
AUSPICE-R: Automatic Safety-Property Proofs
for Realistic Features in Machine Code

Jiaqi Tan, Hui Jun Tay, Rajeev Gandhi, and Priya Narasimhan

Department of Electrical & Computer Engineering, Carnegie Mellon University, USA
{jiaqit,htay}@andrew.cmu.edu,rgandhi@ece.cmu.edu,priya@cs.cmu.edu

Abstract. Automatically generating proofs of safety properties for soft-
ware is important as software becomes safety-critical, e.g., in medical
devices and automobiles. While current techniques can automatically
prove safety properties for machine code, they either: (i) do not support
user-mode programs in an operating system, (ii) do not support realistic
program features such as system calls, or (iii) have been demonstrated
only on programs of limited sizes. We present AUSPICE-R, which au-
tomates safety-property proof generation for user-mode ARM machine
code containing system calls, and greatly improves the scalability of auto-
mated safety-property proof generation. AUSPICE-R uses an axiomatic
approach to model system calls, and leverages idioms in compiled code to
optimize its proof automation. We demonstrate AUSPICE-R on (i) sim-
ple working versions of common text utilities that perform I/O, and (ii)
embedded programs for the Raspberry Pi single-board-computer con-
taining hardware I/O. AUSPICE-R automatically proves safety up to
12x faster, and supports programs 3x larger, than prior techniques.

1 Introduction

Interactive theorem proving (ITP) is a promising approach for reasoning about
programs, as it produces succinct proofs. While ITP has required manual user
inputs in “heavy-weight” [21] proofs of functional correctness, recent work [27, 24]
has automated “light-weight” proofs for single classes of safety properties (e.g.,
Software Fault Isolation (SFI) [25], Control-Flow Integrity (CFI) [6]) using ITP
for machine code, eliminating the need for manual user inputs. Reasoning about
machine code provides a foundational approach for verification, as machine code
proofs are not affected by miscompilation bugs that may cause safety problems
[26], as compared to proofs about source-code. However, current approaches
for automating safety proofs for machine code are limited: they either target
embedded programs running directly on a processor without an operating system
(OS) [27], or they do not support proofs for user-mode machine code containing
system calls (syscalls) [24]. As embedded systems become more powerful, it is
increasingly common for them to run full-fledged OSes. Then, applications run
as user-mode programs [17], which need syscalls to perform useful tasks. In
addition, current approaches are limited in the scale of programs for which they
can feasibly generate safety proofs, due to their long proof times.



Modeling and proving safety properties about syscalls in machine code is
challenging as syscall behavior occurs in two processor modes: in the user-mode
where the syscall is invoked, and in the supervisor mode where the syscall is
serviced by an OS kernel. However, our safety properties focus on user-mode
behavior, and OS kernels are complex. Hence, we wish to ensure that our safety
proofs for user-mode machine code are modular, and avoid needing to prove that
syscalls are correctly serviced by the OS kernel. In addition, current approaches
for automating safety proofs face scalability challenges, due to the large num-
ber of logic terms manipulated. Hence, we wish to improve the scalability of
automatically generating safety proofs by reducing the computation required to
generate a safety proof.

In this paper, we present AUSPICE-R, an automated safety-property proof-
generation framework (for CFI [6]) for user-mode ARM machine code that sup-
ports syscalls, and scales up to larger programs than prior techniques. AUSPICE-
R extends our earlier work, AUSPICE [24]. First, to ensure modularity in its
safety proofs for machine code with syscalls, AUSPICE-R treats syscalls as black-
boxes: We focus on the inputs to and the user-mode-visible effects of syscalls;
we model the effects of syscalls using axioms that capture the specified (e.g.,
in the syscall API of the OS) behavior of the syscall. This lets us reason about
syscalls in user-mode machine code without having to verify the behavior of the
underlying OS. Second, we optimize the proof automation in AUSPICE-R to
improve the times taken to prove safety, and to increase the size of programs for
which safety can be proved. These optimizations leverage common conventions
found in gcc-emitted machine code to speed up AUSPICE’s analysis.

Our contributions are: (i) an axiomatic approach to modeling syscall behavior
with the goal of automating safety property proofs, (ii) a delayed algorithm for
performing safety property analysis to support syscalls, (iii) optimizations to
AUSPICE-R’s analysis that leverage idioms in compiled machine code, and (iv)
an evaluation of AUSPICE-R on programs containing syscalls that perform both
file and hardware I/O, that are significantly larger than in prior techniques.

2 Problem Statement

Goals. AUSPICE-R’s goals are to: (i) fully automate safety property proofs for
machine code containing system call (syscall) invocations, (ii) formalize the user-
mode-visible effects of a syscall while assuming that the underlying OS services
the syscall “correctly” (we discuss “correct” next), (iii) construct a formalization
that is sound with respect to the trustworthy Hoare Logic for ARM machine code
[18, 19] that we build on, and (iv) work with programs compiled by unmodified
commodity compilers (e.g., gcc), i.e., we disallow compiler modifications.

Scope. In this work, we target machine code programs for the ARM platform, as
ARM is the dominant platform for embedded systems [4]. We consider programs
that run in user-mode on the Linux operating system (OS) in this work, and
we focus specifically on the safety property of Control-Flow Integrity (CFI) [6].



In this work, we describe how to automate safety proofs for machine code with
syscalls; we address how to enforce these safety properties in source-code in [23].

Assumptions. AUSPICE-R extends AUSPICE [24], which builds on the Hoare
Logic for ARM machine code developed at Cambridge University [18, 19] (which
we refer to as the Cambridge ARM model). Hence, safety proofs in AUSPICE-R
inherit some of the assumptions and limitations of AUSPICE and the Cambridge
ARM model. Specifically, we assume that our target machine code programs:

1. Have behavior that is not affected by hardware exceptions, interrupts, or
page-table operations (not modeled by Cambridge ARM model),

2. Do not contain recursive function calls (unsupported by AUSPICE),
3. Have no floating-point instructions (not modeled by Cambridge ARM model),
4. Have no goto nor longjmp statements (unsupported by AUSPICE),
5. Do not contain explicit function pointers (unsupported by AUSPICE),
6. Contain only sequential execution behavior (multi-threaded behavior and

concurrency are not modeled by the Cambridge ARM model),
7. Are statically compiled and linked, so that all executable code is present,
8. Are compiled with an unmodified version of gcc at -O0 optimization, and

obey the ARM-THUMB Procedure Call Standard (ATPCS) [3], and
9. Have well-defined function prologues and epilogues.

We also assume that our target programs run in an OS that isolates user pro-
cesses, preventing attackers from modifying the memory of a process, and that
the OS and physical security of the host are not compromised. We assume that
the underlying OS (Linux in this paper) “correctly” services syscall invocations
by correctly restoring the context (program counter, register, and memory) of
the user process at the end of every syscall invocation, and providing its specified
(e.g., in Section 2 of the Linux Programmer’s Manual [2]) functionality. Recent
work has verified the functional correctness of microkernels for realistic OSes
[11], making this assumption a realistic one. We also assume that each syscall is
invoked via an assembly wrapper with a C function prototype that sets up the
arguments for the syscall, whose name identifies the invoked syscall. This is the
convention by which common C libraries give programmers access to syscalls.

Non-Goals. We do not verify that the OS correctly services syscalls. We con-
sider only direct (e.g., register and memory) effects of syscalls on CFI, but not
OS state not directly observed by a user-mode process (e.g., file descriptor map-
pings, user-space memory mappings in mmap). We do not verify arbitrary safety
properties: we focus on the safety properties in §3.1 that ensure CFI.

3 Background

We summarize our prior work, AUSPICE [24], before we present AUSPICE-R’s
extensions. We describe the safety properties proved automatically by AUSPICE
(§3.1) and the Cambridge ARM model which AUSPICE is based on (§3.2), and
AUSPICE’s proof rules (§3.3) and proof automation algorithm (§3.4).



3.1 Safety Properties of Interest

The main goal of AUSPICE is to prove that a machine code program possesses
Control-Flow Integrity (CFI) [6]. CFI requires that the execution of a program
follows a path in a Control-flow Graph (CFG) that is “determined ahead of
time” [6]. For a program which has CFI with respect to its load-time CFG (i.e.,
its execution follows the CFG describing the instructions loaded from disk),
attackers cannot change the program’s execution in unintended ways (e.g., by
supplying malformed or malicious inputs), nor inject instructions to be executed.

AUSPICE proves CFI for a program by proving three safety properties: that
(1) loaded program instructions in memory cannot be overwritten, (2) function-
return addresses saved to the program’s stack cannot be overwritten, and (3) only
instructions at initially loaded addresses can be executed. AUSPICE instantiates
these safety properties as safety assertions at each instruction to be proved.

The above three safety properties are necessary and sufficient (in the absence
of goto and longjmp statements in C and explicit function pointers) to ensure
CFI holds for an ARM machine code program. To see why this is the case,
consider how the three safety properties together prevent a machine code pro-
gram’s CFG from being changed at run-time: Property (1) prevents CFG nodes
from being changed by preventing loaded instructions in memory from being
modified; Property (2) prevents CFG edges from being changed by preventing
function return addresses from being changed; Property (3) prevents CFG nodes
from being added by preventing the injection and running of new instructions.
Hence, the 3 safety properties that AUSPICE proves for each instruction in a
program are sufficient to prove that CFI holds (given our assumptions in §2).

3.2 Hoare Logic for ARM Machine Code: Cambridge ARM Model

Next, we describe the Hoare Logic we use to reason about ARM machine code.
The Cambridge ARM model [18] specializes a Hoare Logic [19] to reason about
low-level details of ARM machine code. This model is formalized in higher-order
logic and mechanized in the HOL4 [22] proof system, and captures low-level
details of processor state as seen by ARM machine code programs, namely: values
of registers and status flags, data values stored in memory, and the value of the
program counter (pc). The model represents the behavior of each instruction
using a Hoare triple theorem:

` SPEC x {p} c {q}

“SPEC” indicates the theorem is a Hoare triple; “x” is a tuple that defines the
next-step relation and other relations for the instruction set architecture (ISA)
modeled in the triple, and is instantiated with the “ARM MODEL” tuple of rela-
tions in the Cambridge ARM model [18] (other ISAs are also supported in the
Cambridge model [19], but are beyond the scope of this paper). Informally, the
theorem reads: if assertion p holds for the current processor state, and instruc-
tion c is executed, then q will hold for the resulting processor state. We refer to
p and q as the pre-state and post-state assertions of instruction c.



Processor state assertions p and q either assert the value of a processor state
element (namely register values, status flags, memory, and the program counter
value), or are pure boolean assertions about logical variables. Pure boolean as-
sertions can be pre-conditions (labelled precond(·)), which are predicates known
to hold before an instruction executes (e.g., statements in the body of “if (i ==

0) { ... }” have the pre-condition “i = 0”), or assumptions (labelled cond(·)).
State assertions can assert the values of multiple resources (e.g., multiple

registers) using the separating conjunction ∗ [20]. Note that ∗ in the Cambridge
ARM model prevents assertions about repeated processor resources (e.g., the
same register cannot be asserted about twice), but not memory locations. In-
stead, processor memory is treated as a single resource in the model. Memory is
represented as a map from 32-bit addresses to the bytes stored at each address.
AUSPICE uses the following proved rules from the Cambridge ARM model:

SPEC x p c1 q SPEC x q c2 r

SPEC x p (c1; c2) r
COMPOSE

SPEC x p c q

SPEC x (p ∗ r) c (q ∗ r)
FRAME

Note that there are no side-conditions restricting the form of r in the Frame rule
above, as machine resource values are asserted using register relations (see §4.1)
rather than variables in the Hoare logic of the Cambridge ARM model [19],
effectively turning all symbolic variables into single-static assignment variables.

3.3 AUSPICE: Hoare Logic-based Safety Property Proofs

Next, we describe AUSPICE’s proof rules which enable safety properties to be
proved automatically. Then, we describe AUSPICE’s abstract interpretation al-
gorithm for automating safety proofs.

AUSPICE defines proof rules to hierarchically build up, in a bottom-up fash-
ion, to a whole-program definition of safety with respect to its 3 safety proper-
ties. First, AUSPICE defines proof rules for its safety properties to hold at the
single instruction and basic block levels (Fig. 1). The MEM CFI SAFE rule con-
structs a “safe instruction” theorem by requiring each instruction’s Hoare triple
to be augmented with safety assertions (as assumptions) for AUSPICE’s three
safety properties. Our three safety properties (§3.1) are concretely instantiated
in the predicates ms, cfi1, cfi2 respectively with the safe ranges for memory
addresses written to, and the value of the program counter after each instruc-
tion runs. The code in the MEM CFI SAFE rule, “{(offset , ins)}”, enforces that
safe instruction theorems can be constructed only from a Hoare triple for a sin-
gle instruction with instruction word “ins” at address “offset” in the program.
Then, the MEM CFI SAFE COMPOSE rule builds up to a “safe basic block” theorem
by allowing only theorems for safe instructions, and theorems composed from
smaller safe basic blocks, to be composed. The MEMCFISAFE FRAME rule lifts the
FRAME rule in the Cambridge ARM model to reason about safe basic blocks.

Each MEMCFISAFE (i.e., safe instruction and safe basic block) theorem is also
sound with respect to the Cambridge ARM model, as AUSPICE proved:

` ∀x p c q · MEMCFISAFE x p c q ⇒ SPEC x p c q



SPEC x (cond(ms ∧ cfi1 ∧ cfi2 ) ∗ p) {(offset , ins)} q

MEMCFISAFE x (cond(ms ∧ cfi1 ∧ cfi2 ) ∗ p) {(offset , ins)} q
MEM CFI SAFE

MEMCFISAFE x p c q

MEMCFISAFE x (p ∗ r) c (q ∗ r)
MEMCFISAFE FRAME

MEMCFISAFE x p c1 q MEMCFISAFE x q c2 r

MEMCFISAFE x p (c1; c2) r
MEM CFI SAFE COMPOSE

Fig. 1. AUSPICE logic rules for single instruction and basic block level safety.

Next, AUSPICE defines the FUNSAFE rule (Fig. 2), which enables local reason-
ing about safety properties at the function (and whole-program) levels. AUS-
PICE’s local reasoning principle [24] states that the safety properties at each
instruction depend only on the program state immediately before that instruc-
tion runs: thus, for a program to be safe, we only need to ensure that the safety
assertions at each instruction hold given the pre-conditions of all its predecessor
instructions. Informally, if the FUN SAFE theorem for a function holds, then the
machine code of the function is safe with respect to AUSPICE’s three safety
properties. The safety of a (machine code) function is defined by the FUN SAFE

relation, with respect to: (i) addr, the address of the function, (ii) nodes, a set
of addresses of the function’s CFG nodes (i.e., its basic blocks), (iii) funcs, a
set of addresses of callee functions, (iv) cfgpred , cfgsucc , maps of CFG predeces-
sors/successors of each node, (v) assns, the safety assertions of the function’s
entry node, (vi) postcond, the pre-conditions of the function’s exit node, and
p,q, the pre-state/post-state of the function’s entry/exit nodes respectively.

Then, the 6 conjunct clauses of the FUNSAFE rule specify the requirements
that need to hold for the function to be safe. The requirements for the function
to be safe are instantiated according to the function’s CFG. The first 3 conjunct
clauses define: (i) the address of the function, as given by its entry node with the
smallest address, (ii) the entry node of the function to have no CFG predecessors,
and (iii) the exit node of the function to have no CFG successors.

The 4th to 6th conjunct clauses define the requirements for the function to
be safe for all control-flow transfers, that are either: (i) intra-procedural, (ii)
inter-procedural function calls, or (iii) inter-procedural function returns. The
FUNSAFE rule is instantiated with one clause for each CFG edge. Each conjunct
clause begins with a description of the CFG predecessor/successor relationships
for the kind of control-flow transfer described (e.g., ∀n, pred , succ · {n, pred} ⊆
nodes ⇒ pred ∈ cfgpred(n) ⇒ n ∈ cfgpred(succ) for intra-procedural control-
flow transfers). In each conjunct clause, the MEMCFISAFE and FUN SAFE terms
describe the behavior of the basic blocks or functions in the clause, and the
predicate r′ ⇒ s′ is the requirement for the pre-conditions r′ of each predecessor
basic block to discharge the safety assertions s′ at each basic block. Note also



` ∀addr ,nodes, funcs, cfgpred , cfgsucc , assns, postcond , p, q ·
FUN SAFE(addr ,nodes, funcs, cfgpred , cfgsucc , assns, postcond , p, q)

⇔ (∀n · n ∈ nodes ⇒ min(n, addr) = addr)∧
(∀min ·min ∈ nodes ⇒ (cfgpred(min) = ∅)⇒ ∃x , p′, q ′, c′ ·(

MEMCFISAFE x
(
aPC min ∗ cond(assns) ∗ p′) c′ (q ′)))∧

(∀out · out ∈ nodes ⇒ (cfgsucc(out) = ∅)⇒ ∃x , p′, q ′, c′, r ′ ·(
MEMCFISAFE x

(
aPC out ∗ precond(r ′) ∗ p′) c′ (q ′)) ∧ (r ′ ⇒ postcond))∧

(∀n, pred , succ · ({n, pred} ⊆ nodes ⇒ pred ∈ cfgpred(n)⇒ n ∈ cfgpred(succ)⇒
∃x, r′, p′, c1, q′, s′, c2, q′′, r′ ·

(MEMCFISAFE x
(
aPC pred ∗ precond(r′) ∗ p′

)
c1
(
aPC n ∗ q′

)
∧

MEMCFISAFE x
(
aPC n ∗ cond(s ′) ∗ q′

)
c2
(
aPC succ ∗ q′′

)
∧ (r′ ⇒ s′))))∧

(∀n, pred · (pred ∈ nodes ⇒ (n ∈ funcs)⇒ pred ∈ cfgpred(n)⇒ n ∈ cfgsucc(pred)⇒
∃x , r ′, p′, q ′,nodes ′, funcs ′, cfg ′

p , cfg ′
s , s ′, postcond ′, q ′′, c1 ·

(MEMCFISAFE x
(
aPC pred ∗ precond(r′) ∗ p′

)
c1
(
aPC n ∗ q′

)
∧

FUN SAFE(n,nodes ′, funcs ′, cfg ′
p , cfg ′

s , s ′, postcond ′, q ′, q ′′) ∧ (r ′ ⇒ s ′))))∧
(∀n, pred, succ · (n ∈ nodes ⇒ (pred ∈ funcs)⇒ pred ∈ cfgpred(n)⇒ n ∈ cfgpred(succ)⇒
∃x ,nodes ′, funcs ′, cfg ′

p , cfg ′
s , s ′, postcond ′, p′, q ′, s ′′, q ′′, c1 ·

(FUN SAFE(pred ,nodes ′, funcs ′, cfg ′
p , cfg ′

s , s ′, postcond ′, p′, q ′) ∧
MEMCFISAFE x

(
aPC n ∗ cond(s ′′) ∗ q ′) c1

(
aPC succ ∗ q ′′) ∧ (postcond ′ ⇒ s ′′))))

Fig. 2. AUSPICE’s FUNSAFE rule for function-level and whole-program safety. aPC as-
serts that the program counter contains the asserted value.

that in each of the first two conjuncts of each requirement, the post-state of the
predecessor CFG node’s MEMCFISAFE or FUN SAFE which describes its behavior
must match the pre-state of the successor CFG node’s MEMCFISAFE or FUN SAFE.
This is in line with the standard COMPOSE rule in Hoare Logic.

Thus, the goal of the FUN SAFE theorem is to state that the machine code
of a function (and all its callee functions) possesses the three AUSPICE safety
properties at each instruction, which in turn implies that the program has CFI.
The soundness and correctness arguments for our proof rules are in [24].

3.4 Proof Automation in AUSPICE

Next, we describe AUSPICE’s proof automation algorithm (Fig. 3). At the top
level, AUSPICE calls SafeFunctionAnalysis for the entry-function of the
program. SafeFunctionAnalysis is a context-sensitive inter-procedural anal-
ysis which returns a FUN SAFE theorem for a function proved safe, or terminates



with an error message. SafeFunctionAnalysis calls the abstract interpreta-
tion in SafetyAssertionAnalysis (Fig. 4). This abstract interpretation is a
backwards analysis, whose domain is predicates about processor state. The anal-
ysis finds the pre-conditions needed to discharge the safety assertions at each
instruction, and its information records undischarged safety assertions. These
undischarged safety assertions are added as assumptions to predecessor theo-
rems using the Frame rule in Hoare logic in the AugmentTheorems function.
SafetyAssertionAnalysis also checks that undischarged assertions are not
propagated in a cycle, otherwise the analysis diverges with new undischarged
safety assertions continually recorded. Hence the analysis is terminated and fails.

1: function SafeFunctionAnalysis(instr thms)
2: (cfg , func) ← ComputeCFGandCallees(instr thms)
3: safe thms ← AddSafetyAssertions(instr thms) . Add the ms,cfi1,cfi2

safety assertions to each instruction’s Hoare triple.
4: bb safe ← SafeCompose(safe thms) . Use MEM CFI SAFE COMPOSE rule.
5: func safe ← ∀callee ∈ func· SafeFunctionAnalysis(callee)
6: assertion info ← SafetyAssertionAnalysis(bb safe, func safe, cfg)
7: (bb safe ′, func safe ′)←AugmentTheorems(bb safe, func safe, assertion info)
8: return FUN SAFE RULE(bb safe ′, func safe ′)
9: end function

10: instr thms ← ∀instr · CambridgeARM GetInstructionModel(instr)
11: SafeFunctionAnalysis(instr thms)

Fig. 3. Safe Function analysis in AUSPICE [24]. Uses single-instruction theorems from
the Cambridge ARM model, and returns FUN SAFE theorem for function. bb safe and
func safe contain basic block and callee function safety theorems respectively.

4 Safety Proofs for Machine Code with System Calls

There are two main steps to support safety proofs of machine code with syscalls.
First, we model the supervisor call instruction (svc), whose effects occur in

both user-mode, and in supervisor-mode where the OS services the syscall. As
we focus on the safety of user-mode programs, we do not wish to fully model the
actions of the OS. Instead, we assume that the processor correctly handles the
mode-switch from user to supervisor mode, and that the OS correctly services
the syscall (§2). We focus on only the user-mode-observed effects after the syscall
has been serviced by the OS. We model syscalls in user-mode in an axiomatic
manner: we represent the user-mode-observed effects of syscalls as “axiomatized”
(rather than proven) Hoare triples, that we introduce as hypotheses in our model.

Second, we need to augment our syscall models to support safety proof au-
tomation. AUSPICE’s proof automation needs concrete safety assertions for each
instruction. For typical instructions in user-mode programs, the proven Hoare
triple for each instruction contains enough information for computing concrete



1: function SafetyAssertionAnalysis(bb safe thms, func safe thms, cfg)
2: info ← ∅ . Analysis information keyed by CFG node
3: procedure AssertionAnalysisStep(info, last info, cfg)
4: for all node ∈ cfg , pred ∈ FindPreds(cfg , node) do
5: pred preconds ← GetThmPreconds(pred)

⋃
last info[pred ]

6: node asserts ← GetThmAsserts(node)
⋃

last info[node]
7: for all assert ∈ node asserts do
8: if PROVE(pred preconds, assert) == False then
9: info.term[pred ]← info.term[pred ]

⋃
assert

10: a path ← FindAssertPath(last info.path[node], assert)
11: info.path[pred ]← info.path[pred ]

⋃
a path

12: AbortIfAssertPathIsCycle(a path)

13: end procedure
14: repeat
15: last info ← info; info ← AssertionAnalysisStep(info, last info, cfg)
16: until last info == info
17: return info
18: end function

Fig. 4. Safety Assertion Analysis in AUSPICE [24]. FindPreds gives the CFG prede-
cessors of a node; GetThmPreconds and GetThmAsserts are helper functions that
return the pre-conditions and safety assertions in a given Hoare triple; Prove invokes
the HOL4 METIS prover to try to discharge a safety assertion given a pre-condition;
FindAssertPath computes the propagation path of an undischarged safety assertion.

safety assertions (Line 3 in Fig. 3). However, the effects of a syscall cannot
be determined from the svc instruction alone, and depends on the arguments
passed to it. These arguments are set up in the instructions leading to the svc

instruction, and in the callers of the syscall. In AUSPICE-R, we use a delayed
approach to analyze syscalls: We express the effects of syscalls symbolically, and
we concretize these symbolic variables later in the analysis when information is
available from callers of the syscall.

4.1 Modeling of System Calls in User-mode Programs

Rationale Behind Model. First, we focus on the user-mode-visible effects
of syscalls that may affect our safety properties. Our safety properties are af-
fected by memory addresses that are written to, and by the value of the program
counter. As the processor will restore the program counter to the address of the
instruction immediately following the svc instruction (B1.8.10 in [5]), we need
to focus on only the addresses in the user process’s memory that are written to
during the servicing of the syscall. All other processor state (user-mode regis-
ters, apart from r0 which stores a return value, and status flag values) remains
unchanged, as user-mode registers are distinct from supervisor-mode registers,
and the processor restores the values of the original status flags (B1.8.10 in [5]).

Second, we need to know the user-mode visible effects of each syscall in
user-mode. We need to: (i) retrieve the number of the syscall invoked (passed



in register r7, based on the Linux Application Binary Interface (ABI) for ARM
[1]), (ii) identify the syscall invoked (e.g., from the Linux kernel’s documentation
and/or source-code), and (iii) retrieve the arguments passed to the syscall (via
user-mode registers or the user-mode stack). This allows us to identify the be-
havior of each invoked syscall from its specification. We can then instantiate our
safety-assertions from the user-mode-observed effects of each syscall invocation.

Axiomatization of System Call Effects. We “axiomatize” the Hoare triples
for syscalls by constructing an unproven Hoare triple for each syscall, which we
then introduce as an assumption. These unproven Hoare triples are collected as
hypotheses of the final safety proof, and they formalize our assumption of each
syscall’s effects on user-mode state, based on the syscall’s specification.

Fig. 5 shows an example axiom for the write syscall. 3 kinds of assertion
relations are shown: (i) aR asserts the value of the specified register; (ii) aPC

asserts the value of the program counter; (iii) aMEMORY asserts the domain (df )
and contents of memory (map f from addresses to stored values). The pre-state
value of register r7 is asserted to be the literal 4, which is the syscall number for
write, while the other pre-state register values are asserted to be symbolic vari-
ables (r0, r1, r2, r14 ), as they are unknown when we analyze the svc instruction
alone. We instantiate these symbolic variables with concrete values later when
analyzing the instructions leading up to the syscall invocation (details in §4.2).
While some of the asserted resources (e.g., register r1) remain unchanged and
could be omitted from the Hoare triple, we include this information as it may
be required in our analysis for modeling the full behavior of the syscall.

Note that the Hoare triple is repeated on the left-hand-side of the turnstile
“`”, indicating that the Hoare triple is a hypothesis. The post-state of this axiom
for write is identical to its pre-state (except for the value of register r0, given by
the aR 0w assertion), as write does not modify any user-mode-visible processor
state. The value of register r0 in the post-state is given by the symbolic variable
rv, which indicates the return value from the syscall, and can represent the
return value of both failed and successful syscalls. This axiom is representative
of the other syscalls AUSPICE-R supports for which there are no effects that
are directly visible in user-mode: open, close, mmap, munmap, nanosleep.

In contrast, consider our constructed axiom for the read syscall in Fig.
6. read has user-mode-visible effects: the bytes that it reads are written to
and visible in the process’s memory at the supplied address. The condition
“cond(addrs ⊆ df )” asserts that the set of addresses addrs supplied to the
syscall are in the domain of the memory map f. Also, the process’s memory is
updated from map f to (g f ), where g represents the effects of read on memory.
Note that addrs and g are both symbolic. Note also that the value in register r0
(asserted by aR 0w) in the post-state of the axiom is symbolic, and can represent
the return values from both successful and failed invocations of the syscall. While
the OS may not have written to all the addresses in the set addrs when read

fails or reads fewer than the requested number of bytes, addrs conservatively
lists the maximum extent of the memory written to by read.



SPEC ARM MODEL (aR 0w r0 ∗ aR 1w r1 ∗ ` SPEC ARM MODEL (aR 0w r0 ∗ aR 1w r1 ∗
aR 2w r2 ∗ aR 7w 4w ∗ aPC p ∗ aR 2w r2 ∗ aR 7w 4w ∗ aPC p ∗

aR 14w r14 ∗ aMEMORY df f ) aR 14w r14 ∗ aMEMORY df f )

{(p, 0xEF000000)} (aR 0w rv ∗ aR 1w r1 ∗ {(p, 0xEF000000)} (aR 0w rv ∗ aR 1w r1 ∗
aR 2w r2 ∗ aR 7w 4w ∗ aR 14w r14 ∗ aR 2w r2 ∗ aR 7w 4w ∗ aR 14w r14 ∗

aPC (p + 4w) ∗ aMEMORY df f ) aPC (p + 4w) ∗ aMEMORY df f )

Fig. 5. Constructed Hoare triple axiom for the write syscall. 4w is a numerical constant
4, where the suffix w indicates 4 is a fixed-width word.

SPEC ARM MODEL (aR 0w r0 ∗ aR 1w r1 ∗ ` SPEC ARM MODEL (aR 0w r0 ∗ aR 1w r1 ∗
aR 2w r2 ∗ aR 7w 3w ∗ aR 14w r14 ∗ aR 2w r2 ∗ aR 7w 3w ∗ aR 14w r14 ∗

aPC p ∗ cond(addrs ⊆ df ) ∗ aMEMORY df f ) aPC p ∗ cond(addrs ⊆ df ) ∗ aMEMORY df f )

{(p, 0xEF000000)} (aR 0w rv ∗ aR 1w r1∗ {(p, 0xEF000000)} (aR 0w rv ∗ aR 1w r1 ∗
aR 2w r2 ∗ aR 7w 3w ∗ aR 14w r14 ∗ aR 2w r2 ∗ aR 7w 3w ∗ aR 14w r14 ∗

aPC (p + 4w) ∗ aMEMORY df (g f )) aPC (p + 4w) ∗ aMEMORY df (g f ))

Fig. 6. Constructed Hoare triple axiom for the read syscall.

Implementation. The construction of unproven Hoare triples for each syscall
(Fig. 7) is implemented as a wrapper around the model construction for indi-
vidual instructions in the Cambridge ARM model, and replaces Line 10 in Fig.
3. When a svc instruction (0xEF000000) is detected, AUSPICE-R constructs
an unproven Hoare triple based on the name of the function that the instruc-
tion is in. ConstructSyscallTriple implements the unproven Hoare triple
construction process described above. We initially support modeling the follow-
ing syscalls for simple I/O operations: read, write, open, close, mmap, munmap,
nanosleep.

4.2 Supporting Safety Proof Automation for System Calls

Next, to support automated safety proofs in AUSPICE-R for syscalls, we need
to concretize the initially-symbolic effects in the unproven Hoare triples for each
syscall, as the safety assertion discharge in SafetyAssertionAnalysis (Fig. 4)
reasons about memory addresses individually. To concretize the symbolic effects
of a syscall’s unproven triple, AUSPICE-R examines the arguments the syscall
is invoked with when running SafeFunctionAnalysis (Fig. 3) on the caller of
the syscall. We first illustrate how the arguments to system calls are interpreted,



1: function AUSPICE R GetInstructionModel(addr , addr to func, instr)
2: if !(instr = 0xEF000000) then
3: return CambridgeARM GetInstructionModel(instr)
4: else
5: func containing instr ← addr to func[addr ]
6: return ConstructSyscallTriple(instr , addr , func containing instr)

7: end function

Fig. 7. Algorithm for unproven Hoare triple construction for syscalls.

using the read syscall. Then we discuss how the symbolic effects are concretized,
before we describe how these are implemented in AUSPICE-R’s analysis.

80e4: e3a00000 mov r0, #0
80e8: e59f1098 ldr r1, [pc, #152]
80ec: e3a02003 mov r2, #3
80f0: eb000049 bl 821c <c_read>
... ...
8188: 00010250
... ...
0000821c <c_read>:
821c: e92d4880 push {r7, fp, lr}
8220: e28db004 add fp, sp, #4
8224: e24dd000 sub sp, sp, #0
8228: e3a07003 mov r7, #3
822c: ef000000 svc 0x00000000
... ...

Fig. 8. Example ARM machine
code invoking the c read wrapper
to the read syscall.

ssize_t read(int fd, void *buf,
size_t count);

Fig. 9. Prototype of C function
wrapper to read syscall.

System Call Arguments. The Linux Pro-
grammer’s Manual [2] states that the read

syscall takes 3 arguments: (i) an integer in-
dicating the file descriptor, (ii) a pointer at
which to store bytes that have been read,
and (iii) the number of bytes to read. Fig.
8 shows a fragment of machine code, where
the basic block at address 0x80E4 calls the
function c read, which is the assembly-code
wrapper that invokes the read syscall (at ad-
dress 0x822C). Fig. 9 shows the C prototype
of the assembly-code wrapper. For each in-
vocation of the read syscall, the values of
the arguments to the syscall are loaded to
the relevant registers (r0, r1, r2) at the call-
site to its wrapper (i.e., at the basic block
at 0x80E4). AUSPICE-R extracts these values
from the post-state assertions of the Safe Ba-
sic Block theorem for the call-site. Concretely,
for this example, the values to the arguments
are fd = 0, buf = 0x10250, count = 3. Note
that the arguments may still be symbolic at
this point (e.g., if reading a variable-length

number of bytes). However, for AUSPICE to prove our safety properties for the
read syscall, the pointer to store read bytes and the number of bytes to read must
be concrete. This enables AUSPICE-R to update the symbolic safety assertions
in the FUN SAFE theorem of read’s syscall wrapper with concrete expressions,
thus enabling the safety assertions to be discharged. If the pointer and number of
bytes read remain symbolic, SafetyAssertionAnalysis cannot reason about
the symbolic safety assertions, and the safety proof will fail.

Updating of Symbolic Effects. Next, we construct variable substitutions
for the initial symbolic effects (written-address set addrs and memory-update
function g), which we apply to the unproven Hoare triple for the read syscall.



These substitutions concretize the effects of the syscall on user-mode processor
state, so that SafetyAssertionAnalysis can reason about the safety of these
effects. To complete its automated safety-property proofs, AUSPICE needs to
enumerate the memory address of each byte written to. While AUSPICE can
reason about byte-addresses containing symbolic variables (e.g., when the ad-
dress written to is a symbolic variable r3 ), it cannot reason about symbolic
ranges of addresses where the number of elements in the set is symbolic (even if
the elements of the set are drawn from a finite universe, e.g., fixed-width words).
This is due to limitations with HOL4’s built-in tactics for reasoning about sets
(pred setLib). Hence, AUSPICE-R enumerates the byte-addresses written to
by the syscall.

For the example in Fig. 8, 3 bytes are written at the address 0x10250.
Hence, we substitute addrs with {0x10250w; 0x10251w; 0x10252w}, and the up-
date function g with the expression shown in Fig. 10. extmem c read 0x80E4

is an opaque function that represents the results of external I/O, and it returns
the (symbolic) data read given the byte-number read; “=+” is the map update
operator, where “a = +b” indicates the value b is stored at address a.

λf . ((0x10250w = + (extmem c read 0x80E4 0w))

((0x10251w = + (extmem c read 0x80E4 1w))

((0x10252w = + (extmem c read 0x80E4 2w)) f)))

Fig. 10. Concretized memory-update expression for the read syscall in Figure 8.

After substituting the symbolic effects for concrete values in each syscall’s
Hoare triple axioms, AUSPICE can automatically discharge the safety assertions
for these axioms (if the machine code contains the necessary safety-checks).
Implementation. Fig. 11 describes the updated Safe Function analysis algo-
rithm in AUSPICE-R, incorporating the unproven Hoare triple axiomatization
(Line 12), and the concretization of symbolic effects (Line 7). In functions that
call syscalls, SafeFunctionAnalysisWithSyscalls is first called on each
syscall callee (Line 5). Then, the arguments to the syscall are available in the
caller of the syscall, and the FUN SAFE theorems of syscalls are concretized using
information from the caller’s basic blocks, bb safe (Line 7). This concretization
must take place before SafetyAssertionAnalysis (Line 8). AUSPICE-R adds
1300 lines of ML proof scripts to AUSPICE’s code-base of 11.8 KLOC of ML.

5 Optimizing Safety Proof Automation

AUSPICE-R optimizes SafeFunctionAnalysis (Fig. 3) and SafetyAsser-
tionAnalysis (Fig. 4) to speed up its safety-proof generation, so that larger pro-
grams can be verified in less time. AUSPICE-R leverages (i) common patterns in



1: function SafeFunctionAnalysisWithSyscalls(instr thms)
2: (cfg , func) ← ComputeCFGandCallees(instr thms)
3: safe thms ← AddSafetyAssertions(instr thms)
4: bb safe ← SafeCompose(safe thms) . Use MEMCFISAFE COMPOSE rule.
5: func safe ← ∀callee ∈ func· SafeFunctionAnalysisWithSyscalls(callee)
6: syscall callees ← ∀callee ∈ func | is syscall(callee)
7: func safe ′ ← ∀c ∈ syscall callees · ConcretizeArgs(func safe[c], bb safe)
8: assertion info ← SafetyAssertionAnalysis(bb safe, func safe ′, cfg)
9: (bb safe ′, func safe ′′)←AugmentTheorems(bb safe, func safe ′, assertion info)

10: return FUN SAFE RULE(bb safe ′, func safe ′′)
11: end function
12: instr thms ← ∀instr · AUSPICE R GetInstructionModel(instr)
13: SafeFuncAnalysisWithSyscalls(instr thms)

Fig. 11. Updated Safe Function analysis in AUSPICE-R with support for safety proofs
for machine code with syscalls. Added or changed steps are highlighted in blue.

gcc-compiled machine code for local-variable-writes to speed up SafetyAsser-
tionAnalysis, and (ii) the behavior of safety assertions in callee functions in
its inter-procedural analysis to speed up SafeFunctionAnalysis.

Common Compiler Conventions. SafetyAssertionAnalysis performs
two tasks: (i) it finds pairs of pre-conditions p ∈ P and safety assertions a ∈ A,
such that p ⇒ a, and (ii) for assertions a ∈ A for which no p is found, it
propagates a to predecessor nodes, and checks if a’s propagation path has a
cycle. However, computing the propagation path of assertion a is expensive, as
it requires symbolic execution along the propagation path.

We leverage two observations in gcc-compiled code: (i) there are two classes
of memory-writes: to local variables (i.e., a constant offset from the frame pointer
r11 or stack pointer r13), and to arbitrarily-computed addresses (typically
stored in registers); (ii) r11 and r13 are generally updated only at the start and
end of each function. Thus, safety assertions for writes to local variables will not
change during the analysis of function bodies. To speed up SafetyAssertion-
Analysis for writes to local variables, AUSPICE-R: (i) reduces the number of
assertion terms analyzed, and (ii) skips the propagation-cycle check.

Fig. 12 describes the optimized version of the inner analysis step in
SafetyAssertionAnalysis, which replaces AssertionAnalysisStep in Fig.
4. First, we represent the safety assertions for local-variable writes using range
predicates: e.g., for a safety assertion
“{r13 − 21w; r13 − 22w; r13 − 23w; r13 − 24w} ⊆ {addr | addr < r11}”, the
addresses that are offset from r13 are where a local variable is stored on the
stack; we replace this safety assertion with the range predicate “24w ≤ r13 <
r11 + 24w”, which implies the original safety assertion. Thus, for writes to N
different local variables in a function, only 2 rather than 2N predicates are
propagated: one each for Safety Properties 1 and 2 (§3.1). We also define a
narrowing operator for the meet of two range predicates which returns the more
restrictive of two predicates to merge terms from multiple CFG paths. Second,



1: procedure AssertionAnalysisStepOpt(info, last info, cfg)
2: for all node ∈ cfg , pred ∈ FindPreds(cfg ,node) do
3: pred preconds ← GetThmPreconds(pred)

⋃
last info[pred ]

4: node asserts ← GetThmAsserts(node)
⋃

last info[node]
5: (range pds, other pds) ← partition is range pred preconds
6: (localvar asserts, other asserts) ← partition is localvar node asserts
7: for all assert ∈ localvar asserts do
8: curr range ← narrow(compute range predicate(assert), range pds)
9: (prev range, other terms) ← partition is range (info.term[pred ])

10: info.term[pred ] ← other terms
⋃

narrow(curr range, prev range)

11: for all assert ∈ other asserts do
12: if PROVE(other pds, assert) == False then
13: info.term[pred ]← info.term[pred ]

⋃
assert

14: a path ← FindAssertPath(last info.path[node], assert)
15: info.path[pred ]← info.path[pred ]

⋃
a path

16: AbortIfAssertPathIsCycle(a path)

17: end procedure

Fig. 12. Optimized analysis step for SafetyAssertionAnalysis in AUSPICE-R. Up-
dated steps are highlighted in blue. is range and is localvar return true for predi-
cates that are ranges and that are about local-variable writes respectively.

since writes to local variables are to fixed offsets from the frame pointer (r11)
or stack pointer (r13), which do not change in the function’s body, we do not
need to compute nor check for cycles in propagation paths.

bar() { ... }

baz() { bar();

... }

foo() { bar();

baz();

bar();

... }

Fig. 13. Exam-
ple program for
inter-procedural
analysis.

Context-Sensitivity of Analysis. SafeFunctionAnal-
ysis (Fig. 3) is an inter-procedural analysis which constructs
a distinct Safe Function (FUN SAFE) theorem for every call
to each callee function. We use the program in Fig. 13 to il-
lustrate AUSPICE-R’s approach. First, consider the behavior
of SafeFunctionAnalysis in AUSPICE: in foo(), bar()
is called twice, thus one FUN SAFE theorem is constructed
for each of its two call-sites. We call this analysis “call-site
context-sensitive”, or CSCS. CSCS provides the highest level
of precision. We would like to reduce the precision of our anal-
ysis to reduce the number of iterations of SafeFunction-
Analysis (Fig. 3) needed to successfully generate a safety
proof.

Context-insensitive inter-procedural analysis provides the
lowest level of precision: we analyze each function once for
the whole program and generate one FUN SAFE theorem for it.
However, in our example, having only one FUN SAFE theorem

for each function results in imprecise analysis by forcing safety assertions from
instructions at different call-tree depths (e.g., foo() vs. baz()) to be framed onto
the same theorem (bar()). (We refer to the function-level CFG as a call-tree,
whose depth is the number of nested function calls.) This is logically equivalent



to different instances of the function’s stack overlapping in memory at the same
time, although during execution, only one instance of the function’s stack exists
in memory at any point in time, resulting in imprecise analysis. Hence, the
proof generation fails when there are safety assertions from a smaller call-tree
depth (e.g., foo()) than the call-tree depth of the currently-analyzed function
(e.g., baz()). Having one FUN SAFE theorem per-function per-call-tree-depth is
also insufficient, as two caller functions at the same call-tree depth could have
different stack sizes, resulting in the same contradiction as above.

On the other hand, in each function, we need to analyze each callee function
only once, regardless of how many times that callee function is called. We call this
analysis “single-function context-sensitive”(SFCS ). When analyzing a function
F, we need only one FUN SAFE theorem for each callee function C, regardless of
how many times C is called in F. Then, we can frame the safety assertions from
all the return-sites of C in the function F to the single theorem for C, as there
would not be any contradiction in the analysis. In our example, we can merge
all the safety assertions required at all the return-sites from bar() in foo(),
and add them to the FUN SAFE theorem for bar(). While there is some loss of
precision (e.g., the FUN SAFE theorem for the second call to bar() does not need
to consider the safety assertions that need to be discharged when calling baz()),
we now need to run SafeFunctionAnalysis fewer times.
Limitations. AUSPICE-R continues to analyze syscall wrapper functions using
CSCS analysis, as AUSPICE-R needs to generate a unique FUN SAFE theorem
to correctly consider the arguments passed to a syscall at each distinct call-site.

6 Evaluation

First, we evaluate the ability of AUSPICE-R (with §5 optimizations) to auto-
matically prove safety properties in ARM machine code with syscalls. We picked
2 classes of programs: (i) simple versions of file I/O utilities that we implemented
for Linux on the ARM platform; (ii) programs with hardware inputs/outputs on
the Raspberry Pi single-board-computer. All our test programs are Linux user-
mode programs on ARM, and compiled with an unmodified gcc toolchain for
ARMv6 with -O0 optimization. All proofs were generated using the HOL4 proof
assistant [22] on an Intel Core i7 2.6 GHz with 16 GB RAM. Our test programs
are available at http://users.ece.cmu.edu/~jiaqit/aplas16data .

6.1 File-based I/O

We implemented simple versions of three common file I/O utilities in C for Linux
on the ARM platform. These programs contained the read, write, open, and
close syscalls. Table 1 summarizes our test programs, their sizes and function-
ality, and the times taken to automatically prove the safety of each program.
Our results show that AUSPICE-R can prove safety automatically in realistic
programs with useful I/O functionality, and AUSPICE-R took less than 2 hours
to automatically prove the safety of each program.



Program Lines of C Instructions Proof Time Description

cat 411 207 26.9 mins Outputs contents of a file.

wc 427 641 95.1 mins Counts number of words in a file.

grep 428 621 40.2 mins Prints lines containing given string.

Table 1. Descriptions and proof times for file-based I/O utilities.

Program Lines Instruc- Call-Tree Proof Description
of C tions Depth Time

blink 418 619 3 58.7 mins Turn LED repeatedly on/off.

light 429 854 4 81.7 mins Use light-sensor to light LED when
dark.

lcd 559 2229 6 22.2 hours Print string to 16x2 monochrome
LCD.

fall-det 923 3331 6 47.9 hours Detect human falls with accelerom-
eter using algorithm in [13].

Table 2. Proof times for hardware I/O programs.

6.2 Embedded Software

We implemented 4 programs containing hardware inputs and outputs on the
Raspberry Pi. These programs contained the mmap, munmap, open, close, and
nanosleep syscalls. Table 2 describes and summarizes our programs, their sizes,
and the times taken to prove safety automatically. The proof times for the blink
and light test-programs are under 2 hours, and comparable to the proof times
for our file I/O examples above. The proof times for the lcd and fall-det

test-programs are significantly longer, as they are significantly larger, and have
much deeper call-trees: the run-time of AUSPICE-R’s inter-procedural analysis
is exponential in the depth of the call-tree. lcd and fall-det, with 2229 and
3331 instructions respectively are, to the best of our knowledge, the largest
programs for which safety properties have been automatically proved using an
approach that considers the full semantics of instructions (vs. 1104 instructions
using ARMor [27], which also uses the Cambridge ARM model [18]).

6.3 Proof Optimization

We report the proof times for programs that have been evaluated on prior tech-
niques, to evaluate AUSPICE-R’s optimizations. Table 3 summarizes our results
for our 3 test programs (without syscalls): memcpy, which copies an array of
integers; sort, which implements Insertion Sort; and string-search, from the
MiBench benchmark suite [12], which implements the Boyer-Moore string-search
algorithm. We compared AUSPICE-R’s proof times to our prior work, AUS-
PICE [24], for all 3 programs: AUSPICE-R’s safety proofs were between 252%
to 1297% faster. Also, AUSPICE-R’s proof time for string-search was 1067%
faster than ARMor [27] (which used an Intel Core i7 2.7 GHz). AUSPICE-R’s



proof optimizations significantly improved the times taken for automated safety
proofs.

Program Instruc- AUSPICE-R vs. AUSPICE [24] vs. ARMor [27]
tions Proof Time Proof

Time
AUSPICE-R
X% faster

Proof
Time

AUSPICE-R
X% faster

memcpy 116 6.5 mins 16.4 mins 252% - -

sort 337 9.4 mins 122 mins 1297% - -

string-
search

530 0.76 hours 6.05 hours 796% 8 hours 1067%

Table 3. Comparing AUSPICE-R’s proof times with AUSPICE [24] and ARMor [27].

Iterations of Analysis

Program Instructions CSCS (AUSPICE) SFCS (AUSPICE-R) Optimization

lcd 2229 2799 751 73%

fall-det 3331 5069 845 83%
Table 4. Comparison of number of iterations of analysis of Call-site Context-Sensitivity
(CSCS) vs. Single-Function Context-Sensitivity (SFCS) (§5).

To show the optimization gains from AUSPICE-R’s SFCS inter-procedural
analysis (§5), we compared the number of iterations of SafeFunctionAnalysis
(Fig. 3) in SFCS to that in CSCS analysis. The optimization gains are greatest
in programs with repeated calls to non-syscall-wrapper functions. We simulated
the number of iterations the inter-procedural analysis needs to run for lcd and
fall-det by analyzing their function-level call-trees. Table 4 summarizes the re-
sults of using SFCS over CSCS. The number of iterations of the inter-procedural
analysis for constructing a safety proof reduced by 73% for lcd, and by 83% for
fall-det, showing that SFCS made our analysis feasible for large test-programs.

7 Discussion

First, our axioms of syscall behavior provide a formal, succinct expression of our
expectations of the behavior of syscalls, as observed in user-mode. We envision
that these axioms can be used to empirically validate the behavior of syscalls in
future, e.g., through dynamic testing.

Second, we found our requirement of the read() syscall to accept only con-
crete lengths and buffer addresses to not be a significant limitation. To support
read()s to buffers of variable lengths and symbolic addresses, we implemented
a wrapper function that reads to a fixed length/address buffer, and copies its
contents to the final destination buffer.



8 Related Work

ARMor [27], and our prior work AUSPICE [24], automatically prove safety prop-
erties for ARM machine code using HOL4 [22], and are closest to AUSPICE-R.
ARMor supports only “bare-metal” programs running without an OS, while
AUSPICE supports user-mode machine code but not syscalls. Goel at al. [21]
reason about x86 machine code with syscalls in the ACL2 logic for “heavy-
weight”, manual proofs of functional-correctness, while AUSPICE-R automates
proofs of “light-weight” safety properties. Goel’s formalization of x86 syscalls
tracks OS-state that may not be user-mode-visible that is needed for functional
correctness proofs, while AUSPICE-R focuses only on user-mode-visible state
that impacts our safety properties.

Sequoll [9] performs model-checking on ARM machine code using the Cam-
bridge ARM model [18]. Bedrock [10] “mostly-automates” functional correctness
proofs for an idealized machine-language, whereas, AUSPICE-R proves safety
properties for machine code emitted by standard compilers. CompCert [16] is a
compiler that has been formally verified to preserve the semantics of well-behaved
C programs during compilation. VST [8] is a program logic for reasoning about
programs in Cminor (a CompCert intermediate language), whose claims hold in
its compiled machine code due to its use of CompCert. Verasco [14] is a formally
verified static-analyzer for Cminor whose guarantees carry over to its compiled
code due to CompCert. It checks for the absence of run-time errors that can cause
safety violations such as the ones AUSPICE-R proves the absence of, but does
not produce proofs for individual programs. SeaHorn [7] and Dafny [15] allow
users to specify source-code assertions for checking arbitrary properties, while
AUSPICE-R focuses on specific safety properties for CFI [6], without needing
user specifications.

9 Conclusion and Future Work

We have presented AUSPICE-R, an extension to AUSPICE [24] that: (i) au-
tomates safety-property proofs in ARM machine code containing system calls
by axiomatizing their user-mode-visible effects, and (ii) optimizes automated
safety-property proofs by leveraging common conventions in compiled code and
by providing a more efficient inter-procedural analysis. We have demonstrated
AUSPICE-R on simple file I/O utilities implemented for Linux on ARM, and on
programs containing hardware I/O on the Raspberry Pi single-board-computer.
We showed that AUSPICE-R is up to 12x faster and supports programs up to
3x larger than prior work.

In future, we plan to tackle the challenges associated with more complex
syscalls, e.g., for network communications, that may have more complex user-
mode effects. We also plan to investigate how our axioms of syscall behavior can
be used to aid dynamic testing of syscall-servicing behavior by OS kernels.



References

1. Application Binary Interface for the ARM Architecture, http://bit.ly/22OaMai
2. Linux Programmer’s Manual: Syscalls, http://bit.ly/1VChJMY
3. The ARM-THUMB Procedure Call Standard (2000), http://bit.ly/1NbOQhT
4. As Gadgets Shrink, ARM Still Reigns As Processor King (Sep 2013), http://

onforb.es/19LIzgd

5. ARM Architecture Reference Manual, ARMv7-A and ARMv7-R edition (2014)
6. Abadi, M., Budiu, M., Erlingsson, U., Ligatti, J.: Control-flow Integrity. In: ACM

CCS (2005)
7. A.Gurfinkel, T.Kahsai, A. Komuravelli, J.A.Navas: The SeaHorn Verification

Framework. In: CAV (2015)
8. Appel, A.: Verified Software Toolchain. In: ESOP (2011)
9. Blackham, B., Heiser, G.: Sequel: A Framework for Model Checking Binaries. In:

IEEE RTAS (2013)
10. Chlipala, A.: Mostly-Automated Verification of Low-Level Programs in Computa-

tional Separation Logic. In: PLDI (2011)
11. G. Klein et al.: seL4: Formal verification of an OS kernel. In: SOSP (Oct 2009)
12. Guthaus, M. et al.: MiBench: A Free, Commercially Representative Embedded

Benchmark Suite. In: IEEE WWC Workshop (2001)
13. Jia, N.: Detecting Human Falls with a 3-Axis Digital Accelerometer (2009), http:

//bit.ly/23fXhFE

14. Jourdan, J.H., Laporte, V., Blazy, S., Leroy, X., Pichardie, D.: A formally-verified
C static analyzer. In: POPL (2015)

15. K. Rustan M. Leino: Dafny: An Automatic Program Verifier for Functional Cor-
rectness. In: LPAR (2010)

16. Leroy, X.: Formal verification of a realistic compiler. Communications of the ACM
52(7) (2009)

17. Miller, C., Valasek, C.: Remote Exploitation of an Unaltered Passenger Vehicle,
http://bit.ly/1Xk71rn

18. Myreen, M., Fox, A., Gordon, M.: Hoare Logic for ARM Machine Code. In: FSEN
(2007)

19. Myreen, M., Gordon, M.: Hoare Logic for Realistically Modeled Machine Code. In:
TACAS (2007)

20. Reynolds, J.: Separation Logic: A Logic for Shared Mutable Data Structures. In:
IEEE LICS (2002)

21. S. Goel et al.: Simulation and Formal Verification of x86 Machine-Code Programs
that make System Calls. In: FMCAD (2014)

22. Slind, K., Norrish, M.: A Brief Overview of HOL4. In: TPHOLs (2008)
23. Tan, J., Tay, H., Drolia, U., Gandhi, R., Narasimhan, P.: PCFIRE: Towards

Provable Preventative Control-Flow Integrity Enforcement for Realistic Embed-
ded Software. In: EMSOFT (2016)

24. Tan, J., Tay, H., Gandhi, R., Narasimhan, P.: AUSPICE: Automatic Safety Prop-
erty Verification for Unmodified Executables. In: VSTTE (2015)

25. Wahbe, R., Lucco, S., Anderson, T., Graham, S.: Efficient Software-Based Fault
Isolation. In: SOSP (1993)

26. Yang, X., Chen, Y., Eide, E., Regehr, J.: Finding and Understanding Bugs in C
Compilers. In: PLDI (2011)

27. Zhao, L., Li, G., Sutter, B.D., Regehr, J.: ARMor: Fully Verified Software Fault
Isolation. In: EMSOFT (2011)


