
Making large scale deployment of RCP practical for
real networks

Chia-Hui Tai, Jiang Zhu, Nandita Dukkipati
Computer Systems Laboratory

Department of Electrical Engineering
Stanford University

{chtai, jiangzhu, nanditad}@stanford.edu

Abstract—We recently proposed the Rate Control Protocol
(RCP) as a way to minimize download times (or flow-completion
times). Simulations suggest that if RCP were widely deployed,
downloads would frequently finish an order of magnitude faster
than with TCP. This is because RCP involves explicit feedback
from the routers along the path, allowing a sender to pick a fast
starting rate, and adapt quickly to network conditions. RCP is
particularly appealing because it can be shown to be stable under
broad operating conditions, and its performance is independent
of the flow-size distribution and the RTT. Although it requires
changes to the routers, the changes are small: The routers keep no
per-flow state or per-flow queues, and the per-packet processing
is minimal.

However, the bar is high for a new congestion control mech-
anism – introducing a new scheme requires enormous change,
and the argument needs to be compelling. And so, to enable
incremental deployment of RCP, we have built and tested an
open and public implementation of RCP, and proposed solutions
for deployments that require no fork-lift network upgrades.

In this paper we describe our end-host and router imple-
mentation of RCP in Linux, and solutions to how RCP can
coexist in a network carrying predominantly non-RCP traffic,
and coordinate with routers that don’t implement RCP. We hope
that these solutions will take us closer to having an impact in
real networks, not just for RCP but also for many other explicit
congestion control protocols proposed in literature.

I. INTRODUCTION AND MOTIVATION

We want to enable deployment of RCP (Rate Control
Protocol) congestion control in real networks. As with any new
congestion control mechanism, there are a slew of questions to
answer: What are its benefits over existing TCP mechanisms?
Is it stable under sudden network changes? Does it scale with
network bandwidth-delay product? How complex is it to im-
plement in real end-hosts and routers? Can it be incrementally
deployed in real networks?

In prior work, we studied RCP through simulations and
modeling; in particular scalability and stability of RCP have
been proved, and thousands of simulations suggest it is very
promising under a broad range of conditions. In this work we
are interested in the practical considerations of an Internet-
scale deployment of RCP: how complex is it to implement
RCP, and how can it be incrementally deployed in real
networks.

Before explaining how to make RCP practical, we need to
understand what RCP is and how it works.

In the basic RCP algorithm a router maintains a single
rate, R(t), for every link. The router “stamps” R(t) on every
passing packet (unless it already carries a slower value). The
receiver sends the value back to the sender so that it knows
the slowest (or bottleneck) rate along the path. In this way, the
sender quickly finds out the rate it should be using (without the
need for slow-start). The router updates R(t) approximately
once per roundtrip time (RTT), so as to emulate processor
sharing among flows. Intuitively, to emulate processor sharing,
the router should offer the same rate to every flow, try to fill
the outgoing link with traffic, and keep the queue occupancy
close to zero. The RCP rate update equation is based on this
intuition:

R(t) = R(t− T)(1 +
T
d (α · (γ · C − y(t))− β · q(t)

d)
γ · C) (1)

where d is a moving average of the RTT measured across all
packets (each RCP sender maintains its RTT estimate which it
stamps in all outgoing data packets), T is the update interval
(i.e., how often R(t) is updated) and is less than or equals
d, R(t − T) is the last rate, C is the link-capacity, y(t)
is the measured aggregate input traffic rate during the last
update interval, q(t) is the instantaneous queue size, α, β
are parameters chosen for stability and performance, and γ
controls the peak link-utilization.

There are four main features of RCP that make it an
appealing and practical congestion control algorithm:

1) RCP is inherently fair (all flows at a bottleneck receive
the same rate).

2) RCP’s flow-completion times are often one to two orders
of magnitude better than in TCP-Sack and XCP [7],
and close to what flows would have achieved if they
were ideally processor shared. This is because RCP
allows flows to jump-start to the correct rate (because
even connection set-up packets are stamped with the
fair-share rate). Even short-lived flows that perform
badly under TCP (because they never leave slow-start)
will finish quickly with RCP. And equally importantly,
RCP allows flows to adapt quickly to dynamic network
conditions in that it quickly grabs spare capacity when
available and backs off by the right amount when there

2

Link

IP

RCP

TCP

Application

 Congestion Control

NewReno R-TCP BIC

Fig. 1. RCP is a protocol between the IP and transport layers.

is congestion, so flows don’t waste RTTs in figuring out
their transmission rate.

3) There is no per-flow state or per-flow queueing.
4) The per-packet computations at RCP router are simple.
Although we have many thousands of promising ns2 [13]

simulations, we want to find out how feasible it is to deploy
RCP in real networks. Deploying RCP involves solving many
practical problems. To that end, the focus of this paper is
on two problems, both key to achieving our goal: How is
RCP implemented in real systems and what is the additional
complexity it introduces in end-hosts and routers (Section II)?
How does RCP coexist in a network where a significant portion
of traffic is non-RCP and a large portion of queues do not yet
implement RCP (Section III)?

II. IMPLEMENTING AND EXPERIMENTING WITH RCP

We recently described a linux based implementation of RCP
end-host and router [5], and a hardware implementation of
RCP router on Stanford’s NetFPGA system [12]. Our goal
here is to describe the testbed we are building with these
implementations, along with experiments we are conducting to
both validate the implementation as well as to verify that RCP
performs as we would expect it to. We will first give a brief
description of our implementation and analyze the additional
complexity it introduces into end-host software and routers.

A. Implementing RCP end-host and router

1) RCP End-host: We have implemented the RCP end-
system in Linux 2.6.16. An RCP sender maintains a
congestion-window which it modulates based on explicit feed-
back information from the network. It also maintains a round-
trip time estimate of the path and paces a window’s worth of
packets within a RTT. An RCP receiver echoes the network
rate feedback it receives to the sender by piggybacking it in
the reverse DATA/ACK packets. We describe below the key
pieces of an RCP end-system.

RCP is implemented as its own protocol layer between IP
and transport layers, as shown in Figure 1. Other places to
carry RCP information would be IP or TCP options, each
having its pros and cons.1

1The advantages of having RCP as a shim layer between IP and transport
are: a) routers which don’t understand RCP will let RCP packets pass through,
and b) the RCP rate information can be used by any transport protocol
including TCP for file-transfers, as well as by UDP for streaming content.
Figure 2 illustrates the 12-Byte RCP congestion header, having four fields.

rcp_bottleneck_rate

rcp_reverse_bottleneck_rate

0 1 2 3 30 31..14 15 16..

rcp_rtt

.. 23 24..

rcp_p unused

Fig. 2. The 12-Byte RCP header: the rcp bottleneck rate (4 Bytes)
carries the rate (in Bytes/msec) of the most congested link along the path;
rcp reverse bottleneck rate (4 Bytes) is the bottleneck rate (in Bytes/msec)
echoed by the receiver, so the sender can adapt its rate; rcp rtt (2 Bytes) is
the sender’s estimate of its round-trip time (in msecs); rcp proto (1 Byte) is
the protocol number of the higher transport layer.

When describing the RCP implementation at the end-host,
we will focus here on the case of TCP transport protocol run-
ning on top of RCP. Figure 1 shows the placement of RCP in
the network stack; there are two parts: the RCP layer between
transport and IP layer, which carries congestion information
from network to the end-system, and the congestion control
component in transport layer which adapts the flow-rate based
on network feedback. One can think of congestion control
consisting of two broad parts: a) modulating the flow-rate
(and congestion window), and b) deciding which packets to
send among the three pools of packets - those which have
not yet been transmitted, those which have been sent but not
yet acknowledged, and finally packets which are known to be
lost. RCP only modifies the first of these functions in TCP,
i.e. modulating the flow-rate, and we call this part as R-TCP.
Starting from Linux 2.6.13, the TCP code was re-written to
make it more modular [8], as a result of which the specific
TCP congestion control mechanism, for e.g. BicTCP, HTCP,
Scalable TCP, HighSpeed TCP, can be chosen dynamically
either using sysctl or on a per-socket basis. R-TCP can also
be chosen dynamically. The rest of TCP functionality such as
the state-machine and mechanisms for in-order packet delivery
remain unchanged.

An RCP sender maintains the following variables: a)
bottleneck rate of the forward path, b) bottleneck rate of
the reverse path, c) round-trip time estimate for the cur-
rent path, and d) the packet pacing interval. These are
maintained in TCP’s tcp sock structure. The sender fills
in RCP fields of an outgoing packet: a) sender’s desired
throughput, rcp bottleneck rate, which can be the speed
of the local interface, b) bottleneck rate of the reverse path,
rcp reverse bottleneck rate, which is zero if the host is not
aware of the rate yet, c) round-trip time estimate, which is zero
for the first packet of the connection (SYN) when the sender
does not have an estimate yet, and d) the protocol number of
TCP. RCP intercepts all calls from TCP to IP to attach the
12-Byte RCP header, and similarly detaches the RCP header
before passing on packets to TCP from IP.

An RCP receiver echoes the network rate feedback to
the sender by copying the rcp bottleneck rate value into
rcp reverse bottleneck rate, and usually piggybacking on
DATA/ACK packets. For a pure ACK packet, the bottleneck
rate and RTT fields are set to zero.

On receiving valid rate feedback, R-TCP modulates its

3

congestion window,2 overriding the slow-start and conges-
tion avoidance window changes. R-TCP keeps track of the
smoothed round-trip time estimate for this connection, and
paces packets from TCP’s send queue. The mechanisms that
decide which packets to retransmit upon losses remain the
same as in TCP.

2) RCP Software Router: This section outlines the im-
plementation of an RCP router in software, based on the
specification [2] [6]. Such an implementation demonstrates the
feasibility and simplicity of supporting RCP within a software-
based router.

Besides the normal operations of a linux-based IP router,
such as the longest prefix match look-up, and forwarding
packets to the destination interface, an RCP router must
additionally compute the fair-share rate periodically (as per
Equation 1) and stamp that rate in packet headers. The rate is
computed once every control interval which is in the order of a
round-trip time. During this control interval the router collects
a few statistics, average RTT of traffic and total incoming bytes
destined to an output port, which it then uses in computing
the rate.

We run our RCP router implementation on a standard
Linux system, implemented as a Linux Kernel Module (LKM),
namely rcp-router-driver.ko. This approach avoids the compli-
cation of applying patches to Linux source distribution and
recompiling the whole Linux kernel. The RCP implementation
consists of two main parts:

1) Per-packet handling in the data-path which includes:
• Identifying whether an incoming packet is an RCP
packet
• Updating a running RTT sum of the outgoing interface
if the packet carries a valid RTT
• Updating the aggregate traffic destined to the outgoing
interface
• Stamping the RCP rate in the outgoing packet

2) Periodic computations in the control path: The router
periodically (approximately once per average RTT of
sessions passing through it, but more frequently if appro-
priate) calculates how much bandwidth it can allocate,
R(t), to the average data flow, as per Equation 1.
Periodic computations also include updating the moving
round-trip time average, as detailed in [6].

The control plane is a timer driven function to compute the
RCP rate, moving RTT average on each outgoing interface,
and the next wake-up interval for this timer. The timer is
maintained per network interface. The Data plane is built based
on Linux’s NetFilter feature, which allows customized per-
packet operations in packet processing chain of the kernel.
RCP requires only a small amount of per-packet processing
– in the worst case 3 integer additions, 2 comparisons, and 1
write operation. No multiplications or divisions are performed
on the data path. Data plane operations on Ingress and Egress
path are described below:

2snd wnd = (rcp bottleneck rate × rcp rtt) / (MSS +
RCP HEADER SIZE + IP HEADER SIZE)

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

 0 20 40 60 80 100 120 140 160

Th
rou

gh
pu

t [M
bp

s]

Experiment Time [secs]

Total
Flow 1
Flow 2
Flow 3
Flow 4

Fig. 3. Multiple end-hosts are sending traffic to a sink through an RCP router.
The router is configured to a bottleneck link rate of C = 7.5Mbps. End-hosts
start flows of 100s duration at times 0s, 20s, 40s and 60s respectively. The
plot shows the per-flow throughput and aggregate throughput over time as
flows arrive and depart at the RCP router. The arrival of new flows create
sudden backlogs at the router’s TX queue, in response to which RCP reduces
R(t) to approximate C/N .

• The Ingress function is registered with IP FORWARDING
hook in NetFilter. When a packet arrives at the NIC driver
and is destined to one of the outgoing interfaces, this function
updates running RTT sum of the outgoing interface (if the
packet carries valid RTT); it also updates the aggregate traffic
rate to the outgoing interface.

• The Egress function is registered with IP POSTROUTING
hook in NetFilter. When a packet is ready for one of the
outgoing interfaces, this function stamps RCP rate in the
header and updates the TX queue occupancy for that interface.

3) Complexity of RCP End-host and RCP software router:
The RCP end-host has 250 lines of C code (including com-
menting and declarations), and does not involve any floating
point computations. For the RCP router, the computations on
the control plane (for periodic RCP rate and average RTT
calculations) and the data plane for each transit packet through
the router are shown in Table I.

TABLE I
COMPLEXITY OF RCP SOFTWARE ROUTER

Control Data Plane
Plane Ingress Egress Total

LOC 28 11 13 24
U32 Comparison 3 3 2 5
U32 Additions 5 4 0 4

U32 Multiplication 26 0 0 0
U32 Assignments 9 5 6 11

To compare the complexities between a standard linux
router without RCP support and an RCP router: for a non RCP-
enabled kernel, each packet processing in the IP forwarding
path takes 9.7368 jiffies, and with RCP it takes 9.9998 jiffies.
Therefore, RCP-related processing is only 2.6% of the IP
packet forwarding in the kernel.

B. Example Experiment
Figure 3 illustrates the results of an example RCP ex-

periment on our test-bed. Other experiments on a range
of topologies, heterogeneous round-trip times and different
synthetic traffic patterns to verify both RCP’s strengths (short
flow-completion times) and weaknesses (transient queues on
sudden changes) are in [10].

III. INCREMENTALLY DEPLOYING RCP
For RCP to receive widespread adoption it would need to be

introduced into a network with two hindrances: (1) RCP will

4

 0
 0.1
 0.2
 0.3
 0.4

 0 20 40 60 80 100 120 140 160

R(
t)/

C

Time

RCP Rate

Fig. 4. Demonstrating the problem when RCP and TCP coexist: Bottleneck
link implements the RCP algorithm. Nine RCP flows start at time t = 0, and
one TCP flow joins in at t = 50. RCP rate is throttled immediately.

 0
 0.1
 0.2
 0.3
 0.4

 0 20 40 60 80 100 120 140 160 180 200

R(
t)/

C

Time

RCP Rate

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 20 40 60 80 100 120 140 160 180 200No
rm

al
ize

d
Li

nk
 C

ap
ac

ity

Time

CR(t)
in traffic

out traffic

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000

 0 20 40 60 80 100 120 140 160 180 200

Q
ue

ue

Time

Total queue
TCP queue

RCP Queue

Fig. 5. Example showing the deployment solution in action: In a single-hop
network are five RCP long-lived flows and five TCP long-lived flows. The
average link shares are 0.5 each for RCP and TCP. The fluctuations follow
from TCP’s saw-tooth behavior.

need to operate alongside existing non-RCP traffic, such as
TCP and UDP, without adversely affecting or being affected by
the other traffic; and (2) RCP will need to operate in a network
where some routers are not RCP-enabled. In this section, we
will explore both hindrances in turn.

A. Hindrance 1: RCP must coexist with non-RCP traffic
Let’s first understand how severe the hindrance can be.

Imagine a simple network in which all routers are RCP-
enabled, but must carry both RCP and TCP traffic. Figure 4
illustrates an example, where nine long-lived RCP flows share
a link from time 0, and a TCP flow joins the network at time
50. The RCP flows are throttled. This is because TCP fills up
router buffers until they overflow, while RCP attempts to keep
the buffer occupancy low and only makes use of the spare
capacity. On seeing queued-up TCP packets and increasing
incoming traffic, RCP backs off and eventually stifles its own
transmission rate.

We have explored a wide range of solutions to this problem
and propose a few modifications to RCP routers.

The objective of our solution is for RCP to achieve a fair
link share – regardless of how other types of traffic behave,

and without requiring to isolate the different kinds of traffic.
For this purpose, RCP must explicitly know the proportion
of link-rate available to it so as to achieve the same per-flow
rate for RCP and non-RCP traffic. The link-rate available to
RCP, denoted as CR, has to be updated frequently with varying
traffic conditions, and be used in RCP’s rate equation (in place
of C). We formalize this intuition below:

• yR(t) denotes the measured incoming RCP traffic-rate,
CR(t) is the link-rate available to RCP, and q′R(t) is the
RCP virtual queue length in terms of packets.

• STEP C: Once every control period Tc, do the following:
(C.1) Estimate the approximate number of active RCP
and TCP flows, denoted as NR(t) and NT (t).
(C.2) Find the weight, wR, to adaptively equalize the
average flow rate of RCP (rR(t)) and TCP (rT (t)).

rR(t) =
yR(t)
NR(t)

rT (t) =
yT (t)
NT (t)

wR = wR − θ
rR(t)− rT (t)
rR(t) + rT (t)

where θ is a parameter defined in (0, 1), controlling how
smooth the update is.
(C.3) Update CR as follows:

CR(t) = max(C − yT (t), C · wR)

• STEP Q: Evolve q′R(t) upon the n-th RCP packet arrival
at time tn,

q′R(tn) = [q′R(tn−1)− CR(t) · (tn − tn−1)]+ + 1

• STEP R: Once every rate-update interval, T , compute
the RCP rate:

R(t) = R(t−T)(1+
T
d0

[α(γ · CR(t)− yR(t))− β q′
R(t)
d0

]
γ · CR(t)

)

In Step (C.1), we estimate the number of flows NR(t)
and NC(t) using a randomized algorithm with Zombie list
proposed in [9]. A zombie list is a fixed size array recording
the flow identifiers of recently seen packets. On each packet
arrival, the flow id either writes to an empty entry or, with
probability p, overwrites a stored entry if the list is full.
The number of flows, NR(t) and NT (t), is estimated by
the reciprocal of the hit probability, the probability that an
incoming packet belongs to a flow in the list. Other algorithms
in literature such as Bloom Filters achieve similar goals.

In Step Q, we evolve the RCP queue length q′R(t) separately,
instead of using the measured RCP queue, qR(t). The reason
for this is TCP traffic is usually bursty and RCP’s packets that
get “stuck” behind TCP’s appear to it as building up a queue.
It does not necessarily mean that RCP is sending too many
packets; they are simply blocked by TCP, which would not

5

happen if RCP traffic is isolated. Therefore, to achieve a fair
rate, it is more reasonable to use q′R(t) to update RCP rate.

This algorithm introduces another parameter, the control
update interval, Tc, whose value impacts the system stability.
For example, if Tc is too small, RCP will reclaim the link-
share it relinquished to TCP sooner than TCP has a chance
to use it up, causing oscillations in CR(t), CT (t) values. On
the other hand, a large Tc value makes the algorithm sluggish,
where RCP does not achieve its fair share. For stability, Tc

should at least equal the amount of time needed for TCP to
fill up the newly allocated link capacity to it; that is,

Tc,min =
CT − yT (t)

ẏT (t)
,

where yT (t) is the input traffic rate of TCP, and ẏT (t) the
derivative of the traffic-rate.

An example of the deployment solution in action is demon-
strated in Figure 5, in which there are equal RCP and TCP
flows, and both receive their fair shares. The spikes correspond
to TCP’s saw-tooth behavior. When TCP backs off on a
packet loss, RCP sees a room in link-rate and makes use of
the spare capacity until TCP reclaims its link share. These
spikes can be reduced by allocating a separate queue for RCP
and isolating it from non-RCP traffic. These queues should
be served with scheduling disciplines such as Deficit Round
Robin or Weighted Fair Queueing.

More simulations in [10] show that this algorithm:
• Works under multiple bottleneck links to achieve equal

bandwidth-sharing.
• Works for a mix of flow-sizes and RCP retains its prop-

erty of short flow-completion times and its resemblance
in performance to the ideal Processor Sharing scheme.

B. Hindrance 2: Coexisting with non-RCP bottlenecks

We cannot obviously have all routers and other network
devices to be equipped overnight with RCP functionality. RCP
end-hosts need to coordinate with non-RCP enabled network
devices. If after the initial handshake, an RCP flow does not
receive a valid rate, by default it switches to TCP congestion
control since none of the routers along the path understand
RCP. This situation is the simplest to resolve.

Even when an RCP flow receives a valid rate, it needs to find
out if the router suggesting this rate is in fact the bottleneck.
In this case, a flow optimistically starts by transmitting at the
received rate feedback and uses a heuristic to figure out if in
fact this is the bottleneck rate. Our proposed heuristic is based
on an invariant property of RCP algorithm, in that when a
queue builds up, RCP will react by reducing its rate to drain
the queue. An end-host switches to TCP if it observes the
following:

• Estimated round-trip time at end-host is doubled, or the
number of outstanding segments are accumulated.

• There is no corresponding decrease in the received RCP
rate from the network.

Once RCP determines that the received rate is not from the
bottlenecked link, it has to switch to TCP congestion control
immediately to avoid overwhelming the bottleneck.

The rationale behind our heuristic is: if the non-RCP bot-
tleneck has a buffer size that equals bandwidth-RTT product
(as most routers do today), then as the buffer fills up, the RTT
will increase to at least twice the base RTT value and, if there
is no corresponding reduction in RCP rate it is an indication
to switch over. On the other hand if the buffering is smaller
than bandwidth-RTT product, then packet losses occur sooner
than the RTT doubles, indicating the need to switch. [10] has
examples of this heuristic in action.

The heuristic works in the sense that there are no false-
negative cases. When the network bottleneck shifts to a non-
RCP router, an RCP endhost can always detect an increase
in RTT and in the number of outstanding segments due to
an invalid RCP sending rate suggested by non-bottlenecked
RCP routers. However, there is still room for improvement in
reducing the false-positive cases.

IV. ACKNOWLEDGMENTS

We would like to thank Masayoshi Kobayashi, NEC Labs,
Japan, for his ideas on Section III. We also thank Prof. Nick
McKeown, Stanford University, for his invaluable feedback on
this work.

REFERENCES

[1] H. Balakrishnan, N. Dukkipati, N. McKeown, C. Tomlin, “Stability
Analysis of Explicit Congestion Control Protocols,” in Stanford University
Department of Aeronautics and Astronautics Report: SUDAAR 776,
Stanford University, September 2005.

[2] N. Dukkipati, M. Kobayashi, R. Zhang-Shen, N. McKeown, “Processor
Sharing Flows in the Internet,” in Thirteenth International Workshop on
Quality of Service (IWQoS), Passau, Germany, June 2005.

[3] N. Dukkipati, N. McKeown, “Why Flow-Completion Time is the Right
Metric for Congestion Control,” in ACM SIGCOMM Computer Commu-
nication Review, Volume 36, Issue 1, January 2006.

[4] N. Dukkipati, N. McKeown, “Processor Sharing Flows in the Internet,”
in High Performance Networking Group Technical Report TR04-HPNG-
061604, Stanford University, June 2004.

[5] N. Dukkipati, G. Gibb, N. McKeown, J. Zhu, “Building an RCP (Rate
Control Protocol) Test Network,” in Hot Interconnects 15, Stanford,
August 2007.

[6] N. Dukkipati, N. McKeown, F. Baker, “Implementing RCP in the
IPv6 Hop-by-Hop Options Header,” http://yuba.stanford.edu/rcp/, Internet
Draft (Work in Progress).

[7] D. Katabi, M. Handley, C. Rohrs, “Internet Congestion Control for High
Bandwidth-Delay Product Networks,” in Proceedings of ACM Sigcomm,
Pittsburgh, August, 2002.

[8] I. McDonald, R. Nelson, “Congestion Control Advancements in Linux,”
in linux.conf.au, January 2006.

[9] T.J. Ott and T. V. Lakshman and L.H. Wong, “SRED: Stabilized RED”
in Proceedings of INFOCOM, 1999.

[10] J. Zhu, C.H. Tai, N. Dukkipati, N. McKeown, “Making large scale
deployment of RCP practical for real networks,” in High Performance
Networking Group Technical Report TR07-HPNG-061807, Stanford Uni-
versity, June 2007.

[11] “Rate Control Protocol (RCP) Home Page”,
http://yuba.stanford.edu/rcp/.

[12] “NetFPGA Home Page”,http://yuba.stanford.edu/NetFPGA/.
[13] “The Network Simulator”, http://www.isi.edu/nsnam/ns/.

