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Abstract. Random key graphs, also called uniform random intersection
graphs, have been used for modeling a variety of different applications
since their introduction in wireless sensor networks. In this paper, we
review some of their recent applications and suggest several new ones,
under the full visibility assumption; i.e., under the assumption that all
nodes are within communication range of each other. We also suggest
further research in determining the connectivity properties of random
key graphs when limited visibility is more realistic; e.g., graph nodes can
communicate only with a subset of other nodes due to range restrictions
or link failures.

The notion of the random key graph (a.k.a. “uniform random intersection
graph” [1]) was introduced for probabilistic key pre-distribution in wireless sen-
sor networks [2]. Recently, these graphs have been used for a variety of different
applications, such as clustering analysis [3], recommender systems using collab-
orative filtering [4], and cryptanalysis of hash functions [5]. While random key
graphs are not Erdös-Renyi random graphs (e.g., the probabilities that graph
edges exist are not necessarily independent), they have similar connectivity prop-
erties under the assumption of “full visibility”; i.e., they obey a similar “zero-one”
law as Erdös-Renyi graphs for some scaling of their parameters, whenever each
node is within communication range of other nodes [6, 7].

Recommender Systems Using Collaborative Filtering. Marbach [4] illustrates
an application of random-key-graph connectivity for the modeling of recom-
mender systems with collaborative filtering. In his model, there are N users and
a pool of PN objects. Each of the N users picks a set of KN distinct objects
uniformly and randomly from the pool, and ranks each object, where KN < PN .
A recommender class C is defined as a set of users that gives the same ranking to
any particular object that is ranked by at least one user of the set. This implies
that (1) every subset of users in class C that rank a common object assigns the
same ranking to that object, and (2) not every user in class C ranks all objects
ranked by others in C; i.e., there exist users in class C that have not ranked
objects ranked by others in class C.

A recommender system with collaborative filtering predicts the ranking a user
would give an object that the user has not ranked, but that has been ranked by
some other users in class C. However, to enable such predictions, the membership
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of n users, n ≤ N , in class C has to be identified. Hence, a question of interest
is this: given PN objects in the pool, how many objects need to be picked and
ranked by each of the N users to identify the n members in recommender class
C? That is, what is the lower bound of KN?

To answer the above question, Marbach uses a graph, G(KN , PN , N), and
models recommender systems as follows. Let a user correspond to a node in
graph G(KN , PN , N). For any two users (nodes) of the graph, there is an edge
between those users if and only if the following conditions hold: (1) there exists
at least one object that is ranked by both users; (2) any object that is ranked
by both users is given the same rank by those users. We note that both PN and
KN are functions on n, and hence we denote them by Pn and Kn, respectively.
Now let graph G(Kn, Pn, n) be the sub-graph of G(KN , PN , N), whose vertex
set is class C and whose edge set is a subset of the G(KN , PN , N) edges con-
necting vertices of class C. Marbach demonstrates that a necessary condition of
identifying the membership of class C is that graph G(Kn, Pn, n) be connected,
and that G(Kn, Pn, n) is almost surely connected if K2

n

Pn
= ω

(
log n

n

)
. Note that it

is easy to show the probability that there exists an edge between two nodes of
G(Kn, Pn, n) is asymptotically equal to K2

n

Pn
for certain values of n, Kn and Pn.

In the context of secure wireless networks, Yağan and Makowski [6, 7] show that
when Pn > 3Kn and K2

n

Pn
∼ c log n

n , where c > 0 is a constant, the probability
that G(Kn, Pn, n) is connected goes to 0 as n → ∞, for c < 1, and goes to 1
as n → ∞, for c > 1. In other words, for certain values of n, Kn and Pn, the
connectivity of graph G(Kn, Pn, n) follows a zero-one law.

Trust Sub-Networks. Graph G(Kn, Pn, n) can also be viewed as a trust sub-
network for certificate evaluation in networks without a public-key infrastruc-
ture; e.g., ad-hoc networks [8]. In such networks, some certificates cannot be
easily validated by clients (e.g., self-signed certificates), yet clients are expected
to trust the validity of these certificates for use in security protocols. Let us as-
sume that each of the n users of G(Kn, Pn, n) is a certificate notary which serves
a number of clients. These clients ask the notary to evaluate public-key or ac-
cess control certificates that they receive from foreign sites and that they cannot
validate. In a trust network, each notary evaluates Kn certificates it sees of the
Pn being used among various sites of the Internet. If any of a notary u’s clients
asks for any of the Kn already evaluated certificates, u returns that certificate’s
evaluation (i.e., ranking). If u has not evaluated the certificate needed by one of
its clients, u asks other notaries in trust network C for that evaluation. Notary
u receives the certificate evaluation from any other notary with probability K2

n

Pn
,

under the conditions established by the connectivity of graph G(Kn, Pn, n). This
evaluation is then sent by u to its client. Notary u returns an exception to its
client if the certificate is not evaluated by any notary of the trust network C.
We note that the robustness characterization of trust networks can benefit from
the “redoubtable” and “unsplittable” properties of random key graphs [9].

An example of a practical system that resembles a trust sub-network is Per-
spectives [10]. The trusted notaries of the Perspective system can be viewed as
the users of trust sub-network C. However, instead of returning a certificate eval-
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uation, a trusted notary simply returns parameters of certificate use observed
from its vantage point to its clients; e.g., use count observed.

Secure Connectivity to a Trusted Core of a Mobile Ad-hoc Network. Suppose
that a subset of the nodes of a mobile ad-hoc network maintains full visibility;
i.e., each node is within communication range of all other nodes [6, 7]. We call
this subset a “trusted core” since the secure connectivity of its nodes can be
assured by probabilistic key pre-distribution similar to that for sensor networks.
Since, by definition, ad-hoc networks do not have an infrastructure for secure
communication, the secure key connectivity of a trusted core can provide the
keying infrastructure for other mobile nodes that connect with each other via
the trusted core. If we assume that the trusted core comprises nodes of the user
class C defined above and its key connectivity is provided by graph G(Kn, Pn, n)
under the choice of parameters determined by Yağan and Makowski [6, 7], then
other mobile nodes can connect to each other either separately or via the trusted
core. This is possible since the keying of the other mobile nodes can be viewed
as the extension of the trusted core and can be performed in the same manner
as the dynamic, ad-hoc, extension of a sensor network [2]. That is, each of the
added mobile nodes can be pre-keyed with a set of Kn keys drawn from the
same pool of size Pn of pre-distributed keys used for the trusted core. As long as
the added mobile nodes remain in full visibility of the trusted core, their secure
connectivity is assured with probability K2

n′
Pn′

, under the conditions established
by the connectivity of the extended graph G′(Kn′ , Pn′ , n

′), where n′ > n is the
total number of nodes after the mobile nodes are added.

Analysis of Herding Attacks on Hash Functions1. Recently, Blackburn et
al. [5] use the theory of uniform random intersection graphs (i.e., random key
graphs) to analyze the complexity of the Kelsey and Kohno “herding attack”
[11] on Damg̊ard-Merkle hash-function constructions. In a herding attack, the
adversary first commits to a hash value h and then is provided with a prefix p.
The attacker needs to find a suffix s which “herds” to the previously committed
hash value h. That is, given p, h, and a hash function H(), the adversary must
find suffix s such that H(p||s) = h. To launch a herding attack, Kelsey and
Kohno build a 2k-diamond structure by repeatedly utilizing a collision-finding
attack against the hash function. Blackburn et al. find a flaw in the original
analysis [11] and point out that the message complexity of building the 2k-
diamond structure is k times that suggested by Kelsey and Kohno. In analyzing
the complexity of the herding attack, Blackburn et al. first derive the threshold
of perfect matching in a random key graph and then apply the obtained result
to the diamond structure. A perfect matching of a random key graph is a set of
pairwise non-adjacent edges where every vertex of the graph lies on one edge of
the set.

Further Research. The full visibility assumption, although interesting from
a theoretical point of view, is often impractical in mobile ad-hoc (and sensor)
networks where communication range is constrained and sometimes unreliable.

1 This example replaces the analysis of a key-collision attack presented at the SPW
2009 workshop.
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A set of interesting research questions arises when one considers the connectivity
properties of random key graphs under the “limited visibility” constraint, already
encountered in sensor networks [2]. Some robustness properties of random key
graphs have already been considered; e.g., redoubtable and unsplittable graphs
[9]. However, robustness properties of random-key-graph connectivity under the
limited visibility assumption have not been considered to date. Of similar interest
are questions of connectivity in random key graphs when some of the links of
individual nodes fail.

Note: Since the presentation of this paper in April 2009, additional interesting
properties of random key graphs have been investigated; e.g., k-connectivity
[12], diameter size [13]. Random key graphs have also been shown to be good
candidates for “small world” models [14].
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