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Abstract. The fast growing mobile sensor technology makes sensor-
based lifelogging system attractive to the remote elderly care. However,
existing lifelogging systems are weak at generating meaningful activ-
ity summaries from heterogeneous sensor data which significantly limits
the usability of lifelogging systems in practice. In this paper, we intro-
duce SensCare, a semi-automatic lifelog summarization system for elderly
care. From various sensor information collected from mobile phones car-
ried by elderlies, SensCare fuses the heterogeneous sensor information
and automatically segments/recognizes user’s daily activities in a hier-
archical way. With a few human annotations, SensCare generates sum-
maries of data collected from activties performed by the elderly. SensCare
addresses three challenges in sensor-based elderly care systems: the rar-
ity of activity labels, the uncertainty of activity granularities, and the
difficulty of multi-dimensional sensor fusion. We conduct a set of experi-
ments with users carrying a smart phone for multiple days and evaluate
the effectiveness of the automatic summary. With proper sensor configu-
ration, the phone can continue to monitor user’s activities for more than
24 hours without charging. SensCare also demonstrates that unsuper-
vised hierarchical activity segmentation and semi-automatic summariza-
tion can be achieved with reasonably good accuracy (average F1 score
0.65) and the system is very useful for users to recall what has happened
in their daily lives.

Key words: Sensor-based Elderly Care, Structured Activity Recogni-
tion, Activity Summarization, Lifelog

1 Introduction

In year 2020, 71 million Americans will be officially considered as elderly (65
years or older) according to the projection of US Census Bureau. This accounts
for 20% of the nation’s total population [17], a staggering increase from 10% in
2010. Numbers from [17] also shows that about 80% of aging adults have one
chronic condition, and 50% have at least two. With such chronic conditions,
most elderlies require some levels of care to assist their daily living. Statistics
also shows that there are fewer young and middle-aged adults living with their
parents and provide care to them. The situation is even worse in rural area where
low population density and large catchment areas combine with lack of service
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access and reimbursement in creating barriers to community-based elder care
[4].

Aging-in-place [1] has become increasingly popular in recent years as many
elderly prefer to age in their own houses instead of relocating to nursing homes.
Aging-in-place has the advantage that senior or elderly person can continue to
live in their own surroundings without making a drastic change and maintain
their valuable social networks. The success of aging-in-place depends on the tele-
care and other assistive technologies where elderly can access the care services
remotely and promptly when needed. The fast development in mobile sensing
technology and remote healthcare technologies has started to bridge the gap be-
tween the needs of age-in-place and current healthcare system where doctors and
caregivers have to physically meet the patient for any checkups and diagnosis.

In this paper, we describe SensCare, a semi-automatic system that provides
solutions to an important scenario in elderly care: automatic generation of mean-
ingful activity summaries from mobile lifelogs. SensCare aims at reducing human
annotation effort in activity summarization. With mobile sensors constantly log-
ging the elderly users’ daily activity, SensCare automatically recognizes the daily
activity of the user and generates a meaningful hierarchical summary. An effec-
tive summary can help the elderly better understand his/her behavior so as to
improve his/her well-being. It also helps doctors to diagnose causes of an el-
derly’s medical conditions and allows remote family members to keep up with
the life of the elderly. For instance, a senior suffered with insomnia carries a
mobile phone with him constantly. He puts the phone under the pillow when
he goes to bed. The accelerometer embedded in the phone records the motion
in the night which reflects his sleeping quality. Such an automatic summary is
valuable since the elderly himself cannot provide accurate quantitative answers.
This summarized data, such as the average sleeping hours in the past week,
wake up frequencies etc. can be accessed by the remote caregiver to evaluate
the effectiveness of medicines the doctor has prescribed and by family members
remotely to see how the elderly is doing.

The rest of paper is organized as follows: Section 2 presents a hypothetical
before-and-after scenario to illustrate how the SensCare system would be used.
We describe the system design in Section 5. This section also discusses potential
limitations of the system. In Section 6, we present experimental result with data
collected over 5 days and compare algorithms proposed in SensCare with other
methods. In Section 7 and 8, we will go through the related works and summarize
our works and guide to the future challenges of the system.

2 Scenario for Semi-automatic Activity Summarization

Many elderly hypertension patients are recommended to exercises regularly to
control their high blood pressure in addition to a heart-friendly diet and taking
drugs at regular basis. To qualitatively evaluate physical exercises performed by
an elderly, doctors usually ask them questions during their office visits such as
“Which exercises do you perform on a daily basis?” “How long does it last?” etc.
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In many cases, elderly patients cannot remember detailed information and can
only provide rough answers like “I walk to office everyday and it takes about 20
to 30 minutes.” or “Well, I went hiking with my family last weekend and had
spent a whole afternoon there.” Yet, “20 to 30 minutes” is too rough and it is
unclear as to how many hours in the “whole afternoon” did the elderly patient
actually hike . The unreliable data leads to unreliable assessment by doctors.

With SensCare (Figure 1 ), elderly users carry mobile devices constantly
to collect data about their daily activities. The collected data is uploaded to
the cloud and SensCare will automatically segment the data into a hierarchy of
activities. Users can view this hierarchical segmentation in a calendar layout on
their PC or tablet devices. They can annotate some activities such as “walk in
the park” on the calendar. Users’ annotations are also uploaded to the cloud
(a backend system) for the system to propagate the annotation to all similar
activities in the lifelog. After users annotate a few instances of their “useful”
activities such as “walking”, “hiking” and “driving”, SensCare will recognize
these activities and label them automatically in the future. SensCare segments
the lifelog in an unsupervised manner, so users only need to annotate activities
of interest to them.

SensCare gives caregivers more accurate information of users’ daily activities
and when combined with other sensor information such as the blood pressure
measured by the in-home device, the doctor can come up with a better plan to
improve the elderly’s lifestyle in order to help his hypertension condition.

Fig. 1. The system workflow of SensCare.

3 Activity Summarization through Unsupervised

Hierarchical Activity Segmentation and Recognition

The purpose of activity summarization in SensCare is to automatically generate
a list of activities that a user did by the end of a day when all sensors’ data is
uploaded. It is more useful if the summarization is hierarchical, i.e., users can
zoom in a high-level activity, e.g., “played tennis from 9am to 10:30am”, and see
more fine-detailed activities such as “warm up, 9am to 9:05am”, “tennis game:
9:10 to 9:30”, “break: 9:30 to 9:40”, “tennis game: 9:40 to 10:15”.
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Supervised activity recognition approaches can recognize a few activities
specified in the labeled training data. However, labelled training data is very
expensive to collect. It is also infeasible to predict what kind of activities users
might be interested in the future. Supervised activity recognition is unlikely to
answer questions like “What costs me most of the time this morning” or “How
many hours did I spend on the road to grocery stores last month?”, unless the
system is trained with labeled data to address these questions.

Although it is impractical to enumerate all activities, we can detect the
boundaries for different activities without any training data and then catego-
rize similar activities, which will provide part of the semantic information. In
SensCare, activity summarization is achieved through the combination unsuper-
vised activity segmentation and activity recognition.

When all sensor data is uploaded, SensCare first quantizes each sensor read-
ings to discrete labels called behavior text. This text-like symbolic representation
allows the SensCare system to use some well-established algorithms from statis-
tical natural language processing field such as Information Retrieval (IR) and
Text Summarization to process the sensor data. We also apply heterogeneous
sensor fusion (Section 4) to fuse multi-dimensional sensor data such as informa-
tion from accelerometers and GPS into a single dimensional behavior text string
for the convenience of handling multiple sensor input. The unsupervised hierar-
chical segmentation segments the input behavior text string into a hierarchy of
shorter segments, each, hopefully corresponds to a meaningful activity at differ-
ent granularities. With annotations provided by the user on some instances of
the past activities, SensCare can recognize those activities similar to the labeled
ones and assign meaningful labels to them, e.g., “play tennis”.

In SensCare, we developed two methods for unsupervised activity segmen-
tation: top-down segmentation by detecting activity change and the smoothed
Hidden Markov Model (HMM).

3.1 Top-down Activity Segmentation through Activity Change

Detection

The underlining assumption of this segmentation algorithm is that when a user
switches his/her activity at time t, there should be a significant change from
behavior text string [t−w, t− 1] to string [t, t+w]. For a window size w, define
the “change of activity” at time t as:

H(t, w) = −logS([t− w, t− 1], [t, t+ w − 1]), (1)

where S(P,Q) (Eq. 3) measures the similarity between behavior text string P

and Q.
The higher the value of H(t, w), the more likely is the user to have changed

his/her activity at time t. Figure 2 shows an example of H values at each data
point given different window sizes for a segment of behavior text.

Notice that: (1) peaks of activity change identified by larger windows are
also peaks identified by smaller windows but not vice versa; and (2) activity
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Fig. 2. Activity changes calculated by different sizes of sliding windows.

changes over larger windows are smoother than smaller windows. Intuitively,
larger window size captures changes of larger-scale activities whereas smaller
window captures changes of smaller activities. Based on these finding, we first
segment the lifelog data using large window sizes and then recursively segment
the data using smaller windows. This results in a hierarchical segmentation of
lifelogs which allows the user to efficiently browse through the lifelog and anno-
tate activities of his/her interests.

3.2 Smoothed HMM Segmentation

Hidden Markov Model (HMM) has been widely used in text string segmentation
and labeling. After specifying the topology of a Markov model, an HMM can be
trained on unlabeled sequences of text through the Baum-Welch algorithm [3].
which estimates model parameters such as the probability of emitting a symbol
from a certain state and the transition probability from one state to another.
A trained HMM can then be used to “parse” a sequence of text and estimate
the most likely “states” sequence (e.g., “S1 S1 S1 S2 S2 S1 S1 S3 . . . ”) that
generates the observed text. “state” is then used as the label for each observed
symbols or in our case, the underlying activity for the observed sensor readings.
When the state labels changes, we consider the underlying activity has changed
and segment the data to reflect this change. For example, segmenting the data
as [S1 S1 S2] [S2 S2] [S1 S1] [S3 . . . .

In our implementation, each state in the HMM emits single behavior text
symbols. This leads to a problem where HMM segments the input data into too
many activities. To smooth out these noise, we apply a sliding window of size
2w over the recognized state sequence. At time t, we use the dominant activity
symbols within the window [t − w, t + w] as the smoothed activity symbol for
time t and segment the sequence to activities over the smoothed activity/state
symbols.
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3.3 Activity Recognition

The purpose of activity recognition is to assign semantic meanings to the seg-
mented activities. In SensCare users can annotate some instances of activities
after the automatic segmentation. For unlabeled activities, SensCare will search
through the labeled activities and assign the label of the most “similar” labeled
activity to the unlabeled ones. As all sensor data has been converted to a single
dimension behavior text, similarity between two activities can be calculated by
the distance of their corresponding behavior text strings.

Inspired by the BLEU metric [20] where averaged n-gram precision is used
to measure the similarity between a machine translation hypothesis and human
generated reference translations, we use averaged n-gram precision to estimate
the similarity between two lifelog segments.

Assuming that P and Q are two activity language sentences of the same
length l. P is the sequence of P1, P2, . . . , PL and Q is the sequence of Q1, Q2,
. . . , QL. Denote the similarity between P and Q as S(P,Q). Define the n-gram
precision between P and Q as Precn(P,Q) =

∑
p̃∈{All n-gram types in P} min(freq(p̃, P ), freq(p̃, Q))

∑
p̃∈{All n-gram types in P} freq(p̃, P )

, (2)

and the similarity between P and Q is defined as:

S(P,Q) =
1

N

N∑

n=1

Precn(P,Q) (3)

Precn(P,Q) calculates the percentage of n-grams in P that can also be found
in Q and S(P,Q) averages the precision over 1-gram, 2-gram and up to N -gram.
In our experiments, we empirically set N = 5.

4 Heterogeneous Sensor Fusion

Different types of sensors capture different aspects of users’ activity. Combining
information from multiple sensors helps to disambiguate activities that are sim-
ilar to each other on certain aspects. Activities such as “Driving” and “Eating”

are very similar to each other if we only look at their accelerometer readings.
If we include the location/speed information, these two activities can be well
distinguished.

Different sensors have different data representation and semantic meanings.
Most sensor fusion approaches first classify single sensor readings and then com-
bine classification results from multiple sensors to derive high-level meanings.
Other approaches [15] directly concatenate features from different sensors and
train activity classifier using the combined feature vectors. Both approaches work
for certain applications but lack flexibility. For Multiple Sensor Fusion tech-
niques, the problem typically has a “tracking” nature: given a set of interested
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quality and input sensors, they fuse the sensors to better model the interested
quality. Thus, these approaches are inherently application specific, depending on
the mapping relationship between the input sensors and the interested quality.

Based on the behavior text representation, we propose to fuse heterogeneous
sensor information in a more principled way where sensor readings are concate-
nated as a new unit to reduce the conditional entropy of the whole data set for a
certain task. In this paper, we use GPS and accelerometer readings as example
to illustrate our sensor fusion approach.

After quantizing the GPS coordinates to behavior text, we calculate the mu-
tual information between each accelerometer label and GPS labels. If they are
not correlated, i.e, with low mutual information value, we concatenate the two
together into a new label, otherwise we drop the GPS label when the mutual in-
formation is high. The intuition is that when two types of sensor highly correlate
to each other such as the “running” motion always occur in the gym, then there
is no need to use both information to represent this activity, whereas “sitting”
motion occur with many locations: living room, study room, cafe etc., we need
to combine these two information to distinguish different ways of “sitting” which
can be “sit on coach and watch TV in the living room” or “sit in front of the
laptop and surf the web” or “sit in a cafe and chat with friends.”

Mutual information is defined as:

I(A;G) = H(A)−H(A|G) (4)

where H(A) is the marginal entropy of label A in accelerometer text, H(A|G) is
the conditional entropy of label A and G. The conceptual process is illustrated
in following figure:

AX AA AX AX AC AZ

G0 G1 G0 G0 G1 G3

Accelerometer 

Readings:

GPS Readings:

Time

AX AAG1 AX AX ACG1 AZG3Sensor Fusion 

Result:

Fig. 3. Conceptual sensor fusion process.

5 SensCare System

SensCare is based on a non-intrusive mobile lifelogger system designed using a
blackboard architecture [22]. SensCare consists of two groups of components: the
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blackboard which acts as a centralized context data storage and message router,
and satellite applications that provides or consumes context data, or perform
system reconfiguration (Figure 4).

Activity Data 

Storage

Raw Data 

Storage

Event 

Controller

Blackboard

Activity 

Summarization 

Interface

Keys:

Data

Preprocessor

Activity 

Recognition 

Algorithms

Mobile Sensing 

Platform

annotation

annotation

Software Cmponent Interaction

Fig. 4. System architecture

As shown in figure 4, the conceptual blackboard consists with three ma-
jor components: event controller, raw data storage and activity data storage.
The raw data storage stores the unprocessed context data received from sensing
platform. The activity data storage saves intermediate data generated by activ-
ity recognition applications or user’s annotation results. The third component,
event controller, acts as a message router and controller of the system. It re-
ceives events from one application then dispatches it to another if there is an
application subscribing to that message.

Components outside the blackboard falls into two categories: context/event
provider and consumer. A typical context provider is a mobile sensing platform,
which is carried by the user and acts as the raw data source of the system. Some
of the components are in both classes, for instance, the activity summarization
interface will both consume the preprocessed data and provide user annotation
to activity data storage. The data preprocessor and the activity recognition
algorithm work together in an activity recognition loop and provide initial seg-
mentation for users’ annotation. Activity indexing and similar activity retrieval
applications are helpers to reduce the human effort in activity summarization
(annotation) process. After all, activity data will be displayed on the summa-



SensCare 9

rization interface to key parties in healthcare network, including the elderly, his
family members and caregivers. The following sections will provide more details
of these key components.

5.1 Smart Phones as Mobile Sensing Platform

There are two typical approaches of traditional sensor-based monitoring system:
“Smart Home” [21] and wearable sensing platforms.

Smart Homes have sensors mounted on walls and ceilings or have them built
in furnitures and appliances. With a rich set of sensors, this approach can collect
a wide varieties of lifelog data for further analysis. However, deploying such a
system is expensive.

Wearable sensing platforms [11] attach low-cost-light-weight sensors such as
EEG and ECG to the human body to measure users’ body information like
brainwave and heart-rate. However, most of these devices are invasive and un-
comfortable to wear [16].

For elderly healthcare, we believe three aspects of the mobile sensing platform
are important to the success of sensor-based elderly care systems:

– Mobility. The sensing platform will be embedded in devices that users can
naturally carry at daily basis. The device should be lightweight and provide
a user friendly interface to configure. The power should last at least one day
without charging with sensors activated.

– Sensing capability. The sensing platform should have sufficient types of sensors
to capture different aspects of a patient’s activity.Many mobile sensing plat-
forms in the market has only one or two types of sensors (e.g., accelerometer
only FitBit). As shown by our own work and by others(e.g., [14] and [12]) us-
ing multiple types of sensors usually leads to much higher activity recognition
accuracy.

– User acceptance. The sensing device should not significantly disturb users’
normal life. Comfortableness, appearance and privacy are important for users
to accept the technology. For most elderly users, wearing an uncomfortable
device over 8 hours per day will make them rejecting the technology. Similarly,
wearing several wired sensors around the body or carrying a sensing platform
with camera might lead to embarrassment in social events.

Based on these criteria, we choose smart phones as the mobile sensing plat-
form for SensCare. Smart phones are affordable to most users. They do not need
any special deployment or configuration to get their embedded sensors work.
Smart phones have built-in network connections for data transmission and they
usually have programming interfaces for developer to write new applications.
Though it would be ideal to extend the sensing capability with other wearable
sensors such as EEG or ECG and transmit the data to smart phones via blue-
tooth.

We developed the mobile sensing client on an Android phone. The mobile
sensing client records the following information: 1) 3-axis accelerometer for mo-
tion, 2) Magnetometer for the azimuth value of phone’s heading direction. 3)
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GPS coordinates for outdoor locations, 4) Microphone recordings for sound (we
only use sound information for ground truth annotation in this paper), 5) Rota-
tion matrix of the phone derived from the accelerometer reading and the g-value1,
6) Ambient light , 7) Temperature sensor for environment temperature, and 8)
WiFi signal strength for indoor location. All these sensory data are recorded with
their sampling time-stamps. The data is saved in CSV format and is transmitted
to the raw context data storage on the server side using the HTTP protocol via
wireless connections.

(a)Timeline View (b) Hierarchical Structured View

Fig. 5. Personal calendar based timeline under different views.

5.2 Interactive Activity Summarization Interface

After the data is processed on the server side, SensCare displays all seg-
mented/recognized activities on the web using a personal calendar system. The
user can browse through the calendar, select and annotate automatically iden-
tified activities, or create/identify a new activity when the automatic activity
segmentation fails to do so. Users can also view the hierarchical structure of
their daily activities (Figure 5), which will provide them more choices on gran-
ularity for activity annotation as well. A color code is assigned to each activity
so the user can easily distinguish between different activities. To better visualize
activities by their semantic meanings, we use the same color for similar activi-
ties on the calendar. Once the user annotates one activity on the calendar, the

1 We used Motorola Droids which do not have gyroscope sensors. The orientation of
the phone is estimated by the Android SDK based on the accelerometer readings
and the gravity g-value.
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description of the activity, e.g., “playing tennis”, will be propagated such that
all similar activities will all be labeled as “play tennis.”

6 Experiments and Evaluation

6.1 Experiments Setup

Table 1. Sensors on the mobile client and their sampling rate.

Sensor Sampling Rate

Accelerometer, magnetometer
Ambient light, temperature 20Hz (every 50 ms)
Microphone 8KHz
Camera
GPS, WiFi every 2 minutes

The sensing client runs on a Motorola Droid. Table 6.1 shows sensors used
and their sampling rates. Although video and audio data should help, we decided
not to use them in SensCare for three reasons. First of all, the media stream will
create a large data storage and transmission overhead, which greatly reduces the
battery life. Another reason is privacy concern, especially for recording video. In
addition, we realized that capturing video on Android requires the application
stays on foreground, which will prevent the user using other functionalities of
the phone.

Fig. 6. Two phone positions in experiments.
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We collected 36 hours of real life data in 5 continue weekdays from two
graduate students to verify and analyze the system2. The data collection process
lasts about 7 hours each day. To simulate the lifestyle of an elderly, users are
asked not to perform strenuous physical activities. Table 2 is a summary of
activities done by the user.

Table 2. Activity instance count and their average time

Activity
Instance
Count

Avg. Time
per Instance
(minutes)

Walk 7 50.29

Working on Computer 15 66.07

Cooking 4 19.75

Eating 9 20.78

Washing Dishes 2 4.5

Cycling 2 21.5

Video Gaming 2 47.5

Presentation 2 29

Having Class 2 79

Meeting 2 69.5

Talking to Somebody 5 15

Driving 3 8.67

Printing Paperwork 1 44

User carried two phones during the data collection stage (Figure 6). One was
tied to the user’s right arm and another phone was used in the normal way: most
of the time the phone was in user’s pocket and from time to time the user took
it out to make phone calls or check emails.

By the end of each day, the user will use the web interface to annotate his
activities during the day in three settings:

– Based on the unsupervised segmentation results, label each identified activity.
User will based on his memory and the coloring of the activity to assign the
“meaning” of the identified activity.

– Without looking at the unsupervised segmentation, the user listens to the
recorded audio and creates from scratch his daily activity summary on the
calendar. This segmentation/annotation is used as the ground truth in our
experiments.

The goal of the experiments is to evaluate 1) whether the automatic activity
segmentation matches the ground truth, and 2) whether the similar activity
coloring scheme and the automatic activity recognition through similar activity
label propagation helps the user to recall what has happened before.

2 We are planning to collect data from elderly participants to study more realistic
data for elderly care.
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6.2 Evaluation Metric

We evaluate the accuracy of the activity segmentation and recognition by cal-
culating the F-Score of user’s annotation with the ground truth.

Each identified activity in system’s annotation A is a triple of < s, t, l >

where s is the starting time of the activity, e is the ending time and l is the label
of the activity such as “walking”. Similarly, we can represent each activity in
the ground truth G also as a triple of < s, t, l >.

For each activity A in the system’s annotation, if there exists a ground truth
activity G such that Al = Gl, i.e., the two activities have the same label, and
As = Gs ±∆ Ae = Ge ±∆ where two activities have roughly the same starting
time and ending time within the allowed margin ∆, then we consider a matches
the ground truth activity g and is a true positive ( Figure 7 ). With the pre-
cision and recall value calculated for each activity type, we can estimate the
harmonic mean and report the F1 score. High F1 scores indicate the system’s
segmentation/label matches the ground truth.

A5 (Walking)

A6 (Walking)

A7 (Eating)

A4 (Walking)

G1 (Walking)

A1 (Walking)

A2 (Walking)

A3 (Walking)

Fig. 7. Ground truth labeled as G1 with three true annotations(A1-A3) and four false
annotations(A4-A7)

6.3 Impact of Phone Position in Activity Recognition

We first compare whether the position of the phone has any impact on the
activity recognition. Figure 8 shows that system performs better when the mobile
phone is attached to users right arm. But for some specific events, like cycling
and walking, right arm setting performs worse than pocket setting. It makes
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Fig. 8. F1 score of user annotations on pocket and right arm datasets, produced by
only using accelerometer data. For pocket dataset, the overall F-Score is 0.57, while
the score of right arm dataset is 0.56.

sense because arms are relatively stable while riding the bike yet legs are moving
more frequent and regularly. In the case of walking, the motion pattern of arms
is not as unique as the motion pattern of legs. For events that are closely related
to hand movements, like cooking, the right arm setting performances better.

6.4 Hierarchical Activity Recognition vs. Smoothed HMM

We also compare the performance between the hierarchical activity segmentation
with the smoothed single-layer HMM. From the best performance of HMM,
we set the number of states in HMM to 10 and set the smoothing window
size to 800 (around 6 minutes) empirically. Averaged over all activity types,
HMM performs worse than the hierarchical segmentation approach (Figure 9).
In particular, HMM performs badly on high-level activities such like “Having

Class”, “Meeting”, “Working on Computer” and “Presentation”. These activities
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are usually composed by multiple low-level activities and have multiple motion
patterns. HMM doesn’t have the capability to merge these similar pattern to a
higher level activity.
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Fig. 9. The F-Score of user annotation on Hierarchical activity segmentation result
vs. HMM, on right arm dataset, motion only.

We found that HMM’s inability to provide detailed activity structure infor-
mation also hinders the user to annotate lower level activities. For example, from
HMM’s segmentation the user can only annotate “Working Before Computer”

but cannot label sub-activities like “Writing Paper” “Data Preprocessing” and
“Activity Annotation” (Figure 10).
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HMM Hierarchical Segmentation

Fig. 10. Single level activity segmentation might lost information regards of lower
level events.

6.5 Power Consumption

To achieve ubiquitous sensing, selected sensors on the smart phone need to work
continuously. With all sensors active, the sensing application can drain the bat-
tery very quickly. We estimate how long the mobile sensing platform can con-
tinuously monitor the user.

We exam the battery life under three sensing configuration sets. The first
one keeps all sensors on; the second one keeps all sensors on except the camera.
In the third setting, both camera and microphone are turned off.

Experiments show that the phone can only work for 3 hours without charging
if all sensors were turned on. With the camera turned off, it can work for 8-10
hours, which is long enough for daily activity monitoring. The smart phone can
work for more than 24 hours if microphone is turned off.

6.6 Sensor Fusion

As shown in Figure 9, unsupervised activity segmentation using accelerometer
sensor only fails to identify activities such as “Washing dishes”, “Driving” and
“Talking to somebody”. By analyzing the original lifelogs, we noticed that these
activities don’t differ significantly motion-wise from their preceding and following
activities. For instance, “Driving” is usually followed by “Having dinner” whose
motion signatures are similar to “Driving” . Using motion-only information, the
system can not separate these activities from each other and these activities are
recognized as one super-activity such as “driving, then having dinner”. This is
common for events that last less than 15 minutes.

We experiment with sensor fusion of combining motion sensors with location
information. Instead of simply concatenate the two sensor into one, we use the
mutual information criterion to fuse two sensors only when needed (Section 4).
Figure 11 compares results of using motion only information and “motion plus
location” fusion for activity segmentation. In general, sensor fusion significantly
improves the recall for location related activities such as “driving” and “eating”.
In motion only segmentation, these two activities are usually concatenated into
one. After introducing the GPS location information, the system is now able to
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distinguish them. Similarly, with motion-only information, “meeting” and “talk-
ing” are usually recognized as “woking on computer”. Combined with location
information, they can now be identified correctly.
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Fig. 11. A comparison of motion only and sensor fusion activity annotation results,
on right arm dataset.

However, we do notice sensor fusion causes lower activity segmentation when
location information should not be used to identify an activity. In particular,
for activities that occur at different locations such as “working on computer”
and “cycling” , there is no need to distinguish “working on computer at room
101” vs. “working on computer at room 102”, or “cycling on Castro street” vs
“cycling on Liberty Ave.”. But for the overall performance, the sensor fusion
result is superior than motion only activity segmentation (Figure 11).



18 Pang Wu et al.

7 Related work

There are many works try to recognize user activity from accelerometer data
[5, 13]. The most successful and exhaustive work in this area is made by Bao et
al. [2]. In their experiments, subjects wore 5 biaxial accelerometers on different
body positions as they performed a variety of activities like walking, sitting,
standing still, watching TV, running, bicycling, eating, reading etc. Data col-
lected by the accelerometers was used to train a set of classifiers, which included
decision trees (C4.5), decision tables and nearest-neighbor algorithm found in
the Weka Machine Learning Toolkit [23]. Decision tree classifiers showed the
best performance, recognizing activities with an overall accuracy of 84%. How-
ever, most of the investigated algorithms are supervised and would be hard to
be applied to applications like SensCare, since collecting enough trainning data
is difficult under such a real world application senario, and it’s impractical to
train models for all possible activities in human’s life.

The sequential and temporal characteristic of activity makes dynamic models
such as the Hidden Markov Model (HMM) widely used in activity recognition.
To overcome some of the shortages of HMM, like performance degrades when
the range of activities become more complex or long-term temporal dependency
exists between activities that makes Markov assumption difficult to deal with
[6], variations of HMM were developed such as Layered HMM [19], Switching
Hidden Semi-MarkovModel (HSMM) [6] and Hierarchical Hidden MarkovModel
(HHMM) [7] for sensor-based activity detection. Although building HMM family
models don’t need labeled training data, however, it requires to predefine the
number of state as an parameter for model training. In activity recognition’s
perspective, for HMM based systems, the number of activities needs to be a prior
knowledge, which might only be true under certain application senarios. On the
other hand, the EM algorithm employed by HMM for parameter estimation is
a performance bottleneck for model trainning. Our experience with Hierachical
HMM has indicated that it is still hard to scale up to efficiently handle the data
size as what SensCare needs to process.

There are several works try to model activities using language-based tech-
niques. Such techniques include suffix-tree [10], probabilistic context-free gram-
mar [9, 18], and a decision-tree-based [8] method. While all these techniques are
hierarchical, they are either supervised or require a lot of human intervention.

8 Conclusion

In this paper, we introduce SensCare, an activity summarization system using
smart phones to provide summarization for elder healthcare systems. We eval-
uate the feasibility of using smart phones as sensing platform regarding of user
acceptance, privacy, power consumption and the impact of phone position on
activity detection.

An unsupervised hierarchical activity segmentation algorithm was used in the
system to overcome challenges like detecting activity with rare labeled data and
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unknown activity granularities. We compare the performance of selected algo-
rithm with a single-layer Hidden Markov Model. Result show that the structural
activity segmentation significantly improves the annotation quality.

A heterogeneous sensor fusion technique is used to improve the activity seg-
mentation. Experiments over five days of real life dataset indicate that activity
segmentation based on sensor fusion is much better than using motion infomra-
tion only.

For future work, we will investigate a more principled method for sensor
fusion to determine which sensor types should be fused to best describe an
activity. We will use all sensor information collected in our future experiments
and work with our partners in elderly care to test the system with elderly users.
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