
Embedded
Systems

18-200

Prof. Philip Koopman
http://www.ece.cmu.edu/~koopman

Embedded System =
Computers Inside a Product

3

Some Embedded Systems Have “Big” Computers

4

But More Often There Are Many Specialized Ones

[Leen02]

5

Small Computers Rule The Marketplace
Everything here has a computer – but where are the Pentiums?

[Smolan]

[EDN]

7

Example Embedded System Requirement
Remote Entry system used on General Motors and other vehicles
• Designed in 1994, but still in production – if it works don’t mess with it!
• Uses an 8-bit Motorola processor at < 1 MHz clock rate

Functions:
• Transmits door lock/unlock & trunk open with 110-bit encryption key
• Performs secure resync without dealer visit if transmitter loses power (flash

memory unavailable)

Constraints:
• Multiple years on one battery
• Must work after being stepped on in

in a rain puddle (don’t try this at home!)
• About 700 Bytes of Program ROM
• About 512 bits of RAM
• Extremely low cost

Lear Encrypted Remote Entry Unit

8

Typical Embedded System Constraints
Small Size, Low Weight
• Hand-held electronics
• Transportation applications -- weight costs money

Low Power
• Battery power for 8-100+ hours (laptops often last only 2 hours)
• Limited cooling may limit power even if AC power available

Harsh environment
• Power fluctuations, EMI, lightning
• Heat, vibration, shock
• Water, corrosion, physical abuse

Safety-critical operation
• Must function correctly
• Must not function incorrectly

Extreme cost sensitivity
• $.05 adds up over 1,000,000 units

Adidas 1 Shoe

http://www.t3.co.uk/news/general/general/adidas_1_the_computer-powered_shoe!

9

Trend: More Complex Software
Reality: Winning the game requires shoving 20 pounds into an 3 ounce
sack
• Here’s the design package for a household setback thermostat
• Cars are approaching 1 Million lines of code (exclusive of infotainment)

10

An Embedded Control System Designer’s View
Measured by: Cost, Time-to-market, Cost, Functionality, Cost & Cost.
In many embedded systems, software is the most difficult part

CPUSENSORS A/D
CONVERSION

D/A
CONVERSION ACTUATORS

HUMAN
INTERFACE

DIAGNOSTIC
TOOLS

AUXILIARY
SYSTEMS
(POWER,

COOLING)

FPGA/
ASIC SOFTWAREMEMORY

MICROCONTROLLER

ELECTROMECHANICAL
BACKUP & SAFETY

EXTERNAL
ENVIRONMENT

11

Common Types of Embedded System Functions
Control Laws
• PID control, other control approaches
• Fuzzy logic

Sequencing logic
• Finite state machines
• Switching modes between control laws

Signal processing
• Multimedia data compression
• Digital filtering

Application-specific interfacing
• Buttons, bells, lights,…
• High-speed I/O

Fault response
• Detection & reconfiguration
• Diagnosis

PW-4000 FADEC
(Full Authority Digital
Engine Controller)

12

Various Embedded Computing Areas – 1
Read more about this at:

http://www.ece.cmu.edu/~koopman/pubs/koopman05_embedded_education.pdf
Koopman, P., H. Choset, R. Gandhi, B. Krogh, D. Marculescu, P. Narasimhan, J. Paul, R. Rajkumar, D. Siewiorek, A.
Smailagic, P. Steenkiste, D. Thomas, C. Wang, "Undergraduate Embedded System Education at Carnegie Mellon," ACM
Journal Transactions on Embedded Computing Systems, Vol 4, No. 3, September 2005.

Small embedded controllers (e.g., thermostats)
• 8-bit CPUs dominate, simple or no operating system

Control systems (e.g., automotive engine control)
• Often use DSP (Digital Signal Processing) chip for control computations

Distributed embedded control (e.g., cars, elevators, factory automation)
• Mixture of large and small nodes on a real-time embedded network

System on chip (e.g., consumer electronics, set-top boxes)
• ASIC design tailored to application area

Network equipment (e.g., network switches; telephone switches)
• Emphasis on data movement/packet flow

Critical systems (e.g., pacemakers, automatic trains)
• Safety & mission critical computing

13

Various Embedded Computing Areas – 2
Signal processing (e.g., face recognition)
• Often use DSP chips for vision, audio, or other signal processing

Robotics (e.g., autonomous vehicles)
• Uses various types of embedded computing (especially vision and control)

Computer peripherals
• Disk drives, keyboards, laser printers, etc.

Wireless systems
• Wireless network-connected “sensor networks” and “motes” to gather and

report information
Embedded PCs
• Palmtop and small form factor PCs embedded into equipment

Command and control
• Often huge military systems and “systems of systems” (e.g., a fleet of warships

with interconnected computers)

14

Trend: Internet-connected embedded systems

15

Trend: External Connectivity
Safety critical subsystems will be connected to external networks
(directly or indirectly)
• This is going to lead to security issues

[Airbus 2004] A-380 scheduled to enter service in 2006

16

Z`

Wargo & Chas, 2003, proposed Airbus A-380 architecture

17

Trend: Desktop Software In Embedded Systems
Highly dependable software is often required
• But desktop systems aren’t designed to provide that!

Diebold voting machine problems
• Electronic voting machines booting to windows instead of votes
• http://catless.ncl.ac.uk/Risks/23.27.html#subj8.1

Automated teller machine crashes
• Windows error messages
• At Carnegie Mellon, someone got an ATM to run media player

7/28/98:
“Windows NT Cripples US Navy
Cruiser”

18

http://www.coed.org/photodb/folder.tcl?folder_id=3334
"When ATMs go bad by Carla Geisser“, March 18, 2004
(See also: http://midnightspaghetti.com/newsDiebold.php)

19

Application Example: X-by-Wire Is Coming Soon
X-by-Wire is perhaps the ultimate automotive computer technology
• All embedded computers in automobile will probably interface to it
• Has the most stringent requirements

We already have: throttle-by-wire; parking-brake-by-wire

[Heiner]

20

Why Take Embedded Computing Courses?
Optimizing cost, size & speed
• Understanding hardware lets you do more functions with less cost

– Sometimes you can’t spend more than $1 on a CPU, but it still has to fit everything
• Getting good performance requires understanding some hardware details

Some hardware doesn’t have a lot of support software
• Sometimes there is no good I/O support in high level languages
• Sometimes assembly language is the only way to get good enough code
• Very often, debugging requires some understanding of hardware

Some skills are almost impossible to learn on your own
• E.g., ultra-dependable system design for safety critical systems

http://www.pjrc.com/tech/8051/board5/dev5_big.jpg

21

ECE Embedded Course Sequence:
Pre-reqs:
• 15-213 Introduction to Computer Systems
• 18-240 Fundamentals of Computer Engineering

18-349 Embedded Real-Time Systems
• Single-CPU embedded systems

18-549 Distributed Embedded Systems
• Multiple CPUs on an embedded network; critical systems; system engineering

18-749 Fault-Tolerant Distributed Systems
• Enterprise systems with fault tolerant middleware

18-849 Dependable Embedded Systems
• Deep coverage of dependability & safety critical system research papers

Many other relevant specialty and related courses
• Controls
• Robotics
• Software engineering
• …

22

18-349 Introduction To Embedded Systems
Junior-level course with significant project content

Course areas:
• Low level system/software

– Combining C & Assembly language
– Software profiling and optimization
– Memory management

• Hardware interfacing
– I/O
– Buffering and DMA
– Serial communications
– Timers & Interrupts

• Real time operating systems
– Resource management
– Rate monotonic scheduling
– Loaders, object files

• Interacting with the outside world
– Basics of feedback control and signal processing
– A/D and D/A conversion

23

18-549 Distributed Embedded Systems
Capstone design course
• Semester-long project with representative embedded system design cycle:

Requirements / design / networking / implementation / test / fault recovery
• Emphasis on the software side of things; survival skills for 1st year in industry

Course areas:
• System Engineering

– Requirements, design, verification/validation, certification, management-lite
• System Architecture

– Modeling/Abstraction, Design Methodology, a little UML, Business Issues
• Embedded Systems

– Design Issues, scheduling, time, distributed implementations, performance
• Embedded Networks

– Protocol mechanisms, real-time performance, CAN, FlexRay, embedded Internet
• Critical Systems

– Analysis Techniques, software safety, certification, ethics, testing, graceful degradation
• Case Studies

– Elevator as capstone design project
– Guest speakers and other discussions as available

