosswind is applied to the vehicle while

the vehicle is traveling straight ahead at 27 :::C. The applied wind velocity is 15:::C with 10

seconds duration. The lateral response of the vehicle is plotted in Figure 8.26, showing the

vehicle path without any steering correction is made. Plots of the crosswind profile and

yaw velocity are also shown. The decrease in the yaw velocity reflects that the magnitude

of the side wind applied to the vehicle is decreasing since the vehicle is gradually turning

away from the crosswind disturbance.
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Figure 8.24: Steady-state response of the linearized and nonlinear systems with a perturbed
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Finally, random road excitation is introduced to the vehicle model, simulating the road

condition of typical highways. The vehicle roll and pitch angle as well as its height are shown

in Figure 8.27 together with the random road excitation of the right and left tracks. The left

and right tracks are taken to have the same spectral density function and are also correlated,

with the correlation coefficient having a value of 0.75. Averaging from 100 realizations, the

simulated spectral density of the random processes are plotted along with the theoretical

density in Figure 8.28. Similarly, the coherency functions which characterize the dependency

between the left and right tracks are also shown on lower half of Figure 8.28. Looking at

the road noise of the left and right tracks, one can see that they are highly correlated at low

frequencies. On the other hand, high frequency components of the noise do not seem to be

correlated between left and right tracks. An alternative way to look at this is by the means

of the coherency function as seen in Figure 8.28. At low wave number or spatial frequency,
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the left and right tracks are strongly correlated and the coherency function rapidly decreases

as the wave number increases.
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Figure 8.25: Vehicle response due to step steering input of 0.01 radian.

Small Angle Approximation

We would like to investigate the effects, if any, of a small angle approximation of the

pitch and roll angles, on the accuracy of the full model simulation. We have already

established that the operating range of the pitch angle is small enough that a small pitch

angle approximation does not have a significant effect on the simulation accuracy of the

vehicle model. The operating range of the roll angle is similar to that of the pitch angle.

Therefore we should also expect that making a small angle approximation to the roll angle

does not significantly reduce the model accuracy. Again we would like to find out under what

situations the vehicle might experience a large roll angle. During high lateral acceleration,

the maximum limit of the roll angle relative the ground surface can be at most around

'.



156 Cbapter 8: Vehicle Nonlinear Equations of Motion

10.0 400.0100.0 200.0 300.0
X coordinate (m)

0.0 ~-'-_........-==.---J~-'-_--'-_-'----'
0.0

300.0 r----r---,---r----..---.--,---.----,
Path of Vchicle eM

E
'-" 200.0
~
l:

1_ 100.0
>-

-0.02 '----'--'-.............................--'-...L.....J'--'--'-- .....

20.0 ,......,...-.-T"""""T~.,.....-,-"T"""1,.,...-,-- ...,

! 15.0
~
'g
"ii
>
-g
'i
II> 5.0e
U

~
'g 0.02
"ii
>
~ 0.00

>-

i 0.04

0.0 '--'--'--'---'----'--'--..........-'-..J.....-;'---'---'-.L......J

0.0 2.0 4.0 6.0 8.0 10.012.014.0
Time (sec)

Figure 8.26: Vehicle response due to a crosswind pulse of 15~.

0.05 radians. Since roll angle in the model is the sum of the relative roll and the road

superelevation, it is also necessary to obtain the maximum limit of the road superelevation.

Usually on regular highways, road superelevations are quite small, typically under 1%.

The only sections of the highway system where the road superelevation may be large are

the ramps connecting one highway to another. Nevertheless the superelevation of these

ramps are not large either. They are at most on the order of a few percent. To be on the

conservative end, we will use a road superelevation of 10% in our simulation to test the

effect of making a small angle approximation of the roll angle.

The roll angle of the vehicle is plotted in Figure 8.29 as the vehicle is traveling on a

planar road with a superelevation of 10% and the vehicle is initially rolled to the right by

0.05 radians relative to the road surface. This sets the initial condition of the roll angle to

approximately 0.15 radians. As shown in Figure 8.29, there is no noticeable deviation of
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the response between the approximated and the non-approximated system. The maximum

difference of the pitch angle between the two models is below two orders of magnitude. In

addition, the maximum error during transient response for any states is 2%, and during

steady state is much lower. Therefore, we conclude that it is reasonable to make a small

angle approximation of the roll angle.

Since the yaw angle can have any value, it is incorrect to use a small angle approximation

of the yaw angle. By making small angle approximation to the pitch and the roll angle, we

can achieve a 1% reduction in computation time. The reason that this improvement is less

than that in the longitudinal model is because the sub-components are more complicated and

there are more of them. In summary, it is reasonable to use a small angle approximation of

the pitch and roll angles. While the savings in computational time is minimal it is welcome.

Linearization Around a Constant Steering Angle

At some point during a trip, the vehicle will have to travel along a curve, which can be a

curvy stretch of freeway or a transition ramp from one freeway to another. Therefore it is

necessary to have a linearized model for fault detection and identification system to process

as the vehicle is traveling through a curved path. Each path can be considered as a constant

radius curve, hence we can linearize our model around a constant steering angle.

The linearization process is identical to that of the longitudinal case except that one

must be more careful in choosing the perturbation size for each coefficient. The acceptable

range for perturbation size now becomes smaller and is different for each coefficient. As

shown previously, it is best to plot each coefficient versus the perturbation size and pick the

coefficient at the appropriate region.

Once the linearized model is obtained at some nominal operating point, we can proceed

to measure the effective range of the linearized model which can reproduce the response

of the nonlinear model within a 10% error in all of the states. First, a linearized model

is obtained from the nonlinear model when the vehicle is traveling straight ahead. No

further investigation of the longitudinal response is required since it was already done in

"
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Section 8.3.1. Figure 8.30 shows the longitudinal speed, lateral speed and yaw angle of the

vehicle when the steering angle is perturbed by 0.01 radians. Even for a relatively large

perturbation of the steering angle, the yaw rate of the linearized model matches very well

that of the nonlinear model.

On the other hand, the steering input has no effect on the longitudinal velocity in the

linearized model. The reason is that a linear system is incapable of modeling even symmetric

responses of a nonlinear system. An even symmetric response is characterized by an output

that is affected only by the magnitude and not by the direction of the input. Therefore all

the modes that exhibit even symmetric behavior around zero steering angle input will be

not be captured by the linearized model. The longitudinal velocity is such a mode, hence

it is unaffected by any amount of perturbation applied to the steering angle. The modes

that are not even symmetric are the lateral and yaw velocities. Thus a perturbation in the

steering angle will directly perturb these modes as shown in Figure 8.30. Also apparent in

the plot is that the yaw velocity response is much more linear than the lateral velocity in

response to a steering input. With this in mind, a system linearized around a zero steering

angle must be used with caution in situations where a perturbation in steering angle might

be present.

Next, the system is linearized around a constant steering angle of 0.005 radians which will

steer the vehicle around a constant radius curve of 620 meters at steady state. This results

in a gentle lateral acceleration of about O.lg while the vehicle is traveling at a constant speed

around 26.5S:. To achieve a maximum limit of 10% error between the nonlinear and the

linearized system in all the significant states at steady state, the range of the perturbation

size for each input variable is found and tabulated in Table 8.2. In addition, some responses

of the perturbed system between the linearized and the nonlinear systems are compared.

Figure 8.31 shows the responses of the longitudinal, lateral, and yaw velocities as the throttle

position is increased by 15 percent. The most nonlinear state is the yaw velocity, since it

is not directly affected by the throttle position but, rather, indirectly coupled with other

states which can be directly or indirectly driven by the throttle position. In addition, a
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perturbation in the brake should also produce similar results as seen in Figure 8.32. As

discussed in Section 8.3.1, the responses of the nonlinear system due to brake input are

more linear than those due to throttle input. Hence, one should expect that the response of

the linearized model due to a brake perturbation covers a wider range such that the steady

state errors between the linearized and nonlinear system can be at most 10% when a step

input is applied. Lastly, the vehicle longitudinal, lateral, and yaw velocities are plotted in

Figure 8.33. Now the yaw velocity is directly coupled with the steering angle. Therefore one

can expect that the response of the yaw angle is quite linear with respect to a perturbation

of the steering angle. This can be clearly observed in Figure 8.33.

~------~~-----------~--~ --- --------
Orad. -15% to +15% N/A Oto 34N

0.005 rad. -14% to +14% -15% to +25% Oto 27N

Table 8.2: Effective range of the linearized system.

Unlike the system linearized around a zero steering angle, this system is able to capture

part of the coupled dynamics between the longitudinal and lateral motion. The reason is

that the even symmetric modes around a zero steering angle are not symmetric around

0.005 steering angle. Therefore the linearized system can model the nonlinear system more

accurately when the odd symmetric modes are dominant.

8.4 Summary of Model Development and Suggestions for Future Work

Two vehicle dynamics models have been developed using analytical mechanics. One is

a simplified longitudinal model and the other is a full lateral and longitudinal model.

The vehicle models include all major components including the suspension, tire traction,

engine, brake and steering models. In addition, the model allows for arbitrary road gradient

variations. Random road excitation is introduced using a first-order shaping filter approach.

In looking for ways to reduce computational complexity, a simulation study showed

that small angle approximations do not significantly affect the accuracy of the simulation.

'.
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However, the same simulation study indicated no substantial reduction in computational

time is realized by this approximation. Lastly, linearized vehicle dynamic models at various

operating points, including straight and curved paths, are derived numerically.

The following suggestions are recommended for future work in order to refine and

incorporate more features in the vehicle model. First, only a theoretical model is developed

here and unfortunately vehicle parameters from different sources are used. Hence it is

important to experimentally obtain all the vehicle parameters from a single test vehicle and

then validate the theoretical model using experimental data. In any development process

it is impossible to include all of the vehicle features at once. The list below covers the

important items which have been omitted and therefore require further investigation.

• Change in steering angle due to suspension geometry.

• Linear stabilizers.

• Modeling of the unsprung mass.

• Modeling of the wheel mass.

• Static camber.

• Dynamic camber induced by suspension movement.

• Static toe-in.

• Dynamic toe-in induced by suspension movement.

Since this vehicle model will be used in fault detection filter design and evaluation, it is

important to be able to model malfunctions or total failures in critical vehicle components.

Modeled failures might include, for example, a flat tire, brake failure, engine malfunction and

out-of-alignment steering. This development is especially important to health monitoring

system evaluation applications.
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Figure 8.27: Vehicle response due to road noise.
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Figure 8.32: Comparison of vehicle linearized and nonlinear system responses where brake
torque is perturbed by 27 N.



8.4 Summary of Model Development and Suggestions for Future Work
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Figure 8.33: Comparison of vehicle linearized and nonlinear system responses where steering
angle is perturbed by 25%.




