
CHAPTER 6

Bayesian Neural Networks

THE ESSENTIAL FEATURE of a residual processor is to analyze the residual process generated

by all fault detection filters and announce whether or not a fault has occurred and with what

probability. This requires higher level decision making and creation of rejection thresholds.

Nominally, the residual process is zero in the absence of a fault and non-zero otherwise.

However, when driven by sensor noise, dynamic disturbances and nonlinearities, the residual

process fails to go to zero even in the absence of faults. This is noted in the simulation

studies of the detection filters. Furthermore, the residual process may be nonzero when

a fault occurs for which the detection filter is not designed. In this case, the detection

filter detects but cannot isolate the fault because the residual directional properties are not

defined.

The approach taken in this section is to consider that the residuals from all fault

detection filters constitute a pattern, a pattern which contains information about the

presence or absence of a fault. Hence, residual processing is treated as a pattern recognition

problem. This class of problems is ideally suited for application to a neural network.
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The objective of a neural network as a feature classifier is to associate a given feature

vector with a pattern class taken from a set of pattern classes defined apriori. In an

application to residual processing, the feature vector is a fault detection filter residual

and the pattern classes are a partitioning of the residual space into fault directions which

include the null fault.

Three types of neural network classifiers are considered for the pattern recognition

problem: a single layer perceptron, a multilayer perceptron and a Bayesian neural network.

The single layer perceptron is the simplest continuous input neural network classifier and

has the ability to recognize only simple patterns. It decides whether an input belongs to

one of the classes by forming decision regions separated by hyperplanes. It is shown later

that the decision regions formed by the single layer perceptron are similar to those formed

by a maximum likelihood gaussian classifier if the inputs are gaussian, uncorrelated and the

distributions for different classes differ only in the mean values. Note that the perceptron

training procedure may lead to oscillating decision boundaries if the underlying distributions

of the input intersect, that is, if the classes are not mutually exclusive.

The multilayer perceptron is a feedforward network with input, output and, possibly,

hidden layers. Unlike the single layer perceptron, which partitions the decision space with

hyperplanes, the multilayer perceptron forms arbitrarily complex convex decision regions.

Furthermore, since no assumptions are required about the shapes of the underlying input

probability distributions, the multilayer perceptron is a robust classifier that may be used

to classify strongly non-gaussian inputs driven by nonlinear processes.

The Bayesian neural network is a multilayer perceptron with output feedback and

is modified to include a sigmoidal activation function at each ouput node. The output

activation functions take values between zero and one. It is shown later, in Section 6.2.2, that

the output activation functions of a Bayesian neural network provide posterior probabilities

of classification conditioned on the applied input history. A stochastic training algorithm

further enhances robustness in that training sets are considered as sample sets providing

information about the entire population. This is explained in Section 6.3.
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6.1 Notation

Notation for a q-Iayer multilayer perceptron is as follows.

number of nodes in layer i.
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S(x)

network input at time k.

input to layer i at time k where i E {2, ... , q}.

output of layer i at time k where i E {I, 2, ... , q}.

activation function.

bias vector of layer i where i E {2, ... , q - I}.

weighting matrix of layer i where i E {2, ... , q}.

Connections for a q-Iayer multilayer perceptron with one step delayed output feedback are

defined in (6.1). The connections are illustrated in Figure 6.1 for a five layer network.

xl = Uk + Yk-l (6.1a)

xi = Wiy~-l + ~i, where i E {2, ... ,q} (6.1b)

Yk = S(xi), where i E {l, ... ,q} (6.1c)

S(x)
eX

(6.1d)= eX + 1

6.2 Bayesian Feature Classification and Neural Networks

A Bayesian feature classifier is optimal in the sense that it assigns a feature to the pattern

class with the highest posterior probability, that is, a feature vector x is associated with a

pattern class A if

Most classifiers use probabilities conditioned on the class P(xfA) and use Bayes' rule to

generate posterior probabilities, that is,

P(Afx) = p(xfAi)p(Ad
p(x)
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Figure 6.1: Bayesian neural network with feedback.

m

P(x) = LP(x/Aj)p(Aj )
j=l

This indirect way of calculating posterior probabilities makes assumptions about the form of

the parametric models P(x/Ad and the apriori probabilities (Morgan and Bourlard 1995).

Multilayer perceptrons do not require any assumptions about the pattern distributions

and can form complex decision surfaces. Several authors (Richard and Lippmann 1991,

Bourlard and Wellekens 1994) show that the outputs of multilayer perceptron classifiers can

be interpreted as estimates of posterior probabilities of output classification conditioned on

the input. Blaydon (Blaydon 1967) proved the same for a two-class linear classifier.

The following subsections provide two results that establish the utility of multilayer

perceptrons as Bayesian feature classifiers. Section 6.2.1 shows that the decision regions

created by a maximum likelihood gaussian classification algorithm can be generated using

'.
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a multilayer perceptron with sigmoidal node functions. Section 6.2.2 shows that the output

of a Bayesian neural network can be interpreted as an estimate, conditioned on the input

history, of the posterior probabilities of feature classification.

6.2.1 A Maximum Likelihood Gaussian Classifier as a Multilayer Perceptron

In this section, it is shown that the decision regions created by a maximum likelihood

gaussian classification algorithm can be implemented using a multilayer perceptron with

sigmoidal node functions. First, consider a binary hypothesis case, that is, one where the

input is assumed to be associated with one of two classes.

Let the input of a maximum likelihood gaussian classification algorithm be x E Rn , the

output y E R2 and the two classes 'Hi and 'Hj. For simplicity, assume that the underlying

conditional probability density functions of x have identical covariances but different means

as in

'Hi : x '" N(mi, A)

'Hj : x '" N(mj, A)

where

Now define a log likelihood function L j as:

Li ~ 21n[(21Tt/2\All/2!(x/'Hi)]

= -(x - mifA-1(x - mi)

Then, the difference between the two liklihood functions Li - Lj has the form

L ij ~ Lj - Lj

= 2(ffij - mjfA-Ix + (mTA-lmj - m[A-lmd

= Wx+~
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An input classification decision function follows as

Chapter 6: Bayesian Neural Networks

::} Declare 'Hi

::} Declare 'Hj

The same decision region could be obtained using a single layer perceptron in which the

weighting matrix is W, the bias vector is <I> and the output is a sigmoidal function of the

form S(Lij ). An easy extension to the multiple hypothesis case follows from a decision

function based on L i - maxj;ei L j .

The similarity in form between a maximum likelihood gaussian classifier, as above,

and a perceptron is obvious. However, note that traditional statistical classifiers require

prior knowledge of the stochastic properties of the inputs. This is not so for perceptrons.

Furthermore, it can be shown that multilayer perceptrons with hidden layers and sigmoidal

nodal functions behave as universal approximators, that is, they have the capability of

approximating any function to any degree of accuracy given a sufficient number hidden

nodes. Refer to (Funahashi 1989, Hornik et al. 1989) for details.

6.2.2 A Bayesian Neural Network Provides Feature Classification Probabilities

This section shows that the output of a Bayesian neural network can be interpreted as

an estimate of the posterior probabilities of feature classification conditioned on the input

history. Let Xk E Rn be a feature vector and Xk = {Xl, ... ,xd be a history of feature

vectors. Let

be a set of q pattern classes Ai into which a feature vector may be classified and let

y(w,x) E Rm be the output of a multilayer perceptron. The parameter w is a vector

containing the perceptron weights and bias vectors. Let Zk E Rm be a vector defined

as:

T ~ { [0, ,1, ,0],
Zk = [0, , 0, , 0] , iE{l,oo.,m}



6.2 Bayesian Feature Classification and Neural Networks 67

From the definition of the Bayesian neural network connections, (6.1), the conditional

expectation of Zk is

where E[·] is the expectation operator and where P(A) is a vector of probabilities

Note that if the A are mutually exclusive and exhaustive events, then IIP(A/Xk)lll = 1.

Consider the regression function

J(w) = Ex,z [liz - y(w, x)1I 2
]

An expansion of the norm and the expectation operator lead to

J(w) = Ex [Ez [liz - y(w, x) 11 2 IX]]

= Ex [Ez [llzl1 2
- 2yT(w, x)z + lIy(w, x)1I 2 IX]]

= Ex [LP(Ai/X) - 2yT(w,x)P(A/X) + lIy(w,x)11 2
]

= Ex [I:P(A/X) -IIP(A/X)1I 2
] + Ex [IIP(A/X) - y(w,x)11 2

]

(6.2)

Since the first expectation term is independent of the multilayer perceptron parameters,

minimization of J is the same as minimization of F where

and

F(w) f). Ex [IIP(A/X) - y(w, x) 11
2

]

Thus, when the network parameters are chosen to minimize a mean-squared error cost

function, the outputs are estimates of the Bayesian posterior probabilities.
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6.3 Learning Algorithms for Neural Networks

The learning phase of a neural network involves the determination of the synaptic weights

and bias vectors of the network. The backpropagation algorithm, the most widely used

learning algorithm in neural network applications, consists of two passes through the layers

of the network: a forward pass and a backward pass. In the forward pass, an input is

applied to the input layer and allowed to propagate through the network to produce an

output. During this pass, the synaptic weights and bias vectors are held fixed. In the

backward pass, the network output is compared to a desired output and an error vector is

formed. As the error vector propagates backward through the network, the synaptic weights

and bias vectors are adjusted with an error correction rule to minimize the error. Together,

the applied input and desired output form a neural network training set.

The learning phase may be viewed as a nonlinear unconstrained parameter optimization

problem. Depending upon the nature of the input, two types of algorithms are considered:

deterministic and stochastic learning algorithms. With deterministic algorithms, the cost

function is specific to the given training set. Networks trained this way tend to produce

unexpected results when inputs are given that were not part of the training set. With

stochastic algorithms, the cost function is the expected error for a given training set.

Networks trained this way tend to be more robust to unknown inputs.

6.3.1 Deterministic Learning Algorithms

Define a learning cost function J as the mean squared error between the actual and desired

output
N

J(w) = L ek

k=l N

where

and where Yk is the network output for training set k, Zk is the desired output from training

set k and N is the number of training sets. Recall that J depends on the network weight
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and bias vectors.
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A Davidon-Fletcher-Powell algorithm may be used to solve the unconstrained parameter

optimization problem. For a quadratic cost with n parameters, the Davidon-Fletcher-Powell

algorithm converges in n iterations. A rank two update for the Hessian matrix will ensure

that the Hession is positive definite at the end of each iteration. A suitable test for

convergence is to check whether the change in the Hessian matrix is small.

6.3.2 Stochastic Learning Algorithms

From Section 6.2.2, the problem of training a Bayesian neural network may be viewed as

a nonlinear regression function minimization. Consider the cost J(w), a function of the

network weights and bias vectors, given by (6.2)

J(w) = Ex,z [liz - y(w, x) 11
2

]

Let

¢(w)

g(w) =

liz - y(w, x)1I 2

2[ ( )]TOY(W, x)
-z-ywx, ow

For the minimization problem minw J(w), a necessary condition for a parameter vector w

to be minimizing is that

'VJ(w) = Ex,z[g(w)] = 0

Since both z and x are random variables, g(w) is a noisy gradient of the cost. Samples of

¢(w) and g(w) are available for the minimization process.

The stochastic minimization minw J(w), may be implemented with a Robbins-Munro

algorithm. The algorithm is a variation of the steepest descent algorithm

where Pk > 0, L: P~ < 00 and L: Pk = 00.
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It can be shown that under the following three assumptions, the algorithm converges in

the mean square sense, that is,

1. ¢(w) has a unique zero wo, which is bounded.

2. g(w) is linear near woo

3. The variance of g(w) is bounded above by a quadratic function of w as in

h>O

Of course, from Chebyshev's inequality, the algorithm also converges with probability one.

An initial solution to the problem is found by removing the expectation operator and

using the Davidon-Fletcher-Powell deterministic algorithm. This validates the first two

assumptions for the multilayer perceptrons. By taking partial derivatives and exploiting

the fact that multilayer perceptrons have sigmoidal activation functions, it is seen that

the variance of g(w) is always bounded. Thus all three assumptions hold for multilayer

perceptrons and the stochastic training algorithm converges with probability one.

6.4 Bayesian Neural Networks as Residual Processors

The objective of a residual processor is not just to announce a fault but to provide an

associated probability of false alarm. While, multilayer perceptrons have proved to be very

successful in static pattern recognition problems (Haykin 1994), a recurrent Bayesian neural

network can be shown to approximate the posterior probability of feature classification

conditioned on an input history.

The residual processor designs described in this section are applied to the fault detection

filters of (Douglas et al. 1995). These filters are used when the vehicle is operating at a

nominal 27s: on a straight road so vehicle lateral dynamics are not considered. Four

Bayesian neural network residual processors are designed, one for each fault detection filter.
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A schematic of one network is provided in Figure 6.1. Each network has the following

properties.

• Each has five layers: one input layer, three hidden layers and one output layer.

• A feedback loop is included where a one step delayed output is summed with the

current input at the input layer.

• The activation function S(·) is a sigmoidal function. This function has a smooth

nonlinearity which is useful for gradient calculations.

• Network connections are defined in (6.1) and are illustrated in Figure 6.1. All vectors

are in R3 except for the network associated with fault group four where the vectors

are in R 2.

Figure 6.2 shows the residual processing scheme using Bayesian neural networks and the

fault detection filters for the longitudinal simulation.

6.5 Simulation Results

Each Baysian neural network is trained to announce the probability of a fault in a particular

sensor conditioned on the residual process. The training data for each network is obtained

by simulating bias faults of some nominal size in the vehicle nonlinear simulation.

Two types of faults are considered for residual processor testing: step faults and ramp

faults. Step faults are an abrupt change from a no fault situation to a nominally sized fault

in a particular sensor. Step faults are considered in the pitch rate and air mass sensors.

Since the Baysian neural networks are tested on the training set, no effort to generalize

responses to unknown faults is made here.

Ramp faults correspond to a gradual, linear change from a no fault situation to a fault in

a particular sensor. In contrast with the step faults, ramp faults necessarily represent fault

sizes that have not been encountered by the Baysian neural networks in their respective

training sets. These kinds of faults illustrate the generalization capability of the Baysian

neural networks.
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6.5.1 Step Faults

Cbapter 6: Bayesian Neural Networks

Figures 6.3, 6.4 and 6.5 each show one of the ouptuts of the Bayesian neural network for

fault group three. This network analyzes the residuals from the fault detection filter which

considers sensor faults for the pitch rate, forward symmetric wheel speed and the rear

symmetric wheel speed sensors.

In each figure, no fault occurs from t = 0 to t = 4 sec. From t = 4 sec. onwards, step

faults in different sensors and actuators are applied one at a time and in the following order:

• pitch rate sensor (T)

• front wheel speed sensor (FS)

• rear wheel speed sensor (RS)

• air mass sensor (M)

• engine speed sensor (W)

• longitudinal accelerometer (X)

• throttle actuator (A)

• brake torque actuator (Tb)

Note in the figures that there are two cases for the throttle fault. Figure 6.3 shows

the posterior probability of a pitch rate sensor fault conditioned on the residual process.

Figure 6.4 shows the posterior probability of a front wheel speed fault conditioned on the

residual process. Figure 6.5 shows the posterior probability of a rear wheel speed sensor

fault conditioned on the residual process.

Each figure shows that the Bayesian neural network gives a high probability of a fault

when a fault occurs in the corresponding sensor or actuator and a low probability of a fault

otherwise. Note that the residual process is nonzero when a fault occurs in any sensor apart

from the sensors for which the filter is designed. Even though the residual is nonzero, the

network correctly does not announce a fault.

'.
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6.5.2 Ramp Faults
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In this section, ramp faults are considered in the pitch rate sensor, vertical accelerometer,

longitudinal accelerometer and the air mass sensor.

Figures 6.6 and 6.7 show fault detection filter residuals and outputs of a Bayesian neural

network for fault group three. In these figures, Z, T and RS denote the magnitudes of the

vertical accelerometer, pitch rate and real wheel speed residuals and P(Z), P(T) and P(RS)

denote the posterior probability of the corresponding fault conditioned on the residual

process. Figures 6.8 and 6.9 show the same results but for fault group one. In these

figures, M, Wand X denote the magnitudes of the air mass sensor, engine speed sensor

and longitudinal accelerometer residuals and P(M), P(W) and P(X) denote the posterior

probability of the corresponding fault conditioned on the residual process. In each figure,

no fault occurs from t = 0 to t = 1 sec. and from t = 1 sec. onwards, a ramp fault occurs.

• Figure 6.6 shows results when a ramp fault of size 0 to 0.5~ occurs in the pitch rate

sensor. Note that the Bayesian neural network has been trained with a nominal pitch

rate sensor step fault of 0.05~ .

• Figure 6.7 shows results when a ramp fault of size 0 to 5~ occurs in the vertical

accelerometer. The network has been trained with a nominal vertical accelerometer

step fault of 0.5~.

• Figure 6.8 shows results when a ramp fault of size 0 to 1~ occurs in the longitudinal

accelerometer. Training has been done with a nominal longitudinal accelerometer step

fault of 0.1~.

• Figure 6.9 shows results when a ramp fault of size 0 to 0.14 kg. occurs in the air mass

sensor. The network has been trained with a nominal air mass sensor step fault of

0.07 kg.
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6.6 Discussion

Chapter 6: Bayesian Neural Networks

At this stage, an interesting comparison may be made of the stochastic and deterministic

training approachs. In the stochastic approach, the training sets are considered as sample

sets which provide information about the entire population. In the deterministic approach,

the training sets are the entire population hence no effort is made to generalize. The

classes may intersect in the pattern space for the stochastic problem, while the deterministic

approach theoretically considers mutually exclusive classes only.

From a theoretical perspective, when Bayesian neural networks are trained for pattern

classification using the mean square criterion, their outputs are estimates of classification

probabilities conditioned on the input. This conclusion is valid for any approach based

on the minimization of the mean-squared error criterion. However, in theory, multilayer

perceptrons can approximate any non-linear mapping (Lippmann 1987), hence, they are

more likely to fit the posterior probabilities. The simulation studies conducted demonstrate

the above assertion.
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Figure 6.2: Residual processing scheme for the longitudinal simulation.
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Figure 6.4: Posterior probability of a fault in the front wheel speed sensor.
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Figure 6.5: Posterior probability of a fault in the rear wheel speed sensor.
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Figure 6.6: Ramp fault in pitch rate sensor.
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Figure 6.7: Ramp fault in vertical accelerometer.
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Figure 6.9: Ramp fault in air mass sensor.
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CHAPTER 7

Sequential Probability Ratio Tests

THE RESIDUAL PROCESSING PROBLEM is considered in this section as a hypothesis detection

and identification problem. Both Bayesian (Shiryayev 1977) and non-Bayesian approaches

(Nikiforov 1995, Basseville and Nikiforov 1995) to the classical change detection problem

have been developed. A binary hypothesis Shiryayev test, which is a Bayesian approach,

is formulated by Speyer and White (Speyer and White 1984) as a dynamic programming

problem. A similar approach, one also using a dynamic programming formulation, is taken

here to derive an online multiple hypothesis Shiryayev Sequential Probability Ratio Test

(SPRT).

It is shown that for a certain criterion of optimality, this extended Shiryayev SPRT

detects and isolates the occurrence of a failure in a conditionally independent measurement

sequence in minimum time. The algorithm is shown to be optimal even in the asymptotic

sense and the theoretical results have been extended to the detection and identification

of changes with unknown parameters. The dynamic programming analysis includes the

measurement cost, the cost of a false alarm and the cost of a miss-alarm.
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Note that with the Shiryayev SPRT, a change in the residual hypothesis is detected in

minimum time. In contrast, the Wald SPRT detects the presence or absence of a failure in

the entire measurement sequence. Here, the residual hypothesis is unknown but is assumed

to be constant through the measurement sequence.

A non-Bayesian approach to the classical change detection problem is the Generalized

CUMulative SUM (CUSUM) algorithm (Nikiforov 1995, Basseville and Nikiforov 1995). It

has been shown that there exists a lower bound for the worst mean detection delay and

that the CUSUM algorithm reaches this lower bound. This establishes the algorithms worst

mean detection time minimax optimality.

Recently, the algorithm has been extended to solve the change detection and isolation

problem (Nikiforov 1995). This extension is based on the log likelihood ratio between two

hypotheses 'Hi and 'Hj. When the difference between the log likelihood ratio and its current

minimum value for a given hypotheses 'Hi and other hypotheses exceeds a chosen threshold,

hypothesis 'Hi is announced. This implies that a hypothesis announcement requires that

the recent measurements be significant enough to support the announcement.

Several important observations are made regarding the extended CUSUM algorithm.

• The algorithm is computationally intensive and is not recursive. If the number of

hypotheses is m, the number of computations is of the order of m 2 • This problem

can be avoided by modifying the algorithm to compare all the hypotheses to the null

hypothesis 'Ho while doing the computations. This modification would reduce the

number of computations from the order of m2 to m.

• No assumption is made about the apriori probability of change from hypothesis 'Ho

to 'Hi from one measurement to the next. This probability is embedded explicitly in

the Shiryayev SPRT.

• Unlike the Shiryayev SPRT, the posterior probability of a hypothesis change is not

calculated in the CUSUM algorithm.



7.1 Preliminaries and Notation 83

• Thresholds for hypothesis change announcements must be made apriori whereas in

the Shiryayev SPRT, a methodology for interpreting the choice of the threshold is

explicit.

• The CUSUM algorithm is similar to the Wald SPRT in that a finite size, sliding

data window allows for changes in hypothesis to be detected but that the hypothsis

essentially is assumed to be constant throughout the window.

This chapter is organized as follows. Notation is defined in Section 7.1. Section 7.2

has the main development of a multiple hypothesis Shiryayev sequential probability ratio

test. First, a conditional probability propagation equation is developed. Next, a dynamic

programming problem is defined and some of the asymptotic properties of the cost function

are demonstrated. Next, a decision rule is defined by building thresholds. Finally, the

test is generalized to the detection and isolation of changes with unknown parameters.

In Section 7.3 a few illustrative examples are given and in Section 7.4, the algorithm is

applied to a health monitoring system for automated vehicles using a high-fidelity nonlinear

simulation. The performance of the algorithm is evaluated by implementing it in a fault

detection and identification scheme in the longitudinal nonlinear vehicle simulation. Finally,

in Section 7.5, a few comments are made about assumptions underlying the MHSSPRT.

7.1 Preliminaries and Notation

Let Xk be a measurement vector at time tk and Xk ~ {Xk} be a conditionally independent

measurement sequence. A fault is said to occur when there exists a discrete jump in the

probabilistic description of Xk. The probabilistic description of Xk is assumed to be known

both before and after a fault occurs. The fault hypotheses are enumerated as faults of type

i with the total number of faults m + 1 being fixed. The fault type 0 is also called the

n~fault or null-fault hypothesis.

The probability density function of Xk in the n~fault or type i fault state is denoted

Jo(-) or Ji(-)' These probability density functions are constant so no subscript k is indicated.



84 Chapter 7: Sequential Probability Ratio Tests

However, note that in the following development, the density functions are not required to

be constant.

During any time interval tk < t $; tk+l, the probablility that the measurement sequence

Xk will switch from a n<?fault state to a type i fault state is known apriori and is denoted

Pi. The time that the meaurement sequence switches from a n<?fault state to a type i fault

state is not known and is denoted 8i .

The probability that a type i fault has occured before time to is 7ri ~ P(8i ~ to). The

probability, conditioned on the measurement sequence Xb that a type i fault has occured

before time tk is Fk,i = P(8i $; tk/Xk). The above notation and definitions are summarized

as follows.

=

Xk ~=
m ~

foO ~

fi (-) ~

Pi ~=
Oi ~=

Measurement vector at time tk.

Measurement history through tk.

Number of fault types.

Probability density function of Xk under n<?fault hypothesis.

Probability density function of Xk under type i fault hypothesis.

Apriori probability of change from n<?fault to type i fault for tk < t $; tk+l'

Time of type i fault.

7ri ~ P((}i $ to).

Fk,i ~ P((}i $; tk/Xk)

7.2 Development of a Multiple Hypothesis Shiryayev SPRT

An extension of the Shiryayev sequential probability ratio test to allow multiple hypotheses

is as follows. First, a conditional probability propagation equation is developed. Next, a

dynamic programming problem is defined and some of the asymptotic properties of the cost

function are demonstrated. Next, a decision rule is defined by building thresholds. Finally,

the test is generalized to the detection and isolation of changes with unknown parameters.
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The results of this section are encapsulated in two propositions. The first proposition

provides a recurrsive update for Fk,i, the conditional probability that a type i fault has

occured. The second proposition shows that Fk,i, as given by the recurrsion, is consistent

with the definition of a probability.

Proposition 7.1. A recursive update formula for Fk,i is

FO,i = 7Ti

Fk+l,i =

where

!11k · = Fk +p'(l- Fik·)1t ,1 I ,t

(7.1a)

(7.1b)

(7.1c)

Proof. The proof is done by induction. The probability FI,i that a type i fault has

occured before tl given a meausurement Xl is given by Bayes' rule as

(7.2)

where

m

P(Xl) = L [P(XdOi :5 tt}P(Oi :5 tl) + P(xdO. > tl)P(Oi > tl)] (7.3a)
i=l

P(Oi :5 tl) = P(Oi :5 to) + P(to < Oi :5 tl)

= 7Ti + Pi(l - 7Ti) (7.3b)

P(xl/Oi > tl) = !o(XI)dxI (7.3c)

P(XdOi ::; tt} = !i(XI)dxI (7.3d)
m m

LP(Oi > tl) = 1- LP(Oi::; tl) (7.3e)
i=l i=l

Strictly, (7.3d) denotes the probability that the measurement lies between Xl and Xl + dXl

given the occurrence of a type i fault at or before tl. Expanding (7.2) with the identities
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of (7.3) produces the fault probability F1,i.

F . - [7I"i +Pi(1- 71"i)]fi(Xl)
1 (7.4)

,J - Ei~d7l"i + Pi(1- 71"i)]h(xd + (1- ~:d7l"i+Pi(1- 71"i)])!O(Xl)

The probability Fk,i, conditioned on a measurement sequence mathrmXk, that a type

i fault has occured before tk is given by Bayes' rule as

P(8. < t /X ) = P(Xk+I/8i ~ tk+l)P(8i ~ tk+l)
J - k+l k+l X

k+l

Since the measurement sequence is conditionally independent, this expands to

P(Xk+I/8i ~ tk+l)P(Xk/8i ~ tk+l)P(8i ~ tk+d
P(Xk+l)

and finally to

P(xk+I/8i ~ tk+l)P(8i $ tk+l/Xk)
P(Xk+l/Xk)

(7.5)

which follows from the identity

Now, consider the following identities

m

P(Xk+l/Xk) = :L [P(xk+I/8i ~ tk+l)P(8 j ~ tk+I/Xk)+
i=l

P(Xk+l/8i > tk+l)P(8i > tk+I/Xk)] (7.6a)

P(Oi ~ tk+l/Xk) = P(Oi ~ tk/Xk) + P(tk < 8i <= tk+I!Xk) (7.6b)

- Fk,i + Pi(1 - Fk,i) (7.6c)

P(xk+I/8i > tk+l)

P(Xk+l/8i ~ tk+l)
m

LP(8i > tk+I!Xk)
i=l

= !O(Xk+l)dxk+l

= h(Xk+l)dxk+l
m

= 1- L P(8i ~ tk+l/Xk)
i=l

(7.6d)

(7.00)

(7.6f)

Expanding (7.5) with the identities of (7.6) produces the fault probability Fk+l,i'

F Mk,ih(xk+l) (7.7)
k+l,i = (~:l Mk,i) h(Xk+l) + (1- Er;l Mk,i) !o(xk+d

where Mk,i is defined in (7.1c) Relations (7.4) and (7.7) together prove the induction. •
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The following proposition states that a simple requirement on the initial conditions

ensures that the Fk,i are consistent with the definition of a probability

Proposition 7.2. The condition E~l1ri $ 1 implies that

and

m

LFk,i $1 V k
i=l

Proof. The proof follows as a direct application of the recursion (7.1).

Note that Fk,o = 1 - E~l Fk,i. Finally, note that (7.1) reduces to a multiple hypothesis

Wald SPRT if Pi = 0 Vi.

7.2.2 Dynamic Programming Formulation

At each time tk one of two actions are possible:

1. Terminate the measurement sequence and announce a fault of type i. The cost of

making a correct announcement is zero while the cost of a false alarm of type i is Qj.

2. Take another measurement. The cost of the measurement is C and the cost of a

miss-alarm of type i is Sj.

An optimal decision algorithm is derived by minimizing the expected cost at a time tN.

Suppose N measurements are taken and that at time tN, a type i fault is announced.

Assuming further that only one fault may have occurred, the cost is

so the optimal cost at t N is

(7.8)
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The expected cost at time tN-1 is
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and the optimal cost at tN -1 is

In general, the optimal expected cost at time tk is

where

Ak(Fk) A EXk +! [Jk+dXk]

Fk A [Fk,l, Fk,2,"" Fk,mf

(7.9a)

(7.9b)

The expectation is taken with respect to the conditional probability density functions

!i(Xk+dXk).

The optimal policy, one that minimizes the expected cost at each time tk, is stated with

respect to a threshold probability FTk,i:

• If Fk,i ~ FTk,i, announce a type i fault .

• If Fk,i < FTk,i for each i E {I, ... ,m}, take another measurement.

The threshold probability FTk,i is determined at each time tk as the value at which the

expected cost of terminating the test by announcing a fault, and possibly a false alarm, is

the same as the expected cost of continuing the test by taking another measurement.

(7.1Oa)

with

(7.1Ob)
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Unfortunately, determining the threshold probabilities FT",i is a numerically intractable

problem, even in the scalar case where m = 1. This is because the Ak(FT,,) expectations

are evaluated with respect to the conditional probability density functions fi(Xk+dXk) or

(7.6a) in the proof of Proposition 7.1,

P(Xk+I!Xk) =
m

L [P(xk+dOi ~ tk+l)P(Oi ~ tk+l/Xk) + P(Xk+dOi > tk+l)P(Oi > tk+dXk)]
i=l

The following lemma establishes properties of Ak(FT,,) which allow for a tractable policy,

one which is optimal in the limit as (N - k) -+ 00.

Lemma 7.3. The functions Ak(Fk) satisfy the following properties Vk E {I, ... ,m}

Proof.

Property 1: Note that by the recursion relation (7.1) of Proposition 7.1, 7ri = 1 ::::}

Fl,t = 1 and Fk,i = 1 ::::} Fk+1,i = 1. By induction, 7ri = 1 ::::} Fk,i = 1, Vk E

{I, ... ,N}. Also, note that by Proposition 7.2, 7ri = 1 ::::} Fk,j = 0 for j f. i and

'r/k E {I, ... , N}.

Suppose 7ri = 1 for some i. By the definition of Ak(Fk)

AN-1(FN-l) = EXN [Jiv/XN-l]

= EXN [min(1 - FN,i)Qi/XN-l]
I

= 0

(7.11a)

(7.11b)

(7.11c)

since 7ri = 1 ::::} FN-l,i = 1. Now, suppose Ak(Fk) = 0 where again 7!'i = 1. Then

= Ex,,[J';/Xk-l]

= Ex" [min min [(1 - Fk,dQi, C + SiFk,i + Ak(Fk)] /Xk - 1]

= 0

(7.12a)

(7.12b)

(7.12c)
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Relations (7.11) and (7.12) prove property 1 by induction.

Property 2: By the definition of Ak-l(Fk-l),

Ak-l(Fk-l) = Ex,,[J;/Xk-l]

= Ex" [min min [(1- Fk,i)Qi, C + SiFk,i + Ak(Fk)] /Xk-l]

Since the test terminates at time tN, it must happen that for the minimizing i,

So,

Ak-l(Fk-d = EXk [min(C+SiFk,i+Ak(Fk))/Xk-l]

= C + m~n SiFk,i + EXk [Ak(Fk)/Xk-l)
1

Therefore,

Property 3: Now show that Ak(-) is concave. By inspection of (7.8) and (7.9), Jiv is

concave. Since the test ends at tN:

(7.13)

(7.14)

Clearly, Jiv-1 is concave if AN- 1 is concave. Let the elements of the countably infinite

measurement space be denoted by x{ where j = 1,2, ... ,00 and k = 1,2, ... , N. From (7.9)

and (7.6a) :

Ak = f: [(fMk.i) fi(x{+l) + (1- fMk'i) fO(x{+l)] J;+l(Fk+d
3=1 1=1 ,=1

00 m

= LLhf(Fk)
j=l i=l
00

= Lhj(Fk)
j=l

where
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and where
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If each of the h1 is concave, the summation is concave. Therefore, it remains to show that

where A, Ff' Ff E [0,1]. Define

~k,i ~ [FI,i + Pi(l- Fk)] [1i(xk+1) - !O(xk+1)] + ~!O(xfc+1) for T = 1,2.

so that the convexity inequality (7.15) becomes

~ ~ 1 2
where Fk+1 = Fk+1 (A, Fk , Fk ). Now,

F 1,2 = M~:; !i(Xk+1)
k+1,i "m c1,2

L.....s=l '>k,s

[AMf,j + (1 - A)Mf,i] !i(Xk+1)
Fk+1,i = m 1 ) 2

2:s=l A~k,s + (1 - A ~k,s

Let ~~,2 = E~l ~~:;. Then, from (7.17) and (7.18)

1 -1 2-2
~ AFk+1i~k + (1 - A)Fk+1i~k
~k .-' ,

+1,1 - Aef + (1 - >.)e~

Take a summation from i = 1, ... , min (7.16) to get

(7.17)

(7.18)

[

-1 1 -2 2 ]* A~kFk+1 + (1 - A)~kFk+1
Jk+1 - - >

).~k + (1 - A)~~ -
-1 -2

A~k J* (F? ) + (1 - A)~k J* (p2 ) ()
A~k + (1 - A)~~ k+1 k+l Aek + (1 _ A)e~ k+1 k+1 7.19

From (7.8) and (7.9), Jiv is concave and hence satisfies (7.19). This implies that AN - 1 is

concave. But from (7.13), I N-1 is concave if AN-1 is concave. Hence, by induction, Ak(-)

are concave 'Vk. •



92 Chapter 7: Sequential Probability Ratio Tests

7.2.3 Thresholds for the Optimal policy

Lemma 7.3 showed that the Ak(Fk) are monotonically decreasing in k and bounded because

of the concavity property in F. This implies that for an infinite number of stages, that is,

(N -k) --+ 00, each threshold probability FTICli also approaches a limit. To see this, r~arrange

(7.10) as

Then,

Q·-C
FT· < FT. < < FT· < ~l_:::-

k,l - k-l,l - .•• - ,1 - Qi + S,

The dynamic programming algorithm for infinite time reduces to

(7.20)

where

A(F) =

and the threshold probabilities FT" are determined by

(7.21)

Since A(FT ) is still hard to evaluate, a workaround is proposed. The idea is to choose

the FT,i where

o· ~ 1- FT·1 _ ,I

are interpreted as false alarm rates and imply unknown Q" Si and C through (7.21). In

the context of (Qi, Si, C), the Shiryayev SPRT, extended here to multiple hypotheses, gives

the minimum stoping time out of the set of stopping times {Ti}' This comes from an

interpretation of the dynamic programming algorithm for infinite time (7.20) as a Bayes'

risk minimizing cost (Shiryayev 1977)
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Here, E[l - FTi ,i] is the expected type i false alarm probability and E [max{Ti - 6i , O}] is

the expected delay of detecting a type i fault correctly.

The optimization problem is to minimize the mean time of delay in announcing a type

i fault subject to the constraint that the probability of false alarm 0i = 1 - FT,i is fixed at

Oi = 1 - FT,i' The quantity (~) becomes the Lagrange multiplier.

In the binary hypothesis case, m = 1, the Shiryayev SPRT policy is often expressed in

a likelihood ratio form (Speyer and White 1984). This allows for an easy comparison with

the Generalized Likelihood Ratio Test of (Nikiforov 1995),(Basseville and Nikiforov 1995).

Define the likelihood ratio Lk, where the i subscript is dropped because there are only two

hypotheses,

Fk
L k =

1- Fk

and use (7.1) of Proposition 7.1 to develop a recursion relation

Lo =

Given a threshold likelihood ratio,

7r

1-7r

[
!I(Xk+l)] (Lk + P)
fO(Xk+d 1- P

LT= FT
1-FT

the fault announcement policy becomes

• If L k ~ L T , announce that a fault has oeeured.

• If Lk < LT, take another measurement.

Liklihood ratios can be defined in the obvious way for the multiple hypotheses case

m> 1

7ri
LO,i =

1- 7ri

FIc,i
LIc,i -

1- FIc,i

but no simple recursion relation can be developed from (7.1) to propagate the liklihood

ratios.
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7.2.4 Detection of Unknown Changes
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The Shiryayev SPRT and the multiple hypotheses generalization, as described above, are

developed for measurement sequences with known probability density functions, known

both before and after a fault. It is an easy extension to allow the density functions to

depend on a scalar unknown parameter a. Assume that the unknown parameter is also a

random variable defined over a set n and has probability density function 'f/Io(O). Then,

the conditional density function of the measurement sequence becomes

=

=

f(X/'Hi)

Jf(X/'Hi, 71) 'f/Io(71)d71
n

(7.22)

Now, replace fi(-) with the new density function h(-) in the recursive relation (7.1). The

rest of the analysis remains the same.

7.3 Examples

Before considering the development of a residual processing module for Advanced Vehicle

Control Systems, two examples are considered to illustrate the application of a multiple

hypothesis Shiryayev SPRT. In the first example, the measurement sequence is taken

as a white noise sequence with one of five possible means. In the second example, the

measurement sequence is modeled as a scalar white noise sequence with unit power spectral

density however, the mean is unknown.

7.3.1 Example 1

Here, the measurement sequence is modeled as a scalar white noise sequence with unit

power spectral density and one of five possible means. The five hypotheses including the

null hypothesis are summarized as

'Hi: X'" N(O.5i, 1) where i E {O, 1,2,3, 4}



7.3 Examples 95

For example, introduction of a bias with unit magnitude means the measurement sequence

switches from the state 'Ho to 'H2. Extension to the case of vector valued measurements is

trivial.

A simulated white noise measurement sequence is illustrated in Figure 7.1. Each

measurement has a Gaussian distribution with unit variance and is uncorrelated with other

meaurements. During the interval a ~ t < 1 the measurements have zero mean. This is

hypothesis 'Ho. During the interval 1 ~ t ::; 5 a unit bias is introduced so at t = 1, the

measurement sequence switches from 'Ho to 'H2. The posteriori probabilities found from

the recursion relation (7.1) and illustrated in Figure 7.1 very clearly show the measurement

hypothesis switch. The apriori probabilities 7ri are taken as 0.001 for i E {I, 2,3, 4}.

...
:I:

o
:I:

'0
0.5

~
a..

N
:I:

2 3 4

'0
0.5

J:Jea..

1 2 3 4

'0
0.5

~a..

C')

:I:

'0
0.5

~
a..

2 3 4
A

1 2 3 4

Figure 7.1: Change from 'Ho to 'H2 at time t = 1 sec.

7.3.2 Example 2

Again, the measurement sequence is modeled as a scalar white noise sequence with unit

power spectral density. However, here the mean is also taken as random variable v....ith one

..
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of five possible uniform distributions. The five hypotheses including the null hypothesis are

summarized as

where

mo = 0

ml f"V Vnif [0, 1]

m2 f"V Vnif [0.5, 1.5]

m3 f"V Vnif [1, 2]

m4 f"V Vnif [1.5, 2.5]

Following are two propositions that provide relations for normally distributed random

variables with unknown means. The first proposition shows that if the measurement means

have a Gaussian distribution, the problem reduces to one in which the measurement means

are known and the covariances take on a larger value.

Proposition 7.4. Consider a vector valued random variable x E Rn where both the mean

and the distribution about the mean are Gaussian

Then

X f"V N(m,Ax )

m N(m*,Am )

mathrmwherem ERn, Ax E Rnxn

wherem* E Rn, Am E Rnxn

Proof. A proof is provided at the end of this section.

The second proposition provides a probability density function for a Gaussian random

variable where the mean has a uniform distribution.
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wherem ERn, Ax E Rnxn

whereb, m* E Rn

Proposition 7.5. Consider a vector valued random variable x E Rn where the mean has

a uniform distribution and where the distribution about the mean is Gaussian

X '"'oJ N(m, Ax)
m '"'oJ Unif[b, b+ 2m*]

Then the probability density function f(x) is

f(x) = 4n~m; [erf{ ~A;O.5(x - b)} - erf{ ~A;O.5(x - b- 2m*)}]

where

Note that a property of the error function erf(x) is that for x E Rn

Proof. A proof is provided at the end of this section.

A simulated measurement sequence is illustrated in Figure 7.2. Each measurement has

a Gaussian distribution with unit variance and is uncorrelated with other meaurements.

During the interval 0 ~ t < 1 the measurements have zero mean. This is hypothesis Ho.

During the interval 1 ~ t ~ 5 a constant but unknown bias with uniform distribution

Unif[0.5, 1.5] is introduced. Thus, at t = 1, the measurement sequence switches from Ho

to H2. The measurements were generated as

x = n+s

where

n '"'oJ N(O, 1)

s = {~nif[0.5, 1.5]
0~t<1

1~t~5

As in the previous example, the posteriori probabilities found from the recursion relation

(7.1) and illustrated in Figure 7.2 very clearly show the measurement hypothesis switch.

Again, the apriori probabilities 71'i are taken as 0.001 for i E {I, 2,3,4}.
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Figure 7.2: Change from 'Hoto 'H2at time t = 1 sec.

Proof. (Of Proposition 7.4) From (7.22)

(7.23)

= f f(X/'Hi, md'l/J(mddmi
R"

100 ... 100

1 1 exp {--211IX - mill~-l + -2111mi - m:II~-l} Idmil
27l"n IAA .12 "'i mi

-c::x::> -00 x, m,
00 00

1.. ·1 1 1 exp {-~D} Idmil
-00 -00 27l"

n IAxi Am; 12

=

=

Define

CI = A;/+~ (7.24a)

C2 = A-I +~ ! (7.24b)Xi X .m,

C3 TA- I + A-I (7.24c)- x Xi x mi m;mi

D = mrCImi - 2mrC2 + C3 (7.24d)
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We note that since Ax, and A17ti are covariance matrices, they are invertible and so is C I ·

Now, from (7.23)

exp {-~(C3 -IIC211~-1)} J {I }
f(X/?-li) = 1 1 exp -"2l1mi - c1I C211b1 Idmil

21rn IAx,Am , 12 Rn

Now change the variable mi. Let

1 05[ C-IC]mi = J2CI ' mi - 1 2

so that

1 t {I 2}f(x/'H.d =!! exp --2(C3 -IIC2I1c-l)
21r2ICIAx,Am,1 1

Now from (7.24) it follows that

where

C = A-1(A-1 +A-I)-IA- I
XI XI mt m,

= [Am,(A;~ + A;/)Ax,r
I

= (Ax, + AmJ- I

A = A-I _ A-I(A-I + A-I)-IA-I
Xi %i Xi ~i Xi

Therefore,

Ax,A = 1- A17ti (Ax• + A17ti)-l

= [(Ax, + Am.) - Am.] (Ax, + Am.)-l

so that
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This implies
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A = (AXi + Am.)-l

B = A-I _ A-1(A-1+ A -1)-IA-1
mi l'7li Xi'""mi l'7li

= (AXi + Am.)-l

and finally that

Proof. (Of Proposition 7.5) From (7.22)

f(xj?-l.i) = Jf(Xj?-l.i, mi)1/J(mi)dmi
Rn

If the mean mi has a uniform distribution, then

h • [. • JTwere mi = mil"'" min (7.25)

From (7.22) and (7.25)

b.+2m:

J exp {-~llxi - mill~;/} Idmil
b;

Now change the variable mi

The desired result follows as
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7.4 Application to Advanced Vehicle Control Systems
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In this section, a multiple hypothesis Shiryayev SPRT residual processor is applied to

the same fault detection filters as the Bayesian neural networks of Section 6.4. These

fault detection filters are designed with the Berkeley nonlinear vehicle simulation operating

at 27a: on a straight road. Vehicle lateral dynamics are not considered. A complete

description of the fault detection filter design is in (Douglas et al. 1995). Figure 7.3 shows

the residual processing scheme using the multiple hypothesis Shiryayev SPRT and the fault

detection filters for the longitudinal simulation.

A detailed description of the modeled sensor and actuator faults can be found in

(Douglas et a1. 1995). Recall that the vehicle longitudinal model has seven two-dimensional

sensor faults and two three-dimensional actuator faults. These are combined in output

separable and mutually detectable groups with seven or fewer directions. The following list

shows the fault groups with fault notation as indicated in Figure 7.3.

Fault detection filter 1.

(M) Manifold air mass sensor.

(W) Engine speed sensor.

(X) Forward acceleration sensor.

Fault detection filter 2.

(T) Heave acceleration sensor.

(Fs) Rear symmetric wheel speed sensor.

(Rs) Forward symmetric wheel speed sensor.

Fault detection filter 3.

(T) Pitch rate sensor.

(Z) Heave acceleration sensor.

(Rs) Rear symmetric wheel speed sensor.
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Fault detection filter 4.
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(alfa)

(Tb)

Throttle angle actuator.

Brake torque actuator.
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Figure 7.3: Fault detection scheme for AVeS.

A residual processor design should focus on resolving two issues. First, when residuals

are driven by model uncertainties, nonlinearities, sensor noise and dynamic disturbances

such as road noise, a nonzero residual need not indicate that a fault has occured. The



7.4 Application to Advanced Vehicle Control Systems 103

residual processor should distinguish between a nonzero residual driven by a fault and a

nonzero residual driven by something else.

Second, when a fault occurs and the fault is not one included in the fault detection

filter design, the directional properties of the residual are undefined. The residual processor

should recognize the pattern of a design fault and ignore all other patterns.

Both issues are addressed by a multiple hypothesis SSPRT residual processor. Consider

each fault direction as corresponding to a particular hypothesis. Thus, in the present

application, there are ten hypotheses fHo, ... ,'Hg}. Now consider the fault detection filter

residual sequence as the meaurement sequence for the SPRT. In the present application, the

measurement sequence {Xk E Rll } is assumed to be conditionally independent and gaussian.

The density functions for all hypotheses are constructed by computing the sample means

and covariance matrices. Finally consider that a step fault models a sudden increase in the

mean of the residual process while a ramp fault models a gradual increase in the mean. For

the detection and identification of an unknown fault size, the mean of the residual process

was assumed to be uniformly distributed.

As an example, step faults are considered in the pitch rate gyro, vertical accelerometer

and longitudinal accelerometer. For simplicity, only the residuals corresponding to the

particular fault direction are shown in the figures. Figure 7.4 shows a step fault of size

0.05 ~~ in the pitch rate sensor occuring at 8 seconds. Note that the posteriori probability

of a fault in the pitch rate sensor jumps to one almost immediately after the fault occurs.

The posteriori probabilities of faults in other sensors and actuators are zero and are not

shown.

Figure 7.5 shows a step fault of size O.5~ in the vertical accelerometer occuring at 8

seconds. Again, the posteriori probability of a fault in the vertical accelerometer jumps to

one almost immediately after the fault occurs.

Figure 7.6 shows a step fault of size 0.1':2 in the longitudinal accelerometer occuring at

8 seconds. Once again, the posteriori probability of a fault in the longitudinal accelerometer

jumps to one almost immediately after the fault occurs.
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Figure 7.4: Pitch rate sensor fault occurs at 8 sec.
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Figure 7.5: Vertical accelerometer fault occurs at 8 sec.
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Figure 7.6: Longitudinal accelerometer fault occurs at 8 sec

7.5 Summary of SPRT Development and Application

A multiple hypothesis SSPRT is derived for the detection and isolation of changes in a

conditionally independent measurement sequence. The recursive relation which propagates

the posteriori probabilities of all hypotheses requires an approximate knowledge of their

apriori probabilities 7ri and the probability of change of state Pi from 'Ho to 'Hi. This is

not considered as an impediment as the test is found to be insensitive to both parameters

as long as they assume reasonable values. The derivation makes no assumption about

the structure of the density functions corresponding to all hypotheses and hence, the

measurement sequence can be quite general. The generalized Shiryayev SPRT is found

to be extremely sensitive to changes even when the underlying density functions for the

hypotheses overlap to a large extent. This enhances applicability to practical situations

where the fault sizes are typically unknown.
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