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Abstract—Twitter has increasingly become an important source
of information during disasters. Authorities have responded by
providing related information in Twitter. The same information
channel can also be used to deliver disaster preparation information
to increase the disaster readiness of the general public. Retweeting
is the key mechanism to facilitate this information diffusion process.
Understanding of factors that affect twitter users’ retweet decision
would help the authority to adopt an optimal strategy in choosing the
content, style, key words, initial targeted users, time and frequency.
This helps optimizing the communications of disaster messages given
the unique characteristics of the Twitter medium. As a result, it will
speed up the information propagation to save more lives.

In this paper, we present the analysis of user’s retweeting behavior
by studying the factors that may affect this decision, including
context influences, network influences and time decaying factors.
We aim to build a fine-grained predictive model for retweeting.
Specifically, given a tweet, we would like to predict the retweeting
decision of each user within a targeted network. We use logistic
regression to formulate the problem into a retweeting probability
conditioned on the incoming tweet and targeted users. We use this
model to examine message spread, because disaster messages do not
supersede other communication in the Twitter medium (unlike the
emergency alert system announcements over traditional mediums
such as television and radio), resulting in a need to ’earn’ visibility
(e.g., through a high following or reTweeting). We also analyze how
time decay would affect user’s retweet decision, which in turn affect
the information spread and speed. Simulation results illustrate that
our model has preferable recall and precision for retweet predicting,
and can forecast the trend of information diffusion in the network.

I. INTRODUCTION

Twitter, a microblogging service, has demonstrated its strength
as an effective new medium. As of May 2011, Twitter has about
200M registered users and over 190M tweets sent daily 1. With
its large user base, capacity of information propagation, and
realtime-ness, Twitter increasingly becomes an important source
of information during disasters. Much research has since been
directed to twitter’s potential applications, such as education [8],
scientific communication [11], politics [6], and disaster response
[15]. Recently, Twitter has successfully distinguished itself from
traditional media under a number of political events (i.e., the 2008
U.S. Presidential Election [12], the 2009 Iran Election and Protest
[4], [2] by being more spontaneous, mobile, and disseminative.

1http://en.wikipedia.org/wiki/Twitter

Researchers have also found that social media such as Twitter
do a better job of distributing information during emergencies
than either the traditional news media or government emergency
services [9] inculding the Haiti Earthquake [1]). When disaster
strikes, authorities (e.g., city governments, police departments)
can respond by providing related information (e.g., preparedness
tips, disaster updates) in Twitter. The interactive nature of Twitter
also allows us to evaluate the public’s emotional response and
perception of utility of disaster-related information, as well as to
collect and analyze post-disaster statistics including population
affected, survival rate and region after an earthquake, for example.
The very same information channel can also be used to deliver
disaster-aware information to increase the disaster readiness of
the general public in preparation of such events.

”Retweeting” is the most powerful mechanism to diffuse infor-
mation in Twitter. When a user finds a tweet worth sharing, he
could ”retweet” it to his followers. The information could thus
reach beyond the network of the original author, while the content
remains relatively intact. Most existing studies on retweeting try
to analyze retweeting behaviors and related factors. For retweeting
behaviors, various possible motivations are explored in [7], while
the propagation graph and statistics are studied in [5] and [10].
For retweeting-related factors, [16] and [14] found that retweeted
and normal tweets are different in various dimensions such as the
inclusion of URL’s and hashtags, publish time, wording, author
publicity, and even the URL shortening service used.

In this paper, we aim to build a simple yet effective predictive
model for retweeting. Specifically, given a tweet, we would like
to predict the retweeting decision of each users within a targeted
network. We are also interested in aggregating these decisions
and studying how the information is propagated in Twitter. Such
problems are challenging in several ways because (1) many
factors can contribute to a user’s decision, (2) dependencies exist
between multiple users’ decisions which depend on a number of
network factors, and (3) as the size of the network increases, or
as the structure of the network becomes more complicated, both
prediction and runtime performances pose major challenges.

The rest of this paper is structured as follows. In Section II
we describe the logistic regression model to model an individual
user’s retweet decision. In Section III, we discuss the factors



that may affect a user’s decision to retweet a certain tweet and
construct a set of features to reflect contextual influence, network
influence and time influence. In Section IV, we construct a Monte-
carlo simulation framework to model the propagation of tweets
in the Twitter network over time based on the logistic regression
model for individual users. Finally, in Section V we present our
experiment results and engage in discussions on the issues arise
from the experiments. We conclude the paper in Section VI.

II. PROBLEM FORMULATION

Let G = (V,E) be a graph such that each vertex represent a
twitter user u ∈ V and each edge eij between ui and uj represents
their relationship that user i follows user j.

The retweeting decision of user i is indexed by the vertices of
G and denoted as label yi. We also denote x as the observation
of a tweet injected into the network G. Using x, we can then
generate a set of features hu(x;G) for each user u ∈ V .

According to logistic regression model, we denote retweeting
probability of user i given an observation x in Equation (1)

P (yi = 1|x) = 1

1 + exp−w⃗Thu(x;G)
(1)

where hu(x;G) denotes all features and w⃗ is the parameter
vector for them. Before combining individual models for the
whole network G, we first describe these features hu(x;G) in
the following section.

III. FEATURES

In this work, all features hu(x;G) are generated using two sets
of interrelated factors. (1) Observations of the incoming tweet x =
{a, tw,M,Dw}, where a denotes the tweet author, tw denotes
the publishing time, M denotes the set of users be mentioned
in the tweet, and Dw denotes the term frequency of the tweet.
(2) Historical characteristics of G: these factors are fixed for a
given network at some time snapshot, which encode each user’s
interested topics, activity level, and relationships with other users.

Because these two sets of factors can generate a large number
of features, we first describe the observations based on which
we enumerate our features, followed by the respective features
generated.

A. Observations

Observation 1 Content Influence. Whenever a tweet is about
a topic that the reader is interested, or it is either authored or
retweeted from a user that shares the similar interests, it is more
likely for the reader to retweet the respective tweet.
Observation 2 Network Influence. Whenever an author, a fellow
retweeter, or a mentioned person in the tweet has a high degree
of social connection with a reader, it is more likely for the reader
to retweet the respective tweet.
Observation 3 Time Influence. According to [10], retweeting
probability drops rapidly with time elapsed, where more than 50%
of retweets take place within one hour. That is, if a tweet is
published by an author or republished by a retweeter closer to
its readers’ active time slots, it is more likely for the readers to
retweet it.

B. Feature Generation

1) Content Influence: Topic Similarity. On Twitter, individu-
als are influenced by current trend, as presented as ”Trending
Topics”, as well as topics of their own interests. Sometimes
users are influenced by friends and followers as well. In order to
model this phenomena, we need to take global interests, individual
interests and shared interests among different users.

Content Features are the similarities between the content of the
incoming tweet and various types of contents related to a user.
Here we define content as the term frequency vector for a set of
tweets, whereas content similarity is defined as the cosine of two
term frequency vectors.

Accordingly, the task of breaking down content features is one
that enumerates the sets of tweets related to a specific user. We
do so in two levels. First, we categorize all tweets about a user
into three disjoint groups: (1) tweets published by the user, (2)
tweets published by the user’s friends, and (3) tweets published by
the user’s followers. Second, we further divide each group into 3
subgroups: original tweets, retweets, and replies. After the two-
level breakdown, we calculate the content similarities between
the incoming tweet and each of the 9 subgroups. Additionally,
we obtain the global background content (all tweets on twitter),
perform the second-level categorization, and calculate 3 additional
similarities. Thus, a total of 3 tweet features, 9 user features and
1 relationship feature are obtained.

URLs, hashtags, and mentions. It has been reported in [14]
that URL’s, hashtags, and mentions also play a role in predicting
retweets. We therefore include a series of such features: whether
the tweet contains a URL; how frequently the (unshortened) URL
domain appears in global and in an user’s retweets; whether the
tweet contains a hash tag; how frequently the hashtag appears in
global and an user’s retweets; whether the tweet mentions other
users and how often they have been mentioned elsewhere.

Overall, content influence accounts for 8 tweet features, 11 user
features, and 1 relationship feature.

2) Network Influence: Author context. As reported in [14], a
certain social credibility is essential for an author to get retweeted.
Therefore, we model the credibility of an author by his (1) number
of friends (2) number of followers (3) number of published tweets
and (4) number of tweets being retweeted.

Social relationship Whenever an author, a fellow retweeter,
or a mentioned person in the tweet has a high degree of social
connection with a reader, it is more likely for the reader to
retweet the respective tweet. Accordingly, we define such a social
tie between two users as the number of (1) mutual friends, (2)
mutual followers (3) mutual mentions, and (4) mutual retweets.
For each tweet and each user, we then calculates these numbers
between the user, the author, and the mentions in the tweet. As a
relationship feature, we further define the number of co-retweets
from the two users to an author.

In total, Network influence accounts for 4 tweet features, 12
user features, and 1 relationship feature.

3) Temporal Influence: The importance of timing in Twitter
has been discussed in both [10] and [16]. According to [10], half
of retweets occur within an hour, and 75% within a day. Such an
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Fig. 1. Time feature is generated from user’s friends’ activity level

observation suggests a ”window of survival”, from 1 hour to 1
day, where a certain tweet gets a higher chance to get retweeted.
This statistic, however, only describes an aggregate rather than a
local phenomenon.

To model the timing factor at the user level, consider the sce-
nario when using the standard Twitter Web interface. Whenever a
user checks his timeline, only a certain number of unread tweets
can be displayed in one page-view. On a mobile device, this
number is even smaller. Therefore, tweets with higher ranks in the
timeline naturally have better chances to get retweeted. To model
this effect, we introduce two features: Self activity and Friend’s
activity. The first characterizes a user’s response time, while the
second characterizes the the number of accumulated tweets within
this response time, which is equivalent to the timeline rank.

Self activity. To estimate a user’s response time, we model a
user’s activity level as a poisson process similar to [13]: for any
user u, we denote his activity level at some time t as hu(t), which
is approximated by the average number of tweets it publishes in
a periodical time slot, e.g., every Wednesday. Accordingly, the
response time can be approximated using the average waiting
time assuming a poisson process.

Friends’ activity. With the estimated response time ∆t, the
number of accumulated tweets can be written as:∑

j∈Fu

∫ tw+∆t

tw
hj(t) dt (2)

where Fu denotes the set of user u’s friends. This idea is
illustrated in Figure 1.

We calculate both activities using periods of a day and a week.
Accordingly, temporal influence accounts for 4 user features.

IV. INFORMATION PROPAGATION BY RETWEETING

The logistic regression model as described in Section II can
model the individual retweet decision given a tweet. This is useful
to understand individual retweet decision behavior with regards
to how the tweet is phased, when the tweet is presented to the
user, and how relevant the tweet is towards his or her interests, etc.
However, given the social nature of the Twitter system, sometimes
it is more prevailing to find out the decisions of a group of users
and how they are related to each other. Moreover, we want to

understand how the information is propagated and how far and
how fast the information can traverse through the Twitter network.

To combine individual decisions into the process of information
propagation among multiple users over time, we perform time-
slotted simulations using Monte-Carlo framework. This task is
formulated as the following:

Given a tweet w to be injected into the system via a group
of users S0 = u0|u0 ∈ V , where V is the set of users in graph
G =< V,E >, at a given time t = t0, we want to find out at
time slots tk = t0 + k∆t, where k = 1, 2, 3, . . . , n and ∆t is
the simulation interval, the probability of retweet decision of all
users in the network, denoted as P (RTu(t)).

At slot tk, if this tweet w is retweeted by a user’s friend at ti,
where i < k, we will evaluate this user u’s retweet decision. User
u’s decision is predicted by the LR model and output a retweet
probability Pr. We generate a random number r ∈ (0, 1) and the
retweet decision R ∈ {+1,−1} is defined as

R =

{
+1 r < Pr
−1 r ≥ Pr

(3)

where R = +1 indicates the user would retweet tweet w and
R = −1 indicates the user hasn’t retweeted the tweet in this round
of evaluation. If the decision label is +1, we remove this user from
User Set S, put the followers of it to S for the next time slot and
continue the simulation. Meanwhile we remove these users from
S whose iterations have reached the limit.

The steps for each time slot is formulated as in the algorithm:

SIMULATE_ONCE( Tweet w, User Set S, Time t )
{

FOR EACH user u in S
Calculate retweet probability Pr(u,w,t)
Generate random number r in (0,1)

IF r < Pr(u,w,t) THEN
R = +1

ELSE
R = -1

END

IF R = +1 THEN
Remove u from S
PUSH Tuple (u,t) to decision set RT
ADD children of u to S

ENDIF

count(u in S) = count(u in S) + 1
IF count(u in S) > ITER_MAX THEN

Remove u from S
PUSH u to decision set NRT

ENDIF

END
return S

}

The simulation will continue until no user is in S. We record
the total number of users that have retweeted the tweet at each
time. In order to simulate the propagation of the tweet w in the
user relation graph G, we perform the following algorithm:



SIMULATE(Tweet w, Initial User Set S0)
{

Initialize Random Seed
Initialize decision set RT to empty
Initialize decision set NRT to empty

FOR t = 0 to T
S = SimulateOnce(w, S0, t)
IF S is empty THEN

return sets (RT, NRT)
ENDIF

END

return sets (RT, NRT)
}

We run this process for M times with different random seeds
and gather the accumulated decision results for each experiment,
and then calculate the average retweet count at every time slot.

P+(u) =
C(u ∈ {RT})

M
(4)

V. EXPERIMENTS AND RESULTS

A. Data Acquisition

Adequate amount of Twitter data is fundamental in training our
model and validating its accuracy. We collected twitter data over
one week’s period, and crawled 11,000,000 tweets and 300,000
user information.

The data we need to perform the modeling and evaluation
consists of two types: tweets and user relationships. Tweets are
needed in order to profile user interests and activities. User
relationships, i.e., followerships, are collected to build networks
so we can model network influences. We used a small cluster of
6 machines to parallelize data collection process. The collected
data is uploaded to a storage server for later processing.

B. Data Pre-processing

After downloading data, several steps of pre-processing are
performed to calculate the features. First step is choosing a valid
data set for processing. It is not practical to collect the complete
tweets and user relationships in a short period of time. Therefore,
we adopt a filtering scheme to drop the data that does not pass a
threshold test. The threshold test is described as below:

Let’s denote ”user with threshold T as the one that satisfies the
following criterions”

• All tweets of him are downloaded
• All user relationships of him are downloaded
• T% of the friends and followers of this user have all the

tweets downloaded
This threshold can range from 20% to 80%. This is to ensure

we have all the tweets of a user and we know all of this user’s
relationships, but we only know about T% of its friends and
followers’ tweets.

After applying the threshold to all the data of a user, we
calculate this user’s interests as word term frequency of all the
tweets this user has published. This step is split into the following
steps:
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Fig. 2. Normalized retweet rate versus hours

• Remove mentions (@)
• Remove URLs
• Remove digits, punctuation, etc.
• Remove stop words (ultra frequently appearing words, such

as ”the”, ”you”, etc)
• Word stemming (For example, both ”education” and ”edu-

cate” are stemmed to be ”educat”)
Then, using the processed tweets, we can get the word term

frequency of each tweet.

C. Experiments and Discussions

We discovered in this data set that only 1000 out of 30000 users
have both friends and followers, and we collected 25704 tweets
associated with these users. Having both friends and follower is
essential to carry our experiment because our model requires the
features that reflect the interests of both friends and followers.

We trained the individual retweet logistic regression model
using LIBLINEAR [3]2. Due to the limited size of the data set
we have gathered so far, we used cross-validation to evaluate the
model. The 10-folds cross-validation archive 93.27% in accuracy,
73.47% and 40.26% in precision and recall, respectively.

In order to gain more insights into the factors that affect the
retweeting decision, we used the complete data set to train the
logistic regression model and generate the model parameters.

Most of the model parameters follow our hypothesis as de-
scribed in Section III. However, some of the weights are counter-
intuitive. e.g. model parameter for feature ”interest similarity
between the tweet and followers’ published tweets” indicates that
the interests of followers do not have a significant impact on a
user’s retweet decision. This is against our initial thought that
might suggest otherwise. While not the focus of this report, we
decide to continue to investigate issues like this in the future
publications.

As far as we know, content similarity, URL, number of fol-
lowers and followees are strongly associated with retweets [14].

2Software available at http://www.csie.ntu.edu.tw/ cjlin/liblinear
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Fig. 3. Normalized retweet rate versus time of week

Then we turned our attention to the significance of time features
in retweet model, and studied the relationship between the created
time of tweets and retweet probability. We calculated the normal-
ized retweet rate to understand how frequently a tweet created
at a certain time can be retweeted. The retweet rate at time t is
defined as the retweet number divided the tweet number at time
t. Then the rate can be normalized by the normalization factor
which equals the total number of tweets divided the total number
of retweets. The normalization assures a value of 1.0 represents
the average retweet rate on tweets. Figure 2 and 3 illustrate the
retweet rate at different time of day and time of week. Each
day of a week is split into four periods, that is, 0:00 a.m.–6:00
a.m., 6:00 a.m.–12:00 p.m.,12.00 p.m.–6:00 p.m., 6.00 p.m.–12.00
a.m.. From the week chart, tweets around 12:00 p.m. at noon
have quite high retweet probability. It is obvious that in each day
of a week, tweets in the first time period are very unlikely to
get retweeted, while the fourth time period of Friday, the start
of the weekend, promotes retweetability significantly. The time
features coincide with users’ daily behavior. The results suggest
our time features provide great benefits to the understanding of
the retweeting mechanism in twitter. In our model, combined with
receiver actions, time features are embodied as self activity and
friends’ activity.

We divided the data set uniformly into two groups at random,
each of which includes 12852 tweets for 1000 users. One group
is used as training set to train user retweeting models, while the
other is used as a testing set to estimate whether a user would
retweet a given tweet. In the training set of all 12852 tweets, the
most active user retweets only 278 tweets, and a large number of
users never retweet at all. In order to investigate how large the
size of training set is sufficient to build user models, we limit
the training set to 1/4 or 1/2 of original set, and compute the
average recall, precision and F1 score of users among the whole
predicting set. As shown in Fig. 4. The average precision of user
retweeting is about 80%, which has nothing to do with the size
of training set, implying 1/4 set is sufficient to build a predictive
model. Evidently, as shown in the figure, increasing the number
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Fig. 4. Recall, precision and F1 score with different size of training data set
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Fig. 5. Retweet count as a function of normalized time

of tweets in the training set can improve average recall slightly
to 67% with complete training set.

We studied the information propagation process using Monte-
Carlo framework as mentioned in section IV. We used logistic
regression model to get prior retweet probability for each of
1000 users, and then carried out numerical simulations on real
user relationship network to compute users’ posterior retweet
probability for a given tweet. Thus, the spread and path of
information diffusion can be obtained. In the testing set, a tweet
has been retweeted for at most 47 times. We chose this tweet
as testing data to explore the process of information diffusion,
and the simulations begin when the first several users receive
the tweet. Time slots of simulations and real retweeting time of
this tweet are normalized respectively in Fig. 5, where the results
are averaged over 100 different realizations. It is concluded that
our model can commendably describe the evolutionary trend of
tweet information. The number of final retweets in the simulations
is less than real data. This is because the training set contains
many tweets that have never been retweeted, so a few users
who participated in retweeting are predicted to be inactive in the
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propagation process.
Overall, when a tweet is posted by a user, our model is

robust to model its diffusion trend. Therefore our model can
be used to assist in determining the spread and speed that
emergency warnings can reach to the public when disaster strikes.
By carefully selecting the entry point and the content of the
tweets, the simulation results can show different diffusion trends.
Fig. 6 shows simulation results with two different entry points
which yield different spreads and speeds. Examination of the
entry points shows that even though those entry points have
similar degrees of connectivity in the tweeter relationship graph,
i.e. similar number of friends and followers, their effectiveness
in assisting information propagation is different. We found that
a user’s influence in information propagation in microblogging
system can be modeled by certain factors. Without losing focus
of this work, we will address this in details in future work.

VI. CONCLUSION

In this paper, we proposed a logistic regression model to predict
individual user’s retweet decision and constructed a Monte-Carlo
simulation framework in order to model how the information is
propagated in the twitter network. We collected real trace data
from twitter.com using provided API and built a large data set to
train and test our logistic regression model. We archived cross-
validation accuracy, precision and recall of 93.27%, 73.47% and
40.26%, respectively. We analyzed the model parameters from
the trained model and find some of the model parameters align
with our hypothesis, but others are counter-intuitive. We also ran
simulation study with a small set of users and examined how the
information was propagating through this small network. Due to
the limited size of the data set, our simulation results might not
be practical enough to have real work application at this point.

As an extension of this work, we are planning to collect
more data to train our models and run simulations with a large
set of users and continue to investigate the issues arises from
the individual logistic regression model. Also, as mentioned
in previous section, we are proposing a mechanism based on

”betweenness” to model user’s value in terms of effectiveness
in information propagation.
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