
[Internal Use Draft] Superscalar Club Meeting #3, Slide 1, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]

Superscalar* Club Meeting #3

*we really mean: superscalar speculative out-of-order

James C. Hoe
Department of ECE

Carnegie Mellon University

[Internal Use Draft] Superscalar Club Meeting #3, Slide 2, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]

References Used

• Popescu, et al., The Metaflow Architecture, 1991.
• Yeager, MIPS R10K Superscalar Microprocessor,

1996.
• Gonzalez, et al., Processor Microarchitecture: An

Implementation Perspective, Synthesis Lectures,
2010.

• Hennessy&Patterson, Computer Architecture: A
Quantitative Approach, 5th Edition, 2017.

• Johnson, Superscalar Microprocessor Design, 1990.
• Shen&Lipasti, Modern Processor Design:

Fundamentals of Superscalar Processors, 2013.

[Internal Use Draft] Superscalar Club Meeting #3, Slide 3, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]

Today’s Goal:
Really get under the R10K paper

[Internal Use Draft] Superscalar Club Meeting #3, Slide 4, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]

This should mean something to you

decode

rename tbl

fetch

ROB

RS

regfile
(inorder & lookahead)

ALU1 ALU2 LD/ST

dispatch

issue

schedule

[Internal Use Draft] Superscalar Club Meeting #3, Slide 5, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]

Last Time: Metaflow DRIS

[Internal Use Draft] Superscalar Club Meeting #3, Slide 6, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]

Metaflow Datapath

i-cache

issue

DRIS
(Renaming + Reservation
Stations + Reorder Buff.)

Retire

Scheduler

Register File

branch pred.

lookahead state

inorder state

[Internal Use Draft] Superscalar Club Meeting #3, Slide 7, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]

Not Unreasonable if . . .

• Separate RS and address queue from DRIS/ROB
– RS sized to expose ILP

Can’t be large: CAM-intensive, critical timing loop
– ROB sized to cover long latencies (cache miss)

Modern ROB size much larger than RS size

• Use a map-table for rename, keeping in mind
– cheaper but not exactly cheap
– still need to see how to rewind a map-table (see

branch rewind stack today)

End up looking like Pentium-Pro

[Internal Use Draft] Superscalar Club Meeting #3, Slide 8, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]

Onto MIPS R10K

[Internal Use Draft] Superscalar Club Meeting #3, Slide 9, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]

MIPS R10000 circa 1996

• 4-way superscalar
• 5 execution pipelines

2 integer, FP add, FP mult, ld/st
• Micro-dataflow instruction scheduling

16 int +16 FP instruction window
• Register renaming + memory renaming

64 int registers for inorder and lookahead
• Speculative OOO

32 instructions in-flight; 4 unresolved branches
• Precise Exception

[Internal Use Draft] Superscalar Club Meeting #3, Slide 10, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]

Superscalar, Speculative, Out-of-order

[Fig 2, Yeager 1996, IEEE Micro]

our focus

[Internal Use Draft] Superscalar Club Meeting #3, Slide 11, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]

Pipeline Stages

[Fig 2, Yeager 1996, IEEE Micro]

[Internal Use Draft] Superscalar Club Meeting #3, Slide 12, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]

Let’s Talk About

• Register renaming

• Instruction Scheduling

• Speculative Execution Rewind

[Internal Use Draft] Superscalar Club Meeting #3, Slide 13, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]

physical
registers

(t0 ... t63)

rename
table

On-the-fly HW Register Renaming

• Maintain mapping from ISA reg. names to physical registers
• When decoding an instruction that updates ‘rx’:

– allocate unused physical register ty to hold inst result
– set new mapping from ‘rx’ to ty

– younger instructions using ‘rx’ as input finds ty

• De-allocate a physical register for reuse
when it is never needed again?

^^^^^when is this exactly?

ISA name
e.g. r12

rename
t56

[Internal Use Draft] Superscalar Club Meeting #3, Slide 14, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]

Rename: add rd, rs, rt
Assume new is ID of current instruction

RN1[new]= rs ; RN2[new]= rt ;
Locked1[new]= false; Locked2[new]=false;
ID1[new]= not_valid; ID2[new]=not_valid;
forall valid id // over all active DRIS entries

if ((RD[id] == rs) && Latest[id])
ID1[new] = id ;
Locked1[new]=!Executed[id] ;

forall valid id
if ((RD[id] == rt) && Latest[id])

ID2[new] = id ;
Locked2[new]=!Executed[id] ;

Lock1 RS1 ID1
Source 1

Lock2 RS2 ID2
Source 2

latest RD Data
Destination

[Internal Use Draft] Superscalar Club Meeting #3, Slide 15, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]

Elements of Register Renaming

• A pool of extra registers
– Use as temporary, single-assignment registers in

lookahead state (eliminates WAW and WAR)
– logically separate from inorder committed state

• Allocation and mapping mechanism
– given a source architectural reg name, where is its

current definition (value, location, ready?)
– given a dest architectural reg name, where to find

an available new rename register
– when to reclaim a rename register?
– how to recover after misprediction or exception

[Internal Use Draft] Superscalar Club Meeting #3, Slide 16, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]

ROB Rename Register Management

co
m

m
itt

ed
in

or
de

r s
ta

te

lo
ok

-a
he

ad
st

at
e

to “form”
architectural state
for decode

from [Gonzalez, et al., 2010]

same physical array

Need to copy from lookahead to inorder on commit

[Internal Use Draft] Superscalar Club Meeting #3, Slide 17, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]

“Free List” Physical Register File
Management

Unified storage
allocated for
inorder and
lookahead

to “form”
architectural state
for decode

fr
om

 [G
on

za
le

z,
 e

t a
l.,

 2
01

0]

No need to copy from lookahead to inorder on commit

[Internal Use Draft] Superscalar Club Meeting #3, Slide 18, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]

For Example Intel P3 vs P4

??

[The Microarchitecture of the Pentium 4 Processor, Intel Technology Journal, 2001]

[Internal Use Draft] Superscalar Club Meeting #3, Slide 19, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]

PReg Life Cycle, R10K

• at any moment, each preg index (ptag) must be in
exactly one entry of map-table, valid free, or valid last

• # preg (and freelist size) can be decoupled from ROB
• Steps 1 and 2 need to be reversible

tail

head

2 4 1
freelist

map-table

rs rt rd
current IR

1. allocate

2. displaced

3. deallocate
lastROB

[Internal Use Draft] Superscalar Club Meeting #3, Slide 20, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]

Easier Than You Think

• # physical register (preg) =
arch reg (=32)

+ # ROB entries (=32 in R10K)
• At any moment

– 32 preg hold committed
inorder state

– rest associated 1 per ROB
entry---either in-use
(lookahead dest) or not in-
use (freelist)

• Freelist management can

tail

head

ROB
free
list

head

tail

ride ROB’s coattail

[Internal Use Draft] Superscalar Club Meeting #3, Slide 21, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]

Management Algorithm
• At rename/dispatch

– rename rd to corresponding
ROB/freelist preg

– save in ROB rd’s previous
preg mapping (read from
map-table before updating)

– if no dest or rd=r0, save
unused new preg as last

• At commit
– current dest preg inorder
– write last mapping into

freelist (deallocated)
• On rewind? On exception?

tail

head

ROB free
listlast

save old mapping
from map-table

do nothing

[Internal Use Draft] Superscalar Club Meeting #3, Slide 22, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]

Register Map-table

• To rename rs, look up ptag and busy
• R10K map-table needs 4-way x (3 read + 1 write port)!!

Also need redirect across same-cycle renamed instructions
• On rewind, map-table restored by Branch Rewind Stack
• On exception, map-table restored sequentially from last

map
table

unified physical regfile
(inorder, lookahead, free)

busy
table

ptag

rs

databusy

busy if corresponding
preg value not
“available” (even
through forwarding)

[Internal Use Draft] Superscalar Club Meeting #3, Slide 23, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]

Let’s Talk About

• Register renaming

• Instruction Scheduling

• Speculative Execution Rewind

[Internal Use Draft] Superscalar Club Meeting #3, Slide 24, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]

Dataflow Execution Ordering
• Maintain a buffer of many pending instructions,

a.k.a. reservation stations (RSs)
– wait for functional unit to be free
– wait for register RAW hazards to resolve (i.e.,

required input operands to be produced)

• Issue instructions for execution in dataflow order
– select instructions in RS whose operands are

available
– give preference to older instructions (heuristical)

• A completing instruction frees pending, RAW-
dependent instructions to execute

Sounds like good plan but exactly how?

[Internal Use Draft] Superscalar Club Meeting #3, Slide 25, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]

Micro-Dataflow Scheduling

• The scheduler dispatches according to
– availability of pending instructions’ operands
– availability of the functional units
– chronological order of the instructions

Is oldest-first the “best” strategy?
• Find instructions such that

valid[id] && !Locked1[id] && !Locked2[id] &&

!Dispatched[id] && !Executed[id] &&
notBusy(fxnUnit[id])

Think about the circuits & multiply for superscalar

[Internal Use Draft] Superscalar Club Meeting #3, Slide 26, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]

R10K Integer Queue
• Like Tomasulo’s Reservation Stations but without

operand value
– operands represented by renamed ptag and busy

status
– an instruction issues when operands ready (either in

regfile or can be forwarded in time)

• Keep in mind, busy is cleared when dependent-on
instruction selected for issue not when it completes

[Internal Use Draft] Superscalar Club Meeting #3, Slide 27, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]

I1 I2

I1 I2

I1 I2

I1 I2

Request

Issue

Operands

Execute

I1’s new data
dep. info

latched I1 requests issue
I1 granted issue

I1 fetches operands (RF or forwarding)
I1 announces data dep. resolution (to I2)

I1’s operand
latched

I1’s result
forwarded
to I2

I1’s result
latched

I1’s result
written to RF

Basic Integer Timing (Best Case)

combinationally

dataflow
resolution

[Internal Use Draft] Superscalar Club Meeting #3, Slide 28, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]

Integer Queue Entry

OpA Rdy

or

=

=

=ptag from ALU2

OpB Rdy OpC Rdy

request

grant

priority
scheduler

1-per-cyc

DestOp

ptag from LD
How many
CAM ports do
you count?

x1
6

fetch operand (RF or forward)

execute, stage 4

issue/op, stage 3

[Internal Use Draft] Superscalar Club Meeting #3, Slide 29, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]

Scheduling Loop Critical Path

OpA Rdy

or

=

=

=ptag from ALU2

OpB Rdy OpC Rdy

request

grant

priority
scheduler

1-per-cyc

DestOp

ptag from LD
How many
CAM ports do
you count?

x1
6

execute, stage 4

fetch operand (RF or forward)
issue/op, stage 3

[Internal Use Draft] Superscalar Club Meeting #3, Slide 30, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]

Forwarding

stage 3 stage 4

in
te

ge
r r

eg
 fi

le
in

te
ge

r q
ue

ue

ALU

ptag

ALU1 result

AL
U

2
re

su
lt

Lo
ad

 re
su

lt

[Internal Use Draft] Superscalar Club Meeting #3, Slide 31, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]

Load Data Path

R4

R4

stage 4 stage 5

R5

R5

R5

stage 3stage 2 [Fig 10, Yeager 1996, IEEE Micro]

[Internal Use Draft] Superscalar Club Meeting #3, Slide 32, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]

L0

L0

L0

I1

I2Request

Issue

Operands

Execute

Addr Calc

D-cache/TLB

L0 I1

L0

L0

I1

I1

L0 requests issue
L0 granted issue if tag

and data array free next cycle

L0’s address
presented to

cache & TLB

Best Case Load Timing

L0’s result
forwarded
to I1

[Internal Use Draft] Superscalar Club Meeting #3, Slide 33, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]

L0

L0

L0

I1

I2Request

Issue

Operands

Execute

Addr Calc

D-cache/TLB

I1

L0

L0

I1

I1

L0 requests issue
L0 granted issue if tag

and data array free next cycle

L0’s address
presented to

cache & TLB

Load Timing if Miss or Other Issues

canceled and
lose 1 issue
cyc since too
late to find an
alternate

L0 will
rerun later

[Internal Use Draft] Superscalar Club Meeting #3, Slide 34, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]

Address Queue

OpA Rdy

or

=

=
=

and request

grant

stage 3: issue

Dest

stage 4: addr calculation

to IntQs

from IntQ

from IntQ

stage 5: cache lookup stage 6: Writeback

...

[Internal Use Draft] Superscalar Club Meeting #3, Slide 35, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]

“Tentative” Release and Cancellation

Load Dest
(tentative)

Rdy

set reset

tentative

set reset

cache miss

or

=

=
=

IntQ Dest

IntQ Dest

OpA

cancel
issue

decision

set 1-cyc cancellation
window if released
by load

[Internal Use Draft] Superscalar Club Meeting #3, Slide 36, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]

Let’s Talk About

• Register renaming

• Instruction Scheduling

• Speculative Execution Rewind

[Internal Use Draft] Superscalar Club Meeting #3, Slide 37, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]

Control Flow Speculation

• Leading Speculation
– follow through multiple branch predictions
– track speculative instructions as lookahead
– preserve march state at branch dispatch for rewind

NT T NT T NT T NT T

NT T NT T

NT T

[Internal Use Draft] Superscalar Club Meeting #3, Slide 38, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]

Mis-speculation Recovery

• When a branch is evaluated, if prediction
confirmed, nothing more to do (except to
deallocate no-longer-needed recovery state)

• Else use recovery state (deallocate after use)
– clear wrongpath instructions and their effects
– restart down “correct” path

NT T NT T NT T NT T

NT T NT T

NT T


[Internal Use Draft] Superscalar Club Meeting #3, Slide 39, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]

Rewinding Tomasulo with ROB

• Inorder RF state never needs undo’ing
• Lookahead RF state tied to ROB
• Restoring architectural state view (i.e. map-table)

– at decode, record in ROB, the logical dest and the
overwritten previous mapping

– on rewind, walk-back ROB one entry at a time to
restore register map-table




What happens if previous
mapping is to an already
retired ROB entry? How do
know that?

fr
om

 [G
on

za
le

z,
 e

t a
l.,

 2
01

0]

[Internal Use Draft] Superscalar Club Meeting #3, Slide 40, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]

Rewind cannot wait for the head/oldest

youngest

oldest

youngest

oldest

mispredict branch

oldest

youngest

oldest

youngest

oldest

mispredict

LatestLatestLatestLatest

Branch Stack
(more next wk)

this
can’t

be
SRAM

• Set tail ptr to after mispredicted
branch to restart . . .

• What about Latest?

[Internal Use Draft] Superscalar Club Meeting #3, Slide 41, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]

Restoring State on Rewind

• ROB held stateeasy
– rewind by decrementing tail pointer; head pointer

never affected by rewind
– R10K freelist synchronized with ROB

• Recover overwritten stateexpensive
– take full snapshot (e.g. map table) at branch time
– constant time restore on mispredict

• Delete non-ROB wrongpath statemessy
– locate anything younger than rewind point
– many sites to check (e.g., issue queue, FU pipeline)
– too expensive to decide by comparing tags

[Internal Use Draft] Superscalar Club Meeting #3, Slide 42, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]

Branch Rewind Stack (BRS)
• Not a stack; not a monolithic structure

– allocate a slot when a branch dispatch
– deallocate when branch resolve (right or wrong)
– deallocate when branch (on wrongpath) killed

• A BRS slot snapshots at branch dispatch
– tail (but not head) pointer of ROB
– head (but not tail) pointer of freelist (if decoupled)
– complete map-table (Map-table cannot be vanilla

multiported SRAM)

R10K dispatch stops after 1st branch in a cycle
• On misprediction, restore from snapshot

[Internal Use Draft] Superscalar Club Meeting #3, Slide 43, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]

Rewinding Out-of-Order Entities

• A bitmask indicate currently allocated BRS slots
– each set-bit corresponds to an unresolved branch
– a speculative, out-of-order entity picks up bitmask

value at time of its creationneed to be removed if
any of the indicated branches mispredicts

• Examples of speculative out-of-order entities
– instructions in RS or anywhere else not ROB
– a BRS slot itself

• A resolved branch broadcasts its BRS position
– ignored by older entities, bit not set in their mask
– caught by younger entities, bit is set in their mask

[Internal Use Draft] Superscalar Club Meeting #3, Slide 44, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]

Mis-speculation Recovery

• Allocate BRS entry on decoding a branch;
highlighted bit indicate allocated to that branch

• Inst pickup current BRS mask of unresolved branch
– non-zero mask means speculative
– 1 bit indicates dependence on unresolved branch

• If --1- branch mispredicts, abort insts w. mask xx1x

NT T NT T NT T NT T

NT T NT T

NT T
1000

1100

1110

1000

1100

1110

abort xx1x
0000

[Internal Use Draft] Superscalar Club Meeting #3, Slide 45, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]

Mis-speculation Recovery

• Level 3 branch resolved
– no longer occupy a stack entry
– subsequent insts only depend on level 1 and 2

• If 1--- branch resolves to be correct
– reset 1--- in all insts (including branches)
– free corresponding BRS entry for reuse

NT T NT T NT T NT T

NT T NT T

NT T
1000

1100

1100

1000

1100

1100



reset 1000
0000

[Internal Use Draft] Superscalar Club Meeting #3, Slide 46, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]

Mis-speculation Recovery

• Level 1 branch resolved
– no longer occupy a stack entry
– following inst segment no longer speculative

• If -1-- branch mispredicts
– abort all insts with mask x1xx
– free corresponding BRS entry for reuse

NT T NT T NT T NT T

NT T NT T

NT T
0000

0100

0100

0000 nonspeculative

0100

0100

abort 0100
0000

[Internal Use Draft] Superscalar Club Meeting #3, Slide 47, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]

Mis-speculation Recovery

• No unresolved branches
• No BRS in use
• No speculative instructions

NT T NT T NT T NT T

NT T NT T

NT T
0000

0000

0000

0000

0000

[Internal Use Draft] Superscalar Club Meeting #3, Slide 48, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]

Mis-speculation Recovery

• On next branch prediction, allocate any free BRS
entry to continue speculatively

NT T NT T NT T NT T

NT T NT T

NT T
0000

0000

0000

0000

1000

1000

0000

[Internal Use Draft] Superscalar Club Meeting #3, Slide 49, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]

Reset and Abort

• On misprediction, any out-of-order entity with branch
mask intersecting with the abort mask is eliminated

• On correct prediction, the corresponding bit (reset
mask) is cleared in ALL branch masks in system

Either way, corresponding BRS slot freed for reuse

OpA Rdy

or

=

=
=

OpB Rdy

priority
scheduler

Dest BrMask

(1-hot)

intersect

reset
mask

abort
mask

[Internal Use Draft] Superscalar Club Meeting #3, Slide 50, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]

What about Exception
• Different from branch misprediction rewind

– could occur at any instruction (not just branches)
– doesn’t happen very frequently
– only handled as the oldest instruction in ROB

• Easy to clear younger instructions once exception
is oldest in ROB:
– rewind ROB tail pointer (and freelist head pointer)
– zap all out-of-order structures and state

• No backup map-table at all exception points
– R10K reads back sequentially from last of ROB
– Intel P4 maintains a retirement map-table

[Internal Use Draft] Superscalar Club Meeting #3, Slide 51, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]

Before Next Time

• Memory Dataflow
– Section 6.4 of Gonzalez, et al.
– “Memory Reference Instructions”, Metaflow, p65.
– “Address Queue”, R10K, p34.
– “Memory Hierarchy”, R10K, p37.

• https://github.com/jhoecmu/ooo-beta
– download, build, and do walk-thru in README.md
– run in a debugger to step through a few

instructions’ worth of operations
– drill into a specific structure, e.g., map table

