



## Dr. Kaigham (Ken) J. Gabriel Chairman & CTO

AKUSTI(A

Akustica, Inc. • 2835 East Carson Street • Suite 301 • Pittsburgh, PA 15203 USA • 412-390-1730 • www.akustica.com

## What if integrated circuits could hear, speak and sense the world around them?



## **Akustica Improves Voice Quality**

Microphones, speakers and complete acoustic systems on a single MEMS chip ...





... enabling cell phones, laptops and other electronic devices to speak, hear, and feel.







#### Better Microphone Technology ...

 Digital and directional microphones

#### ...with Integrated Voice Processing ...

 Algorithms to suppress wind and background noise

#### ... and Multi-Sensor Clusters

 Detect vibration interference and extract noise





# Sensory Silicon<sup>™</sup>

Patented CMOS MEMS technology enables system-on-chip integration of multiple sensors, electronics, and signal processing.





## **CMOS MEMS Technology**

# MEMS structures made out of *the CMOS thin-film materials* using conventional CMOS with *no changes to CMOS baseline processes*



**Carnegie Mellon**<sub>®</sub>

- Base Patents Licensed from Carnegie Mellon University
- Additional IP and know-how developed
- Advantages
  - leverages quality, capability and capacity of global semiconductor industry
  - accelerates speed and frequency
    of product design
  - monolithic construction of circuits with MEMS decreases cost and increases performance & reliability
  - enables new functionality and capabilities



## **Initial Products**

#### **AKU1000 – Analog Output Microphone**

- Monolithic silicon microphone
- Surface mount to improve manufacturing yield
- Automated pick & place saves assembly cost
- 2X smaller footprint / thinner profile than ECM
- Production ramp Now





#### **AKU2000 – Digital Output Microphone**

- > Integrated 14-bit,  $4^{th}$ -order  $\Sigma$ - $\Delta$  modulator
- Monolithic solution for superior transducer performance (10X lower parasitics)
- Immune to RF and EM interference enabling increased audio design flexibility
- Production ramp Q4



## Large and Growing Installed Market



#### **Microphone Market Forecast**

Units (000,000)

- On an annual basis, global OEMs and ODMs purchase:
  - 1.5 B microphones
  - 3.0 B near-field speakers
- MEMS microphones are rapidly replacing conventional ECMs (~100M units in '05)
  - MEMS microphones rapidly adopted into mobile handsets
  - >500m MEMS microphones forecasted for 2008
  - Attractive pricing and margin opportunities
- Secured high volume analog silicon microphone supply contract



## **Target Markets**



#### Communications – Smart Phones

- Enable next-generation handsets: thinner, smaller, lighter phones with better directionality, noise cancellation & fidelity
- Cell phones that sound great in noisy environments
- > Moving to digital bus architecture

#### Personal Computing - Notebooks

- Improved voice conferencing in VoIP applications
- Enable full utilization of next generation Intel hardware and Microsoft software
- Require the addition of multiple microphones in displays for multi-media speaker-phone applications





#### Digital Media – Consumer Electronics

- > Raise audio quality to correspond to high quality video
- Component reduction enables smaller devices such as headsets
- Enables rich new uses of sound in cameras, voice recorders, and other consumer devices



## **Notebooks Usage Case Evolution**





## Acoustic Issues



## **Akustica Overcomes The Challenges**

## FLEXIBILITY AND MANUFACTURABILITY

- Digital Microphones enable ideal placement in bezel
  - Noise susceptibility is reduced
  - Allows signal transfer through the hinge
  - Silicon technology enables very thin and small footprint
  - Digital architecture reduces customization and calibration in assembly
- Reduced component count and cost
  - Integrated pre-Amp
  - Simple ribbon cable interconnect
- Requires an HD Audio CODEC that has a direct interface to digital microphones





## **Product Roadmap and Vision**



© Akustica, Inc. - Proprietary & Confidential

## **Company Profile**



- HQ in Pittsburgh, PA USA
- Formed in 2001 by Ken Gabriel and Jim Rock
- Carnegie Mellon University Patents & Akustica IP
- > 42 Employees, 80% Engineers
- Private, Venture-Backed (\$30M)
- Commercializing CMOS MEMS for Major Consumer Electronic Applications







## CMOS Microelectromechanical Systems (CMOS MEMS) The Power of Many



Dr. Kaigham (Ken) J. Gabriel

Chairman & CTO Akustica, Inc.

### **Information Systems Migration and MEMS**





#### Increasing number of information systems

- portable computing
- cellular phones
- internal combustion engine controllers
- household appliances

#### • Embedded in and portions of larger systems

- larger systems not solely information systems (telecom, automotive, biomedical, structural)
- relatively small fraction of cost, size & weight
- key enabling component
- need to sense and act as well as compute

#### • Creating demand for greater diversity of interaction with physical world

- mechanical
- electromagnetic
- chemical and biological
- optical

MEMS will invest engineered systems with greater ability to sense and act in the physical world



- MEMS merges computation with sensing and actuation to change the way we perceive and control the physical world,
- is a new way to make both mechanical and electrical components,
- and conveys the advantages of *miniaturization, multiple components*, and *microelectronics.*
- MEMS mechanical components have dimensions measured in microns and numbers measured from a few to millions
- MEMS makes possible integrated electromechanical systems, and puts these systems on the same cost-performance trajectory of microelectronic systems



surface micromachining

### **Surface Micromachined Structure**





## MEMS Builds on Microelectronics Manufacturing AKUSTI(A



special probing, sectioning and handling procedures to protect released parts

seal some parts of device but expose others *test more than electrical function* 

#### **Microelectronics & MEMS Fabrication**





### **Economics of Batch Fabrication**



- High manufacturing cost is spread over many parts-- low cost per individual part
- Die size and total process yield (= product individual process step yields) are the two most important determinants of part cost



## Present and Emerging Applications of MEMS

- inertial measurement units on a chip for personal guidance, toys, virtual reality, munitions guidance, and security/safety systems
- distributed unattended sensors for asset tracking, structural assessment, environmental monitoring, security & border surveillance, and process control
- integrated fluidic systems for miniature analytical instruments, chip-based DNA processing & sequencing, propellant and combustion control, chemical factories on chip
- radio frequency and wireless for relay & switching matrices, reconfigurable antennas, switched filter banks, electromechanical front-end RF filtering and demodulation
- embedded sensors and actuators for condition-based maintenance of machines & vehicles, on-demand amplified structural strength in lower-weight systems/platforms and disaster-resistant buildings
- mass data storage devices for storage densities of terabytes per square centimeter
- integrated micro-optomechanical components for fiber optic telecommunications switching networks, optical data storage, bar code scanning and displays
- active, conformable surfaces for distributed aerodynamic control of aircraft, adaptive optics, and precision parts & material handling















### **Acceleration Sensor on a Chip for Airbags**







 single mechanical component with ~ 200 transistors (3 µm design rules)

AKUSTI(A

- monolithic sensing, self-test, calibration and signal conditioning functions
- manufactured in an integrated circuit fabrication line like any other type of semiconductor chip



Analog Devices, Inc.

## enables a family of products





## **Digital Micromirror Display Technology**



1024 x 768 XGA chip (Dragonfly Projector)





Texas Instruments, Inc.

- ~ 520K to 2M mirrors
- 16 µm x 16 µm mirrors
- digital gray scale using pulse width modulation
- MEMS arrays built on top of SRAM



## **Carnegie Mellon CMOS MEMS**



Inertial sensors, RF MEMS, infrared sensors, acoustic speakers, ultrasonic sensors, BioMEMS, biomedical devices... with on-chip detection and conditioning



### **CMOS Acoustic MEMS – Starting Point**

![](_page_24_Picture_1.jpeg)

- MEMS structures made in conventional CMOS with no changes to CMOS baseline process or materials
- MEMS made out of the CMOS thin-film materials

![](_page_24_Figure_4.jpeg)

### **Microphone Chip Example**

![](_page_25_Picture_1.jpeg)

![](_page_25_Figure_2.jpeg)

![](_page_26_Picture_0.jpeg)

### **Membrane Mesh Scaffolding**

![](_page_26_Figure_2.jpeg)

### **CMOS Acoustic MEMS Chip Detail**

![](_page_27_Picture_1.jpeg)

![](_page_27_Figure_2.jpeg)

![](_page_28_Figure_1.jpeg)

• start with anisotropic etch of back-side cavity

![](_page_29_Picture_2.jpeg)

• start with anisotropic etch of back-side cavity

![](_page_30_Picture_2.jpeg)

• start with anisotropic etch of back-side cavity

![](_page_31_Picture_2.jpeg)

![](_page_32_Picture_2.jpeg)

![](_page_33_Picture_2.jpeg)

![](_page_34_Picture_2.jpeg)

![](_page_35_Picture_2.jpeg)

• vent holes etched from top

![](_page_36_Picture_2.jpeg)

• vent holes etched from top

![](_page_37_Picture_2.jpeg)

• vent holes etched from top

![](_page_38_Figure_2.jpeg)

• *mesh skeleton released from substrate underneath* 

![](_page_39_Figure_2.jpeg)

• mesh skeleton released from substrate underneath

![](_page_40_Figure_2.jpeg)

### **SEMs of CMOS Acoustic MEMS Chip**

![](_page_41_Picture_1.jpeg)

![](_page_41_Figure_2.jpeg)

![](_page_42_Picture_1.jpeg)

![](_page_42_Figure_2.jpeg)

### **Microphone Chip Acoustic Model**

![](_page_43_Picture_1.jpeg)

![](_page_43_Figure_2.jpeg)

### **CMOS Acoustic MEMS Advantages**

- Low-cost integration with CMOS
- Rapid design cycles
- Scalable manufacturing
- Low parasitic capacitance
- No piezoelectrics
- Audio to ultrasonic frequencies
- Capacitive sensing
- Low-power electrostatic actuation

![](_page_44_Picture_9.jpeg)

![](_page_44_Picture_10.jpeg)

**MEMS** Technology Trend

![](_page_45_Picture_1.jpeg)

![](_page_45_Figure_2.jpeg)