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Abstract

A preliminary design of a health monitoring system for automated vehicles is developed

and results of tests in a high-fidelity nonlinear simulation are very encouraging. The

approach is to fuse data from dissimilar instruments using modeled dynamic relationships

and fault detection and identification filters. The filters are constructed so that the residual

process has directional characteristics associated with the presence of a fault, that is, static

patterns. Sensor noise, process disturbances, system parameter variations, unmodeled

dynamics and nonlinearities all contribute to the blurring of these static patterns. A

neural network residual processor is trained to form a threshold detection mechanism

that announces a fault when one is present by recognizing fault patterns embedded in

the residual. A health monitoring system based on this concept has been constructed for

the longitudinal mode and monitors seven sensors and two actuators. Work also continues

in refining a detailed nonlinear vehicle simulation which is used as a testbed for evaluating

the performance of the health monitoring system.

Keywords. Automated Highway Systems, Automatic Vehicle Monitoring, Fault Detection

and Fault Tolerant Control, Neural Networks, Reliability, Sensors, Vehicle Monitoring.
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Executive Summary

A preliminary design of a health monitoring system for automated vehicles is developed

and results of tests in a high-fidelity nonlinear simulation are very encouraging. The

approach is to fuse data from dissimilar instruments using modeled dynamic relationships

and fault detection and identification filters. The filters are constructed so that the residual

process has directional characteristics associated with the presence of a fault, that is, static

patterns. Sensor noise, process disturbances, system parameter variations, unmodeled

dynamics and nonlinearities all contribute to the blurring of these static patterns. A

neural network residual processor is trained to form a threshold detection mechanism

that announces a fault when one is present by recognizing fault patterns embedded in

the residual. A health monitoring system based on this concept has been constructed for

the longitudinal mode and monitors seven sensors and two actuators. Work also continues

in refining a detailed nonlinear vehicle simulation which is used as a testbed for evaluating

the performance of the health monitoring system.
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CHAPTER 1

Introduction

A PROPOSED TRANSPORTATION SYSTEM with vehicles traveling at high speed, in close

formation and under automatic control demands a high degree of system reliability. This

requires a health monitoring and maintenance system capable of detecting a fault as it

occurs, identifying the faulty component and determining a course of action that restores

safe operation of the system. This report is concerned with vehicle fault detection and

identification and describes a vehicle health monitoring system approach based on analytic

redundancy.

Analytic redundancy methods for fault detection and identification use a modeled

dynamic relationship between system inputs and measured system outputs to form a residual

process. Nominally, the residual process is nonzero only when a fault has occurred and

is zero at other times. For an observable system, this simple definition is met by the

innovations process of any stable linear observer. A detection filter is a linear observer with

the gain constructed so that when a fault occurs, the residual responds in a known and

1



2 Chapter 1: Introduction

fixed direction. Thus, when a nonzero residual is detected, a fault can be announced and

identified.

In applications it is unrealistic to expect that a residual process would be nonzero only

when a fault has occurred. Sensor noise, process disturbances, system parameter variations,

unmodeled dynamics and nonlinearities all contribute to the magnitude of a residual. There

are many methods to reduce the impact of these effects on the residual but none reduce

their effect to zero. This means that some thres,hold detection mechanism must be built.

A simple threshold detection mechanism announces a fault when the size of a residual

exceeds some prescribed value. This prescribed value could be determined from empirical

studies which balance a rate of false alarm against a rate of miss alarm. A more complicated

residual processor might take into account the thresholds of all other residuals as well.

Reasoning that if the probability of simultaneous failures is very small, no fault is announced

when more than one residual exceeds a threshold. It is more likely that the nonzero residuals

are caused by noise or nonlinearities or some cause other than multiple faults. A neural

network residual processor is described in this report.

A complication arises when there are many possible faults because a fault detection filter

can only be designed to detect a limited number of faults. This is related to the order of

the vehicle dynamics. When more faults need to be identified, several fault detection filters

have to be used with each filter designed to detect and identify some but not all possible

faults. The vehicle fault detection system described in this report has four fault detection

filters. This raises two difficult design issues. First, some and probably all faults will not

be included in the design of one or more fault detection filters. When such a fault occurs,

the residual of all filters will respond, even the residuals of the filters that do not have the

fault included in their design. If a fault is not included in a fault detection filter design, the

directional characteristics of the residual will be undefined and the fault cannot be properly

identified. The challenge is to build a mechanism that recognizes when a fault detection

filter is responding to a fault for which it has not been designed and then to exclude the

residual of all such filters from the fault identification process. If it can be assumed that
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only one fault occurs at a time, then the residual processor can exclude the residual of any

fault detection filters that point to two or more faults.

A second design issue is how the faults should be grouped and identification delegated

among the fault detection filters. In a fault detection system that consists of a bank of fault

detection filters and a residual processor such as a neural network, fault isolation is done

through the combined effort of both system elements. The fault detection filter is a carefully

tuned device that uses known dynamic relationships to isolate a fault. The neural network

residual processor combines the residuals from several filters and resolves any ambiguity. It

is suggested that identifying a fault among a group of dynamically similar faults requires the

precision of and is best delegated to the fault detection filters. Furthermore, it is suggested

that the reliability of the neural network training would be improved if the fault groups

associated with each of the fault detection filters are dynamically dissimilar.

This paper is organized as follows. Section 2 describes the car models. Low-dimensional

linear models are used for fault detection filter design. A high fidelity nonlinear model is

used for evaluation and to obtain the linear models used for design. Section 3 describes the

faults to be identified by the fault detection system. Section 4 describes the design of the

fault detection filters. This includes how the faults are grouped for each fault detection filter

design, how the fault detection filter eigenstructure placement is done and how reduced­

order fault detection filters are formed. Section 5 presents an evaluation of the performance

of the fault detection filters in a nonlinear simulation. Section 6 describes a fault detection

filter residual processing system. Here a neural network is used to process residuals from

all fault detection filters to detect and identify which if any fault has occurred. Finally,

appendix A provides a very quick theoretical review of the Beard-Jones detection filter

problem.





CHAPTER 2

Vehicle Model and Simulation Development

IN THIS SECTION, vehicle models are developed for the design and evaluation of fault

detection filters. Three models are considered: (1) a six degree of freedom (DOF) nonlinear

vehicle model, (2) a computer model obtained from the Berkeley PATH research team

and derived in (Peng 1992), and (3) a linearized model used for detection filter design.

The derivation of equations for the six DOF nonlinear model is independent of that used

for the Berkeley simulation. The independent derivation was performed to be sure that

we understood all the assumptions, definitions and issues which underlie the Berkeley

simulation model. This exercise proved worthwhile in that we did uncover some differences

between our model and the Berkeley model, and we have contacted them to clarify these

differences. Resolution of these issues is pending.

All models can be used to describe a four-wheel-steering, four-wheel-drive vehicle.

This report, however, only considers rear-wheel-drive vehicles. The road gradient and

superelevation are assumed to be zero.

5
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2.1 Nonlinear Model

Chapter 2: Vehicle Model and Simulation Development

Equations that describe the six degree of freedom motion of a vehicle are developed

here. First, the coordinate systems are described. Then, the rotational equations of motion

are developed followed by the translational equations of motion.
2.1.1 Coordinate Systems

The motion of the vehicle will be referred to an Earth-fixed reference frame E which

is described by a right handed orthogonal axis system (X, Y, Z) fixed on the Earth. The

unit vectors along the X, Y, Z-axes are f x ' f y and f z ' respectively. A second reference

frame C fixed in the sprung mass of the vehicle is described by a right handed orthogonal

axis system (x, y, z) fixed along the central principal axes of the vehicle. The origin is at

the vehicle mass center where x points in the forward direction, y points to the left, and z

points upward. We assume that x and yare horizontal when the vehicle is at rest. Unit

vectors s;;x' S;;y, and S;;z are directed along x, y, and z, respectively. The orientation of C with

respect to E is given by a sequence of three angular rotations. First, there is a yaw rotation

E about the aligned Z and z-axes. Let Rz;, Qy and Qz be unit vectors along the displaced x,

y, z-axes. Then there is a roll rotation ¢ about the displaced y-axis Qy ' Let Qx, Qy and Qz

describe the directions of x, y, z-axes after this roll rotation. Last, there is a pitch rotation

eabout the displaced x-axis Qx ' The unit vectors.r:x, S;;y and S;;z describe the final orientation

of C. The relationships among the various unit vectors are

(2.1a)

(2.1b)

(2.1c)
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2.1.2 Rotational Equations of Motion

The angular velocity of the car relative to the Earth is

Using the coordinate system transformations (2.1) the angular velocity is also given by

!6!. (4) cos e - Ecos </> sin ekx + (iJ + Esin </>)~y + (4) sin e + Ecos </> cos ekz

7

Thus, the angular velocities of the car expressed in vehicle fixed axes, which are measured

numbers, become

[
wx] _ [~] [cos ewy - e + 0
u-'z 0 sin e

o -Sine] [4>] [case
1 0 0 + 0
o coseOsin e

[

case 0 -cos</>sine] [~]
= 0 1 sin </> e

sin e 0 cos <p cos e E

~ - s~ne] [~
o cos e 0

o
cos</>

- sin</>

If this expression is solved for the angular rates ¢, iJ and E, one obtains the rotational

kinematic equations of motion:

[n [ cos e
sin etan </>

- sin ecos- I </>

o sin e ] [w x
]

1 - cos etan </> wy

o cosecos- I </> W z

(2.2)

The rotational dynamic equations governing the angular motions of the vehicle are

obtained from the Euler equations:

Wx
m x Iy - I z

(2.3a)= 1; +wywz Ix

wy
my Iz - Ix

(2.3b)T +wzwx I yy

Wz
m z Ix - Iy

(2.3c)T +wxwy I
z z

The applied moments m x , my and m z come from aerodynamic forces and interaction forces

between the tires and pavement. Expressions for these moments are discussed in a later

section.
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2.1.3 Translational Equations of Motion

The position vector from an Earth-fixed point to the center of mass of the car may be

described in terms of the earth-fixed unit vectors ~, §.y and §'z or the vehicle-fixed unit

vectors f:x ' f:y and f:z. Thus,

E X~ + Y§.y + Z§.z

XG + Yf:y + Zf:z

The velocity of the center of mass of the car then becomes,

(Xf:x + Yf:y + Zf:z) + (wxf:x + Wyf:y + Wzf:z) x (xf:x + Yf:y + Zf:z)

(x - YWz + zWy)f:x + (y - ZWx + xWz)f:y + (z - xWy + YWx)£z

Solving for X, Y, and z in terms of x, Y, Z and Wx, Wy , Wz one obtains:

x Vx + YWz - zWy

Y v y + ZWx - XWz

z = V z + XWy - ywx

(2.4a)

(2.4b)

(2.4c)

The acceleration of the center of mass of the car in both earth-fixed and vehicle-fixed

axes is

.. .. ..
Qc X§.x + Y §.y + Z§.z

(vxf:x + Vyf:y + Vzf:z) + (wxf:x + wyf:y + Wzf:z) x (vxf:x + Vyf:y + vzf:z)

Expressing the forces acting on the vehicle F as
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and using Newtons 2nd Law, F = mg, leads to the following dynamic translational equations

of motion.

V x

V z

(2.5a)

(2.5b)

(2.5c)

As before, the applied forces Fx , F y and F z come from gravity, aerodynamic forces and

interaction forces between the tires and pavement. Equations (2.2), (2.3), (2.4) and (2.5)

describe the motion of the car provided the applied forces and moments are known. These

expressions would be required if our objective were to construct a complete analytical model

or a computer simulation. At the present time, we have not taken this next step, and have

instead used the Berkeley simulation model for subsequent work. More work on force and

moment models may be attempted at a later date.

2.2 Linear Model

The nonlinear model 111 the previous section was generated primarily to better

understand and verify the Berkeley model. In this section, we generate a linearized model

directly from the Berkeley model. This will be done numerically rather than analytically.

The procedure is as follows.

First, a computer run is made in which the car goes straight at a constant speed of 25

m/s (::::: 56 mph) to obtain steady state values for each state. The nonlinear model is then

linearized about this nominal operating point using the central difference method. The

use of an analytical approach, that is taking partial derivatives, is impractical because this

model is too complicated.

The nonlinear model has the form :

y = Cx+Di:

i: f(x,u) (2.6a)

(2.6b)
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Suppose the nominal operating point is (xo, un) where f(xo, un) = O. Take perturbations

X, it about the nominal point, that is, let

x Xo + X

u = Uo + it

Also approximate ~ and ~ as

of
;:::;:;

~f
f(x + x, u) ; f(x - x, u) Ix=xo,u=uo

ox ~x

of
;:::;:;

~f
f(x, u + it)~ f(x, u - it) Ix=xo,u=uo

ou ~u

Equation (2.6a) may now be approximated as

. .:. f( ) of I - af I -Xo + x = Xo, Uo + - x + - u + ...ax x=Xo,u=uo ou x=xo,U=Uo

Dropping out higher order terms and using the approximations given above for the partial

derivatives. one obtains

x Ax + Bit

y Cx + D£

(C + DA)x + DBit

where

x [ rna We V x X V y Y V z z ¢ ¢ e iJ E E

Wfl Wfr Wrl W rr X y yr y'r Edes 0: Tb ;3]T

Y [rna We Vx V y Vz ¢ iJ E Wfl Wfr Wrl wrrf

it [ O:c Tbc ;3c ]T

A [~~] Ix=xo,u=uo

B [~~] Ix=xo,u=uo
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and where A is a 26 x 26 real matrix and B is a 26 x 3 real matrix. Symbols in X, iJ and u
are defined in the list of symbols.

Several sizes of perturbations must be taken to find one that gives the best approximation

of the partial derivatives. If the perturbation is too small, there is a truncation error in

computing the difference f(x+x, u) - f(x -x, u). If the perturbation is too large, a roundoff

error occurs in computing f(x +x, u) and f(x - x, u)j also nonlinearities become important.

According to our experience, ~ and ~ >:::i 10-4 is a good rule for selecting the size of the

perturbation when using the central differences method. The resulting linear model can

then be tested in a simulation to see how well it describes the nonlinear model over the

speed range of 23 mls to 27 m/s. When this was done, we found that the errors were under

10%.

The linear model generated as described above was intended for use in designing the

fault detection filters. This model has 26 states. Before using the model for filter design,

we decided to try to simplify the model to the extent possible without significant loss of

accuracy. The model simplification was accomplished in two steps, the first of which resulted

in no loss of accuracy.

By inspection of the equations, it was found possible to rearrange the sequence of states

such that the linearized equations assume the following partitioned form:

x [ ~3 ] = [ Al o ] [ ~3 ] + [ B
1

] U
X4 A2 A3 X4 B2

y [ C1 o ] [ ~3 ]X4

where

X3 = [rna We V x V z Z B iJ Wfl Wfr Wrl W rr 0: Tb V y 4> 4> E ,6]T

X4 = [x X y E Y yr y'r Edes ]T

In this form, we see that both X3 and yare independent of X4. Thus X4 can be deleted from

the model without affecting the transfer function from it to y. Based on this observation,
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X4 is removed from the model, which then becomes

where Al is an 18 x 18 matrix, B l is an 18 x 3 matrix and C l is a 12 x 18 matrix.

If the four wheel speed state variables Wjl, Wjr, Wrl, Wrr are replaced by four new state

variables Wj, W r , iiij, wr defined as:

Wj Wjl - Wir

Wr Wjl - Wrr

then the model exactly decouples into two subsystems. These are the longitudinal and

lateral dynamics, that is,

[ ~l ] [ ~l 0
] [ ~~ ] + [

B l 0 ][~~ ]X2 A2 0 B 2

where

Xl [rna We X i z e iJ Wj wr a Tb]T

X2 [Wj Wr iJ </J ¢ E ,6f

Ul lac Tbc]T

U2 ,6c

Therefore, the longitudinal model becomes:

and the lateral model becomes:
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2.3 Reduced-Order Model

13

Previous manipulation has not involved any approximation. For further model

simplification, some approximation must occur. First, the actuator dynamics are neglected

because they are relatively fast and also they are in series with the other dynamics. At

this point, we are more concerned about simplifying the highly coupled dynamics and will

return to consider the actuator dynamics later. Hence, the actuator dynamic states are

deleted from the model. So the states for the longitudinal model are Xl and for the lateral

model are X2.

Xl [rna We X i z e iJ wf wr]T

X2 [ 'Ii! f W r iJ ¢ ¢ E]T

After the linear models are derived, the first thing one should do is check the eigenvalues.

Then, three approaches are presented to get reduced-order models. The first approach one

may consider to reduce the model is to set the derivatives of certain fast states to zero.

Using this philosophy, states with large negative eigenvalues can be dropped. However,

a correction should be made using the deleted states to remove the steady state error.

Consider a linear system modeled as :

X Ax + Bu

y Cx+Du

Suppose this model is written in a partitioned form.

[ :~] = [~~~ ~~~] [ ~~ ] + [ ~~ ] u

y = [CI C2] [ ~~ ] + Du

where X2 contains the 'fast states'. Set the derivative of X2 to zero and solve the resulting

equations for X2 as a function of Xl and u. This leads to
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Substitute this result into the expressions for Xl and y to obtain the reduced order model:

Xl [An - A12 A2"i A 2l ] Xl + [B I - A12A2"21 B2] U

Y [Cl - C2A2"i A 2l ] Xl + [D - C2A2"21B2]U

this model preserves the static input-output relationships.

A second approach is to use balanced realization before implementing the method just

described. Balancing refers to an algorithm which finds a realization that has equal and

diagonal controllability and observability grammians. The diagonal of the joint grammian

g(i) can be used to reduce the order of the model. Since g(i) reflects the combined

controllability and observability of individual states, it is reasonable to remove those states

from the model that have a small g(i). Elimination of these states retains the most important

input-output characteristics of the original system. After balanced realization has been

done, the first method is used to obtain a reduced order model.

A third approach is a little different from the second one. After balanced realization has

been done. a truncation is used instead of the first method. For example, if the full-order

model is

[
~l ]
X2

y =

then. the reduced-order model is

[~~~ ~~~] [ ~~ ] + [ ~~ ] u

[C, C, J[ :: ]+ Du

This is the approach originally proposed by Moore (Moore 1981). Using this approach it is

possible to calculate a bound on the error introduced by deleting states.

2.3.1 Longitudinal Model

At the end of the previous section, section 2.2 which deals with the linear model, a

decoupled longitudinal model is developed. Its eigenvalues are -212.11, -166.04, -31.46, ­

26.27, -0.04, -2.3 ± 6.65i and -1.53 ± 5.69i. Observe that two of these eigenvalues are
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significantly larger than the rest. From this we conclude that at least two state variables

can be dropped. In method one, by looking at the eigenvectors corresponding to the large

eigenvalues, we find that the two fast mode states are the sum of the front wheel speeds

wf and the sum of the rear wheel speeds wr . So, these two states are dropped to get a

seventh-order model. In methods 2 and 3, two states with smallest grammians are dropped.

These methods combine the states in such a way that they lose their physical significance,

so we can not explicitly identify the states that are being deleted. Here are some results

using the three methods for model reduction described earlier.

~ Order Reduction Method I Eigenvalues

Method 1. -33.05 -25.85 -0.0484 -2.26 ± 6.71i -1.57 ± 5.67i
:Method 2. -31.58 -26.23 -0.0449 -2.32 ± 6.65i -1.54 ± 5.69i
l'vIethod 3. -32.08 -26.05 -0.0449 -2.25 ± 6.04i -1.78 ± 5.82i

Table 2.1: Eigenvalues for the Longitudinal Dynamics Using Three Model Reduction
Methods.

The eigenvalues of each reduced-order model are given in table 2.1. The second method

is the best because the eigenvalues are closer to the true eigenvalues. This method uses

the balanced realization and drops unimportant states by letting their derivatives be zero.

One can also perform another test to see which method is best. That method is based on

frequency response. Bode diagrams for each input to each output are plotted to see their

responses to frequencies from 10-1 to 102 rad/s. The reason for choosing this frequency

range is that it roughly corresponds to that of the control inputs to a car. The Bode diagrams

also show that the frequency response of a model obtained with the second method is closest

to that of the full-order model.

The seven-state model involves the longitudinal dynamics only. No lateral dynamics and

no actuator dynamics are included. The states have no physical significance because they

are derived from the balanced realization as stated in section 2.3. The measured outputs

are

Ym Engine manifold air mass (kg).
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Yw

Yi

Yi

Yq
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Engine speed (rad/sec).

longitudinal acceleration (m/sec2).

heave acceleration (m/sec2).

Pitch rate (rad/sec).

Forward symmetric wheel speed (rad/sec).

Rear symmetric wheel speed (rad/sec).

and the control inputs are

a Throttle angle (deg).

(3 Brake torque (Nm).

The system matrices are given by

-0.0514 -0.2203 0.2670 -0.0102 0.0145 0.0084 -0.0074
-0.2984 -7.7825 18.5490 -0.9359 0.1522 0.2418 0.0463
-0.3247 -19.1948 -49.4179 -3.2002 -4.9689 -2.3224 -0.0652

A= 0.0440 2.2616 14.8614 -2.1396 6.4462 -0.2283 0.0394 (2.7a)
0.0216 1.0707 8.3103 -7.1707 -0.6642 -0.2614 0.9221
0.0116 0.5739 3.6890 -1.0911 -0.6573 -1.0090 5.9643
0.0150 0.7490 4.6068 -1.4672 -1.0353 -6.5849 -2.5807

0.9509 -0.0341
2.8861 -0.0107
2.9813 0.0082

B= -0.4068 0.0116 (2. 7b)
-0.2001 0.0185
-0.1069 0.0040
-0.1389 0.0109

0.0080 0.4605 0.3771 0.1010 0.0541 0.0340 -0.0129
0.7411 2.8381 -2.9156 0.1484 -0.0552 -0.0503 -0.0048
0.0027 0.1650 -0.2533 0.0732 -0.0157 0.0094 -0.0005

c= 0.0000 -0.0006 -0.0007 -0.0207 -0.0500 -0.0446 0.0694 (2.7c)
-0.0000 -0.0024 0.0049 0.0108 0.0207 -0.0026 0.0009

0.4222 -0.1429 0.0360 0.2242 -0.1731 -0.0138 0.1051
0.4217 0.1241 -0.4239 -0.2778 -0.0356 -0.0740 0.0579
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D=

0.0000
-0.0005

0.0010
-0.0000

0.0000
-0.0001

0.0013

-0.0000
0.0004

-0.0020
0.0001

-0.0000
-0.0008
-0.0010

(2.7d)

2.3.2 Lateral Model

At the end of previous section, section 2.2 dealing with the Linear Model, we also have a

decoupled lateral model. Its eigenvalues are -205.91, -133.45 , -3.29± 5.96i , -8.39± 1.43i.

This model also contains two high frequency modes, so we again conclude that two state

variables can be dropped. By looking at the corresponding eigenvectors, we learn that the

two fast mode states are the difference of the front wheel speeds Wf and the difference of the

rear wheel speeds wr . So following the procedure of method 1, these two states are dropped

to get a fourth-order model. In methods 2 and 3, two states with the smallest grammians

are dropped. Here are some results by using these three methods for model reduction.

~ Order Reduction Method IEigenvalues

Method 1. -2.95 ± 5.78i -8.80 ± 2.02i
Method 2. -3.29 ± 6.02i -8.31 ± 2.04i
Method 3. -4.18 ± 5.63i -9.49 ± 6.97i

Table 2.2: Eigenvalues for the Lateral Dynamics Using Three Model Reduction Methods.

The eigenvalues of each lateral reduced-order model are given in table 2.2. Once again,

the second method produces the best result. That is where we use balanced realization and

drop states by letting their derivatives be zero. Bode diagrams for each input to each output

also were plotted to see their responses to frequency from 10-1 to 102 rad/s. Looking at

the Bode diagrams confirmed that the second method is best.





CHAPTER 3

Fault Selection

ANALYTIC REDUNDANCY is an approach to health monitoring that compares dissimilar

instruments using a detailed model of the system dynamics. Therefore, to detect a fault in

a given sensor, there must be a dynamic relationship between the sensor and other sensors

or actuators. That is, the information provided by a monitored sensor must, in some form,

also be provided by other sensors. Analytic redundancy also can be used to effectively

monitor the health of system actuators and even the dynamic behavior of the system itself.

But, as with sensors, if some part of the vehicle is to be monitored for proper operation,

then that part has to produce some observable dynamic effect.

In automated vehicles, these requirements preclude monitoring, for example,

nonredundant sensors such as obstacle detection sensors or lane position sensors. The

information provided by a radar or infrared sensor designed to detect objects in the vehicle's

path has no dynamic correlation with other sensors on the vehicle. A sensor that detects the

vehicle's position in a lane is the only sensor that can provide this information. Similarly, the

19
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health of the actuator that controls the position of the driver's window is easily monitored

by the driver. But, unless specialized sensors are installed, no other part of the car is

affected by the operation of this actuator and there is no analytic redundancy.

Before describing how faults are modeled, it is necessary to describe how a fault detection

filter works. Most of the detail is left to appendix A. For a thorough background, several

references are available, a few of which are (Douglas 1993), (White and Speyer 1987) and

(~1assoumnia1986). Consider a linear time-invariant system with q failure modes and no

disturbances or sensor noise

x

y

q

Ax+Bu+ LFimi
i=l

Cx+Du

(3.1a)

(3.1b)

The system variables x, u, y and the mi belong to real vector spaces and the system maps

A, B, C, D and the F i are of compatible dimensions. Assume that the input u and the

output y both are known. The Fi are the failure signatures. They are known and fixed and

model the directional characteristics of the faults. The mi are the failure modes and model

the unknown time-varying amplitude of faults. The mi do not have to be scalar values.

A fault detection filter is a linear observer that, like any other linear observer, forms a

residual process sensitive to unknown inputs. Consider a full-order observer with dynamics

and residual

x

r

(A + LC)x + Bu - Ly

Cx + Du - y

(3.2a)

(3.2b)

Form the state estimation error e = x - x and the dynamics and residual are

q

e = (A + LC)e - LFimi
i=l

r Ce

In steady-state, the residual is driven by the faults when they are present. If the system

is (C. A) observable, and the observer dynamics are stable, then in steady-state and in the
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absence of disturbances and modeling errors, the residual r is nonzero only if a fault has

occurred, that is, if some mi is nonzero. Furthermore, when a fault does occur, the residual

is nonzero except in certain theoretically relevant but physically unrealistic situations. This

means that any stable observer can detect the presence of a fault. Simply monitor the

residual and when it is nonzero a fault has occurred.

In addition to detecting a fault, a fault detection filter provides information to determine

which fault has occurred. An observer such as (3.2) becomes a fault detection filter when

the observer gain L is chosen so that the residual has certain directional properties that

immediately identify the fault. The gain is chosen to partition the residual space where each

partition is uniquely associated with one of the design fault directions Fi. A fault is identified

by projecting the residual onto each of the residual subspaces and then determining which

projections are nonzero.

Before the fault detection filter design (3.2) can begin, a system model with faults has

to be found with the form (3.1). Seven sensors and two actuators are associated with the

linearized longitudinal vehicle dynamics described in section 2.3.1. The sensors measure the

engine manifold airflow and engine speed, the vehicle forward and heave accelerations, the

pitch rate and the averaged speed of the forward wheels and the averaged speed of the rear

wheels. The actuators control the engine throttle and the brake torque.

3.1 Sensor Fault Models

Sensor faults can be modeled as an additive term in the measurement equation

(3.3)

where Ei is a column vector of zeros except for a one in the i th position and where JLi

is an arbitrary time-varying real scalar. Now, for the fault detection filter design, faults

are expressed as additive terms to the system dynamics as in (3.1). Sensor faults may

be expressed in this way, as explained in (Douglas 1993), where the fault E i in (3.3) is

equivalent to a two-dimensional fault Fi

with Fi = [Fl, F?]
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and where the directions Fl and F? are given by

= CF1
t

Chapter 3: Fault Selection

(3.4a)

(3.4b)

Using the linearized longitudinal dynamics of section 2.3.1, an engine manifold airflow

measurement is given by the first element of the system output (2.7). Therefore, any fault in

the engine manifold airflow sensor can be modeled as an additive term in the measurement

equation as in (3.3)

where

EYm = [1, 0, 0, 0, 0, 0, 0 r
and where MYm is an arbitrary time-varying real scalar. An equivalent two-dimensional fault

FYm found by solving (3.4) is

0.1145
0.9439
0.3365

-2.8676
3.5965

21.5405
15.5799

0.0232
8.0234

-94.5225
32.1570
30.7195
73.7392

-179.3062

Other vehicle sensor fault directions are found in the same way.

3.2 Actuator Fault Models

A fault in a control input is modeled as an additive term in the system dynamics. In

the case of a fault appearing at the input of an actuator, that is the actuator command,

the fault has the same direction as the associated column of the system B matrix. A fault

appearing at the output of an actuator, the actuator position, has the same direction as the

associated column of the system A matrix.

For the vehicle longitudinal dynamics developed in section 2.3, the actuator dynamics

are relatively fast and, in an approximation, are removed from the system model. Thus,
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the control inputs are applied directly to the car dynamics through a column of the B

matrix and to the sensor outputs through a column of the feedforward D matrix. So, for

this system a control input fault has three directions. One fault direction is the B matrix

column. The other two directions come from treating the D matrix column as if it were a

sensor fault which is explained above.

The engine throttle control is the first element of the system input so one direction of

an engine throttle control fault is the first column of the B matrix from (2.7)

0.9509
2.8861
2.9813

F 1 = -0.4068n

-0.2001
-0.1069
-0.1389

(3.5)

Because the linear model (2.7) has a control feedforward term, a throttle control fault also

shows up directly in the system outputs in a direction given by the first column of the D

matrix, that is,

1.1894e - 07
-4.6361e - 04

1.0324e - 03
En = -3.679ge - 05

2.0846e - 06
-9.9046e - 05

1.3114e - 03

As with a sensor fault, this direction Eo: leads to a two-dimensional dynamics fault direction

given by solving (3.4). Together with (3.5), an engine throttle fault is modeled as a three-

dimensional dynamics fault

0.9509
2.8861
2.9813

-0.4068
-0.2001
-0.1069
-0.1389

-0.0023
-0.0021
-0.0074
-0.0220

0.0300
0.1758
0.1273

-0.0002
-0.0462
-0.0911

0.0911
0.1458
0.5580

-1.5206
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A fault model for the brake torque is developed in the same way and is given by

-3.4075 0.0423 0.0004
-1.0743 0.0370 0.0831

0.8178 0.1236 0.1275
F{3 = 1.1552 0.3200 -0.1217

1.8522 -0.4697 -0.2077
0.3980 -2.8685 -0.9034
1.0870 -2.0732 2.4854


