
CHAPTER 4

Fault Detection Filter Design

THE FAULT DETECTION FILTER DESIGN PROCESS consists of three steps. First, determine

how many fault detection filters are needed and if more than one, which filters will detect

and identify which faults. In a detection filter, the state estimation error in response to

a fault in the direction Fi remains in a state subspace Ti, a detection space. The ability

to identify a fault, to distinguish one fault from another, requires for an observable system

that the detection spaces be independent. Therefore, the number of faults that can be

detected and identified by a fault detection filter is limited by the size of the state space

and the sizes of the detection spaces associated with each of the faults. If the problem

considered has more faults than can be accommodated by one fault detection filter, then a

bank of filters will have to be constructed. The vehicle health monitoring system described

in this report considers nine system faults: seven sensor faults and two actuator faults.

Since the linearized longitudinal dynamics have only seven states, clearly more than one

fault detection filter is needed. In fact, a bank of four fault detection filters is built.
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Second, design the fault detection filters using eigenstructure assignment while making

sure that the eigenvectors are not ill-conditioned. The essential feature of a fault detection

filter is the detection space structure embedded in the filter dynamics. An eigenvector

assignment design algorithm explicitly places eigenvectors to span these subspaces and

provides a mechanism to ensure that the eigenvectors are as well-conditioned as possible.

System disturbances, sensor noise and system parameter variations are not considered in

the fault detection filter designs described in this report. For such a benign environment,

the filter designs are based on spectral considerations only; there is little else that can be

used to distinguish a good design from a bad design. The next design phase will include

models of a more realistic operating environment.

Third, form the reduced-order detection filters so that later, when noise and disturbance

models are developed, they can be included in the filters without need for a complete

redesign. A product of the detection space structure is that with respect to each fault there

is a large unobservable subspace. If the observable subspace that remains is factored out, a

reduced-order fault detection filter is formed which has no special subspace structure. One

reduced-order filter is formed for each fault in the fault detection filter design. Now, because

there is no special structure, the gains of the reduced-order filters can be chosen arbitrarily.

For example, the gains could minimize the residuals response to disturbances or sensor noise

in an H 2 or H oo norm. The important point is that the form of the reduced-order fault

detection filters is determined independently of and without any need for disturbance or

sensor noise models. Furthermore, once these models are designed, the reduced-order filters

are easily adjusted.

4.1 Fault Detection Filter Configuration

To determine how many and which faults may be included in a fault detection filter

design, the detection spaces for each of the faults, also called unobservability subspaces,

are formed. A detection space for a fault Fi is denoted by T;. First, the dimensions of

the detection spaces are needed. Since the detection spaces are independent subspaces, the

sum of their dimensions for any given fault detection filter cannot exceed the dimension
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of the state-space. Second, the detection spaces for any given fault detection filter have

to be output separable and mutually detectable. These concepts are described in detail

in appendix A but briefly, output separability means that the output subspaces OT'; are

independent. Mutual detectability means that the sum of the detection spaces 2:= Ti is an

unobservability subspace. This condition ensures that the spectrum of the detection filter

can be assigned arbitrarily.

In practice it is just as easy to find a basis for the detection space as it is to find only the

dimension. The method used here is suggested for numerical stability in (Wonham 1985)

and is described in appendix A. Briefly, for a fault Fi , the approach is to find the minimal

(0, A)-invariant subspace Wi that contains Fi and then to find the invariant zero directions

of the triple (C, A, Fi ), if any. If the invariant zero directions are denoted by Vi, then the

minimal unobservability subspace Ti is given by

The longitudinal linear model of section 2.3 has seven states, seven sensors and two

controls. As explained in section 3, each sensor and each actuator, that is, each control, is

to be monitored for a fault. It turns out that for all seven sensor faults and the two control

input faults described in section 3, the detection spaces are given by the fault directions

themselves. That is, for each fault,

Since the detection space associated with each of the sensor faults is two-dimensionaL

one fault detection filter can detect and identify at most three sensor faults. Therefore

at least three fault detection filters are needed to identify all seven sensor faults. The

detection spaces associated with the two actuator faults also are given by the fault directions

themselves and are three-dimensional. As with the sensor faults, the detection spaces

associated with the two actuator faults are given by the fault directions themselves and are

three-dimensional. Together, there are seven two-dimensional sensor faults and two three­

dimensional actuator faults. These should be combined in output separable and mutually



28 Chapter 4: Fault Detection Filter Design

detectable groups with seven or fewer directions. Many configurations are possible. The

configuration chosen for this design involves a bank of four fault detection filters and requires

some explanation.

In a fault detection system that consists of a bank of fault detection filters and a residual

processor such as a neural network, fault isolation is done through the combined effort of

both system elements. The fault detection filter is a carefully tuned device that uses known

dynamic relationships to isolate a fault. The neural network residual processor combines

the residuals from several filters and resolves any ambiguity. It is suggested that identifying

a fault among a group of dynamically similar faults requires the precision of and is best

delegated to the fault detection filters. Furthermore, it is suggested that the reliability of

the neural network training should be improved if the fault groups associated with each of

the fault detection filters are dynamically dissimilar. Given the above considerations, fault

detection filters are designed for the following groups of faults:

Fault detection filter 1.

FYm rvIanifold air mass sensor.

Fyc.: Engine speed sensor.

FYi: Forward acceleration sensor.

Fault detection filter 2.

FYi Heave acceleration sensor.

F yrs Rear symmetric wheel speed sensor.

FyIs Forward symmetric wheel speed sensor.

Fault detection filter 3.

FYe Pitch rate sensor.

FYi Heave acceleration sensor.

Fyrs Rear symmetric wheel speed sensor.
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Fault detection filter 4.

FUn Throttle angle actuator.

FU {3 Brake torque actuator.
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To show that these fault sets are output separable, show that the columns of the CTt

matrices are independent where ~* is any basis for the detection space Ti. Since for all

faults it turns out that the detection spaces are just Ti = 1m Fi , output separability requires

that the columns of the CFi matrices for each fault detection filter be independent. For

example, for the first fault detection filter, the columns of the matrix

are independent.

Showing that the fault sets are mutually detectable involves calculating invariant zeros

of each triple (C, A, Fd, ... , (C, A, Fq ) and then showing that these are the same invariant

zeros as of the triple (C, A, [Fl, ... , Fq]). For example, for the first fault detection filter,

define the sets of invariant zeros

DYm D(C,A,Fym )

Dyw D(C, A, FyJ

Dyx D(C, A, Fy,J

Oy O(C,A, [Fym , Fyw ' FYxD

where O(C,A,Fi ) means the set of invariant zeros of the triple (C,A,Fi ). The first fault

detection filter is mutually detectable because

4.2 Eigenstructure Placement

The fault detection filters are found using a left eigenvector assignment algorithm

described in appendix A. Since the calculations are somewhat long and they are the same
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for each detection filter, the calculation details are given for only one of the fault detection

filters. Apply Algorithm A.l to the design of a fault detection filter for the first fault group:

the manifold air mass sensor, the engine speed sensor and the forward acceleration sensor.

The first step is to find the dimension of each detection space. This was discussed in

section 4.1 where it was shown that the detection spaces are given by the fault directions

themselves, that is, T: = 1m Fi . The fault directions assigned to the first fault detection

filter are all sensor faults and all have dimension two

VYm dim TZm = 2

vYw dim TZw = 2

vYi dim T~i = 2

The dimension of the fault detection filter complementary space To is also needed. The

complementary space is any subspace independent of the detection spaces that completes

the state-space. Thus, for the first fault detection filter

x = T~m ffi T~w ffi T~i ffi To

and the dimension of To is one

7-2-2-2

1

Next define the complementary faults sets. There are three faults Fym , Fyw and FYi so

there are four complementary fault sets which are:

FYm [Fyw' Fy"J

Fyw [Fym , FYi]

FYi [Fym , Fywl

Fo [Fym , Fyw ' FYi]

(4.1a)

(4.1b)

(4.1c)

(4.1d)
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Now choose the fault detection filter closed-loop eigenvalues. Since the system model

includes no sensor noise, no disturbances and no parameter variations, there is little basis

for preferring one set of detection filter closed-loop eigenvalues over another. The poles are

chosen here to give a reasonable response time but are not unrealistically fast. The assigned

eigenvalues are

AYm {-3, -6}

Ayw {-4, -7}

Ayx = {-5, -8}

Aa {-9}

The next step is to find the closed-loop fault detection filter left eigenvectors. For each

eigenvalue Aij E Ai, the left eigenvectors Vi j generally are not unique and must be chosen

from a subspace as Vi) E Vi j where Vi j and another space Wij are found by solving

(4.2)

The Vi j are as follows and show that all but one left eigenvector are chosen from a three­

dimensional subspace.

-0.7663
0.2813

-0.1156
Va = -0.5620

-0.0102
-0.0451
-0.0477

0.3937 -0.7842 -0.1471 0.8277 0.0947 -0.3123
0.6822 0.3075 0.4324 0.0246 0.7596 0.4115
0.5448 0.3266 -0.2730 -0.1720 0.6151 -0.2647

VYmj 0.2407 -0.0918 -0.6586 Vy = 0.0404 0.1735 -0.6844
m2

-0.1232 0.4136 -0.5268 -0.5226 0.0103 -0.4365
0.0978 -0.0631 0.0460 0.0996 0.0715 0.0254

-0.0136 -0.0198 -0.0591 0.0026 -0.0214 -0.0601
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0.5353 0.7323 -0.1351 0.6574 0.6199 -0.1569
-0.4034 -0.1608 0.1191 -0.4388 -0.0851 0.0546
-0.1345 -0.0320 -0.2896 -0.0776 -0.0843 -0.2997

Vy = -0.5238 0.3196 -0.7240 Vy = -0.3144 0.1954 -0.8739
WI W2

0.4917 -0.5645 -0.5954 0.5075 -0.7364 -0.3393
-0.1281 0.1248 0.0435 -0.1135 0.1443 -0.0133
-0.0095 0.0217 -0.0560 0.0053 0.0089 -0.0599

0.8761 -0.3783 -0.0931 0.8669 -0.4000 -0.0884
-0.2425 0.1176 0.1382 -0.2522 0.0978 0.1363
-0.0755 -0.0399 -0.2410 -0.0491 0.0203 -0.2501

Vy . = -0.3401 -0.5629 -0.7047 Vy . = -0.2781 -0.3670 -0.8468
Xl X2

0.2197 0.7022 -0.6384 0.3156 0.8138 -0.4326
-0.0608 -0.1755 0.0656 -0.0741 -0.1817 0.0166
-0.0193 -0.0266 -0.0756 -0.0116 -0.0076 -0.0812

As explained in (Douglas and Speyer 1995b), to help desensitize the fault detection filter

to parameter variations, the left eigenvectors are chosen from Vij E Vi j as the set with the

greatest degree of linear independence. The degree of linear independence is indicated

by the smallest singular value of the matrix formed by the left eigenvectors. Upper

bounds on the singular values of the left eigenvectors are given by the singular values

o-(V) = {2.6458, 2.4312, 2.0705,1.3067,0.3067,0.0242, 0.0130} (4.3)

If the left eigenvector singular value upper bounds were small, then all possible combinations

of detection filter left eigenvectors would be ill-conditioned and the filter eigenstructure

would be sensitive to small parameter variations. Since (4.3) indicates that the upper bounds

are not small, continue by looking for a set of fault detection filter left eigenvectors that

are reasonably well-conditioned. For this case, the best-conditioned set of left eigenvectors

from the set V nearly meets the upper bound and is given by
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-0.7663 0.2481 -0.3779 -0.3262 -0.3840 0.4370 -0.3755
0.2813 0.8149 0.0602 0.3474 0.0545 -0.0314 0.1077

-0.1156 0.4356 0.5242 0.1223 0.2732 -0.2215 0.0543

= -0.5620 -0.0202 0.4288 0.5909 0.4855 -0.5556 0.5520
-0.0102 -0.2693 0.6254 -0.6199 0.7284 -0.6627 -0.7139
-0.0451 0.1022 -0.0565 0.1560 -0.0866 0.0847 0.1720
-0.0477 -0.0355 0.0233 0.0149 0.0346 -0.0629 0.0236

where once again
Vo = Vo

vYm1 E VYm1 vYm2 E VYm2

vYw1 E VYw1 vYw2 E VYw2

vY - E Vy- vY - E ~Y-Xl xl X2 X2

The singular values of this set of detection filter left eigenvectors are

a(V) = {1.7191, 1.4641, 1.0000,0.9240,0.2168,0.0171, 0.0092}

Since the difference between the largest and the smallest singular values is only two orders

of magnitude, the detection filter gain will be small and the filter eigenstructure should not

be sensitive to small parameter variations.

The fault detection filter gain L is found by solving

(4.4)

where V is the matrix of left eigenvectors as found above, and TV is a matrix of vectors Wij

which satisfy (a.13)

If the left eigenvector Vi· is a linear combination of the columns of Vi ., wi· is the same linear
) ) )

combination of the columns of Wi) where Vi
j

and Wi; are from (4.2). The TV for the first

fault detection filter is

VV = [wo, wYm1 ' wYm2 ' wYw1 ,wYw2 ' wYx1 ' wYX2 ]

0.0000 17.8806 23.0005 0.0000 -0.0000 -0.0000 -0.0000
-0.0000 -0.0000 0.0000 -0.7504 2.2110 0.0000 0.0000

0.0000 -0.0000 -0.0000 0.0000 -0.0000 -20.2591 -14.0152
-17.7474 6.4188 -7.7985 -6.7710 -10.2386 18.7932 -5.7161
220.5377 106.4884 -115.0230 -0.8805 -174.3199 323.5220 -35.9330

12.8111 -6.7819 10.1691 -9.6822 12.4763 -11.6560 -7.8435
5.4270 3.2914 -6.7082 17.4639 -11.7092 2.4288 13.3306
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The detection filter gain is found from (4.4) and is given by

L= (4.5)

-0.9444 -1.5605 18.3898 20.3959 -33.4718 -14.9397 -0.1545
-16.0816 -0.9793 46.3621 -15.7918 -97.3527 -1.4476 14.1137

97.3771 -16.7452 78.5443 -8.8050 28.0068 -12.8347 47.5303
-11.0019 -4.0789 39.0600 3.2445 213.9492 -20.9184 27.7123
-61.4309 31.0335 -204.1174 31.4592 -213.9106 45.9121 -126.8465

-251.1954 149.9014 -1127.4460 176.9975 -936.7994 175.4977 -575.9418
64.6381 -40.4210 437.0497 -239.8124 -6321.3974 64.8115 101.8300

To complete the detection filter design, output projection matrices Hym , Hyw and Hyx

A * A *are needed to project the residual along the respective output subspaces CIYm' CIYw and
'" * A *CIYx' 'What this means is that, for example, I Ym becomes the unobservable subspace of the

pair (HYm C, A + LC). Remember that by the definition of the complementary faults (4.1),
A *

faults Fyw and Fyx lie in I Ym and fault FYm does not. The effect is that the projected

residual is driven by fault FYm and only fault Fym .

A projection Hi is computed by first finding a basis for the range space of Cit where
A A *

again, Tt is any basis for the detection space Ii' This is done by finding the left singular

vectors of Cit. Denote this basis for now as hi' Then Hi is given by

Output projections for the first fault detection filter are

0.9986 0.0000 0.0000 0.0099 -0.0009 0.0170 -0.0322
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Hy = 0.0099 0.0000 0.0000 0.6362 0.0065 -0.4776 -0.0571 (4.6a)m

-0.0009 0.0000 0.0000 0.0065 0.9995 0.0108 -0.0189
0.0170 0.0000 0.0000 -0.4776 0.0108 0.3594 0.0418

-0.0322 0.0000 0.0000 -0.0571 -0.0189 0.0418 0.0064

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0087 0.0000 0.0295 -0.0004 0.0384 -0.0792
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Hyw = 0.0000 0.0295 0.0000 0.7062 0.0005 -0.3580 -0.2801 (4.6b)
0.0000 -0.0004 0.0000 0.0005 1.0000 0.0006 0.0004
0.0000 0.0384 0.0000 -0.3580 0.0006 0.5637 -0.3410
0.0000 -0.0792 0.0000 -0.2801 0.0004 -0.3410 0.7214
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0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.5276 0.1876 -0.0015 0.2370 -0.3973

Hy = 0.0000 0.0000 0.1876 0.6790 0.0025 -0.4029 -0.1429 (4.6c)
x

0.0000 0.0000 -0.0015 0.0025 1.0000 0.0032 0.0010
0.0000 0.0000 0.2370 -0.4029 0.0032 0.4943 -0.1772
0.0000 0.0000 -0.3973 -0.1429 0.0010 -0.1772 0.2992

In summary, a fault detection filter for the system with sensor faults E ym , E yw and EYi:

as in (3.3)

i: Ax + Bu

is equivalent to a fault detection filter for the system with faults Fym , Fyw and FYi: as in (3.4)

x Ax + Bu + FymfLYm + FyAtyw + FYi:fLYi:

y Cx + Du

and has the form

x (A + LC)i + Bu - Ly

zYm Hym(Ci + Du - y)

zYw = HYw(Ci + Du - y)

zYx = HYx(Ci + Du - y)

with L and the Hym , Hyw and Hyx given by (4.5) and (4.6). Calculations for the detection

filters for the other three fault groups are carried out in the same way and are not shown

here.

4.3 Reduced-Order Observers

An essential feature of a fault detection filter is that for each pair (Hi C, A + LC), there

is an unobservable subspace T: that contains the complementary fault Pi. This means that
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any fault in Pi does not affect the residual when when the residual is operated upon by the

projector (Hi)' Consider a detection filter

x = (A + LC)x + Bu - Ly

Zi = Hi(Cx - y)

If the state estimation error is e = x- x, then the error dynamics are

q

(A + LC)e - L Fimi
i=l

(4.7a)

(4. 7b)

A* A A* A A*
Now T i is (HiC, A+LC) unobservable means that T i is (A+LC)-invariant and HiCTi = O.

Therefore, define the factor space Xi = X /t; and let Pi be the canonical projection

Pi : X f---7 Xi. Compute Pi using singular value decomposition to find the null space of

('in T

Pdt = 0 (4.8)

Now let Ai and Ci be maps induced on the factor space Xi by (A + LC) and HiC. These

are given by

Also, since T: is the unobservable subspace of (HiC, A + LC), it follows that

PiF#i 0

AFi 'I 0

The reduced-order fault detection filter error dynamics equivalent to (4.7) are given by

(4.9a)

(4.9b)

where ei E Xi.
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Besides the lower-order, an important property of the reduced-order fault detection

filter (4.9) is that there is no special structure imposed on the dynamics. No Ai-invariant

subspaces need to be defined. Therefore, the reduced-order filter dynamics are arbitrarily

modified with a gain Li as

(4.10a)

(4.10b)

This gain may be chosen to satisfy any secondary filter criterion such as to minimize

disturbances or sensor noise or the effect of parameter uncertainty. A reduced-order fault

detection filter with the error dynamics (4.10) is given by

(Ai + L/'::i)Xi + FiBu - (FiL + Li)y

Hi(CiXi - y)

(4.11a)

(4.11b)

The reduced-order fault detection filter (4.11) detects and identifies only the one fault Fi out

of the group of q design faults {H, ... ,Fi , ... , Fq }. Therefore, a family of q reduced-order

filters are needed to detect and identify all faults in the design set. In general, the order of

all q reduced-order filters is higher than the order of the full-state fault detection filter.

The fault detection filter designed in section 4.2 has three faults Fym , Fyw and Fyx '

The complementary faults Fym , Fyw and Fyx each produce a fourth-order detection space.

Therefore, each associated factor space will be third-order. Canonical projections for each

factor space are computed using singular value decomposition to solve (4.8). They are given

by

Fy ..
,r

[ -0.1426 -0.8445 -0.3770 0.1389 0.3061 -0.0968 0.0442 ]
0.7495 -0.1743 -0.3539 -0.0444 -0.5243 0.0760 0.0057
0.4577 -0.0567 0.4589 0.6920 0.3086 0.0229 0.0457

[ -0.3373 -0.0641 0.1332 -0.0431 0.9144 -0.1624 0.0090 ]
-0.8472 0.4218 -0.0201 -0.1513 -0.2805 0.0356 -0.0312
-0.0975 0.1439 0.2912 0.9359 -0.0107 0.0789 0.0514

[ -0.1295 -0.0390 0.1473 0.1254 0.9561 -0.1697 0.0371 ]
-0.4027 0.0494 0.1933 0.8670 -0.1814 0.0962 0.0643

0.8605 -0.2963 0.0794 0.4021 0.0430 0.0276 0.0358
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The reduced-order fault detection filters are as follows. Note that each is third-order and

the combined system is ninth-order. This is two more than the full-order fault detection

filter of section 4.2.

Reduced-order fault detection filter to detect F Ym from the set of faults F ym , F yw and FYi'

[

-7.0685 -0.4295 -0.2956] [-3.8172 0.0187 ]
x = -0.4295 -5.8586 -2.7384 x + -0.7269 -0.0248 u +

-0.2956 -2.7384 -8.0729 1.2773 0.0170

[

16.1573 0 0 3.9056 148.1616 -5.2199 4.5504 ]
18.3944 0 0 -16.5934 22.8931 15.8321 -2.6829 y

-15.7902 0 0 -11.2426 225.2354 5.9689 7.5751

-0.5029 -0.2457 0.2491 -0.0000 0.0000
0.0 0.0 0.0 0.0000 -0.0000
0.0 0.0 0.0 0.0000 -0.0000

zYm -0.0236 -0.2090 -0.1581 x+ -0.0001 0.0005 u +
0.0098 -0.0169 0.0233 -0.0000 0.0000
0.0056 0.1507 0.1252 0.0000 -0.0004
0.0177 0.0266 0.0058 0.0000 -0.0000

-0.9986 0 0 -0.0099 0.0009 -0.0170 0.0322
000 0 0 0 0
000 0 0 0 0

-0.0099 0 0 -0.6362 -0.0065 0.4776 0.0571 y
0.0009 0 0 -0.0065 -0.9995 -0.0108 0.0189

-0.0170 0 0 0.4776 -0.0108 -0.3594 -0.0418
0.0322 0 0 0.0571 0.0189 -0.0418 -0.0064

Reduced-order fault detection filter to detect F yw from the set of faults F ym , F yw and FYi'

[

-6.0954 -0.2736 1.6189 ] [-0.2832 0.0317 ]
x = -0.2736 -9.4614 0.8762 x + 0.4874 -0.0034 u +

1.6189 0.8762 -7.4432 0.8006 0.0179

[

0 -2.2024 0 9.3196 88.3783 -18.3873 17.2499 ]
o 0.2481 0 19.3040 -178.1764 -6.8141 -12.8500 Y
o -0.7344 0 2.4798 198.6644 5.3856 -2.9772

o 0 0 0 0
-0.0029 0.0098 0.0349 -0.0001 0.0001

o 0 0 0 0
zYw 0.1133 0.2433 0.0309 x + -0.0004 0.0006 u +

0.0198 -0.0092 0.0109 0.0000 -0.0000
-0.1122 -0.1260 0.2248 -0.0005 -0.0001

0.0243 -0.0932 -0.3161 0.0010 -0.0005
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0 0 0 0 0 0 0
0 -0.0087 0 -0.0295 0.0004 -0.0384 0.0792
0 0 0 0 0 0 0
0 -0.0295 0 -0.7062 -0.0005 0.3580 0.2801 y
0 0.0004 0 -0.0005 -1.0000 -0.0006 -0.0004
0 -0.0384 0 0.3580 -0.0006 -0.5637 0.3410
0 0.0792 0 0.2801 -0.0004 0.3410 -0.7214

Reduced-order! ;;ult detection filter to detect FYi from the set of faults Fym , Fyw and FYi'

[

-7.9585 -1.4027 0.2690 ] [-0.0145 -0.0268]
x = -1.4027 -7.1497 -0.5553 x + 0.0116 0.0148 u +

0.2690 -0.5553 -9.8918 0.0103 0.0004

[

0 0 -24.6267 11.7615 240.9060 -13.9996 9.8338 ]
o 0 -0.5869 11.9707 257.8946 1.9564 -8.1247 y
o 0 0.1929 -20.4744 173.3469 12.7158 7.0952

00000
00000

-0.0063 0.2182 0.0244 -0.0000 -0.0009
zY.i: = 0.0586 0.0431 -0.2381 x + 0.0000 0.0001 u +

0.0216 0.0059 0.0080 0.0000 -0.0000
-0.0512 0.1255 0.2075 -0.0000 -0.0007

0.0046 -0.1642 -0.0178 0.0000 0.0006

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 -0.5276 -0.1876 0.0015 -0.2370 0.3973
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CHAPTER 5

Fault Detection Filter Evaluation

FAULT DETECTION FILTER PERFORMANCE is evaluated using the nonlinear vehicle

simulation discussed in section 2. Sensor fault detection and identification performance

is evaluated by introducing a sensor bias into the data provided by the nonlinear simulation

to the fault detection filters. In the most benign test, the nonlinear vehicle simulation is

run in steady state at 25 meters per second forward speed with no turns while a bias is

added to one of the sensor outputs. In this test, the operating point is the same as that

used to derive the linearized dynamics for the fault detection filter design. Furthermore, the

vehicle dynamics are not stimulated resulting in data that is essentially linear. Thus, the

fault detection filter is operating in a nominal environment and the test does not provide

much useful information.

In a more useful test, the filters operate at an off-nominal condition, that is, the vehicle

operates in a steady state condition but not the same one used to generate the linearized

dynamics. This is achieved by increasing the throttle two degrees from the nominal value
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causing the steady state vehicle speed to be about two meters per second faster than the

nominal. If the vehicle dynamics were linear, the increased throttle setting would have

only a transient effect, if any, on the linear fault detection filter state estimates. The state

estimate errors and the filter residuals would asymptotically go to zero. Since the vehicle

dynamics are not linear and the vehicle operating condition is not the same as it would be

if the dynamics were linear, the filter state estimates and the residuals are not zero. The

top-left plot of figures 5.1-5.4 shows the magnitude of each reduced-order fault detection

filter residual as it responds to the off-nominal steady state condition.

Since most residuals are not zero, as is to be expected, the natural question to ask is

what magnitude residual should be considered small. The answer lies in comparing the size

of a nonzero residual due to non-linearities and the size of a nonzero residual due to a fault.

A residual scaling factor is chosen such that when a fault is introduced into the linearized

dynamics the magnitude of the corresponding reduced-order fault detection filter residual is

one. Since most residuals generated by the off-nominal operating condition have magnitude

less than about 0.2, they should not be easily mistaken for residuals generated by a fault.

Of course, the size of the residual is proportional to the size of the fault. The size of the

fault used for finding the residual scaling factors is determined as follows. For most sensors,

the size of the fault is given by the difference in magnitude between the sensor output at the

nominal and off-nominal steady state operating conditions. For some sensors, such as the

accelerometers and the pitch rate sensor, the output is zero in any steady state condition

and another method has to be used. For the longitudinal accelerometer, the size of the fault

is given by the largest transient value of the sensor output as the two-degree step throttle

command takes the vehicle from the nominal to the off-nominal condition. For the heave

accelerometer, even the transient is small during an acceleration maneuver so a another

value is chosen that ~epresents a vehicle heave acceleration that is reasonably encountered

during normal vehicle operation. The pitch rate sensor is treated the same way as the heave

accelerometer.

Figure 5.1 shows the magnitudes of the residuals for the three reduced-order fault
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Figure 5.1: Residuals for Fault Detection Filter One: Manifold Air l\1ass Sensor, Engine
Speed Sensor and Forward Acceleration Sensor.

detection filters derived from the first fault design group: an air mass sensor fault, an

engine speed sensor fault and a longitudinal accelerometer fault. A sensor bias fault is

added after one second when filter initialization errors have died out. Only one sensor fault

is added at a time; simultaneous faults are not allowed. It is important to note that when

any of the sensor faults from the first fault design group occur, the residuals associated with

a fault detection filter designed for other faults have no meaning. This is why only three

residuals are shown in each plot of figure 5.1 while eleven residuals are generated by the

entire fault detection system. Distinguishing a meaningful residual from a non-meaningful

residual is left to the residual processing neural network described in the next section. All

reduced-order fault detection filter residuals respond closely to their linear counterparts.

The residual associated with the fault quickly approaches one and other residuals in the

fault group remain unaffected.

Figures 5.2 and 5.3 show the residuals for the three reduced-order fault detection filters
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derived from the second and third sensor fault design groups. Residual scaling factors are

chosen in the same way as for the first fault design group. The reduced-order fault detection

filter performance indicated by figures 5.2 and 5.3 is the same as that indicated by figure 5.1.

Actuator fault identification performance is shown in figure 5.4. A throttle fault is

simulated by sending a two-degree step throttle command to the nonlinear simulation

but not to the fault detection filter. Even though a throttle fault stimulates the vehicle

nonlinear dynamics and the residual associated with the brake fault, figure 5.4 shows that

both positive and negative throttle faults are clearly identifiable from a brake fault. A brake

fault is simulated by applying a brake torque just large enough to slow the vehicle from 25

m/s to 21 m/s. This changes the vehicle steady state operating point by the same amount

as a four-degree throttle fault. Figure 5.4 shows that the brake fault is clearly identified.

It is interesting to note how well the throttle and brake faults are identified. Intuitively,
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Figure 5.4: Residuals for Fault Detection Filter Four: Throttle Actuator, Brake Actuator.

there should not be much difference in the vehicle behavior when the brake is applied or

when the throttle is decreased. Yet, the fault detection filter, using the vehicle dynamics,

finds there is enough difference between them to clearly distinguish one from the other.



CHAPTER 6

Residual Processing

THE ESSENTIAL FEATURE of a residual processor is to analyze the residues generated by

all fault detection filters and announce whether or not a fault has occurred. Nominally, the

residual process is zero in the absence of a fault and non-zero otherwise. However, when

driven by nonlinearities, the residual process can fail to go to zero even in the absence of

faults. This is noted in the simulation studies of section 5. Furthermore, the residual may

be nonzero when a fault occurs for which the fault detection filter is not designed. In this

case, the residual directional properties are not defined; the fault detection filter detects

but cannot isolate the fault. These are examples of ambiguities that are to be resolved by

the residual processor.

The approach taken here is to consider that the residuals from all fault detection filters

constitute a pattern, a pattern that contains information about the presence or absence of

a fault. Hence, residual processing is treated as a static pattern recognition problem. This

class of problems is ideally suited for application to a neural network.
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l'vIultilayer feedforward networks, also referred to as multilayer perceptrons, are an

important class of neural networks that have proved extremely successful in pattern

recognition problems. Typically, the network consists of a set of source nodes or neurons

that constitute the input layer, one or more hidden layers of computation nodes, and an

output layer of computation nodes. The input signal propagates through the network layer­

by-layer. Each node in the network has a set of synapses, each of which is characterized by

a weight matrix and a nonlinear differentiable activation function. The activation function

limits the amplitude of the neuron output.

The neural networks described in this section each are applied to the residuals from

only one fault detection filter. That is, in its present form, when a fault occurs, the neural

network does not attempt to determine which fault detection filters are responding to a

design fault and which are responding to some unknown input. Thus, the present system

has four residual processors. Each processor is a multilayer perceptron with the following

characteristics:

Fault
Detection Filter

Residuals

, - - ... , J~'_ J~_ J~_
lid ' \ ' \ ' \I I I I I )'1

)'2 Fault
.......I.o."'---Alarms

}'3

I

\ .... _---~

Input Layer
First

Hidden Layer
Second

Hidden Layer Output Layer

Figure 6.1: Multi-Layer Perceptron Model.
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1. Each network considers the residual from only one filter.

2. Each network has one input layer, two hidden layers, and one output layer.

49

3. For the first three fault groups, the sensor fault groups, the input vector is u E R 3

and the output vector is y E R3. For the fourth fault group, the actuator fault group,

u E R 2 and y E R 2 .

4. The activation function is a sigmoidal function. This has a smooth nonlinearity which

is required later for a gradient vector calculation.

eX - 1
S(x) = 10-­

eX + 1
(6.1 )

The training process involves the determination of the synaptic weights and the bias

vectors of the network. The backpropagation algorithm is the most widely used supervised

learning algorithm in neural network applications. It consists of two passes through the

different layers of the network: a forward pass and a backward pass. In the forward pass,

an input vector is applied to the input layer and its effect propagates through the network

to produce an output. In the present application, the fault detection filter residuals are

applied to the input layer. During this pass, the synaptic weights of the network are held

constant. In the backward pass, the synaptic weights are adjusted in accordance with

an error-correction rule. Here, the network output is compared with a desired network

output and an error vector is formed. As the error vector propagates backward through the

network. the synaptic weights are adjusted to minimize the error. In the present application,

the presence or absence of a fault announcement forms the desired output. Together, the

detection filter residuals and fault announcements form a neural network training set.

Since the learning rate for a conventional backpropagation algorithm can become

excessively slow, the learning phase of the neural network is viewed as a case of a nonlinear

unconstrained parameter optimization problem. The cost function is defined as the error

between the actual and the desired output over the entire training set. This is also known as

batch mode training, wherein weight updating is done after the presentation of the entire
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set of training examples to the network. Each training example is also called a pattern

and one complete presentation of all training sets is called an epoch. The learning process

continues epoch-by-epoch until the synaptic weights and the bias vectors of the network

stabilize and the cost converges to some minimum value. The order of presentation of the

training examples within an epoch is randomized from one epoch to the next to make the

search in weight space stochastic over the learning cycles. This avoids the possibility of

limit cycles in the evolution of the synaptic weights.

The back propagation training algorithm requires that a gradient of the cost function

with respect to the synaptic weights and bias vectors be calculated. The required partial

derivatives may be calculated analytically as follows. Begin with an expression for the cost

function, the average error over one epoch given by

j=N .

[= L e
J

j=l N

where [ is the average error over one epoch, ej is the error for the i h pattern or training

set in the epoch and N is the number of patterns per epoch. The error e j is given by

where dj is the desired network output and yj is the actual output Note that dj and yj E R3

or R 2, depending on the network.

For the network shown in figure 6.1, the network output is given by

where h~ is the input vector to the third layer for the i h training pattern and S(·) is the

activation function embedded in each node. The input vectors to the third layer and other

layers are given by

(6.2)

where h{, TV! and <I>{ are the input vector, weighting matrix and associated bias vector for

layer i and training pattern j. Note that h{, <I>{ and S(h{) E R3 and Wl is a 3 x 3 matrix.
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Again, SO is the activation function given by (6.1). From (6.2), the network output is

given by information from the second layer as

yj = S(wd . S(h~) + <I>~)

Thus, the error function gradient is calculated backwards as

Byj

Bhj
I

Bej

Bhj
I

and with the boundary condition

Byj .__ ·Wl
~hj 1+1
u i+l

Bej .__ ·Wl
~hj HI
U HI

BS(h{)

Bhj
I

BS(h{)
Bh]

I

Hence, the error function gradient for the lh pattern is

Be]

BW]
I

Be]

B<I>j
I

Finally the gradient vector for the cost is

Be]
- .. S(hi - 1)
Bh]

I

Be]

Bh]
I

""j=N aeJ
L.j=1 awl

t

N
",,]=N ael
L.j=1 8iP j

t

N

A Davidon-Fletcher-Powell algorithm is used to solve the unconstrained parameter

optimization problem. The algorithm converges in exactly n steps for a quadratic cost

and uses a rank two update for the Hessian matrix to ensure that at the end of every

iteration, the Hessian is positive definite. The algorithm is outlined below and with the

following notation:

Parameter vector at the k th iteration.

F Objective function.
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Direction of search at the kth iteration.

Hessian matrix at the kth iteration

Chapter 6: Residual Processing

Algorithm 6.1 (Davidon-Fletcher-Powell Parameter Optimization).

1) Set k = 0, Xo to the initial parameter vector and Ho = I.

2) Find the one-dimensional search direction Sk = -Hk' "VFT(Xk)'

3) 11inimize along Sk to get Xk+l, that is, do a line search

4) Set

5) Update the Hessian matrix:

6) Check for convergence. If convergence is not achieved, set k = k + 1 and go to step

(2) .

In the present application the convergence check used is whether the change in the

Hessian matrix is small. Since the cost is not quadratic, the algorithm takes more than n

steps to converge for an n-dimensional optimization problem. The trained networks have

been tested and the results are summarized in figures 6.2 through 6.5. It is seen from all

figures that the trained neural networks are quite effective in announcing a fault very soon

after one occurs.

Figure 6.2 shows residuals from the first fault detection filter, the one that considers

sensor faults for the manifold air mass sensor, the engine speed sensor and the forward
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acceleration sensor. The faults are applied sequentially and one at a time. The decision

function of the network announces a zero if there is no fault and a one if there is a fault.

Note that all residuals are scaled by a factor of ten before being processed by the network.

This scaling can be avoided by scaling the weights of the first layer by the same magnitude.

The synaptic weights Wand the bias vectors <I> for the first network are:

0.155804
-0.154178
-0.052750

0.071434
W= -0.001592

-0.225173
0.384729

-0.176569
0.164612

0.134528
0.065559
0.187670

-0.234352
0.107922

-0.104908
0.026842

-0.383187
-0.155957

-0.151691
-0.227977

0.235507
0.001146

-0.255098
0.127320

-0.194035
-0.290295

0.346983

[

-0.411395
<I>= -0.071276

0.535025

0.586518
0.062116
0.302601

-0.167796]
-0.014957

1.098216

The first 3 rows of the weight matrix correspond to the first layer of the network. Rows 4,

5 and 6 correspond to the second layer and rows 7, 8 and 9 correspond to the third layer.

Similarly, the first row of <I> corresponds to the bias vector of the first layer nodes, and so

on.

Figure 6.3 shows residuals from the second fault detection filter, the one that considers

sensor faults for the pitch rate sensor, the forward symmetric wheel speed sensor and the

rear symmetric wheel speed sensor. The faults again are applied sequentially and one at

a time as for the first filter but the residuals are not scaled. The synaptic weights ~T and

bias vectors <I> for the second network are:

0.456071
-0.418542
-0.184857

0.327377
W= -0.038376

-0.339349
0.641334

-0.170035
0.135355

0.149415
0.094649
0.197932

-0.444597
0.057827
0.068775
0.029250

-0.374427
-0.122547

-0.104004
-0.164763

0.159792
-0.109918
-0.254133

0.114895
-0.353188
-0.328512

0.277558

[

0.049039 0.994333
<I>= 0.716702 0.147230

0.844156 0.568572

-0.800334]
-0.395788

1.471435

Figure 6.4 shows residuals from the third fault detection filter, the filter that considers

sensor faults for the heave accelerometer, the pitch rate sensor and the forward symmetric
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wheel speed sensor. The faults again are applied sequentially and one at a time as for the

first filter and again the residuals are not scaled. The synaptic weights Wand bias vectors

<P for the third network are:

0.427967
-0.397269
-0.175831

0.281785
w= -0.088793

-0.361911
0.612911

-0.183339
0.139504

0.199235
0.124967
0.283523

-0.441553
0.027302
0.031584
0.032435

-0.434450
-0.135555

-0.134513
-0.186824

0.167301
-0.126375
-0.328136

0.068693
-0.342027
-0.343878

0.274775

[

-0.045264 1.124374
<P= 0.938002 0.033609

1.030029 0.488223

-0.586397]
-0.384049

1.378053

Finally, figure 6.5 shows residuals from the fourth fault detection filter, the filter that

considers actuator faults for the throttle and brake actuators. Note that two fault cases

are given for the throttle fault. The synaptic weights Wand bias vectors <P for the fourth

network are:

lV=

0.377897
-1.148921
-0.466482

0.059375
-0.289151
-0.025186

0.031862
0.465636
0.999481
0.727932
0.004747
0.283940

[

-1.744053 -0.463958]
<P= 1.975143 -1.321055

2.845561 2.588340



Chapter 6: Residual Processing 55

Fault in mass flow Fault in yaw rate Fault in forward ace.
0.3 5 0.08

Q) r- M
~4 W Q) X

"0 I "0
~ ~ .a 0.06 1"-
:g 0.2 -'c 'c
C> g>3 C>ro ro
~ ~ ~ 0.04
(ij g2 (ij

-50.1
~

"0 "0
'(j) '(j) .~ 0.02Q) Q) 1a: 1,- l---1..-- a: a:

0 0 0
0 10 20 0 10 20 0 10 20

Time (sec.) Time (sec.) Time (sec.)

Neural Network 1 Neural Network 1 Neural Network 1
1.5 1.5 1.5

- - - Xc c
W

c
Q) M Q) Q)

E E E
Q) r-- Q) 1 r-- Q) 1 r--
() () ()
c c c
~ ~ ~
0 0 0c c c
c c c
~ 0.5 ~ 0.5 ~0.5
~ ~ ~
C'Cl ro ro
LL LL LL

0 0 0
0 10 20 0 10 20 0 10 20

Time (sec.) Time (sec.) Time (sec.)

Figure 6.2: Residuals for Fault Detection Filter One: Manifold Air Mass Sensor, Engine
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Figure 6.5: Residuals for Fault Detection Filter Four: Throttle and Brake Actuators.



CHAPTER 7

Conclusions

ANALYTIC REDUNDANCY is a viable approach to vehicle health monitoring. The fault

detection filters developed here are small, third-order linear filters, which should not be a

significant computational burden. Evaluating their performance in a high-fidelity nonlinear

simulation shows that the filter residuals quickly and clearly respond to the introduction of

a fault even in the presence of vehicle nonlinearities. A neural network residual processing

system effectively automates fault announcement by examining the fault detection filter

residuals for activity characteristic of a static pattern associated with a fault. Faults

are announced by the neural network very soon after they are introduced in the vehicle

simulation.

By directing development of the project components in parallel and seeing significant

progress in all areas, we are able to identify several important areas for future work:

model refinement, robust fault detection filter design, health monitoring system evaluation,

residual processing and neural network development, and platoon health monitoring.
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Model Refinement: Through a good working relation with the Berkeley PATH

researchers, development and refinement of the nonlinear simulation will continue. The

research division of the Ford Motor Company will be contributing a new tire model. In

addition to addressing the fidelity of the vehicle nonlinear dynamics model, simulation

development will also involve uncertainty models associated with process disturbances such

as winds and roads, sensor measurement uncertainty, system parameter uncertainty and

unmodeled dynamics. Fidelity of the modeled nonlinearities and uncertainties is very

important for a realistic assessment of any health monitoring system performance.

Robust Fault Detection Filter Design: Development of robust fault detection

filters will continue with three directions of investigation. First, the physical system

will be examined for the possibility of treating nonlinearities and disturbances as pseudo­

fault directions. This approach effectively decouples the nonlinearity or disturbance from

fault identifying residuals. Second, analysis will continue to develop a methodology for

determining which faults are assigned to which fault detection filters. This approach is

incorporated into the longitudinal fault detection filter preliminary designs. Faults are to be

grouped based upon their fault directions, residual directions or eigenvalue characteristics

to enhance robust performance. Third, parameter uncertainty in the linearized vehicle

dynamics is modeled as an input-output decomposition. This allows model uncertainty to

be treated as a disturbance.

Evaluation: As the vehicle nonlinear simulation and fault detection filter development

continues, evaluation of the health monitoring system will be extended to include a range of

operating points. Both longitudinal and lateral modes of vehicle dynamics will be included

as will the uncertainties discussed above.

Residual Processing - Neural Networks: The neural network residual processor

developed for the preliminary design will be extended to include the entire fault set.

Presently, one neural network is designed and trained for each fault detection filter or

family of reduced-order fault detection filters. 'Vhen a fault occurs, a neural network will
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correctly identify the fault if the fault belongs to the fault detection filter design set. Results

are undefined when the fault does not belong to the design fault set. Extending the neural

network to include the entire fault set will allow the network, when a fault occurs, to identify

first the correct fault design set or sets and then the fault.

A second area of investigation is to research methods for determining probabilities of

false and miss alarms in the presence of system uncertainties and nonlinearities. One

feature of the reduced-order fault detection filters is that the error dynamics have no special

structure. This allows the filter gains to be chosen arbitrarily much like a Kalman filter.

\Vith a reduced-order fault detection filter treated as a Kalman filter, modified forms of

techniques such as the Shiryayev Sequential Probability Ratio Test (SPRT) are applicable

to the residual analysis.

An essential feature of schemes such as the Shiryayev SPRT is to produce thresholds

that announce in minimum time whether a fault has occurred within a given probability of

false alarm. However, currently, residual tests such as the Shiryayev SPRT are developed

only for special stochastic processes. Extending schemes of this type to include residuals

from the fault detection filter could proceed by allowing a failure to produce a change in

several probability density functions rather than just one.

Platoon Health Monitoring: Work should begin towards extending the health

monitoring system for one vehicle to include the presence of multiple vehicles in a controlled

platoon configuration. Sensors required for control such as distance measurements will be

included in the fault set. Transmission of vehicle sensor outputs will be transmitted to

all vehicles. Feasibility and performance of an expanded health monitoring system will be

evaluated in an extended nonlinear simulation.





ApPENDIX A

Fault Detection Filter Background

A LINEAR TIf\1E-INVARIANT SYSTEM with q failure modes and no disturbances or sensor

noise can be modeled (Beard 1971), (White and Speyer 1987), (lVlassoumnia 1986) by

x

y

q

Ax+Bu+ LFimi
i=l

ex.

(a.la)

(a.lb)

All system variables belong to real vector spaces x E X, u E U, Y E Y and mi E M i

with n = dimX, P = dimU, m = dimY and qi = dimM i . The input u E U is known

as is the output y E y. The failure modes mi E Mi are vectors that are unknown and

arbitrary functions of time and are zero when there is no failure. The failure signatures

Fi : Mi f--t F i ~ X are maps that are known, fixed and unique. A failure mode mi

models the time-varying amplitude of a failure while a failure signature F i models the

directional characteristics of a failure. Assume the Fi are monic so that mi ;/= 0 implies

Fimi ;/= O. Actuator and plant faults are modeled with Fi as the appropriate direction from
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A or B. For example, a stuck actuator is modeled with Fi as the column of A associated

with the actuator dynamics and with ffii(t) = -Ui(t) + Uic where Uic is some constant.

A sensor fault can also fit this model with no need for additional dynamics (Beard 1971),

(White and Speyer 1987).

Consider a full-order observer of the form

x = (A + LC)x + Bu - Ly

Z Cx - y.

The state estimation error e = .1: - x dynamics are

q

e= (A + LC)e - L Fiffii
i=l

(a.2a)

(a.2b)

(a.3)

If (C, A) is observable and L is chosen so that A + LC is stable, then in steady-state and in

the absence of disturbances and modeling errors, the residual r is nonzero only if a failure

mode ffii is nonzero and is almost always nonzero whenever ffii is nonzero. It follows that

any stable observer can detect the occurrence of a fault. Simply monitor the residual Z and

when it is nonzero a fault has occurred. A more difficult task is to determine which fault

has occurred and that is what a fault detection filter is designed to do.

A fault detection filter is an observer with the property that when ffii (t) i- 0, the error

e( t) remains in a (C, A)-invariant subspace Wi which contains the reachable subspace of

(A + LC, Fi ). Thus, the residual remains in the output subspace CWi . Furthermore, the

output subspaces CW1, , CWq are independent so that Z E L-{=l CWi has a unique

representation Z = Zl + + Zq with Zi E CW i . The fault is identified by projecting Z onto

each of the output subspaces CWi. The following statement of the detection filter problem,

sometimes called the Beard-Jones detection filter problem (BJDFP), is essentially the same

as that found in (Beard 1971) and (White and Speyer 1987) but is stated in the geometric

language of (l\lassoumnia 1986).

Definition A.I (Detection Filter Problem). Given the system (a.l), with state-space

X and measurement-space Y, the detection filter problem is to find a set of subspaces
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Wi S;;; X, i = 1, ... , q such that for some map L : Y f-+ X the following conditions are met:

CWi n (2:: CWj) = 0
Hi

Subspace invariance.

Failure inclusion.

Output separability.

It can be shown (Massoumnia 1986), (White and Speyer 1987) that when (C, A) is

observable, the last condition, output separability, implies that the subspaces WI, ... , W q

are independent.

It should be pointed out that for any subspace F i S;;; X there is a minimal (C, A)­

invariant subspace F i S;;; Wi S;;; X. A method suggested by (Wonham 1985) for computing

a minimal invariant subspace is a recursive algorithm, the (C, A)-invariant subspace

algorithm.

W * 1· W k
! 1m i

where

and where the recursion begins with

WO = 0
!

To ensure stability, the invariant subspaces Wi are usually chosen as a set of mutually

detectable, minimal unobservability subspaces or detection spaces (Beard 1971) as they are

also called in the context offault detection. An unobservability subspace T S;;; X or DOS is a

subspace with the property that T is the unobservable subspace of the pair (HC, A +LC) for

some Land H. This means not only that T is (C, A)-invariant but also that the spectrum

of (A + LC) induced on the factor space X IT may be placed arbitrarily within a conjugate

symmetry constraint and with respect to L such that (A +LC)T S;;; T. Furthermore, when

(C, A) is observable, the entire spectrum of (A + LC) is arbitrary. If T(F) is the set of
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(C, A)-unobservability subspaces that contain :F, then it can be shown that T(:F) has a

smallest element denoted T* (Willems 1982). The detection space is usually found as a

minimal DOS, T*, because there is no known parameterization of all DOS and algorithms

exist to compute the minimal VOS (White and Speyer 1987), (Massoumnia 1986).

One method for computing T* is suggested by (Wonham 1985) as a numerically stable

method for finding supremal controllability subspaces. These are the dual of minimal

unobservability subspaces or detection spaces. There are two steps. First, for a fault Pi,

find the minimal (C, A)-invariant subspace Wi using the recursive (C, A)-invariant subspace

algorithm as explained above. Next, calculate the invariant zero directions of the triple

(C, A, Fi), if any. Denote the invariant zero directions as Vi. Then

Detection space calculations are described in detail in (Wonham 1985) with amplification

and examples given in (Douglas 1993).

Finally, a mutually detectable set of DOS {Ti, ... ,T~} is one which satisfies

Definition A.l such that the sum '£{=1 Ti is also an DOS. While for anyone DOS T i ,

the spectrum of (A + LC) induced on X ITi may be placed arbitrarily with respect to L,

it is not necessarily true that the factor space spectrum is arbitrary when several VOS

are considered simultaneously. When a set of VOS Ti, ... ,T~ is mutually detectable, the

spectrum of (A + LC) induced on X I '£{=1 Ti is arbitrary and, when (C, A) is observable,

the entire spectrum of (A + LC) is arbitrary.

Once the detection spaces are found, the next step is to find a fault detection filter gain.

The gain is not unique and several methods exist for finding one. Eigenstructure assignment

algorithms are described in (White and Speyer 1987) and (Douglas and Speyer 1995b)

and an 1too-bounded fault detection filter is described in (Douglas and Speyer 1995a).

The procedure applied in this report is a left eigenvector assignment algorithm

introduced in (Douglas 1993) and (Douglas and Speyer 1995b). This procedure is

used because it extends directly to one that hedges against sensitivity to parameter

uncertainty. Noise robustness algorithms such as the 'Hoo-bounded fault detection filter
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of (Douglas and Speyer 1995a) are not used here because disturbances and sensor noise are

not yet included in the vehicle model. Furthermore, later, when they are included, the

reduced-order fault detection filters provide a natural way to accommodate noise without

the need for redesigning the filter.

The left eigenvector assignment algorithm works by assigning an eigenstructure in

the dual space to a set of intersecting detection space annihilators. This means that

left eigenvectors, which annihilate the detection spaces, are placed rather than right

eigenvectors, which span the detection spaces as is done in (White and Speyer 1987). Since

these annihilators intersect, care must be taken to ensure that the assigned eigenvectors are

consistent.

Before proceeding, it is necessary to establish a dual relation between unobservability

and controllability subspaces. First, introduce the following notation. X' denotes the dual

space of X and if e : X I---> Y, then e' denotes the dual map e'Y' I---> X'. Writing C T , the

transpose of matrix C, for the dual map e' implies that bases have been chosen for X and

y. Now. in (Wonham 1985) it is shown that if T s;:; X is a (e, A)-unobservability subspace

then the annihilator of T denoted here by T.1 s;:; X' is an (A', e')-controllability subspace

in the dual system. Second, if T is a (e, A)-unobservability subspace, the observable part

of the system is characterized by the factor space X IT and the induced system maps.

Furthermore, for any subspace T s;:; X, the annihilator of T and the factor space X IT are

isomorphic, T.1 ~ (X IT)'.

The dual relation between unobservability and controllability subspaces is useful because

any result found for controllability subspaces can be applied easily to the unobservability

subspaces of a detection filter. Consider the results of (Moore and Laub 1978) which are

paraphrased as follows. The first statement describes a set of vectors in the kernal of e

that can be assigned as closed-loop eigenvectors.

Theorem A.I. Let A : X I---> X, B : U I---> X and e : X I---> y. Then a set of linearly

independent vectors {VI, ... , Vk IVi E Ker e s;:; X} satisfies (A + BK)Vi = }.iVi for some

K : X I---> U and distinct self-conjugate complex numbers }.1"",}.k if and only if Vi and Vj
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are conjugate pairs when Ai and Aj are and there exists a set of vectors {WI, ... , WklWi E U}

such that

It follows immediately that for a monic B, a set of vectors {VI, ... ,Vk} satisfies theorem A.l

if and only if KVi = Wi.

The second result also from (Moore and Laub 1978) characterizes the set of all

eigenvectors that span a supremal (A, B)-controllability subspace R*.

Theorem A.2. Let AI, ... , Ak be a set of distinct, self-conjugate complex numbers that

satisfy

1) k ~ dim(R*) where R* is the supremal (A, B)-controllability subspace in KerC

2) at least one Ai is real

3) no Ai or Re(Ai) is a transmission zero of (C, A, B)

Let l~ and Wi solve

Then R * = 1m VI + ... + 1m Vk .

Given the dual relationship between controllability and unobservability subspaces, the

application of Theorems A.I and A.2 to detection filter design is immediate. First, consider

just one detection space Ii. Characterize the left eigenvectors that annihilate Ii and find

a detection filter gain Li that produces Ii. Next establish a consistency requirement on a

detection filter gain L that is to produce q detection spaces Ii, ... , I;.

If Ii <:;;:; X with dimension Vi is a detection space for fault Fi , the annihilator (I;)1­

is the supremal controllability subspace of the dual system with (7";)1- <:;;:; Ker F[ and has

dimension n - Vi. Let Ai = {Ail' ... ,Ain _ v } be a set of distinct self-conjugate complex,

numbers that does not include any of the invariant zeros of the triple (F[, A', C'). By

Theorem A.2 the annihilator of Ii satisfies

(I*)1-=1mll; +···+1mll;z 21 tn-Vi
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where the Vi j are found, along with Wi j , by solving

69

(a.4)

where j = 1, ... , n - Vi and where Aij E Ai. A set of linearly independent closed-loop left

eigenvectors Vi!, ... ,Vin_ v that spans (T;)1. satisfies Theorem A.l and is found by solving,

(a.5)

Since Vi j E 1m Vi j (a.4), the left eigenvectors may not be unique but they are constrained to

be arranged in conjugate pairs when the given closed-loop eigenvalues Aij are in conjugate

pairs.

Now find a detection filter gain Li . By the remark following Theorem A.I, LT satisfies

(a.6)

~ [Vi!" .. , Vin - v i ] (a.7a)

TVi [Wi!" .. , Win-Vi] (a. 7b)

and solve LT~ = Wi. A real solution for LT always exists because the Vi j are linearly

independent and the assigned closed-loop poles Aij and eigenvectors Vi j when complex are

arranged in conjugate pairs. Finally, Li, the detection filter gain found as the transpose

(a.S)

satisfies (A + LiC)T; ~ T; and places the spectrum of (A + Lie) induced on X IT; as

a(A + LiClXIT;) = Ai.
Because the detection filter has q detection spaces Ti, ... ,T~ ~ X, the detection filter

gain L has to satisfy (a.S) for i = 1, ... ,q or

(a.g)
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Since the Vi and ~Vi represent L{=I (n - Vi) pairs of vectors (Vij' Wi)), care must be taken

to construct the Vi and Wi conformably. If (a.9) is to have a solution for L, there can be

no more than n distinct pairs (Vij' Wij) and of these, the Vij must be linearly independent

and arranged in conjugate pairs if a solution is to be unique and real.

Finding a set of left eigenvectors consistent with (a.9) is not difficult but requires careful

bookkeeping. Since (T;)1- and (X IT;)' are isomorphic, the closed-loop spectrum induced

on the factor space X IT; is

If Ai is the spectrum of (A + LiC) restricted to the invariant subspace T;

then the spectrum of (A + LiC) is just

(a. 10)

Now, the subspaces Ti, ... ,T~ are independent when the faults are output separable and

(C,A) is observable (Massoumnia 1986), (White and Speyer 1987), so

A = Al U ... U Aq U Ao

where Ao is a set of Vo = n - VI - ... - vq eigenvalues associated with the complementary

space Xo = X/L{=I Ti, Vo = dim(Xo),

q

Ao = o-(A+LCIXI2: T i)
i=1

It follows from (a.l0) that

(a.H)

Since the sets of assigned closed-loop poles Ai intersect, the sets of vectors Vi· and Wi
J )

that solve (a.5) should also form intersecting sets compliant with (a.ll). By (a.ll),
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if Aij E Ai for i i= 0, then Aij E Akf-i and the Vij and Wi j that satisfy (a.5) now must satisfy

o (AT - AiJ)Vij + CT
Wi j

o = FTVij

o = FE I Vij

o = F?~_IVij

For i = 0 and Aij E Ao, then Aij E A k for k = 1, ... , q and the Vi) and Wij that satisfy (a.5)

now must satisfy

o (AT - AiJ)Vij + CT
Wij

o FTVij

The detection filter gain computation algorithm suggested by (a.5)-(a.9) and modified

to force consistency among eigenvectors which span the intersecting detection space

annihilators, is as follows.

Algorithm A.I.

1) Find the dimensions of the detection spaces Vi = dim Ti for i = 1, ... , q and the

dimension of the complementary space Vo = n - "i:.{=I Vi.

2) Define the complementary fault sets

F-{ [FI, ,Fq]

t - [PI, , Fi-I, Fi+I, ... , Fq]

for i = 0
for 1 ::; i ::; q

(a.12)

Define (q + 1) sets of distinct self-conjugate complex numbers Ao, AI, ... ,Aq where

dim Ai = Vi and where no elements of Ai are zeros of the triple (C, A, Fi ). By the
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remarks at the end of section A, each of these sets may be specified arbitrarily except

for conjugate symmetry when (C, A) is observable and when the detection spaces Ti

are mutually detectable.

3) For i = 0, ... , q and j = 1, ... ,Vi and for .A.ij E Ai solve

for pairs (Vi), Wij) where the Vi j are linearly independent for all i, j. Let

[ViI"'" VivJ

[Wil'" ., WivJ

4) Solve for the detection filter gain L as

(a.13)

(a.14a)

(a.14b)

(a.15)
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