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Abstract—Among the most popular micro-blogging service, Twit-
ter recently introduced their reblogging service called réweet to
allow a user to repopulate another user’s content for his fdbwers.
It quickly becomes one of the most prominent features on Twier
and an important mean for secondary content promotion. Howeer,
it remains unclear what motivates users to retweet and whetbr
the retweeting decisions are predictable based on a user'svéeting
history and social relationships. In this paper, we proposenodeling
the retweet patterns using conditional random fields with a hree
types of user-tweet features: content influence, network ituence
and temporal decay factor. We also investigate approachesot
partition the social graphs and construct the network relaions for
retweet prediction. Our experiments demonstrate that CRF an im-
prove prediction effectiveness by incorporating social riationships
compared to the baselines that do not.
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I. INTRODUCTION
Twitter, a microblogging service, has demonstrated isngfth

problem is [20], which builds a regressor to predict the aggte
number of retweets for a given tweet. However, since the mimb
of followers for a Twitter user ranges from none to millions,
using such an aggregate prediction is very difficult to eatethe
information spread. The authors of [25] addresses the saote p
lem as we do by means of constrained optimization using facto
graphs in a generative manner. This approach, however, €an b
improved because historical retweeting decisions ardddband
plentiful. Therefore, since the problem only concerns jutaty

the labels given observation, a discriminative approagitésen

to perform better then a generative one. Further, the petisps
about network structures and about how the approach sheuld b
adopted to larger networks are left unexplored.

In this paper, we aim to build a fine-grained predictive model
for retweeting. Specifically, given a tweet, we would like to
predict the retweeting decision of each users within a tadye
network. Such a problem is challenging in several ways teEau

as an effective new medium. It allows users to freely spreadl) many local factors can contribute to an users’s decién
realtime information through both the WWW and the mobiledependencies exist between the multiple users’ decisioats t
phone networks, where each piece of information may furthecan further depend on a number of network factors, and (3) as
be tagged for searching and grouping. Because of thesadeatu the size of the network goes up, or when the structure of the

Twitter has successfully distinguished itself from traatial

network become more complicated, both prediction and mmti

media under a number of events (i.e., the 2008 U.S. Pregtlent performances become major challenges.

Election [17], the 2009 Iran Election and Protest [6], [Shda

To address the first two challenges, we utilize Conditional

the Haiti Earthquake [1]) by being more spontaneous, mpbileRadom Fields (CRF) to formulate the problem into a retwegtin
and disseminative. Much research has since been directed poobability conditioned on the incoming tweet and targetsers.

twitter's potential applications, such as education [Bgjentific
communication [16], politics [8], and disaster responsg].[2

In our formulation, both the local effects of individual use
and the network effects between user relationships are ledde

"Retweeting” is the most powerful mechanism to diffuse explicitly using different sets of potential functions, ere their

information via twitter. It is a conventional Twitter préza: when

weights are learned directly from data. To address the third

a user find a tweet worth sharing, he could copy the entire pogiroblem and to make our method applicable for larger and
and re-publish it to his followers. The information couldush more complicated networks, we take advantage of the retweet

reach beyond the network of the original author while theteon
remains relatively intact. Most existing studies on rettiveg

network’s “small-world” nature. According, we combine CRF
with network partitioning and separate training and preaiic

try to analyze retweeting behaviors and related factors. Foaccording to partitioned subnetworks. A series of expenisiare

retweeting behaviors, various motivations are explored9in
while the propagation graph and statistics are studied]imufd
[14]. For retweeting-related factors, [27] and [20] fourtthtt

conducted, and show that both of the above approaches aan bri
improvements in terms of prediction performance and ruetim
We also closely look into a specific case to see how and why

retweeted and normal tweets are different in dimension& sucthe proposed methods work.

as the inclusion of URL's and hashtags, publish time, waydin
author publicity, and even the URL shortening service used.

The rest of this paper is structured as follows. In Section
2, we describe the Conditional Random Fields formulation as

Up to now, few work tries to build a model to predict our base predictor. In Section 3, we describe retweet né&svor
the retweeting decisions of a targeted network. Such a fingsroperties as well as how to take advantage of them to improve
grained prediction can be used to estimate the spread ofatructhe effectiveness of the base predictor. In Section 4, weriles
informations, and will be beneficial to applications such asthe features used in this study. In Section 5, we present our
emergency response and viral marketing. One study towdsd thexperiment results. Finally, we conclude the paper in 8adi



Il. RETWEETMODELING USING Tweet
CONDITIONAL RANDOM FIELDS
We consider alwitter NetworkG = (U, E) such that each
node represents a user € U and each edgdu,v) € FE User
represents the following relationship betweemndv. We also Decisions
introduce theser Entitiesx = {x1, ..., z|y|} such that eachr,
corresponds to an € U. Finally, the binaryRetweet Decisions
y = 1{y1,..., Y|} represents the retweet decisions of all users. User
Definition 2.1. Network Decision Problem Given G, the Entities

Network Decision Probleris defined as predicting the decisions
for all users inU given a new tweet and the user entitieg.
Equivalently, the problem is finding themaximum a posteriori Figure 1. The graphical structure of the Retweet CRF
probability (MAP) assigment:

§ = argmax P(y|r, x). 1) Each user still have a separate cqefficient because suchaa fac
y can influent everyone’s decision differently.

User Featuresf(;(r, z., y.) incorporate the perspectives that
the incoming tweet is retweetable for an userbecause it
matches his own characteristics. These features theréépend
on the usew: e.g., the content similarity betweers historical
retweets and tweet.

Relationship Featuresfy" (r, xu, Zv, Yu, y») incorporate the
perspectives whether the tweet is retweetable simultashedor
two usersu and v because it matches some characteristics of
A. CRF-based Formulation this user-pair. These features therefore depend on thaatiens
betweenu and v: e.g., the content tri-similarity betweem's
retweetsp’s retweets, and the incoming tweet

Based on these feature definitions, we can rewrite our CRF

There are three characteristics associated with this @nobl
First, there are dependencies between ghig. Second, many
features coming from the interaction betweeandx that can
aid predicting the decisions. Third, rather than the joiistrd
bution Ry, r,x), we are only concerned with the conditional
distribution Ry|r, x). These characteristics motivate us to model
the problem using Conditional Random Fields [15].

We assume that the decision of each uggrfollows the
Markov property with respect t& in that

P(yulr, X, yu—1uy) = P(yulr, X, yN,) (2)  formulation as follows
whereU — {u} denotes the set of all users except usenV, P(y|r,x) =
denotes the set of neighbors of usein E. Then the conditional K(T) K(U)
probability of Equation (1) can be modeled using CRF as: exps Y (D Akfre(ryn) + Y Aukfur(r Tu, yu))
1 u k
P(y|7’, X) = m Ce{:!_lc }(I)C(Ta X, yc) (3) K(N)
o +Z Z )\Nkak T xuaxvayuay’u)) . (5)
where the graphical structure is depicted in Figure 1. Iis thi w,v

equation,Z(r) is a normalization term that ensures the proba-C P Estimati
bility sums to 1.C denotes the set @liquesaccording to which - Parameter Estimation

the conditional distribution is factorized, which are goed into To learn the parameter8 = {)\;}, we obtain a set of
node cliquesCy and edge cliquesCs. The ®c's denote the historical tweetsR and form a training sefy @, r(®}/% . we
Potential Functionglefined over cliques, having the form then maximize the regularized log-likelihood
K(C) || " A2
O = exp zk: ek fer(r, ¥y, XC) 4) o) = ZlogP Dr®,x) - ]; 52
where thef(.) and A denote the features and their respective ‘R‘ &

g ' = A A T
coefficients, and<(.) denotes the number of features of a type. Z(Z Z o fre(r y) Z orfor(r i @)
B. Feature Definition K(N) K 2

H . - + /\ u 7 v 7 uy v _k 6
We group the features into three types: the first two defined Z N fi(r, AT ) Z 20 ©)

for the nodes, the last defined for the edges.

Tweet Featuresf(r, v, ) incorporate the features making the by solving % = 0. Since the negative,” term makes/(6)
incoming tweet retweetable in its own right. These featuwtes concave, it be efficiently approximated by second-ordehoct
not depend on users: e.g., whether the tweebntains an URL. such as L-BFGS [4].



I1l. NETWORK STRUCTURE OECRE Algorithm 1 Graph Partitioning with approximately equal size

The key challenge of CRF-based modeling is having the grapPut: G(U, E): the input graph _
structure fit the target network. An overly simplified sturetis ~ "Put: 0 : the parameter controlling the difference between the
not expressive enough to capture the characteristics dhtget sizes of output partitions
network [21], while an overly complex structure with exdess ~OutPut: A,B:the output partitions (nodes only)
edges are very expensive to train and infer. Previously when ! (4, B) = randomPartitiorlf, 4 x |U1)
CREF are applied on Natural Language Processing and Computer® "eP€at_
Vision, simpler structures like linear-chain [21] or tr&l fleliver 3 (4,8)=(4,B) i _
good results because they fit the sequential and hieratchica® D[a] = externalCost() - internalCosi), Va & A
nature of text and images. Twitter networks, however, donta D[b] = externalCost{) - internalCost), Vb € B
cycles, which is one of the most challenging structures feBFC ¢ for k=110 |U|/2.do_ _
and usually leads to intractably runtime for large networks ! find aa[k] = a* € A andbb[k] = 0" € B s.t. g[k] =
make our model practical, it is necessary to investigate the Do~ + Dy — 2xmutualCosta”, b*) is maximal;

properties of the retweet network. movea” to B andb* to A S
9 removea* andb* from further selections in this loop

A. The Small-World Twitter 10 updateD[a] for nodes inA — {a*},Va € A

Watz and Strogatz [24] discovered temall-world property 11 updateD|b] for nodes inB — {b"},vb € B
embedded in many man-made networks, such as the US wested? ~ €nd for o _ _
power grids and the collaboration between film actors. Later 13  find " S.t. ginas = >_k—19[k] is maximal
Adamic [2] found that the links between all sites in the World 14 if gmaz > 0 then _ _
Wide Web also form a small-world network. Such a property is 1° Exchange{aall], ..., aa[k]} with {bb[1],. .., bb[k]} in
define on a graph that is (1) highly clustered and (2)Afserage A _andB
Path Length(APL) of all node pairs is small. Also, a small-world 16 end if
network conforms the 80-20 rule: an individual in the neteisr 17 Until gimaz <0 _
primarily influenced by only a minor portion of his connectio 18 remove all dummy nodes i and B
From the small-world definition, the retweet network is very 19 return (4, B)
likely to be a small-world, too. The reasons are twofolds: (1
retweeting is disseminated in a radiation-like manner upho
relationships, which is clustered in nature. (2) The APL forthe best node pair to switch according to their cost redogfio
Twitter is 4.1 according to [14], which is shorter than th&t o The iteration repeats until the begtis negative.
physical human networks (around 6). From 80-20 rule, we may Note that when any node is switched with a dummy node, it
keep only a fraction of edges that reserves the essentitkcing s equivalent to move that node to another set. Such a switeh ¢
structures of the retweet network. only reduce the total cost, because it does not block angmett
switches between real nodes. Finally, because there ayeaonl
total of § x |U| dummy nodes, the most unbalanced case happens
While the general graph partitioning problem is NP-commlet when all of them reside in one set. We recursively partitios t
a commonly used @logn) heuristic is the Kernighan-Lin whole networks into subnetworks, while the number of edge-
algorithm [11]. Our partitioning algorithm adapted the &am potential terms being removed is minimized.
greedy spirit as in Algorithm 1. It takes as input a grapland a
controlling parametef, and gives two disjoint sets of nodes from C. Implicit Graphs

the original graph. Before starting the greedy iteratiansirst Up to now we have assumed by default the original network
addé x [U| dummy nodes with no edges, and produce a randorgrycture used by CRF is identical to the Twitter usersdihg
partition A and B. At the end, the size difference between there|ationships_ However, itis possib'e that the under'ym’eet_
two partitions is bounded by x |U]|. ing network forms a different shape. One hypothesis is that
Let theinternal COStIa be the sum of all edge costs between retweeting behavior may be more about Se|f-image projaptio
a nodea € A and every other nodes i, and let theexternal  while following another user is to maintain a certain reiati
cost E, be the sum of all edge costs betweerand all nodes  ships. If this is true, we should be able to remove more edges
b € B. Further, let the differenc®l[a] be D[a] = E, —I,. Ifwe  from the current network to reduce complexity of the problem
exchange a node € A with anotherb € B, then the reduction hile still being able to properly model the retweeting netkv
g In Inter-partition cost Is Based on the original explicit network, an intuitive way to
_ _ build an implicit network could be reserving an edge in the
9 = Dla] + DIb] - 2 x mutualCosta, b) Q) original network only if the users in both ends have a certain
where mutualCost, b) adds up of all edge costs betwegnb).  co-retweeting history, say, if they ever co-retweeted frm
In each iteration from line 2 to 17, we first calculate thdor ~ same author. Such an alternative hypothesis is investigate
all nodes. Then in the loop from line 6 to 12, it greedily picks Section 5.2 and 5.4.

(&)]

B. Graph Partitioning



Table |

FEATURE LIST GROUPED BY BOTH FEATURE AND INFLUENCE TYPESTHE B Network Inﬂuence
LAST COLUMN LISTS LDA-BASED RANKING Author context. From [20], social credibility is essential for
[Thfiuence | Description [Qy [ [(DARank | an author to get retweeted. Such credibility of an author is
Tweet Eeatures modeled by his (1) number of friends (2) number of followers
Topic similarity 3 [ 242530 (3) number of tweets and (4) number of retweeted tweets.
Content E:S'-htag g gggg Social relationship Whenever an author, a retweeter, or a
Mention T 120 mentioned person in the tweet has social connection with a
Network _|_Author's friend/follower 2 | 832 reader, it is more likely for him to retweet the tweet. We mgas
Author's tweet/retweet 2 [ 928 such a social tie between two users by the number of their (1)
User Features o mutual friends, (2) mutual followers (3) mutual mentionada
Topic similarity 9 | 55539631 (4) mutual retweets. For each tweet and each user, we ctdsula
Content | —grr T 33 these measures between the user, the author, and the nsention
gZﬁﬂf?ﬁsmp e — 613 ‘1‘3 - in the tweet. We also measure the number of co-retweets from
Network ——— : 70— the two users to an author. Overall, network influence actsoun
Relationship with mention| 6 | 1} 15 g for 4 tweet features, 12 user features, and 1 relationshitufe.
Temporal Self activity 2 29,37
Friend activity 2 | 27,34 C. Temporal Influence
ot ToRk gﬂﬁ‘;ﬁ&smp Feat“resl . The importance of timing in Twitter has been discussed in
Network | Relationship with author | 1 | - both [14] and [27]. From [14], half of retweets occur within

an hour, and 75% within a day. Such an observation suggests
a "window of survival”, from 1 hour to 1 day, where a certain
IV. FEATURE GENERATION tweet gets a higher chance to get retweeted. To model thegimi
factor at user level, consider the scenario when using #ralard
From Section 2, we defined the tweet, user, and relationshipwitter Web interface. Whenever a user checks his timeline,
features. In this section, we introduseurce of influencas an  only a certain unread tweets can fit in one page view, where
orthogonal axis to more intuitively enumerate featuresjctvh tweets with higher ranks naturally have better chances to ge
are the content, the network, and the temporal influences. Afretweeted. To model this effect, we introduce two featums f
features are summarized in the first three columns of Table I. a tweet: the first characterizes a user’s response time thit;
other characterizes its rank in the timeline.
A. Content Influence Self activity. We model a user’s response time as a poisson
process similar to [19]: for an user we denote his activity level
at timet ash,(t), estimated by the average number of tweets he
publishes in a periodical time slot, e.g., every Wednestiag
taverage waiting time is then estimated %
Friends’ activity. With the estimated response tinfet, the
number of accumulated tweets can be written as:

Topic Similarity. On Twitter, a tweet may draw an user’s
attention because the it is interesting for general pubibc,
the user specifically, or for the user’s friends. Considgéach
tweet as a small document, a topic is modeled as a a prolyabili
distribution of tokens. The global interests model is busing
all the tweets and retweets in the data set, while an indalidu AL
interest model is built with all the tweets authored or reattee Z / hi(t) dt (8)
by this person. Both of them are represented as term freguenc ¢ !

vectors, where the similarity between them is defined as the ]
cosine distance, including: where F,, denotes the set of user’s friends. We calculate

both activities using periods of a day and a week. According|
temporal influence accounts for 4 user features.

w

JEFy

« Similarity of global interest and the tweet
« Similarity of an user’s followers’ interest and the tweet

« Similarity of an user’s friends’ interest and the tweet V. EXPERIMENTAL RESULTS
» Similarity of an user's own interest and the tweet We used Twitter API to obtain the data of 260,700 users and
« Tri-similarity of two users’ interests and the tweet 92,149,804 tweets. Using these data, we build a dataset that

URL, hashtag, and mention.It is reported in [20] that URL's, consists of 1000 users and 25,704 unique tweets. For eaeh twe
hashtags, and mentions can help predict retweets. We m&ud in the dataset, we calculate the features for all 1000 ussis a
series of such features: whether the tweet contains a URMl; hotheir relationships as mentioned in Section 4.
frequent does the (unshortened) URL domain appear in global Using the data, we first apply an analysis on node-features.
and an user’s retweets; whether the tweet contains a hash tagecond, we show that improved results can be obtained by
how frequent the hash tag appear in global and an user'settyve incorporating the network effects compared to the baseline
whether the tweet mentions other users and how often they hathat considers only local characteristics. Third, we shbat t
been mentioned elsewhere. Overall, content influence atsou partitioning the network will bring better results in moite
for 8 tweet features, 11 user features, and 1 relationshifurfe. larger networks. Finally, we conduct a micro-scope analysi



Table I Table Il

SETTINGS FOR MEASURING THECRFPERFORMANCES SETTINGS FORCRFWITH GRAPH PARTITIONING
Experiment 1 Settings Graph Partitioning Settings
|| Constant] CoSim [ CoRt [ Both || Random-Part] Min-Part
No Edge Logistic Regression (LR) No Edge N-Rd -
Explicit Edge || E-Cons | E-CoSim| E-CoRt | E-Both Explicit Edge E-Rd E-Min
Implicit Edge I-Cons I-CoSim | I-CoRt | I-Both

The prediction results are presented in Figure 2, wheraakve
investigate how and why the proposed approach can deliv@rbe facts are observed. (1) For network structure, the exitiings
results. All experiments are conducted on a linux-basechinac  performs equally or better than the implicit settings. Ippiias
with 16 Intel Xeon 2.54GHz cores and 16G Memory. that the underlying retweet network cannot be represenged b
simply putting together users that co-retweeted from thmesa
authors in the past. (2) For edge features, the constaniréeat

To gain more insight on the features, we applied Linearutperforms the two intuitive edge-features. It may be thsec
Discriminant Analysis (LDA) with combined data from all use  that the co-retweeting behavior is more related to the users
(excluding edges and, thus, relationship features). Su@suat rather than the tweet, or there is just some better but itiirgu
does not contribute to feature selection of CRF trainingtha features Worthy |Ooking for. (3) UndeE-Cons our CRF model
it is the feature importance ranking when building a singderu  outperforms the baselinR and all other settings in all cases.

A. Feature Analysis

model that tries to fit all users. Compared taL R, E-Consbrings2.3% ~ 9.0% more precision.
After applying LDA on normalized data, we sort the featuresFor recall, the improvement is not as much at uB&9%.
according to the absolute values of their coefficients ferfttst Finally, as the network size grows, both precision and tecal

linear discriminant. The ranking is summarized in the lastin  drop. For a 32-user network, the prediction achieves theigion

of Table I, where 3 facts are observed. First, user features aand recall of 91.9% and 80.9%, respectively. For a 200-user
generally better predictors compared to tweet featuresther  network, however, they quickly drop to 50.3% and 20.8% (not
words, whether a tweet fits an user is a better indicator for glotted for visual clarity). We also tries to run unpartited
user’s retweeting decision compared to whether it is popola  experiments for networks of more than 200 users. However,
general. The only exceptions are the numbers of the authorige training time grows quadratically and become much slowe

tweets and followers, which accounts for the author’s &néiti.  Accordingly, we conclude that unpartitioned CRF model i$ no
Second, among the user features, the best predictors are gpplicable for larger networks.

obtained from the user’s previous retweet: author in previo N

retweets, topics of previous retweets, mentions in previouC. Partitioned CRF Performance

retweets, hashtags in previous retweets. Apart from thibse, To improve the poor prediction performance for larger net-
best predictors are those of network influences from thecaisith works, we conduct two experiments with network partiti@nin
and mentions. In fact, features of network influences aghtli  In the first, we fix the network size while varying the subnatwo
better predictors compared to that of content influencesctwh size; in the second, the contrary. Both experiments areuwsiad

is often overlooked in previous works. Third, some featumes under three settings as in Table 1ll. TheRd setting considers
not as predictive as expected, such as URL and time factots. Bonly local features by eliminating all edges and partitiths
this might be due to our specific feature design, which mdly sti network randomly. Th&-Rdsetting considers all explicit edges

need further investigations. and partition the network randomly. THeMin setting partition
. the network according to Algorithm 1.
B. Unpartitioned CRF Performance Under all settings, each partitioned subnetworks are echin

We test the prediction performance of our unpartitioned CRRusing 90% of the tweets that are at least retweeted once by
using different settings along two axises summarized inleTab a user within the subnetwork, matched with equal numbers of
Il. For the vertical axis (network structure), we use thedlias  pure-negative tweets. For testing, we collect all the rexd 0%
structure that removes all edges where the CRF model shrinkstweeted tweets from all subnetworks, with randomly sebc
to Logistic RegressionI(R). The explicit structure is obtained pure-negative tweets from the original network. These twaee
by Twitter users’ following relationships; the implicitratture  then tested in all subnetworks. Further, the time for tragrand
is obtained by removing explicit edges where the two users itesting are measured with all subnetworks running in palall
its ends never retweeted the same author. For the horizaxital 1) Varying the subnetwork sizéfthe prediction and runtime
(edge-feature), we use four cases consisting of using a@amns results with fixed total network size (200 users) and varying
feature, the co-similarity feature along, the co-retwestdre subnetwork sizes (12, 25, 50, and 100 users) are presented in
along, and both. For each of these settings, we run 10-folskcr Figure 3 and Table IV. Note that the result for unpartitioned
validation using varying network sizes. Note that in [28}jet CRF for 200 users using-Cons in the previous experiment is
best result reported has a precision / recall of 28.8% an8%8,7. also plotted and illustrated as “NoPart”.
respectively. Because they did not report the network s&ago There are several observation from the figure. First, allipar
evaluated, we are not able to compare their results with. ours tioned settings outperform the unpartitioned “NoPart” édigre.
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Figure 2. Precision, recall, and F1 score of CRF performaneasurements under different settings.
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Figure 3. Precision, recall, and F1 score of CRF performaneasurements with graph partitioning using common netw@@0 users) but different subnetwork
sizes (12, 25, 64, and 100 users).

Table IV Table V
RUNTIME FOR CRFTRAINING AND MAP WITH GRAPH PARTITIONING USING RUNTIME FOR CRFTRAINING AND MAP WITH GRAPH PARTITIONING USING
COMMON NETWORK SIZE(200USERS) AND VARYING SUBNETWORK SIZES COMMON SUBNETWORK SIZE(25 USERS AND VARYING TOTAL NETWORK
(12, 25, 64 AND 100USERY S1Ze (200, 500 AND 1000USERY
Training Time (sec.) Training Time (sec.)
[Uews] ]| 12] 25] 64] 100 [T [ 200 ] 500 1000
N-Rd 17.25| 61.65| 50.38 | 98.11 N-Rd 61.65 | 118.69 | 148.66
E-Rd 18.02| 84.08| 65.80 | 208.27 E-Rd 84.08 | 253.49 | 378.37
E-Min 21.93 | 151.51 | 347.18 | 257.26 E-Min || 151.51| 322.74 | 439.52
MAP Time (sec.) | MAP Time (sec.) |
N-Rd 0.04 0.26 0.71 1.57 N-Rd 0.26 0.53 0.63
E-Rd 0.62 0.78 513 | 4215 E-Rd 0.78 12.21| 20.77
E-Min 0.63 6.84 22.29 | 65.04 E-Min 6.84 14.27 | 24.22

It clearly shows that partitioning the network into subdragan  portion of relationships may actually matter when it comes t
give better prediction performances. SecoaeMin outperforms  retweeting behavior, which conforms to the small-worldpendy.

other two settings in all cases 2% ~ 10.5%. It shows that 2) Varying the total network sizeThe prediction and runtime
edges do play an important role sinEeMin reserves as much results with fixed subnetwork size (25 users) are varyingl tot
edges as possible when splitting the network compared tdithe network sizes (200, 500, and 1000 users) are presentedineFig
Rd and E-Rd Such a difference is also reflected in the training4 and Table V, where two facts are observed. First, between
and MAP time in Table IVE-Min takes more time compared to settings E-Min still outperforms botiN-RdandE-Rdin all cases,
that of theN-Rd andE-Rdin all cases. by 5.4% ~ 10.3% for precision, and only in minor for recall,
Finally, across different subnetwork sizes, we found theglf;=  which is very similar to the previous experiment. Secondhbo
tion performances peaks at 25-users: it goes down for baglela the training and MAP times scale sublinearly as the network
and smaller subnetworks. For larger subnetworks, it cotild s size goes up. Running in parallel, the training and MAP for
due to the dilution problem. For smaller subnetwork of 12ras the 1000-user network takes less then 8 and 0.5 minutes in
however, the predictive benefit brought by incorporatingwoek  average, respectively. This is much more efficient compawed
effects diminishes as the subnetwork is too small to providehe unpartitioned 200-user case, where the training and MAP
enough information. That also implies that 25 may be cloghé¢o takes an average of 33 minutes and 10 minutes, respectively.
natural subnetwork size for characterizing a Retweet Ne&two Finally, the precision and recall remains at 84.6% / 54.4% fo
Since a Twitter user has an average of following relatiopshit 1000 users in this partitioned case, while in the unpanéah
hundreds, this observations suggests that only a relatsrabll  case the results drop to 50.3% / 20.8% for 200-users. Thexefo
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Figure 4. Precision, recall, and F1 score of CRF performaneasurements with graph partitioning using common sulor&t(®5 users) but different total network
sizes (200, 500, and 1000 users).

we conclude that using CRF with graph partitioning is bothreéno
effective and efficient for modeling large retweet networks

D. lllustrative Example

From our last experiment of 1000-user network, we select one
tweet to more closely investigate how our model works. This
tweet is an e-dictionary advertisement (Twitter ID:145838-
36225280) that was retweeted 43 times globally. Five users
within our 1000-user network (Node 530, 816, 845, 855, and
783, respectively) retweeted this tweet. The first four esti@rs
belongs to the same subgraph according to our partitionhasd
no following relationships with the last. There also seenbéo
a difference in the profile of these two groups of retweettrs:
first four seem to be prolific internet writers and trend ofses,
while the last is a software programmer.

Within the 1000 user network, our model predicts exactly
these 5 retweeters, where the retweeters and their regpecti
subnetworks is visualized in Figure 5. The coloring of nodes
and edges are based on the node- and edge-potentials tedcula
during MAP, which are defined as:

bu = OU(Yy=1)— B(Vy =0)
6u,v = (I)u,v(yu =1Y, = 1) + (I)u,v(yu —0,Y, = O)
(Y, =1,Y, =0) - 2" (Y, = 0,Y, = 1).

A larger ¢, (dark node) correspond to larger predicted retweet
probability based the node’s local features, whereas @iarg,
(dark edge) correspond to larger predicted co-retweetatnitity
of two nodes to made the same retweet decision. For visual
clarity, edges with mino#,, ,;’s are eliminated from the figure.
Figure 5 illustrates several interesting perspectivesstfob-  the retweet nodes surrounded by the rectangle also haves edge
serve how strong local retweetability (dark nodes) does not® white nodes (e.g., Node 530, 855, and 783). Their edges,
necessarily lead to actual retweets, i.e., Node 796 in tipeup however, are lighter compared to the edges of Node 796, 660,
subnetwork and Node 660 and 727 in the lower subnetworkand 727, and are not strong enough to dominate these retgeeti
Based on only their local potentials, they should have beefodes’ local potentials. Since all edges are characterisay
predicted as retweeters, as with any predictions made bydeimo the training data, we can see how a graphical model incotpora
considering only local features. network factors and improve overall prediction performesic
Considering network effects, however, we can see these dark Another interesting fact is that the weak edges eliminated
nodes also has strong relations (dark edges) with the wbides1 from the figures actually account for about 70% of total edges
(Node 762, 854, 801, 800, etc...) with weakest local paddsiti  Although it is just the case for this particular tweet, it mag
These edges compensate the local effects for the nodesimat tha signal that more edges from the explicit network can be re-
both sides. The false tendency to predicting Node 796, 66, a moved before training to better approximate the intrinsisveet
727 as retweet nodes are therefore corrected. Note that sbmenetwork. This again relates to the small-world effects, ariltl

Figure 5. Close investigation of the retweet prediction apacific tweet



make possible better partitioning, shorter runtime, arabably

even more accurate prediction results. While this is sona¢wh

out of scope, this work tries to explore in this direction.

VI. CONCLUSIONS

We propose using conditional random fields (CRFs) to model
and predict the retweet patterns with three types of useetw

features, i.e., content influence, network influence ancteai
decay factor. To improve retweet prediction effectivenass
efficiency, we also investigate partitioning the socialpraand
construct appropriate network relations for better CRF efiad.

The performance of the proposed algorithms are evaluated by
analyzing retweet decisions on 1000 sample users who have

complete connection information in a 260K-user Twitterleo

tion. The experimental results show that CRFs can outparfor
the baseline logistic regression models by a noticeablayimar
Our feature analysis suggests that user features, partigcul
the user-retweet history based features, is the most piregic

indicator for retweet modeling. In addition, we show pé#otitng

original social networks into compact subnetworks can isign
icantly reduce the prediction time and improve the detactio

accuracy. Finally, our insights on illustrative exampleggest
that retweeting is jointly impacted by user retweet prafeee
and personal relationship strength.
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