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Abstract

The commoditization of sensor technologies coupled
with advances in modeling user behavior offer us new
opportunities for simplifying and strengthening authen-
tication. We envision a new mobile system framework,
SenSec, which uses passive sensory data to ensure appli-
cation security: SenSec is constantly collecting sensory
data from accelerometer, gyroscope, GPS, WiFi, micro-
phone or even camera. Through analyzing the sensory
data, it constructs the context under which the mobile
device is used including locations, movements and usage
patterns, etc. From the context, the system can calculate
the certainty that the system is at risk. We then com-
pare the certainty with the sensitivity levels for differ-
ent mobile applications. For those applications of which
sensitivity passes the certainty threshold, authentication
mechanism would be employed before the application is
invoked to ensure security policy for that application. In
this paper, we investigate and evaluate a number of in-
expensive and easily acquired passive factors, rigorously
examining how well these factors differentiate between
people including for example motion, location, running
applications, etc. We developed methods for fusing these
passive factors and model people’s behavior in a manner
that is effective, robust, and reliable. We built a func-
tional SenSec prototype based on our MobiSens frame-
work and evaluated it the effectiveness to detect behavior
anomalies using the data collected by the system from 50
users for one months. The results show that our approach
can archive 70~80% accuracy with only a few days of
sensory data.

1 Introduction

Mobile applications and devices are becoming ubiqui-
tous and will increasingly interact with different sensors,
services and other mobile users. It is crucial for mo-
bile users to privately and securely interact with their

environment and data and for mobile services to trust
the identity of the user. While mobile devices such as
smartphones make our lives convenient in ways that were
unimaginable before, applications such as email, web
browsing, social network, shopping and online banking
know too much about our private lives. Mobility intro-
duces additional security and privacy challenges in being
able to provide services in a way that neither compro-
mises the environment of users nor their data. Protect-
ing a user’s privacy and ensuring the accountability of
mobile applications in a seamless and non-intrusive way
poses great challenges to next generation mobile com-
puting platforms.

Recently, a new survey ' has revealed that 36 percent
of consumers in the United States have either lost their
mobile phone or had it stolen. Another survey 2 has
also revealed that 329 organizations polled had collec-
tively lost more than 86,000 devices with average cost
of lost data at $49,246 per device, worth $2.1 billion or
$6.4 million per organization. Given the high loss rate
and high cost associated with these losses, accountable
schemes are needed to protect the data on the mobile de-
vices.

Reliable authentication is an essential requirement for
a mobile device and its applications. Today, passwords
are the most common form of authentication. This re-
sults in two potential problems. First, passwords are also
a major source of security vulnerabilities, as they are of-
ten easy to guess, re-used, often forgotten, often shared
with others, and are susceptible to social engineering at-
tacks. Secondly, to secure the data and applications on a
mobile device, the mobile system would prompt user for
authentication quite often and this results in series usabil-

IStrategy One survey conducted among a U.S. sample of 3,017
adults age 18 years or older on September 21-28, 2010, with an over-
sample in the top 20 cities (based on population)

2”The Billion Dollar Lost-Laptop Study” conducted by Intel Corpo-
ration and the Ponemon Institute, analyzed the scope and circumstances
of missing laptop PCs



ity issues. We also observe that different applications on
a mobile device may have different sensitivities towards
the aforementioned threats and data loss. For example,
the Angry Bird game on an android is less sensitive than
Contact List or Phone Album should the device is oper-
ated by unauthorized user. One-thing-for-all approach in
authentication schemes may be either too loose for some
applications, which expose them to risks, or too tight for
others, which cause usability problems.

The commoditization of sensor technologies coupled
with advances in modeling user behavior offer us new
opportunities for simplifying and strengthening authen-
tication. We envision a new mobile system framework,
SenSec, which uses passive sensory data to ensure appli-
cation security: SenSec is constantly collecting sensory
data from accelerometer, gyroscope, GPS, WiFi, micro-
phone or even camera. Through analyzing the sensory
data, it constructs the context under which the mobile de-
vice is used. This includes locations, movements and us-
age patterns, etc. From the context, the system can calcu-
late the certainty that the system is at risk. We then com-
pare the certainty with the sensitivity levels for differ-
ent mobile applications. For those applications of which
sensitivity passes the certainty threshold, authentication
mechanism would be employed before the application is
invoked to ensure security policy for that application.

In this paper, we investigate and evaluate a number
of inexpensive and easily acquired passive factors, rig-
orously examining how well these factors differentiate
between people including for example motion, location,
running applications, etc. We developed methods for fus-
ing these passive factors and model people’s behavior in
a manner that is effective, robust, and reliable. We built
a functional SenSec prototype based on our MobiSens
framework [7] and evaluated it the effectiveness to de-
tect behavior anomalies using the data collected by the
system from 50 users for one months. The results show
that our approach can archive 70 80% accuracy with only
a few days of sensory data.

2 Related Work

Mobile applications and devices are becoming ubiqui-
tous and will increasingly interact with different sensors,
services and other mobile users. It is crucial for mobile
users to privately and securely interact with their envi-
ronment and data and for mobile services to trust the
identity of the user. General authentication mechanisms
explored in past work mainly include biometric authenti-
cation, passive authentication and context-aware authen-
tication.

Biometric authentication verifies user identity by
leveraging the uniqueness of behavioral characteristics
and/or physical trait. Over the years, a number of bio-

metric techniques have been introduced. Traditional
schemes may include fingerprint scanners, iris recogni-
tion, voice recognition, face recognition and so forth.
Since last decade, novel approaches have sprung out.

Orr and Abowd [6] designed a system which can iden-
tify users based on their footstep force profiles. Exten-
sive footstep data is used for modeling and testing. In
the work by Peacock et al. [8], authors concentrated
on keystroke patterns and the underlying typing charac-
teristics to perform user identification. They provided
a crystal overview by surveying most published litera-
ture. Drawbacks found in previous work were addressed
to bring the scheme more practical implication. Jakobs-
son et al. [5] put forward the notion of implicit authen-
tication. Authentication strategy is carried out based on
what applications and features on a mobile phone are be-
ing used.

Other biometrics including blinking pattern, writing
style, etc. are explored in literature. These metrics
tend to focus on behaviors of individuals. The implicit
authentication proposed by Jakobsson et al. [5] par-
tially captures our idea of application security enforce-
ment through passive sensing. We both consider to
leverage user behavior patterns to perform authentica-
tion scheme. In their work, the behavioral features con-
sidered are time-lapse since the user last checked email
and the GPS location. During the training phase, dis-
tribution of feature values is estimated for each time of
day value 7. In the testing time, the feature distribu-
tion function at time ¢ assigns the likelihood score of
the observed feature value. The two feature scores are
combined through a weighted linear function to calcu-
late an overall “authentication score”, which is then com-
pared with a pre-defined threshold to authenticate the
user. This work is motivated to solve similar problems
as our project. The main difference is that our scheme
provides the framework of a generic solution to the con-
textual security problem. And we take an elastic ap-
proach which take into accounts both the security score
of system and the sensitivity of applications that are sup-
posed to be protected from unauthenticated access. Also,
we do not intend to use passive/implicit authentication
to replace active authentication methods such as emails.
Rather, SenSec security scheme constantly evaluates the
certainty that mobile devices or application are at risks
and prompts the user for active authentication when the
risk level is deemed high.

As sensing and computing capability become standard
on smartphones, researchers have begun to collect sen-
sory data on device and to use the on-device computing
resource to infer user behavior and the environment they
interact with. In the work of Zheng et al. [9], the GPS
reading has been used to detect whether a person is walk-
ing, running, in a car, or on a bus. Fogarty et al. [2] have



employed microphones and keyboard activity to classify
whether a person is interruptible or not. Keng-hao et al.
[4] have proposed a method to identify different house-
hold members. They detect the unique pattern people
wield the television remote control using the accelerom-
eters embedded in. This technique can help enable per-
sonalized TV watching. In the paper by Davrondzhon et
al. [1], the proposed authentication scheme is enforced
by recognizing user’s gait. They use accelerometer to
record acceleration of lower leg for the gait recognition.
Their approach achieves sound accuracy.

Our work differs from the aforementioned efforts in
three folds:

1. We fully utilized the sensing capability of the mo-
bile device and collected multi-dimensional sensory
data for analysis and modeling.

2. We converted heterogenous sensory data into be-
haviorial text and adopt n-gram model to efficiently
construct sufficient statistics of user behavior, cap-
turing both the steady-state (uni-gram) and tran-
sient behavior (bi-gram and n-gram) simply through
counting.

3. We also built a Risk-Analysis-Tree model and care-
fully designed a set of experiments to evaluate the
risk of the context attributed by various factors and
discovered which factors are more influential than
others.

3 System Architecture

In this section, we provide a 20000-feet picture of
SenSec framework. Functional components will be
explained to help readers understand the way SenSec
works. Figure 1 illustrates the framework of the pro-
posed SenSec mobile application security approach.

SenSec constantly collects sensory data from the mo-
bile device. From hard sensors such as accelerometers,
gyroscope, compass, GPS receivers and soft sensors such
as calendar and active Apps, we infer the contextual fac-
tors including network, personal, behavioral and appli-
cation factors of the mobile device. SenSec collects sen-
sory data through MobiSens App.

Raw data from sensors will first be preprocessed
through quantization, clustering or partitioning to be
converted into symbolic representations for the conve-
nience of modeling. We will describe in details the data
preparation phase in later section.

Various sensor information is then fused together to
infer meta-factor information such as the activity of the
user. SenSec trains module for each user which will be
pushed back to device through MobiSens. Contextual in-
formation is collected in real-time by on-device sensors

and then fed to the module to detect any anomaly. The
risk of mobile device and applications is evaluated peri-
odically.

The system combines relevant contextual factors to as-
sess the risk level “certainty score” of the mobile device
which indicates the certainty that the system is at risk.
The score will be fed to a comparator to determine which
level of security scheme to be performed.

On the other hand, different Apps on the device have
various sensitivities. Normally, game Apps like Angry
Birds are less sensitive than contact list or photo album.
Each App is automatically or manually assigned a sen-
sitivity score. When the user clicks on one App icon,
the sensitivity score is also fed to the comparator. The
comparator takes into accounts both the sensitivity score
of that app and the current risk score of system to deter-
mine the security scheme to be performed. Specifically
in our project, the SenSec module may choose to prompt
the user to enter password. For example, running less-
sensitive applications like posting on Facebook at loca-
tions such as work or home that a person spends a lot
of time at, choose easy authentication methods. Simi-
larly, for places that she rarely or never goes to, or when
the walking gait is very different from her usual pattern,
make authentication highly reliable such as requesting
the user to pass face recognition if she is about to open
the Email client.

4 Contextual Security Certainty Model

4.1 Contextual Factors

Modern mobile devices come with various mobile sen-
sors such as accelerometers, gyroscope, magnetometer,
microphone, camera, GPS receiver, WiFi and Bluetooth
receivers, etc. Combined, these sensors are able to sense
the context of the mobile device such as the outdoor and
indoor location, wireless environment, user’s motion and
gesture.

In our study, we are focusing on the following factors

e Surrounding environment: GPS coordinates and
WiFi Access Point (WAP) SSID and signal strength.
Most of the time, a mobile device is likely to be in
just a few environments such as office and home.
Enumerating those highly-trusted network environ-
ment is quite straightforward and computationally
cheap.

e User activities: motion sensors (accelerometers, gy-
roscope, compass). This factor describes physical
aspects of individuals. Many of the characteristics
we will explore here are highly related to biomet-
rics such as how a user holds her phone and how
she types on the keyboard. and application in use.
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Figure 1: SenSec Framework. Contextual factors collected or inferred from mobile sensors are used to assess the
certainty of the mobile device. The system adjusts the security settings based on the running App’s sensitivity level
accordingly. If the certainty level is low and the app is highly sensitive, strong authentication is required to assure the

accountability of the application.

e Communications: application specific network traf-
fic.

4.1.1 Modeling User’s Behaviors by Text Represen-
tation

Mobile devices are equipped with various types of sen-
sor which could constantly monitor certain aspects of a
user’s behavior. However, these sensors are heteroge-
neous in data sampling rate, data format and meaning
of sensor readings. Other approaches such as [3] build
classifiers on each sensor readings and combine the clas-
sification results to model user’s behavior.

Based on the principle of “language as action”, nat-
ural language and human behavior share common char-
acteristics. They are both “meditational means” or tools
by which we achieve our ends, their meanings both de-
pend on the structure of the observed sequence of the
composing elements, and they both have grammars that
help to explain the underlying “syntactic structure” of an
observed sequence. By representing the sensor readings
as symbols through quantization or clustering and apply-
ing statistical natural language processing algorithms on
these symbols sequences, we can then picturing mobile
sensors constantly “writing” a lifelogger in text about our
lives. Applying statistical natural language processing
algorithms on this lifelog will allow us to build behavior
models for a user.

In our study, we modeled motion trace using the n-
gram model. Similar to natural language, we assume that
the sequence of user’s behavior can also be predicted by
her motions in the past. We consider a pseudo behavior
label as a “word” in the language and train an n-gram
language model on the motion trace data as text by con-
verting each motion feature vector into a symbolic label.

The model estimates the next behavior label /; given
the previous n — 1 pseudo locations from the WiFi trace
as P(li|li—n41,li—n+2,- .., li-1) or P(L|1Z) ) in short.

By feeding the sequence of the behavioral labels a se-
quence of behavioral labels L =1;,15,...,Iy in a stepping
window of size N to the learned n-gram model, we can
also estimate the probability that this sequence is gener-
ated by the given n-gram model as

P(L)=P(l1,1,...,1 HPl|ll ai) (D

or average log probability as
—ZlogP L) )

The model probabilities P(;|1:") +1) can be estimated
through the Maximum Likelihood Estimation (MLE)

from the training data by counting the occurrences of be-

havioral text labels: Pyp g (/i |lf ; +1) 7%(1("1’_ f++llllf,lll)l)



4.1.2 Partition Feature Space through Risk Analysis
Tree

Effective modeling the context requires the system to
consider different factors together. In pervasive comput-
ing, this line of research is referred to as heterogeneous
sensor fusion. Intuitively, fusing information from dif-
ferent types of sensors should improve the discrimina-
tive power of the passive authentication classifier. For
example, we can obtain the user’s outdoor location trace
and her traveling speed with just a GPS sensor. How-
ever, if her mobile phone is stolen by an attacker that
is familiar with the user’s commuting pattern and walks
along the same route as the user while to hack into the
system, then the geo-trace based on GPS information
will not be able to catch this attack. In this case, fus-
ing the location information with other sensor informa-
tion such as gait and phone tilting can help to identify the
anomaly. The most straightforward way of sensor fusion
is to concatenate several sensor readings into one value
and train the classifier on the concatenated input. For ex-
ample, after fusing the location, acceleration and time in-
formation, the input may look like “location=37.378535
N 122.086585 W; acceleration-x=0.017g; acceleration-
y=0.002g; acceleration-z=-0.014g; time=2:05pm”.

However, this approach suffers the curse of dimen-
sionality problem. When the number of fused sensors
increases, the total number of possible combined values
increases exponentially. The fused sensor representation
requires enormous amount of training data to train a re-
liable statistical model in order to be general enough to
classify unseen data. Even if we preprocess the sensor
data by quantizing the sensor readings after which real
number values are converted to discrete symbolic labels,
the vocabulary’s size can still be in the range of hundreds
or thousands and the combination of all sensor values
can easily grow to millions or billions. Thus fusing by
concatenating is only practical to fuse a small number of
sensors. Another problem of this approach is over par-
tition. Over partition happens when the classifier par-
titions the value space into too many classes. For ex-
ample, if we fused “application usage” information with
“location” and “time” information through concatena-
tion, the classifier might partition the “checking email”
activity to multiple activities such as “checking email
in office at 2:13pm”, “checking email in the hallway at
10:30am” and “checking email at home at 11:23pm”.
This can be overkill as checking email can happen at any
time. Knowing the habit of where the user usually checks
emails is sufficient for contextual security.

Similar to decision trees, a technique widely used for
classification tasks, we can automatically construct a risk
analysis tree for each user to determine whether the com-
puter system is at risk or not by querying multiple sen-
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Figure 2: Sensor fusion through Risk Analysis Tree.
This tree is conceptually similar to a decision tree, where
a system traverses the tree based on responses at each
node. RAT partition the full feature spaces into smaller
regions and train a sensor fusion function for each region
to estimate the current security certainty.

sors. Figure 2 shows an example Risk Assessment Tree.
Here, RAT first queries the sensors to get the user’s out-
door location. If the user is not at home or at work, RAT
then queries the GPS to obtain her traveling speed. In
case she is most likely driving given the traveling speed,
RAT checks which application is running on the mobile
device and apply a risk assessment function that fuses
the sensor of geo-trace, app-category and time informa-
tion. Intuitively, RAT partition the full feature spaces
into small regions where certain combination of sensors
are most effective to asses the risks of the mobile device.
To train the RAT model, we take two approaches with
slight differences:

1. Owner Detection - Use the labeled data with sim-
ulated attacks. Each leaf can have two outcomes:
[0,1], where 1 indicates the data is from the owner,
while 0 indicates it is from a unauthorized user.

2. User Identification - Use the data generated by all
the users [1...N] and label them with the given user
ID. Each leaf can take N outcomes: [0,1,...N]

We then build a decision-tree classifier to partition the
feature space into subspaces where a subset of features
are responsible for the risk assessment. For each sub-
space, we will then train a regressor to optimize weights
for each sensor feature to best quantify the risk level of
the mobile device. Moreover, we can systematically se-
lect subsets of the features and build multiple RATs and
use a weighted average or voting method to combine the
decision from these RAT's to quantify the risk level.



5 Data Collection and Feature Construc-
tions

In this section, we explain how raw data is col-
lected through MobiSens framework. From the selected
dataset, features of each user can be extracted for train-
ing and evaluation. We will crystallize the method used
in feature construction.

5.1 Data Collection

Imbedded in the MobiSens framework is a subsystem
employed for data collection. In our data collection
phase, 50 MobiSens users with Android phones con-
stantly uploaded their sensory data and other context in-
formation to the MobiSens server. Average collection
period is as long as 30 days.

The data we collected from each user fall into 7 types,
which is necessary for non-trivial user behavior model-
ing. We will specify the data types in the following sub-
section. Under MobiSens framework, each type of data
is uploaded by certain rate which is called sampling rate.
The corresponding interval between consecutive trans-
missions is sampling interval. In our settings, we design
the finest sampling interval as 200 ms. This rate is for the
motion sensory data which may vary frequently. Sharp
vibrations within short duration can be captured only if
suitable sampling rate is applied. The accuracy of behav-
ior modeling will benefit from the fine precision in user
data flow.

After collection, the total dataset size is around 4 GB.
We preprocess the user data to prepare for further feature
construction. Two heavy users are removed. Their ex-
cessively large datasets may cause bias when fed to the
training model as the system gains much more informa-
tion from them compared with other light users. Except
for the heavy users, we also remove those users who do
not upload application and traffic data due to the older
version of MobiSens installed in their Android phones.
At last, we obtain 25 user datasets with comparable size.
The data duration for different users varies from 4 hours
to 2.5 days. It can be demonstrated in our performance
evaluation that with only days of training data we can
achieve sound anomaly detection accuracy.

5.2 Feature Extraction

To prepare training data, we extract features from se-
lected raw data and generate feature matrix for each user.
The construction method specified for each data type will
be elaborated.

In our dataset, 3 out of all 7 types of data come from
on-device motion sensors including accelerometer, gy-
roscope and compass. Each of them is consisted of 3

Feature Description | DM |

RMS The Root-Mean-Square value D

RMSE The Root-Mean-Square error D

Min The minimum value D

Max The maximum value D

AvgDeltas | The average sample-by-sample | D
change

NumMax | The number of local peaks D

NumMin The number of local crests D

TTP The average time from a sample toa | D
peak

TTC The average time from a sampletoa | D
crest

RCR The RMS cross rate D

SMA The signal magnitude area D

Table 1: Features To Be Extracted From Motion Sensory
Data

dimensions. While constructing features, for every sin-
gle dimension, we calculate 11 statistics as shown in Ta-
ble 1 to generate a feature vector with 99 elements in
total, which is then combined with the timestamp to ob-
tain the complete feature vector for motion sensory data.
When calculating statistics, we apply a step window to
the dataset. Window size is adjustable and here is as-
signed as 5 seconds. The window steps along the time
dimension according to the timestamp. User data within
this window will be processed as a whole to calculate the
feature vector. Timestamp for this vector is the initial
timestamp of the current window. Upon completing pro-
cessing the whole dataset, a feature matrix can be gener-
ated for the user.

The raw data from GPS receiver has 4 dimensions. By
applying density based clustering, we convert the data
to a single location label which is appended to current
timestamp to form the feature vector of GPS readings.

WiFi data is in the form of pair (SSID, RSSI) where
SSID is the WiFi Service Set Identifier and RSSI is the
Received Signal Strength Indication. From the collected
WiFi information, we select the top 3 pairs ranked by
signal strength. The size of final vector with timestamp
is 7 then.

Under the new MobiSens framework, application
(app) information and app traffic are uploaded to server.
Basically, app status at sampling point is encapsulated
into app information dataset. In our analysis, we care
more about the 59 most popular apps among all the users
in our experiment. Hence, a bitmap with 59 bits is gen-
erated for those popular apps. All the other apps will be
classified as one category and get represented by 1 bit.
The value for each bit indicates the status of an apps,
where ‘0’ describe the fact that this app is off at certain



Feature Set | Leaf Count | Tree Size | Accuracy
All 56 111 99%

Non-Motion 3 5 96%

Motion only 267 533 98%

Table 2: Results from Simple Experiments

time, ‘1’ means the app is on and ‘2’ tells us that the app
is not only running but providing important service. The
size of the whole feature vector is 61.

For those 59 apps and all the other apps, we also col-
lect their traffic information. Both transmitted and re-
ceived traffic in bytes are included as the traffic feature
vector for users.

With feature matrix for each type of data prepared, we
merge them into a single feature matrix for each user.
As motion sensory feature vector has the highest granu-
larity, the merging is based on the timestamp in sensory
feature matrix. For each vector with certain timestamp,
we search in the 4 other feature matrices to find the vec-
tor with its timestamp matching the time duration indi-
cated by the timestamp in sensory feature vector which
is timestamp + step window size. The resulting vectors
will be appended to sensory vector to generate the com-
plete feature vector with size 287. Ample feature input
will enhance the accuracy in training and modeling.

6 Experiments and Results

6.1 Simple Experiments and Observations

We started with a small scale experiment with a small
data set. We conducted both User Identification and
Owner Detection tasks using partial data set from 4 ran-
domly selected users. We split the data equally into train-
ing and testing sets. We ran experiments with 3 different
combinations of features:

1. all features, including motion, location, application
and communications

2. features from non-motion sensors, including loca-
tion, application and communications

3. features from motion sensors only

If we use all the features, RAT yields accuracy at 99%
with a modest complex model. When we remove all
motion features from the data set, the same tasks result
in a significant reduction in model size with a slightly
lower accuracy at 96%. If we only use motion features,
the model still can distinguish different users with about
98% accuracy. However, the trained model that produces
this result is a relatively large tree. The results are shown
in Table 2

From the results, we observe that our approach can
detect user behavior anomaly with reasonable accuracy.
Particularly, we confirm that we can either identify users
or detect non-owner using only motion features. This
shows that we can rely on the way how mobile device
users hold and use their devices to passively authenti-
cate users. We also observe that different combination
of features will lead to similar accuracy results but with
very different models in size. If only motion feature can
be used, i.e. only relying on user’s motion behavior, the
resulting model size is too large to be used on mobile
device. In order to put our approach into practical use,
we may have to rely on other features to collaboratively
assess the risks.

6.2 Results and Performance Evaluation

The simple experiments show promising results. How-
ever, we are facing an issue in term of fairness of the
experiments. Intuitively, some aspects of user behavior
are more user-specific than others. For example, motion
patterns are quite unique to each person if sensors can
capture it accurately. On the other hand, WiFi SSID and
signal strength factor may not be powerful to distinguish
two users as this factor comes from the common environ-
ment, such as university campus or office building, which
is shared by many users. Cross entropy provides a way
to measure the correlations of two distributions, and it is
a good fit for our problem. We can quantify the discrimi-
native power of each contextual factor by calculating the
averaged cross-entropy between two user’s the behavior
models. That is, for a pair of users A and B, the idea is to
estimate the likelihood of using A’s model to explain B’s
data. If the contextual factor is very user-specific, then
A’s model should not be able to explain B’s data well
and should result in a low likelihood. This gives us a low
cross-entropy between A and B for that particular factor.

We calculated the cross entropy of the data sets for
all 25 users and chose the 12 users with least cross en-
tropy. This is to ensure these users behaviors are rela-
tively similar and it will provide fair evaluation with the
simulated anomaly. To evaluate the accuracy and per-
formance of our approach, we use these 12 users’ trace,
with total 210,000 data instances to train a user identifi-
cation model. We use 66% data for training and the rest
for testing.

The results reported in Table 3 shows similar trend as
what we obtained in the simple experiments described
in 6.1. It shows that after filtering out users with higher
cross-entropy in their behavior features, the accuracies
of all these experiments did drop, but still within a rea-
sonable range. This indicates that our approach can still
be used to identify users using various passive sensory
data even if the users shares some aspects of their be-
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frequency of being at a given location, how recently a

Exp. Lu06 Sehenticated on another device, time since last

AR, device holding patterns and movement and habit
#9888 Apps) as well as characteristics of places (such

Features Leaf Count | Tree Size | Accuracy
All 111 221 84.8%
Non-Motion 18 35 83.5%
Motion only 777 7649 79.3%

492Bnumber of unique people seen in a given location

Table 3: User Identification Experiments and Perfor-
mance Evaluations

haviors. It also shows that the performance of our model
is very sensitive to the selection of the features. If we
were to only use motion-only sensors, we will result in a
very large model. Although the training and testing time
for such a model is not significant longer than that of
other feature configurations, the size of storage to hold
the model itself would become an issue on the mobile
device. Moreover, traversing a large RAT would cause
performance degradation and more power consumption
on the mobile device, which prevent this approach from
large scale deployments. On the other hand, non-motion
features provide a very compact model with least re-
source constraints and still produce reasonable accuracy.
This shows that using these sets of features would enable
us to efficiently estimate risks on mobile device in real
time.

6.3 Working Prototype

In order to mitigate the aforementioned problem and
make it feasible to do risk assessments on the mobile de-
vice, we trained a RAT model for each user using the
non-motion features and a n-gram model using the mo-
tion features. These models are pushed to the SenSec
application on the mobile device. SenSec application
constantly feed all the sensors data to these two mod-
els and combines the outcome to produce a weighted av-
erage certainty score. SenSec application also provides
a user an interface to adjust risk threshold. When the
threshold is met, the application would trigger an alert
both in form of intent broadcast and on-screen notifica-
tion. A demo video > shows a typical scenario of SenSec
application when a risk is present.

7 Conclusion

We investigated and evaluate a number of inexpensive
and easily acquired passive factors, rigorously examin-
ing how well these factors differentiate between people
(including for example GPS location, known character-
istics of that location, IP address, and App traffic). The
degree of discrepancy help assess the certainty of risk.
We also investigated behavioral models of user (such as

3YouTube Video: http://youtu.be/TA4_SLzihHo

and the WiFi readings), empirically validating the use-
fulness and feasibility of various models.

We developed new methods for fusing these passive
factors and models of people and places together in a
manner that is effective, robust, and reliable. Mobile ap-
plications, upon being invoked, can obtain the certainty
of risk and compare it with its application level sensi-
tivity. If the application is very sensitive and certainty
of risk is high, certain authentication mechanism can be
put in place to secure the access. We built a functional
SenSec prototype based on our MobiSens framework [7]
and evaluate it both for security and for usability.

After collecting the dataset of 12 users, we conduct
experiment to evaluate our approach. With only days of
training data, our result achieves around 80% accuracy
in discovering anomaly. As future work, we plan to ex-
tend the data set for feature construction. The App traffic
dataset will be expanded to include TCP and UDP read-
ings. To better assess the environment that users interact
with, we may also consider ambient lighting and sound.
In addition, user pattern can be assessed by exploring
battery status. In modeling and training phase, we will
try to gain more insights into the data, features and fac-
torized relationships among various sensors. Some other
classification methods including LR, SVM, Random For-
est, etc. may be exploited. We can compare the re-
sults for better accuracy. Also, to enhance the security
of SenSec components, the integration with Android se-
curity framework and other Apps should be explored.
Seamless connection is essential to prevent traditional at-
tacks. Besides security, privacy issues also deserve to re-
ceive attention. We will try to develop privacy policy in
data collection and processing phase. One additional fu-
ture direction is energy related. To endow SenSec with
more practical implication, energy consumption in on-
device data collection and processing should be taken
into account. We will envision an more energy-efficient
framework to improve the usability of SenSec for mobile
devices.
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