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Abstract—Among the most popular micro-blogging service, Twit-
ter recently introduced their reblogging service called retweet to
allow a user to repopulate another user’s content for his followers.
It quickly becomes one of the most prominent features on Twitter
and an important mean for secondary content promotion. However,
it remains unclear what motivates users to retweet and whether
the retweeting decisions are predictable based on a user’s tweeting
history and social relationships. In this paper, we proposemodeling
the retweet patterns using conditional random fields with a three
types of user-tweet features: content influence, network influence
and temporal decay factor. We also investigate approaches to
partition the social graphs and construct the network relations for
retweet prediction. Our experiments demonstrate that CRF can im-
prove prediction effectiveness by incorporating social relationships
compared to the baselines that do not.
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I. I NTRODUCTION

Twitter, a microblogging service, has demonstrated its strength
as an effective new medium. It allows users to freely spread
realtime information through both the WWW and the mobile
phone networks, where each piece of information may further
be tagged for searching and grouping. Because of these features,
Twitter has successfully distinguished itself from traditional
media under a number of events (i.e., the 2008 U.S. Presidential
Election [17], the 2009 Iran Election and Protest [6], [5], and
the Haiti Earthquake [1]) by being more spontaneous, mobile,
and disseminative. Much research has since been directed to
twitter’s potential applications, such as education [10],scientific
communication [16], politics [8], and disaster response [22].

”Retweeting” is the most powerful mechanism to diffuse
information via twitter. It is a conventional Twitter practice: when
a user find a tweet worth sharing, he could copy the entire post
and re-publish it to his followers. The information could thus
reach beyond the network of the original author while the content
remains relatively intact. Most existing studies on retweeting
try to analyze retweeting behaviors and related factors. For
retweeting behaviors, various motivations are explored in[9],
while the propagation graph and statistics are studied in [7] and
[14]. For retweeting-related factors, [27] and [20] found that
retweeted and normal tweets are different in dimensions such
as the inclusion of URL’s and hashtags, publish time, wording,
author publicity, and even the URL shortening service used.

Up to now, few work tries to build a model to predict
the retweeting decisions of a targeted network. Such a fine-
grained prediction can be used to estimate the spread of crucial
informations, and will be beneficial to applications such as
emergency response and viral marketing. One study toward this

problem is [20], which builds a regressor to predict the aggregate
number of retweets for a given tweet. However, since the number
of followers for a Twitter user ranges from none to millions,
using such an aggregate prediction is very difficult to estimate the
information spread. The authors of [25] addresses the same prob-
lem as we do by means of constrained optimization using factor
graphs in a generative manner. This approach, however, can be
improved because historical retweeting decisions are labeled and
plentiful. Therefore, since the problem only concerns predicting
the labels given observation, a discriminative approach isproven
to perform better then a generative one. Further, the perspectives
about network structures and about how the approach should be
adopted to larger networks are left unexplored.

In this paper, we aim to build a fine-grained predictive model
for retweeting. Specifically, given a tweet, we would like to
predict the retweeting decision of each users within a targeted
network. Such a problem is challenging in several ways because
(1) many local factors can contribute to an users’s decision(2)
dependencies exist between the multiple users’ decisions that
can further depend on a number of network factors, and (3) as
the size of the network goes up, or when the structure of the
network become more complicated, both prediction and runtime
performances become major challenges.

To address the first two challenges, we utilize Conditional
Radom Fields (CRF) to formulate the problem into a retweeting
probability conditioned on the incoming tweet and targetedusers.
In our formulation, both the local effects of individual users
and the network effects between user relationships are modeled
explicitly using different sets of potential functions, where their
weights are learned directly from data. To address the third
problem and to make our method applicable for larger and
more complicated networks, we take advantage of the retweet
network’s “small-world” nature. According, we combine CRF
with network partitioning and separate training and prediction
according to partitioned subnetworks. A series of experiments are
conducted, and show that both of the above approaches can bring
improvements in terms of prediction performance and runtime.
We also closely look into a specific case to see how and why
the proposed methods work.

The rest of this paper is structured as follows. In Section
2, we describe the Conditional Random Fields formulation as
our base predictor. In Section 3, we describe retweet networks’
properties as well as how to take advantage of them to improve
the effectiveness of the base predictor. In Section 4, we describe
the features used in this study. In Section 5, we present our
experiment results. Finally, we conclude the paper in Section 6.



II. RETWEET MODELING USING

CONDITIONAL RANDOM FIELDS

We consider aTwitter NetworkG = (U,E) such that each
node represents a useru ∈ U and each edge(u, v) ∈ E
represents the following relationship betweenu andv. We also
introduce theUser Entitiesx = {x1, . . . , x|U|} such that eachxu

corresponds to anu ∈ U . Finally, the binaryRetweet Decisions
y = {y1, . . . , y|U|} represents the retweet decisions of all users.

Definition 2.1. Network Decision Problem. Given G, the
Network Decision Problemis defined as predicting the decisions
for all users inU given a new tweetr and the user entitiesx.
Equivalently, the problem is finding themaximum a posteriori
probability (MAP) assigment:

ŷ = argmax
y

P(y|r,x). (1)

There are three characteristics associated with this problem.
First, there are dependencies between theyi’s. Second, many
features coming from the interaction betweenr andx that can
aid predicting the decisions. Third, rather than the joint distri-
bution P(y, r,x), we are only concerned with the conditional
distribution P(y|r,x). These characteristics motivate us to model
the problem using Conditional Random Fields [15].

A. CRF-based Formulation

We assume that the decision of each useryu follows the
Markov property with respect toG in that

P (yu|r,x,yU−{u}) = P (yu|r,x,yNu
) (2)

whereU − {u} denotes the set of all users except useru; Nu

denotes the set of neighbors of useru in E. Then the conditional
probability of Equation (1) can be modeled using CRF as:

P (y|r,x) =
1

Z(r)

∏

C∈{CU ,CE}

ΦC(r,x,yC) (3)

where the graphical structure is depicted in Figure 1. In this
equation,Z(r) is a normalization term that ensures the proba-
bility sums to 1.C denotes the set ofCliquesaccording to which
the conditional distribution is factorized, which are grouped into
node cliquesCU and edge cliquesCE. The ΦC ’s denote the
Potential Functionsdefined over cliques, having the form

ΦC = exp







K(C)
∑

k

λckfck(r,yC,xC)







(4)

where thef(.) and λ denote the features and their respective
coefficients, andK(.) denotes the number of features of a type.

B. Feature Definition

We group the features into three types: the first two defined
for the nodes, the last defined for the edges.

Tweet Featuresfu
T (r, yu) incorporate the features making the

incoming tweet retweetable in its own right. These featuresdo
not depend on users: e.g., whether the tweetr contains an URL.
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Figure 1. The graphical structure of the Retweet CRF

Each user still have a separate coefficient because such a factor
can influent everyone’s decision differently.

User Featuresfu
U (r, xu, yu) incorporate the perspectives that

the incoming tweet is retweetable for an useru because it
matches his own characteristics. These features thereforedepend
on the useru: e.g., the content similarity betweenu’s historical
retweets and tweetr.

Relationship Featuresfu,v
N (r, xu, xv, yu, yv) incorporate the

perspectives whether the tweet is retweetable simultaneously for
two usersu and v because it matches some characteristics of
this user-pair. These features therefore depend on the interactions
betweenu and v: e.g., the content tri-similarity betweenu’s
retweets,v’s retweets, and the incoming tweetr.

Based on these feature definitions, we can rewrite our CRF
formulation as follows

P (y|r,x) =

exp







∑

u

(

K(T )
∑

k

λTkfTk(r, yu) +

K(U)
∑

k

λUkfUk(r, xu, yu))

+
∑

u,v

(

K(N)
∑

k

λNkfNk(r, xu, xv, yu, yv))







. (5)

C. Parameter Estimation

To learn the parametersθ = {λk}, we obtain a set of
historical tweetsR and form a training set{y(i), r(i)}

|R|
i=1. We

then maximize the regularized log-likelihood

l(θ) =

|R|
∑

i=1

logP (y(i)|r(i),x)−
K
∑

k=1

λ2
k

2σ2

=

|R|
∑

i=1

(

∑

u

(

K(T )
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k

λTkfTk(r, y
(i)
u ) +
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λUkfUk(r, y
(i)
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)

+

K(N)
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λNkfNk(r, y
(i)
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)

−
K
∑

k=1

λ2
k

2σ2
(6)

by solving dl(θ)
dθ

= 0. Since the negativeλk
2 term makesl(θ)

concave, it be efficiently approximated by second-order methods
such as L-BFGS [4].



III. N ETWORK STRUCTURE OFCRF

The key challenge of CRF-based modeling is having the graph
structure fit the target network. An overly simplified structure is
not expressive enough to capture the characteristics of thetarget
network [21], while an overly complex structure with excessive
edges are very expensive to train and infer. Previously when
CRF are applied on Natural Language Processing and Computer
Vision, simpler structures like linear-chain [21] or tree [3] deliver
good results because they fit the sequential and hierarchical
nature of text and images. Twitter networks, however, contain
cycles, which is one of the most challenging structures for CRF
and usually leads to intractably runtime for large networks. To
make our model practical, it is necessary to investigate the
properties of the retweet network.

A. The Small-World Twitter

Watz and Strogatz [24] discovered thesmall-world property
embedded in many man-made networks, such as the US western
power grids and the collaboration between film actors. Later,
Adamic [2] found that the links between all sites in the World
Wide Web also form a small-world network. Such a property is
define on a graph that is (1) highly clustered and (2) theAverage
Path Length(APL) of all node pairs is small. Also, a small-world
network conforms the 80-20 rule: an individual in the network is
primarily influenced by only a minor portion of his connections.

From the small-world definition, the retweet network is very
likely to be a small-world, too. The reasons are twofolds: (1)
retweeting is disseminated in a radiation-like manner through
relationships, which is clustered in nature. (2) The APL for
Twitter is 4.1 according to [14], which is shorter than that of
physical human networks (around 6). From 80-20 rule, we may
keep only a fraction of edges that reserves the essential clustering
structures of the retweet network.

B. Graph Partitioning

While the general graph partitioning problem is NP-complete,
a commonly used O(n2logn) heuristic is the Kernighan-Lin
algorithm [11]. Our partitioning algorithm adapted the same
greedy spirit as in Algorithm 1. It takes as input a graphG and a
controlling parameterδ, and gives two disjoint sets of nodes from
the original graph. Before starting the greedy iterations,it first
addδ×|U | dummy nodes with no edges, and produce a random
partition A andB. At the end, the size difference between the
two partitions is bounded byδ × |U |.

Let the internal costIa be the sum of all edge costs between
a nodea ∈ A and every other nodes inA, and let theexternal
costEa be the sum of all edge costs betweena and all nodes
b ∈ B. Further, let the differenceD[a] beD[a] = Ea−Ia. If we
exchange a nodea ∈ A with anotherb ∈ B, then the reduction
g in inter-partition cost is

g = D[a] +D[b]− 2× mutualCost(a, b) (7)

where mutualCost(a, b) adds up of all edge costs between(a, b).
In each iteration from line 2 to 17, we first calculate theD for

all nodes. Then in the loop from line 6 to 12, it greedily picks

Algorithm 1 Graph Partitioning with approximately equal size

Input: G(U,E): the input graph
Input: δ : the parameter controlling the difference between the

sizes of output partitions
Output: A,B:the output partitions (nodes only)

1 (A,B) = randomPartition(U , δ × |U |)
2 repeat
3 (Ā, B̄) = (A,B)
4 D[a] = externalCost(a) - internalCost(a), ∀a ∈ Ā
5 D[b] = externalCost(b) - internalCost(b), ∀b ∈ B̄
6 for k = 1 to |U |/2 do
7 find aa[k] = a∗ ∈ Ā and bb[k] = b∗ ∈ B̄ s.t. g[k] =

Da∗ +Db∗ − 2∗mutualCost(a∗, b∗) is maximal;
8 movea∗ to B̄ andb∗ to Ā
9 removea∗ andb∗ from further selections in this loop

10 updateD[a] for nodes inĀ− {a∗}, ∀a ∈ Ā
11 updateD[b] for nodes inB̄ − {b∗}, ∀b ∈ B̄
12 end for
13 find k∗ s.t. gmax =

∑k∗

k=1 g[k] is maximal
14 if gmax > 0 then
15 Exchange{aa[1], . . . , aa[k]} with {bb[1], . . . , bb[k]} in

A andB
16 end if
17 until gmax ≤ 0
18 remove all dummy nodes inA andB
19 return (A,B)

the best node pair to switch according to their cost reduction g.
The iteration repeats until the bestg is negative.

Note that when any node is switched with a dummy node, it
is equivalent to move that node to another set. Such a switch can
only reduce the total cost, because it does not block any better
switches between real nodes. Finally, because there are only a
total of δ×|U | dummy nodes, the most unbalanced case happens
when all of them reside in one set. We recursively partition the
whole networks into subnetworks, while the number of edge-
potential terms being removed is minimized.

C. Implicit Graphs

Up to now we have assumed by default the original network
structure used by CRF is identical to the Twitter users’ following
relationships. However, it is possible that the underlyingretweet-
ing network forms a different shape. One hypothesis is that
retweeting behavior may be more about self-image projection,
while following another user is to maintain a certain relation-
ships. If this is true, we should be able to remove more edges
from the current network to reduce complexity of the problem
while still being able to properly model the retweeting network.

Based on the original explicit network, an intuitive way to
build an implicit network could be reserving an edge in the
original network only if the users in both ends have a certain
co-retweeting history, say, if they ever co-retweeted fromthe
same author. Such an alternative hypothesis is investigated in
Section 5.2 and 5.4.



Table I
FEATURE LIST GROUPED BY BOTH FEATURE AND INFLUENCE TYPES. THE

LAST COLUMN LISTS LDA- BASED RANKING

Influence Description Qty LDA Rank

Tweet Features

Content

Topic similarity 3 24,25,30
URL 2 38,39
Hashtag 2 35,36
Mention 1 20

Network Author’s friend/follower 2 8,32
Author’s tweet/retweet 2 9,28

User Features

Content
Topic similarity 9 2,13,17,19,21

22,23,26,31
URL 1 33
Hashtag 1 4

Network
Relationship with author 6 1,3,5,6,11,16

Relationship with mention 6 7,10,12
14,15,18

Temporal Self activity 2 29,37
Friend activity 2 27,34

Relationship Features
Content Topic similarity 1 -
Network Relationship with author 1 -

IV. FEATURE GENERATION

From Section 2, we defined the tweet, user, and relationship
features. In this section, we introducesource of influenceas an
orthogonal axis to more intuitively enumerate features, which
are the content, the network, and the temporal influences. All
features are summarized in the first three columns of Table I.

A. Content Influence

Topic Similarity. On Twitter, a tweet may draw an user’s
attention because the it is interesting for general public,for
the user specifically, or for the user’s friends. Considering each
tweet as a small document, a topic is modeled as a a probability
distribution of tokens. The global interests model is builtusing
all the tweets and retweets in the data set, while an individual
interest model is built with all the tweets authored or retweeted
by this person. Both of them are represented as term frequency
vectors, where the similarity between them is defined as the
cosine distance, including:

• Similarity of global interest and the tweet
• Similarity of an user’s followers’ interest and the tweet
• Similarity of an user’s friends’ interest and the tweet
• Similarity of an user’s own interest and the tweet
• Tri-similarity of two users’ interests and the tweet

URL, hashtag, and mention.It is reported in [20] that URL’s,
hashtags, and mentions can help predict retweets. We include a
series of such features: whether the tweet contains a URL; how
frequent does the (unshortened) URL domain appear in global
and an user’s retweets; whether the tweet contains a hash tag;
how frequent the hash tag appear in global and an user’s retweets;
whether the tweet mentions other users and how often they have
been mentioned elsewhere. Overall, content influence accounts
for 8 tweet features, 11 user features, and 1 relationship feature.

B. Network Influence

Author context. From [20], social credibility is essential for
an author to get retweeted. Such credibility of an author is
modeled by his (1) number of friends (2) number of followers
(3) number of tweets and (4) number of retweeted tweets.

Social relationship Whenever an author, a retweeter, or a
mentioned person in the tweet has social connection with a
reader, it is more likely for him to retweet the tweet. We measure
such a social tie between two users by the number of their (1)
mutual friends, (2) mutual followers (3) mutual mentions, and
(4) mutual retweets. For each tweet and each user, we calculates
these measures between the user, the author, and the mentions
in the tweet. We also measure the number of co-retweets from
the two users to an author. Overall, network influence accounts
for 4 tweet features, 12 user features, and 1 relationship feature.

C. Temporal Influence

The importance of timing in Twitter has been discussed in
both [14] and [27]. From [14], half of retweets occur within
an hour, and 75% within a day. Such an observation suggests
a ”window of survival”, from 1 hour to 1 day, where a certain
tweet gets a higher chance to get retweeted. To model the timing
factor at user level, consider the scenario when using the standard
Twitter Web interface. Whenever a user checks his timeline,
only a certain unread tweets can fit in one page view, where
tweets with higher ranks naturally have better chances to get
retweeted. To model this effect, we introduce two features for
a tweet: the first characterizes a user’s response time to it;the
other characterizes its rank in the timeline.

Self activity. We model a user’s response time as a poisson
process similar to [19]: for an useru, we denote his activity level
at timet ashu(t), estimated by the average number of tweets he
publishes in a periodical time slot, e.g., every Wednesday.The
average waiting time is then estimated by1

hu(t)
Friends’ activity. With the estimated response time∆t, the

number of accumulated tweets can be written as:

∑

j∈Fu

∫ tw+∆t

tw
hj(t) dt (8)

where Fu denotes the set of useru’s friends. We calculate
both activities using periods of a day and a week. Accordingly,
temporal influence accounts for 4 user features.

V. EXPERIMENTAL RESULTS

We used Twitter API to obtain the data of 260,700 users and
92,149,804 tweets. Using these data, we build a dataset that
consists of 1000 users and 25,704 unique tweets. For each tweet
in the dataset, we calculate the features for all 1000 users and
their relationships as mentioned in Section 4.

Using the data, we first apply an analysis on node-features.
Second, we show that improved results can be obtained by
incorporating the network effects compared to the baseline
that considers only local characteristics. Third, we show that
partitioning the network will bring better results in modeling
larger networks. Finally, we conduct a micro-scope analysis to



Table II
SETTINGS FOR MEASURING THECRFPERFORMANCES

Experiment 1 Settings
Constant CoSim CoRt Both

No Edge Logistic Regression (LR)
Explicit Edge E-Cons E-CoSim E-CoRt E-Both
Implicit Edge I-Cons I-CoSim I-CoRt I-Both

investigate how and why the proposed approach can deliver better
results. All experiments are conducted on a linux-based machine
with 16 Intel Xeon 2.54GHz cores and 16G Memory.

A. Feature Analysis

To gain more insight on the features, we applied Linear
Discriminant Analysis (LDA) with combined data from all users
(excluding edges and, thus, relationship features). Such aresult
does not contribute to feature selection of CRF training. Rather,
it is the feature importance ranking when building a single user
model that tries to fit all users.

After applying LDA on normalized data, we sort the features
according to the absolute values of their coefficients for the first
linear discriminant. The ranking is summarized in the last column
of Table I, where 3 facts are observed. First, user features are
generally better predictors compared to tweet features. Inother
words, whether a tweet fits an user is a better indicator for a
user’s retweeting decision compared to whether it is popular in
general. The only exceptions are the numbers of the author’s
tweets and followers, which accounts for the author’s credibility.
Second, among the user features, the best predictors are all
obtained from the user’s previous retweet: author in previous
retweets, topics of previous retweets, mentions in previous
retweets, hashtags in previous retweets. Apart from these,the
best predictors are those of network influences from the authors
and mentions. In fact, features of network influences are slightly
better predictors compared to that of content influences, which
is often overlooked in previous works. Third, some featuresare
not as predictive as expected, such as URL and time factors. But
this might be due to our specific feature design, which may still
need further investigations.

B. Unpartitioned CRF Performance

We test the prediction performance of our unpartitioned CRF
using different settings along two axises summarized in Table
II. For the vertical axis (network structure), we use the baseline
structure that removes all edges where the CRF model shrinks
to Logistic Regression (LR). The explicit structure is obtained
by Twitter users’ following relationships; the implicit structure
is obtained by removing explicit edges where the two users in
its ends never retweeted the same author. For the horizontalaxis
(edge-feature), we use four cases consisting of using a constant
feature, the co-similarity feature along, the co-retweet feature
along, and both. For each of these settings, we run 10-fold cross
validation using varying network sizes. Note that in [25], the
best result reported has a precision / recall of 28.8% and 37.3%,
respectively. Because they did not report the network size being
evaluated, we are not able to compare their results with ours.

Table III
SETTINGS FORCRFWITH GRAPH PARTITIONING

Graph Partitioning Settings
Random-Part Min-Part

No Edge N-Rd -
Explicit Edge E-Rd E-Min

The prediction results are presented in Figure 2, where several
facts are observed. (1) For network structure, the explicitsettings
performs equally or better than the implicit settings. It implies
that the underlying retweet network cannot be represented by
simply putting together users that co-retweeted from the same
authors in the past. (2) For edge features, the constant feature
outperforms the two intuitive edge-features. It may be the case
that the co-retweeting behavior is more related to the users
rather than the tweet, or there is just some better but unintuitive
features worthy looking for. (3) UnderE-Cons, our CRF model
outperforms the baselineLR and all other settings in all cases.
Compared toLR, E-Consbrings2.3% ∼ 9.0% more precision.
For recall, the improvement is not as much at up to3.3%.

Finally, as the network size grows, both precision and recall
drop. For a 32-user network, the prediction achieves the precision
and recall of 91.9% and 80.9%, respectively. For a 200-user
network, however, they quickly drop to 50.3% and 20.8% (not
plotted for visual clarity). We also tries to run unpartitioned
experiments for networks of more than 200 users. However,
the training time grows quadratically and become much slower.
Accordingly, we conclude that unpartitioned CRF model is not
applicable for larger networks.

C. Partitioned CRF Performance

To improve the poor prediction performance for larger net-
works, we conduct two experiments with network partitioning.
In the first, we fix the network size while varying the subnetwork
size; in the second, the contrary. Both experiments are conducted
under three settings as in Table III. TheN-Rd setting considers
only local features by eliminating all edges and partitionsthe
network randomly. TheE-Rdsetting considers all explicit edges
and partition the network randomly. TheE-Min setting partition
the network according to Algorithm 1.

Under all settings, each partitioned subnetworks are trained
using 90% of the tweets that are at least retweeted once by
a user within the subnetwork, matched with equal numbers of
pure-negative tweets. For testing, we collect all the reserved 10%
retweeted tweets from all subnetworks, with randomly selected
pure-negative tweets from the original network. These tweets are
then tested in all subnetworks. Further, the time for training and
testing are measured with all subnetworks running in parallel.

1) Varying the subnetwork size:The prediction and runtime
results with fixed total network size (200 users) and varying
subnetwork sizes (12, 25, 50, and 100 users) are presented in
Figure 3 and Table IV. Note that the result for unpartitioned
CRF for 200 users usingE-Cons in the previous experiment is
also plotted and illustrated as “NoPart”.

There are several observation from the figure. First, all parti-
tioned settings outperform the unpartitioned “NoPart” baseline.
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Table IV
RUNTIME FOR CRFTRAINING AND MAP WITH GRAPH PARTITIONING USING

COMMON NETWORK SIZE(200USERS) AND VARYING SUBNETWORK SIZES

(12, 25, 64,AND 100USERS)

Training Time (sec.)
|Usub| 12 25 64 100

N-Rd 17.25 61.65 50.38 98.11
E-Rd 18.02 84.08 65.80 208.27
E-Min 21.93 151.51 347.18 257.26

MAP Time (sec.)
N-Rd 0.04 0.26 0.71 1.57
E-Rd 0.62 0.78 5.13 42.15
E-Min 0.63 6.84 22.29 65.04

It clearly shows that partitioning the network into subgraphs can
give better prediction performances. Second,E-Min outperforms
other two settings in all cases by3.2% ∼ 10.5%. It shows that
edges do play an important role sinceE-Min reserves as much
edges as possible when splitting the network compared to theN-
Rd andE-Rd. Such a difference is also reflected in the training
and MAP time in Table IV:E-Min takes more time compared to
that of theN-Rd andE-Rd in all cases.

Finally, across different subnetwork sizes, we found the predic-
tion performances peaks at 25-users: it goes down for both larger
and smaller subnetworks. For larger subnetworks, it could still
due to the dilution problem. For smaller subnetwork of 12-users,
however, the predictive benefit brought by incorporating network
effects diminishes as the subnetwork is too small to provide
enough information. That also implies that 25 may be close tothe
natural subnetwork size for characterizing a Retweet Network.
Since a Twitter user has an average of following relationships at
hundreds, this observations suggests that only a relatively small

Table V
RUNTIME FOR CRFTRAINING AND MAP WITH GRAPH PARTITIONING USING

COMMON SUBNETWORK SIZE(25 USERS) AND VARYING TOTAL NETWORK

SIZE (200, 500,AND 1000USERS)

Training Time (sec.)
|U | 200 500 1000

N-Rd 61.65 118.69 148.66
E-Rd 84.08 253.49 378.37
E-Min 151.51 322.74 439.52

MAP Time (sec.)

N-Rd 0.26 0.53 0.63
E-Rd 0.78 12.21 20.77
E-Min 6.84 14.27 24.22

portion of relationships may actually matter when it comes to
retweeting behavior, which conforms to the small-world property.

2) Varying the total network size:The prediction and runtime
results with fixed subnetwork size (25 users) are varying total
network sizes (200, 500, and 1000 users) are presented in Figure
4 and Table V, where two facts are observed. First, between
settings,E-Min still outperforms bothN-RdandE-Rdin all cases,
by 5.4% ∼ 10.3% for precision, and only in minor for recall,
which is very similar to the previous experiment. Second, both
the training and MAP times scale sublinearly as the network
size goes up. Running in parallel, the training and MAP for
the 1000-user network takes less then 8 and 0.5 minutes in
average, respectively. This is much more efficient comparedto
the unpartitioned 200-user case, where the training and MAP
takes an average of 33 minutes and 10 minutes, respectively.
Finally, the precision and recall remains at 84.6% / 54.4% for
1000 users in this partitioned case, while in the unpartitioned
case the results drop to 50.3% / 20.8% for 200-users. Therefore,
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Figure 4. Precision, recall, and F1 score of CRF performancemeasurements with graph partitioning using common subnetwork (25 users) but different total network
sizes (200, 500, and 1000 users).

we conclude that using CRF with graph partitioning is both more
effective and efficient for modeling large retweet networks.

D. Illustrative Example

From our last experiment of 1000-user network, we select one
tweet to more closely investigate how our model works. This
tweet is an e-dictionary advertisement (Twitter ID:145838895-
36225280) that was retweeted 43 times globally. Five users
within our 1000-user network (Node 530, 816, 845, 855, and
783, respectively) retweeted this tweet. The first four retweeters
belongs to the same subgraph according to our partition, andhas
no following relationships with the last. There also seem tobe
a difference in the profile of these two groups of retweeters:the
first four seem to be prolific internet writers and trend observers,
while the last is a software programmer.

Within the 1000 user network, our model predicts exactly
these 5 retweeters, where the retweeters and their respective
subnetworks is visualized in Figure 5. The coloring of nodes
and edges are based on the node- and edge-potentials calculated
during MAP, which are defined as:

δu = Φu(Yu = 1)− Φu(Yu = 0)

δu,v = Φu,v(Yu = 1, Yv = 1) + Φu,v(Yu = 0, Yv = 0)

− Φu,v(Yu = 1, Yv = 0)− Φu,v(Yu = 0, Yv = 1).

A larger δu (dark node) correspond to larger predicted retweet
probability based the node’s local features, whereas a larger δu,v
(dark edge) correspond to larger predicted co-retweet probability
of two nodes to made the same retweet decision. For visual
clarity, edges with minorδu,v ’s are eliminated from the figure.

Figure 5 illustrates several interesting perspectives. First, ob-
serve how strong local retweetability (dark nodes) does not
necessarily lead to actual retweets, i.e., Node 796 in the upper
subnetwork and Node 660 and 727 in the lower subnetwork.
Based on only their local potentials, they should have been
predicted as retweeters, as with any predictions made by a model
considering only local features.

Considering network effects, however, we can see these dark
nodes also has strong relations (dark edges) with the white nodes
(Node 762, 854, 801, 800, etc...) with weakest local potentials.
These edges compensate the local effects for the nodes at their
both sides. The false tendency to predicting Node 796, 660, and
727 as retweet nodes are therefore corrected. Note that someof
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Figure 5. Close investigation of the retweet prediction of aspecific tweet

the retweet nodes surrounded by the rectangle also have edges
to white nodes (e.g., Node 530, 855, and 783). Their edges,
however, are lighter compared to the edges of Node 796, 660,
and 727, and are not strong enough to dominate these retweeting
nodes’ local potentials. Since all edges are characterizedusing
the training data, we can see how a graphical model incorporate
network factors and improve overall prediction performances.

Another interesting fact is that the weak edges eliminated
from the figures actually account for about 70% of total edges.
Although it is just the case for this particular tweet, it maybe
a signal that more edges from the explicit network can be re-
moved before training to better approximate the intrinsic retweet
network. This again relates to the small-world effects, andwill



make possible better partitioning, shorter runtime, and probably
even more accurate prediction results. While this is somewhat
out of scope, this work tries to explore in this direction.

VI. CONCLUSIONS

We propose using conditional random fields (CRFs) to model
and predict the retweet patterns with three types of user-tweet
features, i.e., content influence, network influence and temporal
decay factor. To improve retweet prediction effectivenessand
efficiency, we also investigate partitioning the social graphs and
construct appropriate network relations for better CRF modeling.
The performance of the proposed algorithms are evaluated by
analyzing retweet decisions on 1000 sample users who have
complete connection information in a 260K-user Twitter collec-
tion. The experimental results show that CRFs can outperform
the baseline logistic regression models by a noticeable margin.
Our feature analysis suggests that user features, particularly
the user-retweet history based features, is the most predictive
indicator for retweet modeling. In addition, we show partitioning
original social networks into compact subnetworks can signif-
icantly reduce the prediction time and improve the detection
accuracy. Finally, our insights on illustrative examples suggest
that retweeting is jointly impacted by user retweet preference
and personal relationship strength.
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