
[Internal Use Draft] Superscalar Club Meeting #4, Slide 1, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]

Superscalar* Club Meeting #4

*we really mean: superscalar speculative out-of-order

James C. Hoe
Department of ECE

Carnegie Mellon University

[Internal Use Draft] Superscalar Club Meeting #4, Slide 2, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]

Goal set when we started

• Achieve an RTL-precise understanding of
superscalar speculative out-of-order register
dataflowas with 5-stage pipeline in 18-447
– know you could make a working design and know

what it does (how good is it?)
– know shortcomings and limits in the

simplifications to help get started
– know what you have not figured out yet

Test: Able to read the R10K paper and say definitely
what you understand and what you don’t

[Internal Use Draft] Superscalar Club Meeting #4, Slide 3, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]

Plan of Attack
• Focus

– mainly on register dataflow
– lightly on memory dataflow
– not at all on i-fetch (a well decoupled subject both

conceptually and physically)

• Path
– further develop concepts in L20 we didn’t have

time for
– study Metaflow DRIS to flesh out conceptual-level

understanding
– study how things were really done in R10K
– play with an RTL-precise executable model (in C++)

[Internal Use Draft] Superscalar Club Meeting #4, Slide 4, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]

Review: Tomasulo with
Physical Register File Rename

[Internal Use Draft] Superscalar Club Meeting #4, Slide 5, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]

Problem Setup

I0: r4  r4 + r6
I1: r2  r2 + r6
I2: r4  r2 * r4
I3: r4  r4 + r6
I4: r2  r2 + r6
I5: r2  r2 + r4

[Internal Use Draft] Superscalar Club Meeting #4, Slide 6, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]

Timing Assumptions (Arbitrary)

• Up to two instructions of any type can be dispatched to
their respective RS in each cycle

• An instruction can begin execution as early as the same
cycle it is dispatched to an RS

• Execution priority is given to the older instruction in RS
• One 1-cyc adder and one pipelined 2-cyc multiplier
• Producer notifies its dependent insts in its last execution

cycle (CBD-based, no “dead reckoning”)
• An instruction is removed from RS after its last execution

cycle
• If appropriate, an instruction can commit/retire as early as

the cycle after its last execution cycle.

[Internal Use Draft] Superscalar Club Meeting #4, Slide 7, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]

Worksheet for You to Try

[Internal Use Draft] Superscalar Club Meeting #4, Slide 8, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]

I0: r4  r4 + r6; I1: r2  r2 + r6

/D/J

[Internal Use Draft] Superscalar Club Meeting #4, Slide 9, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]

I0: r4  r4 + r6; I1: r2  r2 + r6

I1: r2  r2 + r6; I2: r4  r2 * r4; I3: r4  r4 + r6

/D/J

/G /J/F

[Internal Use Draft] Superscalar Club Meeting #4, Slide 10, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]

I2: r4  r2 * r4; I3: r4  r4 + r6; I4: r2  r2 + r6; I5: r2  r2 + r4

I1: r2  r2 + r6; I2: r4  r2 * r4; I3: r4  r4 + r6

/G /J/F

[Internal Use Draft] Superscalar Club Meeting #4, Slide 11, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]

I2: r4  r2 * r4; I3: r4  r4 + r6; I4: r2  r2 + r6; I5: r2  r2 + r4

I2: r4  r2 * r4; I3: r4  r4 + r6; I4: r2  r2 + r6; I5: r2  r2 + r4

[Internal Use Draft] Superscalar Club Meeting #4, Slide 12, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]

I3: r4  r4 + r6; I4: r2  r2 + r6; I5: r2  r2 + r4

I2: r4  r2 * r4; I3: r4  r4 + r6; I4: r2  r2 + r6; I5: r2  r2 + r4

[Internal Use Draft] Superscalar Club Meeting #4, Slide 13, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]

I5: r2  r2 + r4

I3: r4  r4 + r6; I4: r2  r2 + r6; I5: r2  r2 + r4

[Internal Use Draft] Superscalar Club Meeting #4, Slide 14, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]

I5: r2  r2 + r4

[Internal Use Draft] Superscalar Club Meeting #4, Slide 15, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]

Precise Exception Rewind

• Suppose at the end of I2’s second cycle of
execution, I2 encounters an exception and cannot
complete.

• See https://github.com/jhoecmu/ooo-beta for
more

[Internal Use Draft] Superscalar Club Meeting #4, Slide 16, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]

Memory Dataflow Concepts

[Internal Use Draft] Superscalar Club Meeting #4, Slide 17, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]

Superscalar Speculative Out-of-Order
• Modern CPUs can have over 100 instructions in

out-of-order execution scope
– ROB has 100’s of entries
– RS do not have 100’s of entries

• Keep in mind, if average basic block is 7 inst, over
10 levels of branch prediction

• Important Question:
– how much more ILP is uncovered with look ahead
– how much useful work is done during look ahead

Ans: not much and not much

[Internal Use Draft] Superscalar Club Meeting #4, Slide 18, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]

Truth about Superscalar Speculative OOO

• If memory speed kept up with core speed, we
would still be building in-order pipelines

• But, by 2005 we were seeing
e.g., Intel P4 at 4+GHz

• Speculative OOO has really been about
– finding independent work to do after cache hit&miss
– getting to future cache misses as early as possible
– overlapping multiple cache misses for BW (aka MLP)

[Internal Use Draft] Superscalar Club Meeting #4, Slide 19, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]

Scheduling Memory Operations

• Memory data dependence  RAW, WAR, WAW
• Addresses use GPR register dependence
• Storing has side-effect that cannot be undone

must wait until commit
• When earliest to safely start LW on uniprocessor?

– no more older pending SW OR
– no older SW with conflicting address (requires

knowing all older SW addresses) OR
– just go if no known conflict; reload if new RAW hazard

later

What about MP memory consistency?

[Internal Use Draft] Superscalar Club Meeting #4, Slide 20, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]

IBM 360/91 FP Module [1967]

Copyright © 2007, Elsevier
Inc. All rights reserved.

in
or

de
r

out-of-order
issue
window

inorder?

[Internal Use Draft] Superscalar Club Meeting #4, Slide 21, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]

Tomasulo’s Algorithm
RS entry
- Busy: in use
- Op: operand
- Vj: op1 value
- Vk: op2 value
- Qj: op1 RS-tag
- Qk: op2 RS-tag

case (RegisterStat)
0: RF val current
RS-tag:
to be produce by
corresponding
instruction

fr
om

 [H
en

ne
ss

y&
Pa

tt
er

so
n,

 C
AA

Q
A]

[Internal Use Draft] Superscalar Club Meeting #4, Slide 22, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]

Tomasulo + Speculative Execution

Copyright © 2007, Elsevier
Inc. All rights reserved.

[Internal Use Draft] Superscalar Club Meeting #4, Slide 23, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]

Tomasulo’s Algorithm + ROB

ROB Entry:
is Busy / Instruction / logical Dest reg / dest Value / value is Ready

RegisterStat: reg is Busy / renamed to Reorder buffer entry #

fr
om

 [H
en

ne
ss

y&
Pa

tt
er

so
n,

 C
AA

Q
A]

[Internal Use Draft] Superscalar Club Meeting #4, Slide 24, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]

Tomasulo’s Algorithm + ROB

fr
om

 [H
en

ne
ss

y&
Pa

tt
er

so
n,

 C
AA

Q
A]

? subtle

[Internal Use Draft] Superscalar Club Meeting #4, Slide 25, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]

DRIS is also Address Queue
• LW/SW issued 1st-time as “ADD”

– compute base+offset
– result written to Data; complete in dataflow order

• SW issue 2nd-time on retire
• LW issue 2nd-time when RAW-free

1. wait until all older SW addresses available
2. check (by CAM) LW addr against older SW addr’s
3. If conflict, forward youngest matching SW to LW

• OOO for shared-memory MP must obey
additional ordering rules

[Internal Use Draft] Superscalar Club Meeting #4, Slide 26, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]

Memory Dataflow Realities

[Internal Use Draft] Superscalar Club Meeting #4, Slide 27, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]

What makes it hard

• Memory dependencies are not static
– LW and SW addresses need to be calculated, and
– translated (to check RAW/WAR/WAW synonyms)

• Memory addresses are wider than register names
• Memory instructions take longer to execute

relative to other instructions types
• Scheduling takes into account O(N2) dependency

relationships in program order
• More special ordering rules if shared memory MP
• Want to load as soon as possible!!!

[Internal Use Draft] Superscalar Club Meeting #4, Slide 28, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]

R10K Load Data Path

R4

R4

stage 4 stage 5

R5

R5

R5

stage 3stage 2 [Fig 10, Yeager 1996, IEEE Micro]

[Internal Use Draft] Superscalar Club Meeting #4, Slide 29, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]

Memory Disambiguation

from [Gonzalez, et al., 2010]

[Internal Use Draft] Superscalar Club Meeting #4, Slide 30, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]

Address Queue (16 entries)
• Track LW/SW and addr in program order
• Addr calculation issued in dataflow order
• N-comparators compares new/external

addr to each known-so-far addr to detect
– LW/SW RAW hazards
– cache line return after load miss
– external invalidations (more later)

• Pair-wise RAW hazards matrix (N2 bits)
updated incrementally after each LW/SW
addr becomes known

• LW do not issue against known/potential
RAW hazard or pending cache miss

addr calc
&translate

=
=
=
=
=
=
=
=
=
=

=

(0,0)

[Internal Use Draft] Superscalar Club Meeting #4, Slide 31, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]

Dependence Matrix

from [Gonzalez, et al., 2010]

indetermination matrix dependence matrix

oldest youngest

store

load

at commit

at later of
2 addr
in a RAW
pair
(st<-lw)

also
check
dep
matrix

[Internal Use Draft] Superscalar Club Meeting #4, Slide 32, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]

L0

L0

L0

I1

I2Request

Issue

Operands

Execute

Addr Calc

D-cache/TLB

L0 I1

L0

L0

I1

I1

L0 requests issue
L0 granted issue if tag

and data array free next cycle

L0’s address
presented to

cache & TLB

Best Case Load Timing

L0’s result
forwarded
to I1

[Internal Use Draft] Superscalar Club Meeting #4, Slide 33, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]

Last Slide is only for “Best Case”
1. TLB, tag bank, and data bank all available

– 3 independently contended/arbitrated resources
– external CC lookup has priority use of tag bank

2. TLB and tag bank both have to hit
3. No load-after-store dependence

Probably requires no older stores at all to succeed;
no time to check address queue after TLB lookup

• Extra Note: no store-to-load forwarding in R10K
– quite hard (e.g., how to know store data is ready?)
– little value added for large GPR ISAs (whereas x86

required it due to frequent register spills)

[Internal Use Draft] Superscalar Club Meeting #4, Slide 34, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]

OOO and Memory Consistency

[Internal Use Draft] Superscalar Club Meeting #4, Slide 35, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]

SC doesn’t come freely in OOO
• Threads T1 and T2 communicate via shared memory

locations X and Y
– T1 produces result in X to be consumed by T2
– T1 signals readiness to T2 by setting Y

• This works because SC says T1 and T2 must see the
stores to X and Y in the same order

T1:
Y is initially 0
……
compute v
store (X, v)
store (Y, 1)
……

T2:
……
do {

ready=load Y
} while (!ready)
data = load X
……

reorder?
reorder?

[Internal Use Draft] Superscalar Club Meeting #4, Slide 36, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]

• T1: inorder store commit by core no guarantee
– reorder by cache (e.g., non-blocking miss handling)
– non-atomic write (e.g., write-through cache, or MSI

that allow M and S to overlap transiently)
• T2: speculative OOO allows reorder across data-

dependent control dependence (whether load X
happens depends on value of load Y)

OOO and Consistency

T1:
Y is initially 0
……
compute v
store (X, v)
store (Y, 1)

T2:
……
do {

ready=load Y
} while (!ready)
data = load X

reorder?
reorder?

[Internal Use Draft] Superscalar Club Meeting #4, Slide 37, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]

Aside: Write Atomicity

I S

M

Rd/BusRd

Rd/--

Wr/Invalidate

Rd/--,
Wr/--

<evict>/--

<e
vi

ct
>/

Bu
sW

r

W
r/

Bu
sR

dO
w

n

start

I S

M

BusRd/--

BusRd/
<retry>,
BusWr

BusRdOwn/--,
Invalidate/--

BusRdOwn/
<retry>,
BusWr

*
CPU-driven transitions

Q: when can writer’s cache promote SM after issuing invalidate?
A: if WC, go for it; if SC, strictly after all SI (how to know?).

Bus-driven transitions

[Internal Use Draft] Superscalar Club Meeting #4, Slide 38, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]

• WC only imposes uniprocessor memory
dependence: Ri(x)<Wj(x); Wi(x)<Rj(x); Wi(x)<Wj(x)
All optimizations apply on sequential parts of prgm

• Program insert explicit memory fence instructions
to force ordering when it matters

• Implementation wise, heavy-weight fence stalls
subsequent LW/SW progress until full ordering

Weak Consistency (WC)

T1:
Y is initially 0
……
compute v
store (X, v)
fence
store (Y, 1)

T2:
……
do {

ready=load Y
} while (!ready)
fence
data = load X

[Internal Use Draft] Superscalar Club Meeting #4, Slide 39, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]

• Assume X and Y initially 0

• What are allowed values for v2 under WC?
Only values on the table are 0 and 3, can it be 3?

WC says T2’s load can see the value 3
introduced by its own future store!!

It can get weird: “Ghost Loads”

T1:
v1=load X
store (Y, v1)

T2:
v2=load Y
store (X, 3)

[Internal Use Draft] Superscalar Club Meeting #4, Slide 40, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]

R10K Speculative SC
• Stores commit in-order when retired, but also need

– cache block in M ready and locked at SW retirement
– full invalidation ack in acquiring M (write atomicity)

• Loads attempted speculatively and out-of-order
– address of invalidated cache blocks checked against

speculative loads in load/store queue
– if a loaded cache-block invalidated before load retires,

“soft exception” restart from oldest affected load
– load retires only if the fetched value is still “current”

 Loads and stores appears executed in program order
at the commit point
 No penalty for sequential programs!!!

TS
O

 if
 ju

st
 th

is

