
ApPENDIX A

Fault Detection Filter Background

A LINEAR TIME-INVARIANT SYSTEM with q failure modes and no disturbances or sensor

noise can be modeled (Beard 1971), (White and Speyer 1987), (Massoumnia 1986) by

q

x = Ax + Bu+ LFimi
i=l

y = ex.

(a.1a)

(a.1b)

All system variables belong to real vector spaces x E X, u E U, Y E Y and m t E M j

with n = dimX, P = dimU, m = dimY and qi = dim Mi. The input u E U is known

as is the output y E y. The failure modes mi E Mi are vectors that are unknown and

arbitrary functions of time and are zero when there is no failure. The failure signatures

Fi : Mi ~ ;:'i ~ X are maps that are known, fixed and unique. A failure mode Tni models

the time-varying amplitude of a failure while a failure signature Fi models the directional

characteristics of a failure. Assume the Fi are monic 50 that mi ::f 0 implies Fimi ::f 0,

Actuator and plant faults are modeled with Fi as the appropriate direction from A or B.
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For example, a stuck actuator is modeled with Fi a.s the column of A associated with the

actuator dynamics and with mi(t) = -Ui(t) + Uic where Uic is some constant.

Sensor faults are most naturally modeled a.s an additive term in the mea.surement

equation a.s follows where Ei is a column vector of zeros except for a one in the i th position

and where tLi is an arbitrary time-varying real scalar.

(a.2)

It can be shown that the E i sensor fault form of (a.2) may be converted to an equivalent

Fi form (a.l) with no need for appended dynamics (Beard 1971), (White and Speyer 1987),

(Dougla.s 1993). This is demonstrated shortly.

A.I The Detection Filter Problem

Consider a full-order observer of the form

x = (A+LC)x+Bu-Ly

z = Cx - y.

The state estimation error e = x- x dynamics are

q

e= (A+ LC)e - L:Fimi
i=l

(a.3a)

(a.3b)

(aA)

If (C, A) is observable and L is chosen so that A + LC is stable, then in steady-state and in

the absence of disturbances and modeling errors, the residual T is nonzero only if a failure

mode mi is nonzero and is almost always nonzero whenever mi is nonzero. It follows that

any stable observer can detect the occurrence of a fault. Simply monitor the residual z and

when it is nonzero a fault ha.s occurred. A more difficult ta.sk is to determine which fault

ha.s occurred and that is what a fault detection filter is designed to do.

A fault detection filter is an observer with the property that when an unknown input or

fault is nonzero, mi(t) =I- 0, the error e(t) remains in a (e, A)-invariant subspace Wi which

contains the reachable subspace of (A + LC, Fi ). Thus, the residual remains in the output
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subspace CWi . Furthermore, the output subspaces CWI, .. " CWq are independent so that

Z E E?=l CWi has a unique representation Z = Zl + .. ,+ Zq with Zi E CWi . The fault is

identified by projecting Z onto each of the output subspaces CWi' The following statement

of the detection filter problem, sometimes called the Beard-Jones detection filter problem,

is essentially the same as that found in (Beard 1971) and (White and Speyer 1987) but is

stated in the geometric language of (Massoumnia 1986).

Definition A.1 (Detection Filter Problem). Given the system (a.1), with state-space

X and measurement-space Y, the detection filter problem is to find a set of subspaces

Wi ~ X, i = 1, ... , q such that for some map L : Y t-+ X the following conditions are met:

CWi n (~=CWj) = 0
j#i

Subspace invariance.

Failure inclusion.

Output separability.

It can be shown (Massoumnia 1986), (White and Speyer 1987) that the last condition,

output separability, implies that the subspaces WI, ... ,W q are independent when (C, A) is

observable

A.2 Sensor Fault Models

It is now shown how the Ei sensor fault form of (a.2) is converted to an equivalent Fi

form with no need for appended dynamics. While this is also shown in (Beard 1971),

(White and Speyer 1987) and (Douglas 1993), the following original demonstration is more

easily extended to time varying systems. Let Fi be any map that satisfies

and define a new state estimation error e as



220 Appendix A. Fault Detection Filter Background

This is a Goh transformation on the error space (Jacobson 1971). The residual is then.

r= Ce

Using (a.4), the dynamics of e are

(a.5)

and a sensor fault E i in (a.2) is equivalent to a two-dimensional fault Fi

where the directions Fl and Fi2 are given by

Ei = CFl
F? = AFl

(a.6a)

(a.6b)

An interpretation of the effect of a sensor fault on observer error dynamics follows from

(a.5) where Fl is the sensor fault rate /Li direction and F? is the sensor fault magnitude

J1i direction. This interpretation suggests a possible simplification when information about

the spectral content of the sensor fault is available. If it is known that a sensor fault has

persistent and significant high frequency components, such as in the case of a noisy sensor,

the fault direction could be approximated by the Fi1 direction alone. Or, if it is known

that a sensor fault has only low frequency components, such as in the case of a bias, the

fault direction could be approximated by the Fl direction alone. For example, if a sensor

were to develop a bias, a transient would be likely to appear in all fault directions but, in

steady-state, only the residual associated with the faulty sensor should be nonzero.

In the case where the dynamics (a.l) are time varying, the error dynamics (a.5) become

so that once again, a sensor fault E i in (a.2) is equivalent to a two-dimensional fault Fi
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but where the directions Fl and F';.2 are given by

A.3 Solving The Detection Filter Problem

221

It should be pointed out that for any subspace Fi ~ X there is a minimal (C, A)-invariant

subspace F i ~ Wi ~ X. A recursive algorithm, the (C, A)-invariant subspace algorithm,

for computing a minimal invariant subspace is suggested by (Wonham 1985) and restated

in the following theorem.

Theorem A.1 (CAISA). Let W(F) be a family of (C, A)-invariant subspaces where

F ~ WE W(F). Then, there exists a minimal (C, A)-invariant subspace W· E W(F)

where for any WE W(F), W· ~ W. Furthermore, W· =lim W k where W k is given by

the recursive algorithm

WO = 0

W k+1 = F + A (Wk nKerC)

Proof. The proof given in (Wonham 1985) follows from the result of (Willems 1982) that

the set W(F) is closed under subspace intersection. •
Note that the algorithm given in Theorem A.l implies that for dim.ri = 1, the minimal

(C, A)-invariant subspace W; is spanned by {Fi, AFi, ... , A~'Fi} where Il-i is the smallest

integer such that CA~Fi ::1= O. For one-dimensional faults, the algorithm of Theorem A.l is

a very simple way to find Wi.

Theorem A.I also suggests a check for output separability. Let {Iii' ... , liqi} be any set

of basis vectors for .ri' An output separability check is that

(a.7)



222 Appendix A. Fault Detection Filter Background

where p = L qi is the total number of basis vectors for the q failure spaces :Fi and l3ij is the

smallest integer such that CA{311 fh :/: O. Note that if (a.7) is not satisfied, then usually,

the designer needs to discard some failures from the design set.

In the case where the dynamics (a.l) are time varying, an output separability check is

that

rank [cbf:l(t), ... ,Cb~·j(t), ... ,Cb:::q(t)] =p,

where l3i is the smallest integer such that the following iteration:

"It E [to, td (a.8)

bi (t) =,
bk+I (t) =
"

li j (t)

k . kAbi, (t) + bi , (t)

(a.9a)

(a.9b)

results in a vector bf (t) such that Cbf (t) :f: 0 for all t E [to, tIl. Note that (a.9) are the, ,
product of a Goh transformation on the output error space.

It is assumed that the system matrices A(t), C(t) and Fi(t) are such that the number of

iterations of (a.9) needed for the full rank condition is constant over the entire interval [to, tIl,

that is, the time variations of the system do not change the dimensionality of the detection

problem. This restricts the applicability of this analysis to a subclass of time varying

systems, but it avoids pathological cases. Assumptions such as this seem to be unavoidable

when dealing with time varying systems. See, for example, (Clements and Anderson 1978).

When C Ii, = 0, both output separability tests fail immediately. However, this is not

indicative of whether or not the system is output separable. As we will see in the next

section, Cit, = 0 is a sign that a lij possess a higher-order detection space, meaning that

it takes more than one vector to span this space. From Theorem A.l, one of these must lie

outside the kernal of C and is, thus, the vector which must be used in the output separability

test.

To ensure stability, the invariant subspaces Wi are usually chosen as a set of mutually

detectable, minimal unobservability subspaces or detection spaces (Beard 1971) as they are

also called in the context of fault detection. An unobservability subspace T ~ X or VOS is a

subspace with the property that T is the unobservable subspace of the pair (HC, A+LC) for
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some L and H. This means not only that T is (C, A)-invariant but also that the spectrum

of (A +LC) induced on the factor space X /T may be placed arbitrarily within a conjugate

symmetry constraint and with respect to L such that (A +LC)T ~ T. Furthermore, when

(C,A) is observable, the entire spectrum of (A +LC) is arbitrary. If T(:F) is the set of

(C, A)-unobservability subspaces that contain :F, then it can be shown that T(:F) has a

smallest element denoted T* (Willems 1982). The detection space is usually found as a

minimal vas, T*, because there is no known parameterization of all vas and algorithms

exist to compute the minimal vas (White and Speyer 1987), (Massoumnia 1986).

One method for computing T* is suggested by (Wonham 1985) as a numerically stable

method for finding supremal controllability subspaces. These are the dual of minimal

unobservability subspaces or detection spaces. There are two steps. First, for a fault Fi ,

find the minimal (C, A)-invariant subspace Wi using the recursive (C, A)-invariant subspace

algorithm as explained above. Next, calculate the invariant zero directions of the triple

(C, A, Fi ), if any. Denote the invariant zero directions as Vi. Then

Detection space calculations are described in detail in (Wonham 1985) with amplification

and examples given in (Douglas 1993).

Finally, a mutually detectable set ofunobservability subspaces {Ti, ... ,T~} is one which

satisfies Definition A.I such that the sum L:l=l Ti is also an vas. While for anyone vas
T i , the spectrum of (A + LC) induced on X /T i may be placed arbitrarily with respect to

L, it is not necessarily true that the factor space spectrum is arbitrary when several vas
are considered simultaneously. When a set of vas Ti, ... ,T; is mutually detectable, the

spectrum of (A+ LC) induced on X/,,£l=l Ti is arbitrary and, when (C,A) is observable,

the entire spectrum of (A + LC) is arbitrary.

A.4 The Restricted Diagonal Detection Filter Problem

In (Massoumnia 1986), the Beard-Jones detection filter problem is shown to be a special case

of the restricted diagonal detection filter problem (RDDFP). First, define the complementary
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failure map Fi as

Appendix A. Fa.ult Detection Filter Background

(a.lO)

The RDDFP, which is the dual of the restricted decoupling problem (Wonham 1985), is to

find a set of q unobservability subspaces TI, ... ,Tq such that

j:. CT·I _ I

In the Beard-Jones detection filter, the idea is to confine each fault to an invariant subspace

and then monitor that subspace through the residual for fault activity. In the RDDFP,

the idea is to confine all the faults but one to an unobservable subspace, then monitor the

observable factor space for activity caused by the remaining fault. By the definition of

an unobservability subspace, there exists a projector Hi and a gain L such that Ti is the

unobservable subspace of the pair (HiC, A + LC). The signal

(a.H)

is decoupled from all faults except Pi. Furthermore, :Fi n Ti = 0 implies that Fi is input

observable so that Fjmj =1= 0 implies that Zj =1= O. Also, by construction, iIi satisfies

An explicit construction of Hi is to form CM i as in (a. 7)

Then

In the case where the dynamics (a.l) are time varying, Hi(t) may be constructed by

forming CMj(t) as in (a.B)

C M i = [Cb~: 1 (t), ... , Cb~i j (t), ... , Cb~::q (t) ]

....
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where f3i is the smallest integer such that the following iteration:

225

b~(t)
J

bf+l(t) =
J

k 'kAbdt) + bdt)
J J

results in a vector b~ (t) such that Cb~. (t) =f: a for all t E [to, tIl. This time, ii
J
. is taken to

J J

be vector from a basis for J:i ,

It is easy to show that a Beard-Jones detection filter is always a restricted diagonal

detection filter. For example, suppose a Beard-Jones detection filter is formed as a set of

mutually detectable unobservability subspaces Ti, ... ,T~. Let

(a.12)

A.
Then, by the definition of mutual detectability, T i is itself a minimal unobservability

subspace for the fault group Pi.
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Parameter Robustness By
Left Eigenvector Assignment

ONCE the detection spaces are found, the next step is to find a fault detection filter gain. The

gain is not unique and several methods exist for finding one. Eigenstructure assignment

algorithms, which are the most accessible, are described in (Douglas and Speyer 1995b)

and (White and Speyer 1987). An 'Hoo disturbance bounded fault detection filter described

in (Douglas and Speyer 1995a) is reviewed in Appendix C. The procedure applied in this

report is a left eigenvector assignment algorithm introduced in (Douglas and Speyer 1996)

and (Douglas 1993). This procedure is used because it extends directly to one that hedges

against sensitivity to parameter uncertainty. Noise robustness algorithms such as the

'Hoo-bounded fault detection filter of (Douglas and Speyer 1995a) and Appendix C are not

used here because disturbances and sensor noise are not yet included in the vehicle model.

Furthermore, later, when they are included, the reduced-order fault detection filters provide

a natural way to accommodate noise without the need for redesigning the filter.

227
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The left eigenvector assignment algorithm works by assigning an eigenstructure in the

dual space to a set of intersecting detection space annihilators. This means that left

eigenvectors, which annihilate the detection spaces, are placed instead of right eigenvectors,

which span the detection spaces, as is done in (White and Speyer 1987). Since the detection

space annihilators intersect, care must be taken to ensure that the assigned eigenvectors are

consistent.

Before proceeding, it is necessary to establish a dual relation between unobservability

and controllability subspaces. First, introduce the following notation. X' denotes the dual

space of X and if C : X t-+ y, then C' denotes the dual map C'y' t-+ X'. Writing CT, the

transpose of matrix C, for the dual map C' implies that bases have been chosen for X and

y. Now, in (Wonham 1985) it is shown that if 7 ~ X is a (C, A)-unobservability subspace

then the annihilator of 7 denoted here by 7.1. ~ X' is an (A', C')-controllability subspace

in the dual system. Second, if T is a (C, A)-unobservability subspace, the observable part

of the system is characterized by the factor space X /T and the induced system maps.

Furthermore, for any subspace T ~ X, the annihilator of T and the factor space X /T are

isomorphic, 7.1. ~ (X /7)'.

The dual relation between unobservability and controllability subspaces is useful because

any result found for controllability subspaces can be applied easily to the unobservability

subspaces of a detection filter. Consider the results of (Moore and Laub 1978) which are

paraphrased as follows. The first statement describes a set of vectors in the kernal of C

that can be assigned as closed-loop eigenvectors.

Theorem B.l. Let A : X t-+ X, B : U t-+ X and C : X t-+ y. Then a set of linearly

independent vectors {VI, ... , Vk IVi E Ker C ~ X} satisfies (A + BK)Vi = -\Vi for some

K : X t-+ U and distinct self-conjugate complex numbers >'1,"" >'k if and only if Vi and Vj

are conjugate pairs when >'i and >'j are and there exists a set of vectors {WI, ... , Wk IWi E U}

such that
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It follows immediately that for a monic B, a set of vectors {VI, ... ,vkl satisfies theorem B.l

if and only if KVi = Wi'

The second result also from (Moore and Laub 1978) characterizes the set of eigenvectors

that span a supremal (A, B)-controllability subspace R*.

Theorem B.2. Let >'1, ... , >'k be a set of distinct, self-conjugate complex numbers that

satisfy

1) k ~ dim(R*) where R* is the supremal (A, B)-controllability subspace in KerC

2) at least one >'i is real

3) no >'i or Re(>'d is a transmission zero of (e, A, B)

Let 'Vi and Wi solve

[ A ~Ail ~] [ ~;] = [~]
Then R * = 1m VI + ... + 1m Vk .

Given the dual relationship between controllability and unobservability subspaces, the

application of Theorems B.l and B.2 to detection filter design is immediate. First, consider

just one detection space T:. Characterize the left eigenvectors that annihilate T: and find

a detection filter gain Li that produces T:. Next establish a consistency requirement on a

detection filter gain L that is to produce q detection spaces Ti, ... ,T~.

If T: ~ X with dimension Vi is a detection space for fault Fi , the annihilator (T;)J.

is the supremal controllability subspace of the dual system with (7nJ. ~ Ker F: and has

dimension n - Vi. Let Ai = {>'il' ... , >'in - v } be a set of distinct self-conjugate complex,
numbers that does not include any of the invariant zeros of the triple (FI,A',C'). By

Theorem B.2 the annihilator of 7: satisfies

(7;)1. = 1m 'ViI + ... + Im'Vin _ v,

where the 'Vi; are found, along with Wi;, by solving

(b.l)



230 Appendix B. Parameter Robustness By Left Eigenvector Assignment

where j = 1, ... , n - Vi and where Ai; E Ai' A set of linearly independent closed-loop left

eigenvectors ViI' ... , Vin_" that spans (T;)1. satisfies Theorem B.l and is found by solving,

(b.2)

Since Vij E 1m ~j (b.l), the left eigenvectors may not be unique but they are constrained to

be arranged in conjugate pairs when the given closed-loop eigenvalues Ai; are in conjugate

pairs.

Now find a detection filter gain Li . By the remark following Theorem B.l, L[ satisfies

(b.3)

T T T . . A A

and (A + C Li )Vij = Ai;Vij for each J = 1, ... , n - Vi. Form two matnces ~ and Wi

"Ci = [Vil, ... ,Vin_"i]

Wi = [Wil"'" Win-"i]

(bAa)

(bAb)

T' , T
and solve Li Vi = Wi. A real solution for Li always exists because the Vi; are linearly

independent and the assigned closed-loop poles Ai) and eigenvectors Vi) when complex are

arranged in conjugate pairs. Finally, L i , the detection filter gain found as the transpose

(b.5)

satisfies (A + LiC)T; ~ T; and places the spectrum of (A + Lie) induced on X IT; as

<7(A + LiClXITi) = Ai.

Because the detection filter has q detection spaces Ti, ... ,T~ ~ X, the detection filter

gain L has to satisfy (b.5) for i = 1, ... , q or

T[A A] [A A]L VI, ... ,Vq = WI, ... ,Wq (b.6)

Since the "Ci and Wi represent 2:1=1 (n - Vi) pairs of vectors (Vi;' Wi;)' care must be taken

to construct the 'Ci and Wi conformably. If (b.6) is to have a solution for L, there can be

no more than n distinct pairs (Vi;' Wij) and of these, the Vi; must be linearly independent

and arranged in conjugate pairs if a solution is to be unique and real.
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Finding a set of left eigenvectors consistent with (b.6) is not difficult but requires careful

bookkeeping. Since (Ti).i and (X /T:)' are isomorphic, the closed-loop spectrum induced

on the factor space X/T: is

If Ai is the spectrum of (A + Lie) restricted to the invariant subspace T:

Ai = O"(A + LClT;)

then the spectrum of (A + LiC) is just

(b.7)

Now, the subspaces Ti, ... ,T~ are independent when the faults are output separable and

(C, A) is observable (Massoumnia 1986), (White and Speyer 1987), so

A = Al U... UAq UAo

where Ao is a set of 110 = n - 111 - •.. - IIq eigenvalues associated with the complementary

space Xo = X/L:r=l Ti, 110 = dim(Xo),

q

Ao = O"(A + LCIX/'LT;)
i=l

It follows from (b.7) that

q

Ai = UAk

"=0
k=li

(b.8)

Since the sets of assigned closed-loop poles Ai intersect, the sets of vectors Vi· and Wi
J J

that solve (b.2) should also form intersecting sets compliant with (b.8). By (b.8), if Aij E Ai

for i =J 0, then Aij E Ak=li and the Vij and Wij that satisfy (b.2) now must satisfy

o = (AT - AijI)vij + CT
Wij

o = F[Vij
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o = Fl'_IVij

o = FltlVij

o = pTv ·q I,

For i = 0 and '\, E AD, then Aij E ilk for k = 1, ... ,q and the Vij and Wij that satisfy (b.2)

now must satisfy

o = (AT - Ai,!)Vij + CT
Wij

o = FTVij

The fault detection filter gain computation algorithm suggested by (b.2)-(b.6) and

modified to force consistency among eigenvectors which span the intersecting detection

space annihilators, is as follows.

Algorithm B.l.

1) Find the dimensions of the detection spaces IIi = dim Ti for i = 1, ... ,q and the

dimension of the complementary space 110 = n - 2::;=1 IIi·

2) Define the complementary fault sets

for i = 0
for 1 ::; i ::; q

(b.9)

Define (q + 1) sets of distinct self-conjugate complex numbers AD, AI,' .. , Aq where

dim Ai = IIi and where no elements of Ai are zeros of the triple (C, A, Pi)' By the

remarks at the end of Appendix A, each of these sets may be specified arbitrarily

except for conjugate symmetry when (C, A) is observable and when the detection

spaces Ti are mutually detectable.
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3) For i = 0, ... , q and j = 1, ... , Vi and for Aij E Ai solve

for pairs (Vij' Wij) where the Vij are linearly independent for all i, j. Let

'Ci = [Vii"'" Vi ]

Wi = [Wii' ... ,Wi .]

4) Solve for the detection filter gain L as

[_ - - ]T [ - - - ]TVO, V1, ... ,Vq L = VVo, VV1, ... , VVq

233

(b.10)

(b.lla)

(b.llb)

(b.12)
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An ?-loo Bounded Fault Detection Filter

ANALYTICAL REDUNDANCY METHODS for fault detection and identification use a modeled

dynamic relationship between system inputs and measured system outputs to form a residual

process. Nominally, faults are detected as the residual process is nonzero only when a fault

has occurred and is zero at other times. An example of a residual process for an observable

system when no disturbances or sensor noise are present is the innovations process of any

stable linear observer. A detection filter is a linear observer with the gain constructed so

that when a fault occurs, the residual responds in a known and fixed direction. Thus, when

a nonzero residual is detected, a fault can be announced and identified at the same time.

Since process disturbances and sensor noise also produce a nonzero residual, the ambiguity

must be resolved with an appropriate threshold.

An objective of a detection filter design in the presence of disturbances is to reduce the

component of the residual due to the disturbance without at the same time degrading the

component of the residual due to the fault. This suggests as a cost function, a ratio of

235
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transfer matrix norms (Frank and Wiinnenberg 1989), (Lee 1994). In the numerator is the

transfer matrix from the disturbance to the detection filter residual and in the denominator

is the transfer matrix from the fault to the detection filter residual. This formulation works

well when only one fault is to be detected. Generalized eigenvector solutions are found

using a parity equation approach in (Frank and Wiinnenberg 1989) and an optimization

approach in (Lee 1994). Unfortunately, for the detection filter structure where several

faults are isolated simultaneously, no similar problem formulation is available.

The approach taken here follows two steps. First, bound the ?too norm of the transfer

matrix from the disturbance to the detection filter fault isolation residuals. Next, for each

multi-dimensional fault isolation residual and working within the noise bound constraint,

enhance the component due to the fault signal to be isolated. This is done by maximizing

the ratio of the residual component due to a fault to the residual component due to the

noise.

In the case of one-dimensional faults, the primary effect of the first step is to bound

noise transmission through the complementary space, the state subspace independent of all

detection spaces. The second step is not usually needed. This is because, generically, a

fault detection space is given by the fault direction itself, which means the detection space

is spanned by a single fixed eigenvector. The associated eigenvalue is the only degree of

freedom left so there is no way to increase the residual component due to a fault without at

the same time increasing the residual component due to the noise. In practical applications,

plant and actuator failures usually are modeled as one-dimensional faults. Sensor faults

generically require a two dimensional detection space so a design freedom exists where a

residual component due to a fault could be enhanced.

This Appendix is organized as follows. Section C.1 shows that the detection filter

gain is not unique and, given a set of invariant subspaces that solve the detection filter

problem, parameterizes the set of detection filter gains. Section C.2 defines a disturbance

robust detection filter problem and Section C.3 provides a stabilizing and ?too bounding

detection filter gain by solving a modified algebraic Riccati equation. Section C.4 enhances
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the residual component due to the associated isolated fault signal by solving a generalized

eigenvalue problem. Section C.5 provides an application to a simplified aircraft elevon and

accelerometer fault detection filter where wind and sensor noise is present. The example

illustrates how a numerical integration approach can be applied to solve the modified Riccati

equation. Section C.6 contains a few concluding remarks.

C.1 Detection Filter Gain Parameterization

Given a set of subspaces WI,"" Wq that solve the detection filter problem, the next

problem is to characterize the set of maps L : y ...... X such that L E n1=lL(Wd where

A first step is to find a set L(W) for anyone (C, A)-invariant subspace W. Proposition C.3

parameterizes L E L(W) in two parameters a : CW ...... W and (3 : y ...... X. Then, given

a set of (C, A)-invariant subspaces Wll .. " Wq that solve the detection filter problem,

Proposition C.4 parameterizes L E n1=lL(Wi ) in q +1 parameters 0'1, ... , O'q and (3. First,

a Lemma from (White and Speyer 1987, Lemma 1), except for the geometric language, is

restated to provide a solution to a generalized inverse problem. Lemma C.2 provides a few

well-known properties of projections.

Lemma C.l. Let B : U ...... X, C : X ...... Y and D : U ...... Y where B is monic. Then a

general solution of CB = D for C is given by

(c.1)

where PB : X ...... X is any projection such that c::JPB = c::JB, FB : X ...... U is the natural

projection where BFB = PB and K : X ...... Y is arbitrary.

Lemma C.2. Let C : X ...... Y and let P : X ...... X be any projection. Then Ker P ~ Ker C

if and only if C = CPo Now let Ker P = Ker C and let V decompose P as VVT = P and

VTV = I. Then CV is monic with c::JCV = c::JC.

.'.
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An easy way to find a projector P that satisfies Lemma C.2 is to find the singular value

decomposition of C. For C = UEyT where E is a diagonal matrix of nonzero singular

values, the Y of the lemma are the right singular vectors of C. Thus P = yyT and

CY = UEyTy = UI:, is monic with ~C = ~UI:,.

Proposition C.3. Let W c X be a (C, A)-invariant subspace with insertion map W :

W 1-+ X. Let P : W 1-+ W be any projection where Ker P = Ker CW and let Fdecompose P

as FFT = P and FT F = I. Let H : Y 1-+ Y be another projection where ~H = CW and

let H be the associated natural projection that satisfies CWFH = H and HCWF = I.

Then L : Y 1-+ X satisfies (A + LC)W = WAw for some Aw : W 1-+ W if and only if

L = (-AWF+ Wa)H + (3(I - H)

for some a : CW 1-+ W and (3 : Y 1-+ X.

Proof. (~) Assume L satisfies (A + LC)W = W Aw for some map Aw. Then

LCW = -AW+WAw

and

LCWF = -AWF+WAwF

(c.2)

(c.3)

Now F is defined so that FFT is a projection with Ker CW = Ker F FT and FTF = I.

Therefore, by Lemma C.2, CWF is monic and by (c.3) and Lemma C.l

L= (-AWF+WAwF)H+{3(I-H)

So (A+LC)W=WAw

=> L = (-AWF + Wa)H + (3(I - H)

where a = AwF and {3 is anything.

(<=:) Suppose L = (-AWF+ Wa)H +(3(I -H). Now HCWF = CWF and HCWF = I

so LCWF = (-AWF + Wa) and

(A + LC)WF = Wa (c.4)
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F is defined so that PpT is a projector with Ker CW = Ker FFT and pTF = I. Therefore,

by Lemma C.2, CW = cwF pT and it follows that CW(I - PpT) = 0 and

(c.5)

Since for any (C, A)-invariant subspace W it is true that A(W n Ker C) ~ W, it follows

from (c.5) that for some Aw

AW(I - ppT) = W Aw

and

(A + LC)W(I - ppT) = W Aw

By (c.4), (A+LC)WppT=WO'PT. So

(A + LC)W = W (apT + Aw )

and L = (-AW F + WO')B + 13(1 - H)

~ (A+LC)W = WAw

(c.6)

where Aw = apT + Aw and where Aw satisfies (c.6). Note that Aw = Aw(I - ppT) so

By Lemma C.l Aw is a particular solution to 0' = AwF.

The remark following Lemma C.2 shows that P is the set of right singular vectors of

CWo

Proposition CA. Let WI,.'" Wq C X be a set of (C, A)-invariant subspaces that solve

the detection filter problem and let the Wi : Wi 1-+ X be the insertion maps. Let Pi, Pi, Hi

and Hi associated with Wi be as in Proposition C.3 but partially specify the kernal of Hi

and Hi as I:#i CW j ~ Ker Hi = Ker Hi. Also, define the projection Ho = (I - I:f=l Hd

and the associated natural projection Bo. Finally, define a set of maps

L(Wd = {L : Y 1-+ X I (A + LC)Wi ~ Wd
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q

L = ~)-AWiFi + Wi(}:i)Hi + PHo
i=l

for some (}:o : <;JHo 1-+ X and (}:i : CWi 1-+ Wi where i = 1, ... ,q.

(c.7)

Proof. (=» Assume L E L(Wi). Then L satisfies (A + LC)Wi = WiAwi for some

AWi : W 1-+ W for i = 1, ... , q. So

and

and

L [CWIFI , ... ,CWqFq] =

[(-AWIFI + WIAw1FI ), ... , (-AWqFq+ WqAWqFq)] (c.8)

The Fi are defined so that FJ'l is a projector with Ker CWi = Ker Pi FiT and FiTPi =

I. Therefore, Lemma C.2 shows that <;JCWi = <;JCWiFi and CWiFi is monic. Since

the WI, ... , W q solve the detection filter problem, they are output separable, which means

the output subspaces CWI, ... , CWq are independent. Therefore, [CWIFl, ... , CWqFq] is

monic.

In Proposition C.3 Ker H is not specified and is not important. Here however, HiCWj =

o so if H is the projection H = L:{=l Hi then

A natural projection H associated with His
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because

and

q

= LCWiFJli
i=l

q

= LHi
i=l

- H
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Since, [CWIF1, ... ,CWqFq] is monic and Hand H meet the requirements of Lemma C.l,

the general solution of (c.8) for L is

L = [(-AW1F1+ W1Aw)'1), ... , (-AWqFq+ WqAwqFq)] il + ~(I - H)
q

= ~)-AWiFi + WiAw;Fdili + ~(I - H)
i=l

q

= L(-AWiFi + WiD:i)Hi + ~(I - H)
i=l

where D:i = Aw;Fi and ~ is anything. Finally, it follows directly from the definitions of H

and He that for any ~, there exists ,B such that ~(1 - H) = ,Bile. So,

q

L = L(-AWiFi + WiD:i)ili + ,Bile
i=l

(~) Assume

q

L = L(-AWiFi + WiD:i)Hi + ,BHo
i=l

q

= L(-AWiFi + WiD:i)ili + ~(1 - H)
i=l

where the equality follows from the definitions of H and flo. Since HiHj = 0,

q

(I - H) = (I - LHd = (I - LHj )(1 - Hd
i=l j#i

'.
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q q

L = :~)-AWiFi + WiQi)Hi + (3(I - L,Hi)
i=l i=l

q

= L,(-AWiFi + WiQi)Hi + {3(I - L,Hj)(I - Hd
~1 j~

= (-AWiFi + WiQi)Hi + [~)-AWjFj + WjQj)Hj + (3(I - LHj)] (I - Hi)
j#i j#i

Therefore, L has the form

where

{3i = 1)-AWjFj + WjQj)Hj + (3(I - L,Hj )
j~ j~

By Proposition C.3, L E L(Wi) for each Wi which means L E n?=lL(Wd.

C.2 A Disturbance Robust Detection Filter Problem

Section C.l showed that a detection filter gain associated with a set of detection filter

solution spaces WI, ... , W q is easy to find, but generally is not unique. In this section, the

WI, ... , W q are found as for the deterministic case, but the nonuniqueness of the detection

filter gain is treated as a degree-of-freedom in the detection filter design. This leads to the

definition of a noise robust detection filter problem where the objective is to find a detection

filter gain that minimizes or bounds a norm of the transfer matrix from the disturbance to

the residual.

The linear time-invariant system of (a.I) with q failure modes is extended to include

disturbances as

q

x = Ax+Bw+Buu+ L,Fimi
i=l

y = Cx+Dw.

(c.9a)

(c.9b)
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The input w includes dynamic disturbances and sensor noise and is square integrable over

[0,00).

The error dynamics and residual of a full-order filter have the same form as the observer

(a.3, a.4)

q

e = (A+LC)e- (B+LD)w- LFimi
i=l

r = Cx - y = Ce - Dw.

(c.l0a)

(c. lOb)

Since only forcing terms differentiate the residual process of the observer (a.3, a.4) from

(c.lO), the detection filter structure does not change with the introduction of disturbances

and sensor noise. However, with the residual driven by an unknown signal, a nonzero

residual does not necessarily mean a fault has occurred.

An objective of a detection filter design in the presence of disturbances is to reduce

the component of the residual due to the disturbance without at the same time degrading

the component of the residual due to the fault. This suggests as a cost function, a ratio

of transfer matrix norms (Frank and Wiinnenberg 1989). The transfer matrix from the

disturbance to the residual is in the numerator and the transfer matrix from the fault to the

residual is in the denominator. Unfortunately, this formulation requires some assumption

about the functional form of the fault because a transfer matrix norm does not convey much

information about the size of a transfer matrix output when nothing can be said about the

input. Since it is a standard and reasonable assumption that process and sensor noise is

white or nearly so, only the transfer matrix from the disturbance to the detection filter

residual is retained in the definition of a noise robust detection filter problem.

Before continuing, it is necessary to carefully define what is meant by the component of

the residual due to the fault. Define Zi as a projection of the observer residual (c.lO) onto

the output subspace CWi. Let Hi : Y 1-+ Y be any projection onto CWi and along the

CWj;<:i so that CWi = <;;:tHi and Lj;<:i CWj S; Ker Hi' Let Hi be the associated natural

projection and define Zi, a fault residual, as

(c.lI)



244 Appendix C. An 'Hoo Bounded Fault Detection Filter

Using Hi rather than Hi in (c.Il) doesn't change any information given by the fault residual

but is convenient later when certain matrix inverses are needed.

Now consider that for a system with q faults as in (c.g), there are q transfer matrices

from the system disturbance to each of the fault residuals Zi (c.lI). There are several

ways to procede. One approach is to define a multi-objective problem where a detection

filter gain L is found that in some way simultaneously bounds or makes small all the

transfer matrix norms IITz..w II, for example, a Pareto optimal solution. Another is to

abandon the structure of the full-order detection filter for a system of q residual generators

(Massoumnia et a1. 1989). The q reduced-order filter gains are found independently of one

another with the penalty that the order of the combined system usually is somewhat larger

than the full-order detection filter. The approach taken here is to combine the fault residuals

into a single detection filter output as follows.

Define a combined fault residual z E (CW1 X ... x CWq) by forming a map H from the

Hi in the expected way:

z=Hr, (c.12)

The combined fault residual z provides the same information as the fault residuals, but

it combines the Zl,' .. ,Zq so that a single cost function can be defined for the detection

filter. A noise robust detection filter problem is to find a set of subspaces Wi that solve

the detection filter problem of Definition A.I. Then, given the Wi and the associated filter

gain sets

find a filter gain L E nL(Wd that bounds or minimizes some norm IITzw ll where Tzw is the

transfer matrix from the disturbance w to the combined fault residual z of (c.12).

Note that L is found in a two-step process. First, a set of subspaces Wi is found that

satisfies Definition A.I. Then a map L is found from the set nL(Wi ). The alternative

is to find L from the union of sets nL.(Wi), where the union is taken over all sets of

subspaces Wi that satisfy Definition A.I. While the latter statement certainly is more
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general, it is impractical because there is no known parameterization of all (C, A)-invariant

subspaces Wi.

C.3 An 'Hoo Bounded Detection Filter

The main result of this section is a proposition that provides an 'Hoo norm bounding

detection filter gain. Before this result is stated, a more general 'Hoo norm bounding theorem

is needed. Consider an observer with error dynamics and output

e = (A+ LC)e + (B + LD)w (c.13a)

(c.13b)

The following theorem and corollary provide a filter gain L that stabilizes the filter and

bounds the 'Hoo norm of the transfer matrix from w to z. This standard result is mainly

from Lemma 1 of (Willems 1971) so no proof is provided here.

Theorem C.5. Consider a system G with the form (c.l3), where (A - BDT(DDT)-lC)

has no purely imaginary eigenvalues and where (DDT)-l exists. Suppose there exists a

scalar real constant'"'! > 0 and a symmetric positive definite real matrix Y > 0 that satisfies

the following algebraic Riccati equation

o = (A + LC)Y +Y(A + LC)T + (B + LD)(B + LD?

+ '"'!-2(yC; + BD;)(YC; + BD;? (c.14)

Then (A + LC) is stable and IIGlioo ::; b2 + u~(Dz)P/2 where umax(Dz) is the largest

singular value of D z .

When the terms of (c.14) are manipulated to isolate L, a corollary which provides an L

that stabilizes G and bounds IIGlloo follows immediately.
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Corollary C.6. Suppose a symmetric positive definite real matrix Y > 0 satisfies the

following algebraic Riccati equation

Then for

o = [A-BDT(DDT)-lC+1'-2BDICz]Y

+ Y [A - BDT(DDT)-lC + 1'-2BDICz]T

+ B [1 - DT(DDT)-lD +1'-2D;Dz] B T

- Y [CT(DDT)-lC - 1'-2C;Cz] Y (c.15)

(c.16)

(A + LC) is stable and IIGlloo ::; [-y2 + 0"~ax(DzW/2 where O"max(Dz) is the largest singular

value of Dz .

Standard results strengthen Corollary C.6 by replacing (c.15) with conditions on an

associated Hamiltonian matrix and adding a system detectability requirement (Kucera 1972,

Doyle 1984). That is not done here because in the next proposition, the Riccati equation

(c.15) is modified to provide a detection filter gain and has no associated Hamiltonian

matrix.

In the detection filter problem, L is constrained to generate a set of q invariant subspaces

WI, ... , W q. There is no reason to expect that L, at the same time, should satisfy (c.16).

In the next proposition, (c.16) is modified so that L satisfies both constraints. When the

modified relation is substituted for L in (c.14) and L is eliminated, the result is an algebraic

Riccati equation with an extra term. The modified Riccati equation has no associated

Hamiltonian and conditions for the uniqueness or even the existence of a solution are

unknown. However, (Veillette et al. 1992) reports success in finding iterative numerical

solutions to a similar relation arising from a decentralized control problem. An example in

the next section illustrates the application a numerical integration approach.

Before stating the main proposition, it is convenient to rearrange the detection filter

error dynamics by combining the error dynamics (c.lO) with the detection filter gain (c.7).
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Then the problem of choosing the parameters Qo and QI, ... ,Qq has the same form as the

problem of choosing a set of q + 1 constant feedback gains for the system

q

e = Ae-Bw-LFimi+Wlul+" ·+Wquq+uo
i=l

(c.17a)

where

YI = if}Ce - if}Dw,

Yq = HqCe - HqDw,

Yo = HoCe - HoDw,

A = A+Lc

B = B + LD
q

L = - L AW}'iHi
i=l

Uo = QoYo

(c.l7b)

(c.17c)

(c.l7d)

(c.17e)

(c.17f)

(c.17g)

(c.17h)

Proposition C.7. Consider the system G with output given by (c.12)

A -B WI Wq I

HC -HD 0 0 0
H1C -HID 0 0 0

G =

HqC -HqD 0 0 0
HoC -HoD 0 0 0

Define

and the partitioning matrices nl , ... , nq and no
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such that
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nn C2, D21] = [HiC, HiD],

n6'[ C2, D21] = [HoC, HoD]

Now define a set of projections Pw}, ... ,Pwq where S)Pw, = S)Wi and define a set of

associated natural projections Pw., which satisfy WJ\v, =Pw., Assume (A - iJDflV-1C2)

has no eigenvalues on the imaginary axis. Let 'Y > 0 be a constant real scalar and suppose

there exists Y > 0 such that

o =

(c.18)

Then

stabilizes G and bounds the transfer matrix Tzw as IITzw ll oo :s [r2 + u~ax(HD)P/2 where

umax(HD) is the largest singular value of HD.

Proof. The transfer matrix Tzw is

T zw =

where

[ AT I-BT ]
He -HD
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q

AT = A+L WiQ:iHiC + Q:oHoC
i=l

q

BT = f3 +L WiQ:iHiD + Q:oHoD
i=l

249

By Theorem C.5 and since (A - BDflV-1C2) has no eigenvalues on the imaginary axis, it

is sufficient to show that S = 0 for some Y > 0 where

S = ATY+YAt+BTBf+

,-2(YCT + f3DT )HTH(YCT + f3DT )T

The rest of the proof involves algebraic manipulations that put S in the form of the modified

algebraic Riccati equation (c.18).

C.4 Fault Enhancement

As discussed in the introduction, it is not enough to bound the residual component due

to the process disturbances and sensor noise since this might, at the same time, make the

fault residual component small. The approach taken here is to enhance each fault residual

component while maintaining the disturbance and sensor noise bound.

Consider a cost function given as the fault signal to noise ratio

(c.19)

This is the same cost function as given in (Frank and Wiinnenberg 1989) for a set of parity

equations. Combining the filter gain of Proposition C.7 with results from (Doyle et a1. 1989)

provide a Youla parameterization of stable and 'Hoo norm bounded transfer matrices. This

could be applied to the fault detection filter by restricting the Youla parameter to those

which maintain the invariant subspace structure. Maximizing (c.19) with respect to a

restricted set of Youla parameters is a very difficult problem. A more tractable problem

may be defined as follows.

First, consider the fault detection filter transfer matrix for the fault isolation residual Zi.

By the filter unobservability subspace structure, only the fault mi influences residual Zi, so a
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reduced-order realization is written. The subscript i is dropped for notational convenience.

~(t) = Ae(t) +Fm(t) +Bw(t)

z(t) = Ce(t) + Dmm(t) + Dww(t)

The error e lies in the factor space e E X / L:Ni T j , the observable factor space with respect

to z. All maps are taken as induced on this factor space. Now consider signals m(t) and

w(t) as elements of £2( -00,0] spaces of appropriate dimensions and define the controllability

operators

=

Then Z = Zm + Zw where Zm and Zw are residual components due to m(t) and w(t) given by

Zm(t) = CeAteom = CeAt'l/Jmm

zw(t) = CeAteow = CeAt'l/Jww

A detection filter fault enhancement problem may be stated as follows. Consider the residual

components Zm and Zw as elements of £2[0, T) spaces where T is an observation window.

Find a constant mapping qT that maximizes the cost

(c.20)

Note that qTZm and qTZw are scalars. When maximized with respect to qT, this cost

penalizes large residual components due to a disturbance wand small residual components

due to a fault m.

The choice of the observation window T and the fault detection threshold is a design

decision based on the functional form of the expected faults and disturbances. A detailed

discussion is found in (Emami-Naeini et al. 1988). However, it is worthwhile to point out

that a window of zero length, T = 0, is not practical. First, since faults and disturbances
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enter the residual directly through Dm and Dw, it is not possible to distinguish a fault from

a disturbance at anyone point in time. Second, the operators that map signals m(t) and

w(t) E £2(-00,0] to the respective residual components at time t = 0 are given by

¢m : £2(-00,0] t-t 'R,m Ii. C'l/Jmm(t) + Dmm(O)

¢w : £2(-00,0] t-t 'R,m ~ C'l/Jww(t) + Dww(O)

These operators are not bounded. For example, let

(t) = { 1/../h -h ~ t ~ 0
mh 0 t <-h (c.21)

(c.22)

Then mh(t) E £2(-00,0] and IImhll = 1 for all h but ¢mmh - 00 as h - O. Hence, further

restrictions on m and w need to be made before a cost function such as the following could

be used.

IIC'l/Jmm+ Dmm(O)IIRm

IICtPww + Dww(O)IIRm

A well-known result (Doyle et al. 1989) is that for a given initial state eo.." the smallest

signal w E £2( -00,0] that produces eo.., has a norm given by

inf {llwI12Ie(O) = eo..,} = e6...X~leO..,
WE£2 (-oo,oJ

where X w is the controllability gramian given as the solution to the steady-state Lyapunov

equation

If q were known, an initial state eo.., could be found by maximizing the ratio

II qT zwll~2[o T)
Jw = sup ,

WE£2( -00,0) IIwll~2(-00,0]

e6.., [fl e"F.,.orqqTCeA.,.dT] eo..,
= max -~---=---;-------'!...--

eo.., #0 e6.., XW" 1eo..,
This is solved as an eigenvalue problem
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(c.24)

where eo", is the eigenvector associated with the largest eigenvalue Amax . Note that in the

case where T = 00, J' is the Hankel norm of the transfer matrix.

Since q is not known, consider a worst case eo", as the eigenvector associated with

[1T
eATTCTCeATdTXw] eo", = >.wm.,.eo", (c.23)

Similarly, a worst-case fault maximizes the ratio

IImll~2(_00,O)
sup II T 11 2

me£2( -00,0) q Zm £2[0,T)

ea Xmeom= max m

eo", #0 eam [JeT eATTCTqqTCeATdT] eOm

where eOm is the eigenvector associated with

[1T
eATTcTceATdTXm] eOm = AmmaxeOm

Now maximize (c.20) with respect to q using eo", and eOm from (c.23) and (c.24). This

is solved as another eigenvalue problem.

IlqTzmll~2[0,T)
J = max T 2 = Amax

q#O IIq Zwll£2[0,T)

where

(c.25)

(c.26)

(c faT eAT 'Om ';;m eATTdrCT) Tq ;

A (C iT e,he eT eATTdTCT) T qmax 0", 0",
o

Finally, the controllability gramians in (c.26) for the case T = 00 may be found as solutions

to a pair of steady-state Lyapunov equations. Let

X = loT eATe eT eATTdTom Om Omo

X = loT eATe eT eATTdT0", 0", 0",
o

Then

- -T To = AXo", + Xo",A + eO", eo",
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C.5 Application to an Aircraft Fault Detection System
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This example considers a simplified aircraft fault detection filter. The dynamics of an

F16XL are linearized about a trimmed level flight condition at 10,000 feet altitude and

Mach 0.9. The five-state model includes longitudinal dynamics only, no lateral dynamics

and no actuator dynamics. A first-order Dryden wind gust model is included.

x = Ax + Bww + B66

y = ex + Dv

The states are

u longitudinal body axis velocity (ftjsec)

W normal body axis velocity (ftjsec)

q pitch rate (degjsec)

e pitch angle (deg)

wg wind gust (ftjsec)

the measurements are

q pitch rate (degjsec)

a angle of attack (deg)

A z normal acceleration (ftjsec2 )

Ax longitudinal acceleration (ftjsec2 )

the disturbances are

w wind gust (ftjsec)

/lq pitch rate sensor noise

/10 angle of attack sensor noise

VAZ normal accelerometer sensor noise
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longitudinal accelerometer sensor noise

6 elevon deflection angle (deg)

All disturbances are zero-mean uncorrelated white noise processes with unit spectral density.

The port and starboard elevon is modeled as a slaved system because only longitudinal

dynamics are considered for this simple example. The elevon actuator dynamics are not

included. The system matrices are

A=
-0.0674 0.0430 -0.8886 -0.5587 0.0430
0.0205 -1.4666 16.5800 -0.0299 -1.4666
0.1377 -1.6788 -0.6819 0 -1.6788

0 0 1.0000 0 0
0 0 0 0 -1.1948

0 -0.1672
0 -1.5179

Bw = 0 Be= -9.7842
0 0

1.57 0

[ ootg
0 1.0000 0

~ ]C
0.0591 0 1.0000= 1.0517 -0.02990.1485

-0.0677 0.0431 0.0171 0

[001 0 o 0]
D = o 0.143 o 0

o 0 0.245 0
o 0 o 0.245

Now consider a fault detection system with two faults: a normal accelerometer sensor

fault and an elevon fault. The normal accelerometer fault can be modeled as an additive

term in the measurement equation

y = Cx + EAzJ.LAz (c.27)
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and where J.LAz is an arbitrary time-varying real scalar. For the purpose of determining an

associated detection space, the fault EAz in (c.27) is equivalent to a twcrdimensional fault

FAz (Douglas 1993)

where the directions F1z and F~z are given by

EAz = CF1z

Flz = AF1z

so that
o 0.9986
o 0.0534

FAz = 0 0
1 0
o 0

The €levon fault is given simply as F6 = B6' Since CF1z' CFlz and CF6 are all nonzero and

since none of the triples (C, A, F1z)' (C, A, Flz)' (C, A, F6) have invariant zeros, the minimal

unobservability subspaces for the faults are given by the fault directions themselves, that is,

7~·z = Span F1z' 7~·z = Span Flz and 7 6= Span F6· The faults are mutually detectable

so there are no constraints on the spectrum of the detection filter.

The first step toward finding a fault detection filter gain is to find i as in (c.17h). This

gain forms an observer with the correct detection space structure but without regard to

stability or any performance considerations.
q

i=-EAWJi'J1i
i=l

Considering the twcrdimensional normal accelerometer sensor fault as a pair of output

separable faults, the Pi are identity matrices and the Wi are just the fault directions

themselves. To find the Hi, let F = [FAz, F6] and form the left inverse of CF as (CF)-l =

(FTCTCF)-lFTCT . Now take HAz as the first two rows of (CF)-l and H6 as the third

row. Finally i = -AFAzHAz-AF6H6 and all components needed to apply Proposition C.7

are now given.
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Application of Proposition C.7 involves solving a modified algebraic Riccati equation.

One approach which has achieved practical success is to form a modified differential Riccati

equation and to numerically integrate until a steady state is reached. An initial condition

for the integration is chosen by solving the algebraic Riccati equation found by truncating

the modifying quadratic term. Choosing an 'Hoo bounding parameter 'Y = 1.2 results in a

filter with eigenvalues -29.4629, -1.6062, -0.4351, -0.0032 and -1.1013.

Figure c.1 shows the maximum singular values in decibels of two fault detection filter

transfer matrices. One is from the wind disturbance and sensor noise to the residual which

isolates a normal accelerometer fault. The other is from the normal accelerometer sensor to

the same residual. A third transfer matrix, one from the elevon deflection is zero, as it should

be, and is not shown. Figure c.2 shows the maximum singular values of transfer matrices

to the elevon fault residual. Here the transfer matrix from the normal accelerometer sensor

is zero and is not shown. In both figures, the residual is scaled so that the DC gain of the

disturbance component is 0 db. Both faults have been scaled by two to emphasize that

fault detection in the presence of disturbances resolves to a threshold selection problem.

Note that in the case of the elevon fault, both the residual and the detection space are

one-dimensional so the associated filter eigenvector is fixed. There is no way to increase the

residual component due to the fault without at the same time increasing the component

due to the noise.

This is not the case for the normal accelerometer residual since it is two dimensional.

A fault enhancing residual direction is found from (c.26) as qT = [-0.126, -0.992J. The

singular value frequency responses for the improved residual are also shown in Figure c.l.

Disturbance reduction is seen mainly at frequencies above 1 rad/sec. A modest increase in

the fault signal is seen at all frequencies.

Figures c.3 and c.4 show residual histories where white noise is applied to the wind gust

model and the sensors. Figure c.3 shows the normal accelerometer residual history when

a 2 ft/sec2 bias is added to the accelerometer signal after one second. Figure c.4 shows

the elevon residual history when a 2 degree bias is added to the elevon deflection after one
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second. Clearly, in both cases, a hard fault is detectable with an appropriate threshold

(Emami-Naeini et al. 1988).
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Figure c.l: Magnitude of transfer functions to the normal accelerometer fault isolation
residual.

C.6 Conclusions

A stable and ?too bounded detection filter is found by solving a modified algebraic Riccati

equation (c.18). This equation does not have an associated Hamiltonian and its properties

are not well known; however, in (Veillette et al. 1992), a similar equation appears in the

context of decentralized system control and there it is reported that a solution when it

exists can usually be found by iterative, numerical means. FUture work will focus on finding

necessary and sufficient conditions for (c.18) to have a solution.
....
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