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Abstract

We report the results of a usability study of Bumpy, a

system that enables a user to provide secret inputs to re-

mote webservers without trusting the computer on which

she types those inputs. Achieving this somewhat paradoxi-

cal property via Bumpy requires extra diligence from users,

raising questions as to whether it is a viable protection

for the average user. We evaluate the originally proposed

Bumpy design and several new alternatives in a user study

involving 85 participants, each of whom utilized one of

these designs (or a control design) for roughly four months

to protect her password entries to a university course web

page. Beyond assessing the usability of Bumpy designs, our

study offers insights for designing security-relevant inter-

faces and training users to successfully utilize them.

1 Introduction

Malware infections are commonplace (e.g., [5, 14, 20]),

suggesting that a considerable percentage of users will sit

down to an infected computer at some point. There are few

defenses that help a user cope with such situations, partic-

ularly if the malware has infiltrated the lowest levels of the

operating system (or virtual machine monitor [15, 24, 34],

or lower [7, 35]). Those defenses that do must somehow

instill in each user a degree of mistrust in the computer she

is using, so that the user will employ a level of suspicion

that allows her to detect malware behaviors and / or avoid

divulging any further sensitive information to the malware.

One defense intended for such a circumstance is

Bumpy [17], a mechanism that enables a user to convey se-

cret information to remote webservers through a host with-

out trusting that host with the information itself. Briefly,

Bumpy works by first processing user keystrokes in a small,

trusted module that is isolated from all other software on the

computer using newly available hardware-enforced protec-

tions [12]. Because this module receives user inputs before

the other software does, the user can indicate an input that

she considers sensitive by preceding it with a secure atten-

tion sequence (SAS), causing the Bumpy module to treat

it differently from normal inputs (which it passes on to the

untrusted platform). In particular, Bumpy can queue sensi-

tive inputs and prepare them (e.g., encrypt them) for a target

destination, releasing only nondescript characters (e.g., as-

terisks) to the untrusted platform in their place. Aside from

the user remembering to type the SAS to indicate the immi-

nent arrival of a sensitive input, a central challenge in the

Bumpy design is enabling the user to verify for what desti-

nation site the input will be prepared and sent. Since the un-

trusted platform itself, including the display, is presumed to

be controlled by malware, the original Bumpy design [17]

suggested conveying this information to the user via a sep-

arate device, termed a Trusted Monitor (TM). For example,

the TM could be implemented using a dedicated token in the

form factor of a flash drive, or it could even be implemented

by a user’s cell phone (albeit with the risks that would come

with employing a general-purpose device potentially with

its own vulnerabilities).

Typing a SAS and checking a TM for the proper destina-

tion for the forthcoming sensitive input might seem straight-

forward, particularly to computer security researchers.

However, faithfully following this procedure and reacting

appropriately in the face of unexpected results — poten-

tially caused by the malware that Bumpy is trying to protect

against — requires that the user adopt a degree of suspicion

of her own computer that, to our knowledge, has not pre-

viously been achieved among non-expert users. As such, if

malware can convince users to disclose their sensitive data

despite the presence of Bumpy (i.e., by causing them to mis-

use the system), then there is little point in deploying the

system.

In this paper, we evaluate the usability of the original

Bumpy design, hereafter referred to as Original, alongside

three other novel designs that we propose here. In the first,

called Graphical, the entry of the SAS is replaced by a

graphical process for indicating forthcoming sensitive in-

put. In the second, called NoTM, the user enters a per-site

SAS to proactively instruct Bumpy as to which site the sub-

sequent sensitive input should be sent, thereby rendering the

TM unnecessary. In the third, called Challenge, the SAS is



entered as in Original, after which the TM displays a chal-

lenge that the Bumpy module expects to receive prior to the

sensitive input, thereby making inspection of the TM a non-

bypassable part of entering sensitive input.

We evaluate each of the four designs both in terms of

its imposition on the normal login process (impact on delay

and success rate) and in terms of users’ abilities to bene-

fit from its protections despite the contrary efforts of mal-

ware. We performed this evaluation with a four-month user

study involving 85 participants, the overwhelming majority

of which were undergraduate college students majoring in

fields other than computer science or engineering. Each of

these 85 students was assigned to use one of the four Bumpy

variants described above to log into a course web page for

an entire semester (i.e., to protect her course login pass-

word) or to use a regular password login (Control). In this

user study, we subjected users to phases of normal system

use and to phases in which we simulated potent malware at-

tacks to trick them into divulging their passwords. We fol-

lowed the attack phase with an additional phase where users

were warned about the mistakes they made when faced with

simulated attacks. These warnings served as a form of train-

ing, and we analyze their effectiveness through additional

simulated attacks.

Through these phases, we were able to identify rela-

tive strengths and weaknesses of our designs and quantify

the degree of protection for sensitive data that the various

Bumpy designs can offer. Notably, we uncovered evidence

that the new designs that we introduce here yield the best re-

sults for many of the measures we studied, thereby improv-

ing over the original Bumpy design. That said, our study

does not conclude that one design is uniformly better than

all others. For example, the evidence suggests that some de-

signs are more secure while others yield faster login times.

Viewed more broadly, our study provides a number of

insights that may be useful in other contexts. Our study pro-

vides support for the usability of secure attention sequences

and to the better security afforded by interactive security

indicators (versus ones that a user is asked to simply ob-

serve). It also demonstrates that passive warnings are only

partially effective in molding user behavior. We also be-

lieve our study supports the conclusion that without train-

ing, users will face difficulties in distinguishing changes in

security-sensitive procedures (in our case, induced by mal-

ware attacks) from common discontinuities in the software

experience, i.e., failures or updates that change software be-

havior, often in subtle ways.

2 Related Work

Bumpy falls within the general class of approaches to ad-

dress the challenge of securely interacting with or through

an untrusted computer (e.g., [1, 2, 4, 11, 13, 18, 19, 23, 26,

27]). We believe that the results of our study can inform

other usability studies in this domain and potentially the de-

sign of alternative user experiences in this domain. In par-

ticular, common to many of these schemes is a secondary,

trusted device, such as the user’s smartphone or a dedicated

USB device. In Bumpy’s original design (Original), this

secondary trusted device is the Trusted Monitor. The al-

ternative user experiences that we develop here — one that

eliminates the use of a TM (NoTM) and two others that re-

tain the TM but that alter the user experience (Graphical and

Challenge) — have parallels in other schemes, and our us-

ability results should be instructive in selecting from among

candidate designs elsewhere. Our results also underscore

the need to perform usability studies of these alternative ar-

chitectures to better understand the relative usability advan-

tages of architectures based on entering sensitive input into

a trusted mobile device (e.g., [1, 4, 11, 18, 19, 13, 26, 27]),

leveraging a trusted remote proxy in the “cloud” (e.g., [23]),

and employing a trusted virtualization layer (e.g., [2, 11]).

Bumpy’s user experience bears some similarity to tech-

niques developed to generate distinct domain-specific pass-

words from a single password, either for protecting pri-

vacy (e.g., LPWA [10]) or to defend against phishing at-

tacks (e.g., PwdHash [22]). Bumpy’s similarity to these

systems lies primarily in the user’s input of a secure atten-

tion sequence to convey instructions to the trusted module

that produces the domain-specific passwords. Chiasson et

al. performed a usability study of PwdHash and concluded

that it provides insufficient user feedback [3]. Users were

unable to discern whether PwdHash was actually working,

resulting in situations where users reported that PwdHash

was easy to use and protecting their passwords when in fact

protections were disabled. This finding helps to motivate

the presence of a feedback mechanism in three of the four

Bumpy designs we considered.

Considerable work has been done regarding security in-

dicators and how they are often unnoticed or misinterpreted

by users (e.g., [6]). Researchers have tracked users’ eye

movements [29, 33] to determine whether they look at pas-

sive security indicators [9, 36], often finding that even the

complete disappearance of common security indicators is

ignored [25]. As the user is asked to pay attention to the

passive website destination indicator on her TM to thwart

attacks when using Original, these lessons from previous

studies motivate the other designs that we explore here. One

such design (Challenge) seemingly requires the user to pay

attention to the indicator so that she can transcribe two dig-

its, and another (NoTM) eliminates the indicator and en-

ables the user to gain assurance proactively. Our study can

inform others as to the effectiveness of such strategies to

combat user ambivalence towards security indicators.

Interactive training methods have had success in educat-

ing users about security attacks (e.g., [28]). This motivated



our evaluation of a similar training regimen in one phase of

our study.

3 The Bumpy User Experience

Here we describe the user experience of the original

Bumpy design, denoted Original, and how our other de-

signs Graphical, NoTM, and Challenge might appear to

the user as implemented with the low-level security mech-

anisms leveraged by the actual Bumpy system. Here we

focus on the user experiences exclusively, deferring to §4.1
the details of how we simulated these user experiences in

our study.

3.1 Original Design – Original

Bumpy is motivated by the desire to allow users to pro-

tect arbitrary input to web forms in the face of malware on

the user’s local system, e.g., keyloggers. Arbitrary input

means that the user can actively choose which data to pro-

tect. Logical choices include, but are not limited to, pass-

words and financial account numbers.

Users are equipped with an external device called a

Trusted Monitor (TM). In practice this may be a dedicated

device, or it may be functionality offered by, e.g., smart-

phones. The TM serves as a trusted output device for infor-

mation about the user’s input, as the Bumpy design allows

for the user’s OS to be malicious. The TM receives this

input (in a cryptographically protected way) from a Bumpy

module that processes user inputs before releasing them to

the untrusted platform. The Bumpy module itself is pro-

tected from the OS with hardware-enforced isolation (see

Appendix A).

Consider a user who is providing input to a web form.

For example, she may be trying to log into an access-

controlled website, or she may be going through the check-

out process while making an online purchase. While inter-

acting with a web form, the Bumpy user takes the following

steps:

The user decides to protect the current form field. Al-

lowing users to choose which data to protect is a feature of

Bumpy’s design. The following steps assume the user has

chosen to protect the current field.

The user prefixes her input with a secure attention se-

quence (SAS). The Bumpy module detects that the user is

preparing to provide data that she considers sensitive when

it receives a SAS. Bumpy uses @@ as the SAS. Thus, the

user’s responsibility is to prefix her forthcoming sensitive

input with @@.

The user verifies the destination for her input on the

Trusted Monitor. When the Bumpy module receives a

SAS, it updates the TM with information about the desti-

nation for forthcoming input. We chose to use the domain

name of the destination website and that website’s favicon

as a graphic logo for the website, since this information is

already readily available.1 The TM is further specified to

beep when updated, thereby providing two properties: (i) It

attracts the user’s attention and reminds her to check the in-

formation displayed on the TM; and (ii) It provides a timely

acknowledgment of the reception of the user’s SAS. Thus,

the user’s responsibility is to verify that the site information

displayed by the TM does indeed correspond to the website

where she wants her input to go. While the user’s primary

display may be controlled by malware and display anything

an attacker desires, the TM will always display where sen-

sitive input will truly go.

The user types her input. If satisfied with the information

displayed on the TM, the user now types her secret input.

This input will always appear as asterisks, even if the cur-

rent input field is not a password field, as the keystrokes

are intercepted and queued by the Bumpy module, with

asterisks released to the untrusted platform in their place.

She may use the backspace or arrow keys to correct mis-

takes. The end of sensitive input is signaled to the Bumpy

module by an input event that would cause a blur in the

web browser’s GUI. As such, the user does not need to

consciously indicate that she has finished sensitive input

to a given field. However, because Bumpy interprets input

events that cause blurs to be meaningful, switching between

input fields before they are fully populated interrupts the se-

cure input process.

In summary, the main changes to the user experience are:

(a) She must decide which data to protect using Bumpy. (b)

She must remember to enter the SAS and confirm that the

TM displays her intended destination for her input, before

entering that data. (c) Her sensitive input appears on-screen

as asterisks.

3.2 Alternative Designs

We now discuss the user experiences of our novel al-

ternative designs Graphical, NoTM, and Challenge, as in-

formed by the underlying hardware-enforced isolation tech-

nologies employed by the original Bumpy architecture.

These designs differ from Original primarily in how a user

signals to Bumpy that forthcoming input should be treated

as sensitive. In all cases, the end of sensitive input is sig-

naled to the Bumpy module by an input event that would

cause a blur in the web browser’s GUI.

1An alternative design is to allow this information to be chosen by the

user, perhaps in the spirit of PetNames [30]. We caution that if the infor-

mation can be freely specified by the destination website, then an attacker

may register a legitimate SSL certificate for a site under his control and

imitate the information of another site. Bumpy proposed drawing this in-

formation from the website’s SSL certificate – see Appendix A for details.



3.2.1 Graphical SAS – Graphical

This design alternative tests whether a graphical means to

denote sensitive input is more usable than a character-based

SAS (@@). Instead of prefixing sensitive input with a SAS,

users double-click within an input field to toggle its sen-

sitivity. The sensitivity of an input field is indicated by its

background color. We use green to indicate a field that is de-

noted sensitive, and red to denote a field that is unprotected

(the default). This design retains the TM and the operation

of the TM is unchanged from Original. The TM updates its

display when the user’s double-click within a field toggles

that field to sensitive.

We caution that this design alternative is challenging to

implement with the original Bumpy architecture because

of its dependence on a trustworthy GUI — a requirement

that is at odds with the assumption of malware on the

user’s computer. However, we believe it is important to

discover whether a graphical SAS is significantly more us-

able than the character-based SAS of Original, NoTM, and

Challenge, and so we included this test despite its imple-

mentation challenges.

3.2.2 No Trusted Monitor – NoTM

This design alternative eliminates the need for a TM. With-

out a TM, there is no trustworthy path through which the

user can receive feedback about the destination for her

forthcoming sensitive input. NoTM addresses this chal-

lenge by supporting a unique SAS for each destination,

thereby allowing the user to specify the destination for her

forthcoming sensitive input proactively. Instead of @@, the

SAS is defined to be @str@, where str is a user-chosen

string. The user can assign a particular string to a given

website by using the $ character instead of the @, i.e., $str$

will assign @str@ to be the SAS for the active website. Note

that this is a trust-on-first-use model, in that there is no feed-

back mechanism by which the user can gain additional as-

surance of which site is bound to @str@. While problematic

at a completely unfamiliar computer like an internet kiosk,

this model is useful for computers that the user employs reg-

ularly but still does not completely trust (such as a shared

family computer).

While at first glance this need to remember a per-site

SAS may seem to place a burden on the user’s already over-

taxed memory, str does not need to be secret. Only its in-

tegrity is required, and this is readily achieved because the

Bumpy module processes the user’s input stream before the

untrusted platform. Thus, a reasonable convention is for

str to be the first few characters of the destination’s domain

name, e.g., ama for amazon.com. The user would then en-

ter $ama$ upon her first visit to amazon.com, and subse-

quently prefix sensitive input intended for amazon.com with

@ama@. Note that by first visit, we truly mean one visit;

Bumpy will remember the SAS assignments between ses-

sions. A user can even have more than one SAS for the

same website.

The intention of this design is to determine whether al-

lowing users to specify destinations for their sensitive inputs

proactively is a more usable interface for Bumpy. There is

reason to predict that NoTM would be comparatively effec-

tive, given the propensity of users to ignore passive security

indicators (e.g., SSL indicators [31] and anti-phishing tool-

bars [36]) and given that prefixing a sensitive input with a

per-destination SAS can be viewed as a type of direct navi-

gation (i.e., keyboard entry of a familiar website URL).

3.2.3 Random Challenge – Challenge

This design alternative is intended to require the user to

look at the TM. This is again motivated by the tendency

of users to ignore passive security indicators. Through this

design we seek to determine whether being required to look

at the TM will increase the likelihood that users will notice

if the TM is displaying an incorrect destination domain and

graphic logo.

To force the user to examine the TM, Challenge displays

a random 2-digit challenge value xy on the TM that must

be entered as part of the SAS for this login attempt. More

specifically, after the user clicks into a particular input field

and enters @@ as the first part of the SAS, the TM will up-

date its display to include a random two-digit challenge xy
sent to it by the Bumpy module. The user then enters this

challenge as the remainder of her SAS, yielding the full

SAS @@xy, and then immediately follows this with her sen-

sitive input. If it does not receive the values xy immediately

following the @@, the Bumpy module will discard the sen-

sitive input characters, thereby ensuring that they are not

leaked to malware.

4 User Study Methodology

We now describe the methodology that we used to con-

duct our user study. Our study was focused on the usability

of each Bumpy variant in benign scenarios, the security of

each variant in attack scenarios, and the utility of warnings

for training users to handle attack scenarios. We describe

our simulation of each variant in §4.1 and how we recruited

participants in §4.2. We discuss the phases of the experi-

ment in §4.3 and detail the attack types in §4.4.

4.1 Simulation of User Interface Alternatives

The participants in our study were students enrolled in a

university course that was not taught by one of the authors.

Thus, we needed to be unintrusive so that the instructor need

not be concerned about the impact of our study on students’



ability to reach essential course materials. Consequently,

we could not control which computers students used to ac-

cess the course web page. We could not provide students

with a distinct physical TM, and we needed to support mul-

tiple browsers on multiple operating systems.

The most consequential change to the designs presented

in §3 is that we implemented the TM as part of the course

web page, not as a separate physical device. Rather, to

simulate a separate physical device to the extent possible,

we implemented the TM as a minimized window using the

Google Web Toolkit. The minimized window appears as a

title bar only. When the TM display is updated, the simu-

lated TM beeps to attract the user’s attention, as a real TM

would. In addition, to account for the possibility that the

student mutes the sound on her computer, the TM window’s

title bar flashes when it is updated (as a real TM’s display

could). The user must expand the TM window to view the

TM’s display. The expanded TM is shown in the context

of Original in Figure 1(a). The elapsed time indicator gives

the user definitive evidence that the information displayed

on the TM is timely, i.e., is in response to the most recent

SAS.

In addition to simulating the TM, we instrumented

the course login web page to collect information about

keystroke, mouse click, and focus events. This data was

logged in a MySQL database that was the backend for the

login web page. Information collected includes the type of

event and a timestamp. For example, a user logging in with

design Original and password passwordmight induce the

following sequence of log records: a focus event indicating

that the password field is now focused; a keystroke @; an-

other keystroke @ (yielding @@— the SAS); a mouse click

expanding the TM;2 a blur event indicating that the pass-

word field lost focus; a focus event indicating that the pass-

word field is now focused; a keystroke p; a keystroke a;

a keystroke s; ...; a keystroke d; a mouse click indicating

that the user clicked the “log in” button; and a blur event

indicating that the password field lost focus.

This logging design enables us to observe user activi-

ties that would not be evident from the final field contents

upon form submission. For example, our logs include user

mistakes, such as typing password characters and backspac-

ing to remove them, which can be critical to accurately ac-

count for which password characters a user leaked to (simu-

lated) malware on her machine (as measured in §5.2–§5.3.)
The timestamps are primarily useful for ordering events, for

computing login durations (see §5.1), and for determining

when users have abandoned a session (e.g., walked away

from their computer mid-login).

2Note that in a real implementation, the TM would be a separate phys-

ical device, and so this mouse click, the accompanying blur and the subse-

quent focus would not occur.

4.2 Participant Enrollment

The participants in our study were 85 students enrolled in

COMP 380: Computers and Society, a one-semester course

offered at the University of North Carolina (UNC) that is

popular for satisfying general undergraduate requirements.

There were 28 majors represented by the study participants,

with the largest representations in Economics (14%), Busi-

ness Administration (11%), Psychology (8%), Management

and Society (6%), Biology (6%), and Journalism and Mass

Communication (6%). One student was a Computer Sci-

ence major, and there were no Engineering majors in the

class. The breakdown of participants by year of study was:

one freshman, one sophomore, 24 juniors, 58 seniors, and

one graduate student. In the fall semester of 2009, there

were three sections of the course offered, of sizes 45, 45

and 46 students. In these three sections, 27, 27, and 31 stu-

dents opted in (yielding 85 total participants) while a total

of 51 students chose not to opt in.

The participants were recruited through 20-minute pre-

sentations to each of the sections by one of the authors dur-

ing the second week of class. These presentations covered:

a very high-level discussion of the threats that malware pose

and how Bumpy works; an explanation of the experiment;

the users’ rights as subjects in such an experiment; why the

students might want to participate; and a brief demonstra-

tion of the Bumpy variants that participants from that sec-

tion might see.

Students were motivated to enroll by the possibility of

winning a cash award up to $150, the exact amount of which

was determined by their performance in the experiment. We

intended through the design of the award system to give stu-

dents a financial incentive both to use the system regularly

and to protect their passwords while doing so. In this award

system, we reduced a student’s possible winnings when she

leaked password characters to our simulated attacks (except

in the Control group, where the login provides no protec-

tion against the attacks), and we increased her possible win-

nings if she logged in frequently. Motivating the students

financially to protect their passwords from our simulated

attacks was necessary, as they had no other motivation to do

so: since their chosen passwords were recorded in our logs

so that we could determine when they leaked characters of

their actual passwords — a fact made known to the students

— our simulated attacks posed no actual threat to their (al-

ready known) passwords. Moreover, because we capped the

amount of total money awarded across the whole class (stu-

dents would be drawn at random and awarded their earned

value until the cap was reached), the students were not mo-

tivated to assist each other. All of these points were made

to the students during the 20-minute presentations to each

course section.

Students opted in or out of the experiment upon access-



(a) Benign: Expanded TM. (b) Initial: TM not checked warning. (c) Attack: Wrong-Dest attack.

Figure 1. Screenshots with Bumpy­enabled login page from within the Safari browser.

ing the course web page after this presentation. Those who

opted in filled out a background questionnaire prior to their

first logins. According to their responses, the median com-

puter usage among participants was 2-4 hours per day. Af-

ter enrollment, there were 17 participants usingOriginal, 16

using Graphical, 17 using NoTM, 19 using Challenge, and

16 using Control. None of these participants withdrew from

using the system after the experiment commenced.

4.3 Experiment Phases

We conducted our experiment in four phases, to which

each group of participants was subjected for the same du-

rations and in the same order. Throughout these phases,

each participant had access to an instructional video and

help pages to explain how to log into the course web page

(in benign circumstances) using the Bumpy design she was

using. In addition, the help page explained that if the user

detected what she thought might be an attack, she should

reload the page. The four phases were as follows:

Initial (In): This phase lasted 15 days. During it, the users

were not attacked and were provided automated instructions

to walk them through how to log in during benign circum-

stances. For example, if a user in groupOriginal typed “@@”

in the password entry field, and then continued with typing

her password without checking the TM (i.e., the TM was

still minimized), then the user would be interrupted with

instructions to check the TM before proceeding (see Fig-

ure 1(b)). In this phase, we provided as many such auto-

mated walk-through instructions as we could to ensure that

the user logged in correctly.

Benign (Be): This phase followed Initial and lasted 28 days.

It also had no simulated attacks, but the automated walk-

through instructions for helping users log in were disabled.

Attack (At): This phase followed Benign and lasted 26

days. In this phase, we turned on the simulated attacks.

Each login page included an Active attack (see §4.4) with
probability 0.5; if the page was chosen to include an Active
attack, the attack performed was chosen uniformly at ran-

dom from among the Active attacks for that design. Auto-

mated instructions were still disabled in this phase. How-

ever, 12 days prior to starting this phase, we posted an an-

nouncement on the course web page to remind participants

that if they encountered what they thought might be an at-

tack, they simply need to reload the page and try again. The

reloaded login page was attacked with the same probability

as the original, i.e., our system did not treat reloaded pages

any differently than the initial login page. We posted this

announcement to avoid a situation where a user detected

a problem but proceeded anyway since they did not know

how to avoid it. Further, since we were controlling access

to an essential course web page, we needed to ensure that

students could always reach their course materials. Admit-

tedly, reloading the page presents less of a hurdle to users

than they would experience in practice to remedy malware

they detect; this is a limitation of our experiment (see §6).

Attack-and-Warn (AW): This phase followed Attack and

lasted 38 days. This phase was exactly like Attack, ex-

cept that after a login attempt with a simulated attack and

in which the user divulged password characters to the (sim-

ulated) malware, the system warned the user as to what ac-

tions she performed (or failed to perform) that caused the

password characters to be divulged. These warnings thus

served as a form of training to educate the users as to what

they did wrong. We emphasize that in this phase, warn-

ings appeared only after the login attempt was completed

(in contrast to Initial, in which interruptions occurred during

password entry). The only warnings that were suppressed

from the user were for logins in which the user appeared to

correct the error herself; e.g., she typed password characters



and then backspaced to remove them before properly utiliz-

ing the system. In such cases, we did not warn the user to

avoid confusing her.
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user in experiment
phases.

Figure 2 shows

the login count per

user during each

of the four phases.

Each box shows the

first, second, and

third quartiles; the

whiskers cover points

within 1.5 times the

interquartile range.

Outliers are shown as

circles.

Five days be-

fore the end of the

Attack-and-Warn

phase, the non-Control group participants were asked to

complete an exit questionnaire. In order to remain eligible

for compensation, the questionnaire had to be completed

by the last day of this phase. Many of the questions were

meant to assess the helpfulness of the warning messages

from the Attack-and-Warn phase, allowing us to measure

their training effect (see §5.3). Out of the 69 non-Control

group students, 58 students completed the questionnaire.

4.4 Attacks

The simulated attacks to which we subjected participants

in the Attack and Attack-and-Warn phases were of four

types. These attack types were motivated by the threat

model against which the Bumpy system was designed to

protect, namely that the OS and its applications (e.g., web

browser) are potentially under the control of malware, but

that the Trusted Monitor (if any) and destination website

remain uncompromised. The first three simulated attacks

described below, namely Feigned-Fail, Wrong-Dest, and

SAS-Present, are the Active attacks. In general, we counted

password characters as leaked in a login if they would have

been leaked to malware conducting the attack simulated in

that login, given the natural implementation of the Bumpy

variant in use. The fourth attack type is a Passive attack,

described below.

Feigned-Fail (FF): These attacks simulated malware that in-

terfered with Bumpy’s operation. In the designs that em-

ploy a TM (Original, Graphical, and Challenge), this was

implemented by simply not updating the TM, even after the

participant performed the actions that should have caused it

to be updated. We also implemented a Graphical variant in

which the password-entry field would never turn green. In

these cases, any password characters that the user entered

were counted as leaked. In NoTM, which does not use a

TM, this attack was simulated by failing to recognize the

per-site SAS that the user entered (even if it was correct)

and displaying an error message indicating this to the user.

If the user then redefined the SAS through the $ . . .$ in-

cantation (see §3.2.2), then all password characters typed

after this were counted as leaked, since in a real implemen-

tation, malware could have caused the new SAS definition

to apply to a site under its control, and hence captured the

password. In a real Bumpy implementation, malware could

mount these attacks, e.g., by simply blocking the Bumpy

module’s communication with the TM in designs Original,

Graphical and Challenge, and by displaying the error mes-

sage (and suppressing success indicators) in NoTM.

Wrong-Dest (WD): These attacks apply only to designs

that use a TM (Original, Graphical, and Challenge). The

simulated attack caused the wrong destination to be dis-

played on the TM. For our experiment, the destination dis-

played on the TM was cs.duke.edu and its graphical

logo; Duke University is a nearby sports rival of UNC. An

example TM display during this attack is shown in Fig-

ure 1(c). This behavior would be exhibited by a real im-

plementation of Original, Graphical, or Challenge if mal-

ware attempted to redirect the forthcoming input to cs.

duke.edu. Any password characters typed were counted

as leaked.

SAS-Present (SP): These attacks tried to induce the user to

enter her password without first entering her SAS, by pro-

viding a password entry field with the SAS already present.

Thus, this attack applied only to designs Original, NoTM,

and Challenge. In Original and Challenge, the password

field was presented with “@@” already present. In NoTM,

the SAS that that user previously specified for the course

website was already present in the field when it was dis-

played. Though the SAS was already present, the TM (in

Original and Challenge) was not updated, as malware would

be unable to cause it to be updated in a real implementation.

Any password characters the user typed prior to retyping the

SAS were counted as leaked.

Passive (Pa): Any login during phases Attack or

Attack-and-Warn that was not selected for an Active at-

tack was instead considered subject to a passive attack,

denoted Passive. Moreover, even a login selected for an

Active attack but for which the user did not elicit any evi-

dence of the chosen attack was instead included in Passive.

Specifically, if in a login chosen for a Feigned-Fail or

Wrong-Dest attack, the user never entered her SAS (in

Original or Challenge) or toggled the password field green

(in Graphical), then failure of the TM to update when

it should (in a Feigned-Fail attack) or the appearance of

cs.duke.edu (in a Wrong-Dest attack) would never be

exhibited to the user. Such a login instance was labeled

as Passive-attacked, instead. (SAS-Present attacks were al-

ways exhibited to the user, and so never counted as Passive.)



In a Passive-attacked login, any password characters typed

prior to the update of the TM (induced by @@ in Original

or Challenge, or toggling the password field to green in

Graphical) or, in NoTM, prior to entry of @str@ (where str

denotes any string), were considered leaked.

We do not claim that the Active attacks described above

are a complete set of active attacks that malware could

launch, though these include the most natural and subtle

ones that we could envision and also require the specifi-

cation of few additional parameters that would be subject

to our own guesswork. In particular, we tried to devise at-

tacks that users may misinterpret as typical discontinuities

in the software experience, e.g., subtle changes between two

versions of a particular application or website. More ag-

gressive attacks could certainly be launched by displaying

to users instructions that contradict what they should do,

e.g., “We have upgraded to Bumpy 2.0. We now provide

the SAS for you, so that you need not enter it.” However,

the exact form of such instructions may matter to their ef-

fectiveness. As such, we did not endeavor to explore the

space of such active attacks. Given this, the primary pa-

rameter choice required by the above attacks is the selec-

tion of the destination in the Wrong-Dest attack. More

subtle, phishing-style options could have been chosen (e.g.,

using umc.edu, which appears similar to UNC’s domain

(unc.edu), without changing the graphic logo), but we

wanted to separate the participants’ susceptibility to such

phishing-style attacks, which are relevant outside the con-

text of Bumpy as well as within it, from the utility of Bumpy

itself.

5 Results of User Study

The experiment phases described in §4.3 provided an op-
portunity to study each Bumpy variant — Original (Or),

Graphical (Gr), NoTM (No), and Challenge (Ch) — in mul-

tiple scenarios. Usability in benign scenarios, security in

attack scenarios, and the effectiveness of warnings as a

form of training are addressed in §5.1, §5.2, and §5.3, re-
spectively. Also in §5.1, we compare the usability of each

Bumpy variant to our control group, Control (Co), though

Control is not considered in §5.2–5.3 since it does not of-

fer resilience to the attacks for which Bumpy was designed

(and thus that we tested in our attack experiments).

5.1 Usability in Benign Scenarios

To evaluate the usability of the Bumpy variants during

the Benign phase, we measured the login success rate and

duration, averaged over each user in each of the five groups.

Login success rate. We begin by discussing the login suc-

cess rate. Let successBe(u) = |LSu
Be(u)|/|LBe(u)|, where

LSu
Be(u) and LBe(u) denote the successful logins and all at-

tempted logins, respectively, by user u in phase Benign.

Then,

x̄[successBe]
d = avg

u∈Ud

successBe(u)

s[successBe]
d = stddev

u∈Ud

successBe(u)

are the sample mean and standard deviation of login success

rates for design-d users (denoted Ud) during the Benign

phase. These measures are presented in Figure 3(a).

The sample mean approximates the corresponding pop-

ulation mean µ[successBe]
d, and we use Analysis of Vari-

ance (ANOVA) to determine for which d, e ∈ {Original,
Graphical, NoTM, Challenge, Control}, d 6= e, we can in-

validate the null hypothesis µ[successBe]
d = µ[successBe]

e

at a significance level of α = .05.3 ANOVA revealed no

significant differences in the login success rates for the dif-

ferent designs, i.e., the extra steps required of users in our

designs did not make it more difficult for users to log in

successfully.

Login time. We now turn to measuring login duration for

each of the Bumpy variants, i.e., the time required by users

of each design to log into the course web page. For a login

attempt ℓ, let dur(ℓ) denote the time that transpired between

the first action indicating that the user is commencing an

attempt to log in — i.e., either the password field gaining

focus, or the TMwindow being opened in one of the designs

having a TM, whichever comes first — and the user clicking

the “log in” button or pressing enter. Then,

durationBe(u) = avg
ℓ∈LSu

Be
(u)

dur(ℓ)

is the average time required by u to log in successfully in

phase Benign. That said, when computing this average, we

excluded any login in which there was a 15-second period

of inactivity at any point between commencing (opening the

TM window or focusing into the password field) and click-

ing the “log in” button (or pressing enter), considering such

a login instance to be an outlier. This removed 5 out of 1650

logins in phase Benign, across all four Bumpy designs and

Control. As with success rate,

x̄[durationBe]
d = avg

u∈Ud

durationBe(u)

s[durationBe]
d = stddev

u∈Ud

durationBe(u)

denote the sample mean and standard deviation of the aver-

age successful login duration for users in Ud. These values

are shown in Figure 3(b) for the different designs. The for-

mer approximates the population mean µ[durationBe]
d, and

3We used Tukey’s method of multiple comparisons [8] to test hypothe-

ses involving Bumpy designs (Original, Graphical, NoTM, Challenge),

and Dunnett’s test [8] to test hypotheses involving Control.



d

Original .95 ± .07

Graphical .93 ± .09

NoTM .94 ± .07

Challenge .89 ± .14

Control .88 ± .12

(a) x̄[successBe]
d ± s[successBe]

d

d

Original 9.23 ± 2.04

Graphical 8.59 ± 3.01

NoTM 6.27 ± 1.89

Challenge 11.51 ± 3.17

Control 4.35 ± 1.90

(b) x̄[durationBe]
d ± s[durationBe]

d

in seconds

e
Gr No Ch Co

d

Or .89 .01 .05 .00

Gr .06 .01 .00

No .00 .09

Ch .00

(c) Hypothesis tests with null hypothesis

µ[durationBe]
d = µ[durationBe]

e. Cells

contain p-values; bold entries are results with

significance α = .05.

Figure 3. Benign logins

we again use ANOVA to determine whether we can invali-

date the null hypothesis µ[durationBe]
d = µ[durationBe]

e

(for d, e ∈ {Original, Graphical, NoTM, Challenge,

Control}, d 6= e) at a significance level of α = .05. The

results are shown in Figure 3(c).

Not surprisingly, Control yielded significantly faster lo-

gin times than the designs that utilized a TM (Original,

Graphical, Challenge)— opening and inspecting the TM re-

quires extra steps that take time. Moreover, Challenge was

significantly slower than Original, Graphical, and NoTM,

presumably owing to the additional diligence required to

transcribe the challenge value from the TM into the pass-

word field. The only other significant result is that NoTM

was faster than Original. Like Control, NoTM does not

involve the use of a TM, and we believe that this is the

most likely explanation for this result. An extra burden

placed on users of NoTM is that of remembering their SAS,

though according to the exit questionnaire only 2 out of the

14 participants who responded (out of 17 total assigned to

NoTM) reported difficulty with this task. This seems to be

reflected in the duration results since NoTM is competitive

with Control in this respect.

Based on the sample means in Figure 3(b), it appears

that the difference between the fastest (Control) and slow-

est (Challenge) methods is roughly 7 seconds in a successful

login attempt. One might justify this additional delay on the

basis of the greater security that Challenge offers, though

other designs such as NoTM are much more competitive

with Control in terms of login duration and have the pos-

sibility of offering the same protections as Challenge. As

such, we now turn to measuring the actual protection that

these designs offer, in an effort to further clarify the merits

of each design.

5.2 Resilience in Attack Scenarios

The Attack phase of our study subjected users to simu-

lated attacks, as might be carried out by malware that had

infected the computer on which the user employed Bumpy

or one of its variants; see §4.3 for a description of these sim-

ulated attacks. In this section we use the logins conducted

during phase Attack to infer which of the designs Original,

Graphical, NoTM and Challenge were most successful in

enabling the user to protect her password. Specifically, for

a ∈ {Feigned-Fail (FF), Wrong-Dest (WD), SAS-Present

(SP), Passive (Pa)}, let La

At(u) denote the logins by user u
in phase Attack subject to attack a. Let LAc

At (u) = LFF
At (u)∪

LWD
At (u) ∪ LSP

At (u) denote all Attack logins by u subject to

an Active (Ac) attack, and let LAny
At (u) = LAc

At (u) ∪ LPa
At (u)

denote all Attack logins by u. Then, for any a ∈ {FF,WD,

SP, Ac, Pa, Any}, let

avgLeakeda

At(u) = avg
ℓ∈La

At
(u)

leaked(ℓ)

pwdLen(ℓ)
(1)

maxLeakeda

At(u) = max
ℓ∈La

At
(u)

leaked(ℓ)

pwdLen(ℓ)
(2)

where pwdLen(ℓ) denotes the password length of user u at

the time of login attempt ℓ (users were allowed to change

their passwords during the experiment), and leaked(ℓ) de-
notes the number of password characters that the user

leaked to the (simulated) malware in login ℓ. Specifically,

password characters were counted as leaked if they were

typed while protection was not enabled, or if they occur

in the password before other characters so leaked. (This

conservative estimate assumed leakage up to and includ-

ing any typed password characters.) So, avgLeakeda

At(u)
is the fraction of her password that user u leaked, on aver-

age, in logins of attack type a in phase Attack. Similarly,

maxLeakeda

At(u) is the cumulative fraction of her password

that user u leaked across all logins of attack type a in phase

Attack. As such, avgLeakeda

At(u) indicates the fraction of

u’s password that an attacker might expect to obtain in a sin-

gle login subjected to attack type a, andmaxLeakeda

At(u) is
the fraction of u’s password that an attacker might expect to

gather over an extended period of observing the user type

her password in logins of attack type a.
The results for the various designs d ∈ {Original,



Graphical, NoTM, Challenge} are shown in Figure 4.

Specifically, Figure 4(a) lists:

x̄[avgLeakeda

At]
d = avg

u∈Ud

avgLeakeda

At(u)

s[avgLeakeda

At]
d = stddev

u∈Ud

avgLeakeda

At(u)

and Figure 4(b) lists:

x̄[maxLeakeda

At]
d = avg

u∈Ud

maxLeakeda

At(u)

s[maxLeakeda

At]
d = stddev

u∈Ud

maxLeakeda

At(u)

For designs d, e ∈ {Original, Graphical, NoTM,

Challenge}, d 6= e, and for attack type a, we can use

this data to test the null hypotheses µ[avgLeakeda

At]
d

= µ[avgLeakeda

At]
e and µ[maxLeakeda

At]
d =

µ[maxLeakeda

At]
e where µ[avgLeakeda

At]
d and

µ[maxLeakeda

At]
d denote the population means that

correspond to the sample means x̄[avgLeakeda

At]
d and

x̄[maxLeakeda

At]
d, respectively. Upon conducting these

tests, the hypotheses that were rejected at significance level

α = .05 are

µ[avgLeakedSP
At ]

No = µ[avgLeakedSP
At ]

Or (3)

µ[maxLeakedSP
At ]

No = µ[maxLeakedSP
At ]

Or (4)

µ[avgLeakedSP
At ]

No = µ[avgLeakedSP
At ]

Ch (5)

µ[maxLeakedSP
At ]

No = µ[maxLeakedSP
At ]

Ch (6)

That is, NoTM performed significantly worse than Original

and Challenge in defending against SAS-Present attacks,

in both the avgLeakedSP
At () and maxLeakedSP

At () measures.

We believe this can be explained by the fact that Original

and Challenge provide feedback that the user expects to

see prior to entering her password, namely the information

displayed on the TM. Indeed it is necessary for the user

to receive this feedback to continue the login process in

the Challenge case. We believe that this feedback explains

why Original and Challenge outperform NoTM in this at-

tack, and why Challenge offers the lowest sample mean

x̄[maxLeakedSP
At ]

d = .13 (i.e., provides the best protection

for the user’s password) among all designs d.
An additional noteworthy observation from Figure 4 is

that the Bumpy variants we tested do improve users’ abil-

ities to protect their passwords. Today’s web password lo-

gins do not protect at all against even Passive attacks in our

threat model (i.e., malware on the client’s machine); i.e., if

included in the tables in Figure 4, today’s logins would be

listed as 1.0± 0.0 in the Passive column. In contrast, all of

our designs performed convincingly better against Passive

attacks in the average case (Figure 4(a)), and Graphical

and Challenge performed well against Passive attacks even

when considering the case in which an attacker monitors the

user over an extended period of time (represented by Fig-

ure 4(b)). While the low password leakage under Passive

attacks shows that the compliance rate for secure atten-

tion sequences was high, we wanted to know if the users

were comfortable with this model for wider usage. When

asked if they would be happy to use this system for other

websites, 62% of the 58 (non-Control group) exit question-

naire respondents agreed, 14% were neutral, and 24% dis-

agreed. While in the Attack phase users leaked more of

their passwords during Active attacks than during Passive

attacks, §5.3 presents evidence that training via warnings in
the Attack-and-Warn phase was effective in reducing this

leakage in most cases.

As part of the exit questionnaire, users were asked

whether they successfully noticed and avoided an attack on

their password during this phase. In order to test the null

hypothesis that the user responses and true performance

are not correlated, we compared the binary response vari-

able with actual behavior (a value of 1 indicating that they

avoided at least one attack). We observed a Pearson correla-

tion coefficient [21] of ρ = .24 (p-value = .07). While this

p-value does not allow us to reject the null hypothesis with

α = .05, the positive ρ suggests that users who responded

“yes” tended to avoid at least one attack during this phase.

5.3 Effects of Training for Attack Scenarios

The last phase of our study is Attack-and-Warn (recall

§4.3). Users were both attacked as in Attack and then

warned after completion of the login attempt if they leaked

any password characters and, if so, informed why the char-

acters were leaked. This provided a form of training. Our

last tests focus on whether this training was effective at im-

proving users’ abilities to protect their passwords.

Let La

AW(u) denote the logins by user u in

Attack-and-Warn categorized as attack type a ∈ {Passive,
Feigned-Fail, Wrong-Dest, SAS-Present}. We additionally

define two subsets of the logins La

AW(u), namely those

logins that occurred before the first warning (if any) was

presented to u for attack type a, denoted Ba

AW(u), and

those logins that occurred after the first warning (if any)

for a was presented to u, denoted Aa

AW(u). The login

attempt that caused the first warning for attack a to be

presented to u, if any, is defined to be in Ba

AW(u). Note

that if u was presented with no warnings for attack a
for the entirety of Attack-and-Warn, then Ba

AW(u) and

Aa

AW(u) are both empty. We can now go on to define these

sets for the Active and Any attacks in the natural way.

Specifically, LAc
AW(u) = LFF

AW(u) ∪ LWD
AW (u) ∪ LSP

AW(u);
BAc

AW(u) = BFF
AW(u) ∪ BWD

AW (u) ∪ BSP
AW(u); and

AAc
AW(u) = AFF

AW(u) ∪ AWD
AW (u) ∪ ASP

AW(u). Simi-

larly, LAny
AW (u) = LPa

AW(u) ∪ LAc
AW(u); B

Any
AW (u) =

BPa
AW(u) ∪ BAc

AW(u); and A
Any
AW (u) = APa

AW(u) ∪ AAc
AW(u).



a

Passive Active Feigned-Fail Wrong-Dest SAS-Present Any

d

Original .04 ± .07 .18 ± .27 .32 ± .45 .25 ± .50 .05 ± .12 .13 ± .17

Graphical .03 ± .11 .41 ± .35 .39 ± .33 .66 ± .51 n/a .17 ± .19

NoTM .12 ± .28 .43 ± .41 .17 ± .34 n/a .53 ± .47 .25 ± .30

Challenge .06 ± .24 .25 ± .37 .21 ± .36 .43 ± .53 .06 ± .18 .14 ± .25

(a) x̄[avgLeakeda

At]
d ± s[avgLeakeda

At]
d

a

Passive Active Feigned-Fail Wrong-Dest SAS-Present Any

d

Original .28 ± .41 .33 ± .49 .40 ± .52 .25 ± .50 .14 ± .36 .49 ± .48

Graphical .13 ± .35 .77 ± .42 .77 ± .42 .67 ± .52 n/a .67 ± .47

NoTM .23 ± .43 .71 ± .47 .34 ± .46 n/a .69 ± .48 .71 ± .47

Challenge .09 ± .28 .44 ± .51 .40 ± .49 .43 ± .53 .13 ± .34 .43 ± .50

(b) x̄[maxLeakeda

At]
d ± s[maxLeakeda

At]
d

Figure 4. Sample statistics for Attack logins.

We begin our analysis of the effects of warnings by

computing avgLeakeda

AW(u) andmaxLeakeda

AW(u) for dif-
ferent attacks a and users u. These are computed anal-

ogously to equations (1)–(2), specifically by replacing

La

At(u) with La

AW(u) \ Ba

AW(u). That is, the logins

Ba

AW(u) are removed in the calculation of avgLeakeda

AW(u)
and maxLeakeda

AW(u) since these logins cannot exhibit

the effects of the warnings in phase Attack-and-Warn.

We then compute sample statistics x̄[avgLeakeda

AW]d and

s[avgLeakeda

AW]d over all users u ∈ Ud where La

AW(u) \
Ba

AW(u) 6= ∅, and similarly for x̄[maxLeakeda

AW]d and

s[maxLeakeda

AW]d. The results are shown in Figure 5.

The results in Figure 5 suggest in some ways that

the warnings did serve a training purpose. For exam-

ple, x̄[avgLeakedAc
AW]d < x̄[avgLeakedAc

At ]
d for all de-

signs d, suggesting that defense against Active attacks gen-

erally improved. For the Challenge design, moreover,

x̄[avgLeakeda

AW]Ch < x̄[avgLeakeda

At]
Ch for all Active at-

tacks a (and remained essentially unchanged for Passive at-

tacks), suggesting that this design benefited from warnings

as a form of training. To examine the effectiveness of these

warnings more carefully, we define

avgBina

At(u) =







none if avgLeakeda

At(u) = 0
some if avgLeakeda

At(u) ∈ (0, .5)
most if avgLeakeda

At(u) ∈ [.5, 1]

maxBina

At(u) =







none if maxLeakeda

At(u) = 0
some if maxLeakeda

At(u) ∈ (0, .5)
most if maxLeakeda

At(u) ∈ [.5, 1]

and define avgBina

AW(u) and maxBina

AW(u) analogously.
Now, let y[avgBina

At]
d (respectively, y[maxBina

At]
d,

y[avgBina

AW]d, y[maxBina

AW]d) denote a random variable

that takes on avgBina

At(u) (respectively, maxBina

At(u),

avgBina

AW(u), maxBina

AW(u)) under random choice of

u ∈ Ud, and let ν[avgBina

At]
d (respectively, ν[maxBina

At]
d,

ν[avgBina

AW]d, ν[maxBina

AW]d) denote the correspond-

ing population random variable. Then, for some designs

d, we can reject the null hypothesis ν[avgBina

At]
d ∼

ν[avgBina

AW]d (i.e., that these random variables are dis-

tributed identically), or ν[maxBina

At]
d ∼ ν[maxBina

AW]d,
at significance α = .05,4 meaning that training helped in

a statistically significant way.5 Figure 5 includes p-values
for these tests in parentheses, with those for significant re-

sults in boldface. That said, there are plenty of examples in

Figure 5 yielding inconclusive results.

To the extent that warnings did serve a training purpose,

they did not entirely overcome some of the challenges that

the Attack phase evidenced in some designs. Recall from

§5.2 that NoTM was statistically inferior to Original and

Challenge against SAS-Present attacks; see rejected hy-

potheses (3)–(6). It appears that the weaknesses of NoTM

persisted to some extent even after warnings as a form of

training, in that the following hypotheses could be rejected

at significance level α = .05:

µ[avgLeakedAc
AW]No = µ[avgLeakedAc

AW]Ch (7)

µ[maxLeakedPa
AW]No = µ[maxLeakedPa

AW]Gr (8)

4These hypotheses were tested using a multinomial ordered logit model

and included only users u ∈ Ud for which La

At
(u) 6= ∅ and La

AW
(u) 6= ∅,

since otherwise we would include users who did not face attack a in either

the Attack or Attack-and-Warn phase. Note that this test can return⊥ if

all samples from one distribution are the same or if the samples from one

distribution are the same as those from the other.
5The rejected null hypotheses ν[maxBinPa

At ]
No ∼ ν[maxBinPa

AW]No

is an exception, in that x̄[maxLeakedPa
At ]

No < x̄[maxLeakedPa
AW]No sug-

gests that NoTM performed significantly worse in this case. Possible rea-

sons for this are discussed below.



a

Passive Active Feigned-Fail Wrong-Dest SAS-Present Any

d

Original .04 ± .06 (1.00) .12 ± .22 (.91) .07 ± .16 (.17) .29 ± .46 (⊥ ) .02 ± .05 (1.00) .06 ± .09 (.87)

Graphical .00 ± .00 ( ⊥ ) .18 ± .24 (.01) .23 ± .33 (.01) .12 ± .30 (.05) n/a .06 ± .10 (.10)

NoTM .09 ± .16 ( .03 ) .29 ± .39 (.10) .32 ± .44 (.40) n/a .15 ± .33 ( .04 ) .18 ± .23 (.75)

Challenge .07 ± .23 ( .08 ) .04 ± .09 (.31) .12 ± .31 (.57) .07 ± .15 (.80) .00 ± .00 ( ⊥ ) .08 ± .23 (.55)

(a) x̄[avgLeakeda

AW]d ± s[avgLeakeda

AW]d (p-value for test of null hypothesis that ν[avgBina

At]
d ∼ ν[avgBina

AW]d)

a

Passive Active Feigned-Fail Wrong-Dest SAS-Present Any

d

Original .32 ± .46 (1.00) .36 ± .47 (.76) .18 ± .40 (.30) .31 ± .46 ( ⊥ ) .10 ± .29 (1.00) .56 ± .47 ( .65 )

Graphical .00 ± .00 ( ⊥ ) .51 ± .51 (.03) .51 ± .51 (.03) .22 ± .42 ( .05 ) n/a .45 ± .51 ( .10 )

NoTM .49 ± .47 ( .02 ) .44 ± .51 (.03) .38 ± .50 (.85) n/a .25 ± .45 ( .05 ) .68 ± .46 (1.00)

Challenge .20 ± .36 ( .07 ) .21 ± .40 (.56) .18 ± .40 (.65) .19 ± .34 (1.00) .00 ± .00 ( .00 ) .30 ± .43 ( .65 )

(b) x̄[maxLeakeda

AW]d ± s[maxLeakeda

AW]d (p-value for test of null hypothesis that ν[maxBina

At]
d ∼ ν[maxBina

AW]d)

Figure 5. Sample statistics for Attack­and­Warn logins. Bold p­values indicate significance α = .05.

That is, NoTM was significantly inferior to Challenge

against Active attacks (in terms of avgLeakedAc
AW())

and to Graphical against Passive attacks (in terms of

maxLeakedPa
AW()). The generally non-trivial password leak-

age with NoTM, even after training by warnings, ran

counter to our expectations (see §3.2.2).
To better illustrate the impact of warnings, in Figure 6

we show a histogram per attack type a and design d that

illustrates the improvement of users u ∈ Ud, specifically

the distributions of

avgImproveaAW(u) =
avgLeakeda

At(u)− avgLeakeda

AW(u)

avgLeakeda

At(u)

maxImproveaAW(u) =
maxLeakeda

At(u)−maxLeakeda

AW(u)

maxLeakeda

At(u)

These measures capture each user’s absolute improvement

relative to the improvement possible for that user. Figure 6

is limited to those users u who actually received warnings

for a (i.e., Aa

AW(u) 6= ∅), and for whom La

At(u) 6= ∅
and avgLeakeda

At(u) 6= 0. Otherwise, we cannot compute

avgImproveaAW(u) or maxImproveaAW(u).
One interesting observation from Figure 6(a) is that

there are several cases in which users performed worse

during Attack-and-Warn than they did in Attack, at

least judging from avgImproveaAW(u). This is evi-

denced in Figure 6(a) by black bars flush against the y-

axis. This bar indicates the number of users for which

avgImproveaAW(u) < 0. (And recall that these histograms

show only users for which avgLeakeda

At(u) > 0; some

users with avgLeakeda

At(u) = 0 performed worse in

Attack-and-Warn, as well.) While these users were by

no means in a majority, in some cases they performed

substantially worse in Attack-and-Warn than they did in

Attack. These poor showings in Attack-and-Warn re-

sult in some values of x̄[avgLeakeda

AW]d increasing slightly

from x̄[avgLeakeda

At]
d; c.f., Figures 4(a) and 5(a). The

underlying reason why these users did more poorly in

Attack-and-Warn than in Attack is unknown to us, but two

possibilities come to mind. One is that these users misun-

derstood our warnings in a way that caused them to perform

more poorly. A second possibility is simply carelessness

or ambivalence on the part of the user, which seems likely

given that Attack-and-Warn commenced 70 days after our

recruiting presentations that outlined their incentives for the

experiment.

Another interesting observation is the bimodality that

is evident in Figure 6(b). This shows that with few ex-

ceptions, those that had room to improve either improved

greatly (maxImproveaAW(u) ∈ [.75, 1.0], corresponding to

the rightmost, white bars in the histograms) or very little

(maxImproveaAW(u) ∈ [0, .25), corresponding to the dark

gray bars one bar-width from the y-axis). Unfortunately it

appears that the latter was more common, but in some sense

this is unsurprising: even a single login instance in which

the user umistakenly leaked her password results in a value

of maxLeakeda

AW(u) that cannot be offset with numerous

mistake-free logins. In this respect, we are encouraged by

the users with large values for maxImproveaAW(u).

Reflecting on our results, a lesson is that training in a

real deployment should perhaps require users to repeat lo-

gins that would have leaked password characters to malware

had it been present. Instead, in Attack-and-Warn, we sim-

ply warned users but allowed them to proceed to the course

web page if they entered the correct password. We con-

sidered forcing users to repeat logins in which they leaked

characters but feared that such heavy-handed training would
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Figure 6. Histograms showing distribution of avgImproveaAW(u) and maxImproveaAW(u) for users u ∈ Ud

such that Aa

AW(u) 6= ∅, La

At(u) 6= ∅, and avgLeakeda

At(u) 6= 0. Each histogram includes five bars (some

potentially of height zero), corresponding to ranges (−∞, 0) (leftmost, darkest bar), [0, .25), [.25, .5),
[.5, .75), and [.75, 1.0] (rightmost, lightest bar). The y­axis is the number of users.

be viewed as an obstruction, potentially causing participants

to withdraw or the course instructor to protest. In a real

deployment in a security-conscious organization, however,

such an approach might be warranted.

To further measure the training effect of the warning

messages, we looked to the exit questionnaire. There was

a question corresponding to each individual type of attack

(varying by design) which asked if the warning message

helped them to avoid falling for the same attack in the

future. A screenshot of the warning message was pre-

sented along with a five-level Likert scale ranging from

1 (Strongly Disagree) to 5 (Strongly Agree) and an addi-

tional sixth choice for users who reported not reading the

warning message. In order to test the null hypothesis that

the user responses and true performance are not correlated,

we compared the responses with actual behavior by look-

ing at the number of times the user saw the warning mes-

sage in question. First we removed all users who never

saw the warning message, and then we removed users who

did not read the warning message. On the remaining data,

we observed a Pearson correlation coefficient of ρ = −.20
(p-value = .10). While not statistically significant, the neg-



ative ρ suggests that the more helpful a user found a warn-

ing message, the fewer times they fell for the corresponding

attack.

6 Discussion and Conclusions

Specific study conclusions. Our study suggests sev-

eral take-away messages about the various Bumpy designs

tested here.

1. The NoTM design is very attractive for both deploy-

ment (since it uses no TM) and user login duration (see

Figure 3(b)). Unfortunately (and contrary to our expec-

tations, see §3.2.2) there is significant evidence that it

is more susceptible to users leaking password charac-

ters than other designs (see rejected hypotheses (3)–(6)).

This holds even after training via warnings (see rejected

hypotheses (7)–(8)), even though warnings were effec-

tive in significantly improving NoTM’s security against

some attacks (see Figure 5). As such, if NoTM is de-

ployed, it warrants a concerted training effort for users.

2. The Challenge design offers generally low password

leakage after training via warnings, at least judging from

the sample means illustrated in Figure 5. In particular,

the sample means of Challenge were the lowest across

designs for all Active attacks generally, the only excep-

tion being Feigned-Fail in Figure 5(a). While the ev-

idence supporting the greater security of Challenge in

comparison to other designs was statistically significant

only in some cases (see rejected hypotheses (5)–(6) and

(7)), it appears to be a generally good choice for security.

This is a testament to requiring users to examine the TM

in the login process, though it does result in statistically

significantly longer login times (see Figure 3(b)).

3. The evidence for a move to a graphical design like

Graphical is weak. Graphical offered no signifi-

cant improvements over Original in login success rate,

duration, or password leakage in either Attack or

Attack-and-Warn. While it did exhibit significant im-

provement due to warnings in Attack-and-Warn (see

Figure 5), the attacks for which it did so often still cap-

tured as many password characters as with Original or

Challenge, in terms of sample means. The best argu-

ment we see for Graphical is that it yielded the least

leakage (in terms of sample means) for Passive attacks

(Figures 4, 5), but given the implementation challenges

that Graphical introduces (see §3.2.1), we believe the ev-
idence of its benefits would need to be stronger to advo-

cate for it.

Broader observations. Aside from the above conclusions,

we provide more general observations that extend beyond

the specific designs studied here, albeit with a degree of

speculation.

1. Users appear to readily adapt to employing secure atten-

tion sequences (at least generic ones, versus site-specific

ones), as evidenced by the low password leakage versus

Passive attacks in our designs that employ one. Tech-

niques that leverage secure attention sequences for use-

ful properties thus hold promise.

2. Though the results of our study suggest a tradeoff be-

tween login duration and security, we see no reason to

conclude that this tradeoff is fundamental. Rather, we

consider it a fascinating open problem to design a login

system that offers both the speed to which users are ac-

customed today and security against the attacks we con-

sider here.

3. The additional security offered by Challenge suggests

that interactive security indicators yield better security

than ones that a user is asked to simply observe. This is

a direction that deserves further attention, in our opinion.

4. That some users were unfazed by warnings in

Attack-and-Warn suggests that to mold user behavior,

training that requires a user to repeat the task at hand

immediately following a mistake would be warranted.

As this model can potentially disrupt the user’s primary

activity, though, it is perhaps more acceptable to include

such training as a separate user activity. Automated rein-

forcement during teachable moments, e.g., when a user

makes a mistake during normal operation, may also be

desirable, but such designs must be weighed against the

ability of attackers to use such mechanisms maliciously.

For example, attackers may provide malicious instruc-

tions that confuse users.

5. Many of our Active attacks were designed to mimic

changes of behavior that might seem familiar to users,

owing to relatively frequent discontinuities that pervade

users’ software experiences (failures, software updates

changing behavior in subtle ways, etc.). Based on our

study, it appears that many users are unprepared to dis-

tinguish between a benign discontinuity and a subtle at-

tack without training.

Limitations. Our study did not attempt to evaluate the

usability of Bumpy designs for protecting multiple secret

input fields on a single web form, input fields to multiple

websites, or secrets of greater complexity or length than a

typical password. (We simply enforced a minimum length

requirement of 8 characters and placed no requirements as

to the “strength” of the password chosen.) More complex

secrets, in particular, may be problematic for usability since

Bumpy prevents these keystrokes from echoing to the user’s

display. Regarding forgotten passwords, our study did not

employ Bumpy protections on the “reset password” page.

As discussed previously, the step required of users who

did detect malware (reloading the page) and our simulation

of the TM are both sources of unrealism in our experiment,

albeit unavoidable ones given the constraints of the course



setting. While a financial incentive was necessary to mo-

tivate our users to protect their passwords, such incentives

are not so directly available in practice and could have had

unintended effects on user behavior.

As discussed in §4.4, we do not claim that our sim-

ulated attacks are exhaustive. For example, we did

not consider phishing attacks in our study (though pre-

vious studies have shown promise in educating users to

detect them through a training regimen similar to our

Attack-and-Warn phase [28]). Nevertheless, the attacks

we did simulate allowed us to draw several conclusions

about Bumpy and more broadly, as discussed above. At

the same time, the numerous conditions required for com-

puting some of our measures — e.g., that La

At(u) 6= ∅,
Aa

AW(u) 6= ∅, and avgLeakeda

At(u) 6= 0 in order to com-

pute avgImproveaAW(u) — reduced the number of sample

points (users) for some of our measures to an uncomfort-

ably small number. If, after further investigation, the attacks

we considered do seem to be the primary threats, it may be

desirable to perform larger studies focused on each attack.
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A Summary of Bumpy Internals

The original Bumpy6 design [17] is motivated by the

prevalence of malware on users’ computers, and so the OS

(e.g., Windows, Linux) is assumed untrustworthy. Further

assumptions inherited from the original Bumpy design in-

clude that the remote webserver is uncompromised, and that

the SSL certificate provided by the webserver is legitimate

and can be extended to integrity-protect the site’s favicon.

Bumpy enables users to submit sensitive data on web forms

without revealing that data to local malware.

§3.1 contains a detailed description of the Bumpy user

experience. Here, we summarize the technical underpin-

nings of the system, specifically the system architecture

required to protect user input from a malicious operating

system. To do so, Bumpy requires some additional soft-

ware and (inexpensive and commodity) hardware to en-

able it to always receive (plaintext) user input before the

OS, including: encryption-capable user-input devices (or an

encryption-capable interposer, e.g., a small USB device); an

isolated and attestable execution environment on the user’s

computer (e.g., Flicker [16]); a Bumpy software module

that executes in this isolated environment, comprising a Pre-

Processor and Post-Processor (described below); a trustwor-

thy device with a display to serve as a TM; and Bumpy-

aware software on the webserver. These items are in the

trusted computing base for Bumpy. Other enhancements

that are needed to the software on the client host to work

6For the rest of this section, Bumpy refers to the original design and

not to any of the alternatives proposed in the present paper.

with Bumpy include enhancements to the input-handling

logic of the platform OS and an extension to the user’s web

browser. We stress that these are not in the TCB for Bumpy,

however.

We first describe input processing, and then describe how

feedback is provided to the user via the TM.

Input Processing. Figure 7 summarizes the flow of user

input. Keystrokes are encrypted by an encryption-capable

keyboard (or an interposer), and the ciphertext is received

by the OS (Steps 1–3). Here, the OS has the opportu-

nity to perform a denial-of-service attack on the inputs, but

the OS can always do so by other means (e.g., by pow-

ering off or crashing the system, or otherwise preventing

meaningful work from being done on the system). A well-

behaved OS will invoke a protected execution environment

(Step 4), where keystrokes are decrypted and processed by

the Bumpy module.

The Bumpy module separates input handling into a Pre-

Processor (PreP) and Post-Processor (PoPr). The PreP de-

crypts incoming keystrokes and tracks whether the current

input is sensitive. (Sensitive input begins when the user

types the SAS @@, and ends when the user provides an in-

put that would cause a blur in the web browser GUI; e.g.,

a tab would be such an event.) Normal input is released

to the platform OS decrypted (Step 5), and in this case the

user’s experience remains unchanged. No further steps are

taken for normal input. Sensitive input, however, is queued

within the PreP, and decoy input events (e.g., asterisks) are

released to the platform OS (also Step 5). When the user

finishes providing input to a field that she denotes as sen-

sitive (detected within the PreP by an input event that will

cause a blur in the web browser GUI), her sensitive input is

processed in its entirety. This consists of invoking a (possi-

bly destination-specific) PoPr that will re-encrypt the user’s

sensitive input for its intended destination (Step 6).

Once the ciphertext containing the user’s sensitive input

is ready for transmission to its intended destination, a TPM-

based attestation [32] is produced. This attestation is used

to convince the destination webserver that the user’s input

was handled with the Bumpy system, the intention being

that service providers may be willing to expose additional

services to users who are better able to protect their sen-

sitive input. The ciphertext and attestation are handled by

an extension to the user’s web browser (Step 7) and sent to

the remote webserver (Step 8). The webserver will verify

the attestation, decrypt the user’s input, and process it in

accordance with the current application (e.g., a credit card

number for an online purchase).

Trusted Monitor. Upon receiving the SAS, the PreP will

output an authenticated message for the TM that includes

information about the currently active destination website.

This information is maintained in the PreP and includes

the domain name (Common Name in the site’s SSL certifi-
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Figure 7. Original Bumpy design for acquiring user input [17]. Steps 1–5 occur for every keystroke

or mouse click performed by the user. Steps 6–8 occur only in response to a keystroke or mouse
click that the PreP detects will cause a blur event in the web browser GUI while the user is entering
sensitive data.

cate) and graphic logo (the site’s favicon) of the destination

webserver. Bumpy reads this information directly from the

destination webserver’s SSL certificate, and so the domain

and graphic logo on the TM are precisely the destination to

which sensitive input will be sent. It is the user’s responsi-

bility to verify that this is the intended destination.


