CarnegieMellon

Superscalar’ Club Meeting #3

*we really mean: superscalar speculative out-of-order

James C. Hoe
Department of ECE
Carnegie Mellon University

[Internal Use Draft] Superscalar Club Meeting #3, Slide 1, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]



CarnegieMellon

References Used

4 Popescu, et al., The Metaflow Architecture, 1991.

*Yeager, MIPS R10K Superscalar Microprocessor,
1996.

e Gonzalez, et al., Processor Microarchitecture: An
Implementation Perspective, Synthesis Lectures,
2010.

e Hennessy&Patterson, Computer Architecture: A
Quantitative Approach, 5th Edition, 2017.

e Johnson, Superscalar Microprocessor Design, 1990.

e Shen&Llipasti, Modern Processor Design:
Fundamentals of Superscalar Processors, 2013.

[Internal Use Draft] Superscalar Club Meeting #3, Slide 2, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]



Today’s Goal:
Really get under the R10K paper

[Internal Use Draft] Superscalar Club Meeting #3, Slide 3, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]



CarnegieMellon

This should mean something to you

fetch
|
decode
: |
rename tbl
; R [ dispatch
@ ©
o & > RS schedule
Y%
-  ROB N _
R iSsue
: o
i regfile
e (inorder & lookahead)
E-_‘Oo é 1 T 1
»““®/O/ ?(6 :“ _:‘
", G o : |awa| |Awuz2| | Lo/st
...... Q) "“ ,“
........ (% e, TS
...................... ST S e

[Internal Use Draft] Superscalar Club Meeting #3, Slide 4, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]



CarnegieMellon

Last Time: Metaflow DRIS

[Internal Use Draft] Superscalar Club Meeting #3, Slide 5, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]



CarnegieMellon

Metaflow Datapath

branch pred.

v

I-cache

Y v v vy

iIssue

Y v v v v

DRIS
(Renaming + Reservation

Stations + Reorder Buff.)

A\ 4

A\ 4

A

y

F Retire

lookahead state

/ inorder state
4 /

A A

/

v v ¥V vy

Register File

Y Vv vy

A

y

v

Scheduler

@@@7@7@

[Internal Use Draft] Superscalar Club Meeting #3, Slide 6, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]



CarnegieMellon

Not Unreasonable if...

e Separate RS and address queue from DRIS/ROB
— RS sized to expose ILP
Can’t be large: CAM-intensive, critical timing loop
— ROB sized to cover long latencies (cache miss)
Modern ROB size much larger than RS size
e Use a map-table for rename, keeping in mind
— cheaper but not exactly cheap

— still need to see how to rewind a map-table (see
branch rewind stack today)

End up looking like Pentium-Pro

[Internal Use Draft] Superscalar Club Meeting #3, Slide 7, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]



CarnegieMellon

Onto MIPS R10K

[Internal Use Draft] Superscalar Club Meeting #3, Slide 8, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]



CarnegieMellon

MIPS R10000 circa 1996

e 4-way superscalar
e 5 execution pipelines
2 integer, FP add, FP mult, Id/st
e Micro-dataflow instruction scheduling
16 int +16 FP instruction window
e Register renaming + memory renaming
64 int registers for inorder and lookahead
e Speculative OO0
32 instructions in-flight; 4 unresolved branches
e Precise Exception

[Internal Use Draft] Superscalar Club Meeting #3, Slide 9, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]



CarnegieMellon

Superscalar, Speculative, Out-of-order

External interface Data cache refill and write-back
System ! 6-bit physicel register numbers 6-bit data paths
interface |- p A A
=
| (64 bits) P d
i ! : .,v ) Sae . B .*_
I — ir FP adder
v — rogiste — .
'~ Secondary our focus Fp dster| el Aign | AddIN | Pack
i cache ctlr. |-<—> > queue file -~
| (128 bits) (16 (6464 | Sy
Register renaming entries) —» 5 read gadullill ol
i) Mult @ Sum/N  Pack
3 write s
A(_;t]‘{e Eras +p] Busy-bit
(fz i register tables
i entries) ISLS s L-O&d
= e | —dq ™ Store L Data
: .V_ ' = , -7\\ _.V_ | Address > Load 4
i : - . ~
Instr. cgghre —> Inst. Registor| ¢ dUCUE B Store AL
pre-  ——w o5 _decode | | miap | (’[1'6' I”f[r‘.\jger Address
decode »| Kbytes) | —>] Branch N tables entries) [—» r“'?i*liter calc
|. —— (7 .
nstruction (64x64)
cache refill , : > e Integer
" Instruction fetch Instructiof decode Integer /reag | ALU 1
N ; : , [ | queue 3 write |
_ Y 3 (16 ' 7
5-bit logical register numbers entrics) [ g Integer
: : ALU 2
lnsiruction lﬁ.k'le . LN nlnnlmnr\l ) GCUTIOH units

[Internal Use Draft] Superscalar Club Meetlng #3 Slide 10, James C. Hoe, CMU/ECE/CALCM ©2023 [Do not redistribute. [Flg 2 Yeager 1996 IEEE MICI'O]



Pipeline Stages

CarnegieMellon

| Slage 4

Stage 6

Stage 1 Stage 2 Stage 3 Stage 5 Stage 7
il il i by e ciaE T R R
i ineli _ _ | Issue | RF— | Alignment Add Pack RF
6 independent pipelines Floating-point | hl g A G ﬁ il
latency=2 Issue | RF-»> Multiply Surn product | Pack —RF
Execution unit Load/ =i - -
pipelines (5) oadfstore Issue | FiF— | ACalc | TLB. D-cachc |
latency=2 e i -
o Load -+BF  (Integer or FP)
Dynamic issue Queues e N _
| Issue [ RES AU 1 —RF \\
tader e R R ' Write results in register file
latency=1 llssue | RF> |  ALU2 | »RF 9
9 S RTOTIE T T T e e
Busy? Read operands from register file
Fetch Dec | Map | Write Instruction feich and decode pipeline fills queues
A . 4 instructiors in parallel
k Up to 4 branch instructions are predicted-
l-cache —/ > Branch address

Feiching continues speculatively until prediction verified

L.

A J

[Internal Use Draft] Superscalar Club Meeting #3, Slide 11, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.[Flg 29 Yeager 1996a IEEE MICI'O]



Let’s Talk About

e Register renaming
e [nstruction Scheduling

e Speculative Execution Rewind

[Internal Use Draft] Superscalar Club Meeting #3, Slide 12, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]



CarnegieMellon

On-the-fly HW Register Renaming

SA rename physical
name rename t56 registers

e.g. r12 1 table \ (t0 ... t63)

e Maintain mapping from ISA reg. names to physical registers
e When decoding an instruction that updates ‘r, :

— allocate unused physical register t, to hold inst result

— set new mapping from r," to t,

— younger instructions using r,” as input finds t,
e De-allocate a physical register for reuse

ANAAAWhen is this exactly?

[Internal Use Draf b Meeting #3, Slide 13, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]



Rename: add rd, rs, rt

Assume new is ID of current instruction

RN1[new]=rs ; RN2[new]=rt ;
Locked1[new]= false; Locked2[new]=false,
ID1[new]= not valid; ID2[new]=not valid;
forall valid id // over all active DRIS entries
If (RD[id] ==rs) && Latest[id] )
ID1[new] = id ;
Locked1[new]=!Executed[id] ;
forall valid id
If (RD[id] ==rt) && Latest[id])
ID2[new] = id ;
Locked2[new]=!Executed[id] ;

Source 1 Source 2 Destination
RS1 | ID1 |[[Lock2| RS2 | ID2 [|latest] RD | Data

b Meeting #3, Slide 14, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]




CarnegieMellon

Elements of Register Renaming

e A pool of extra registers

— Use as temporary, single-assignment registers in
lookahead state (eliminates WAW and WAR)

— logically separate from inorder committed state
e Allocation and mapping mechanism

— given a source architectural reg name, where is its
current definition (value, location, ready?)

— given a dest architectural reg name, where to find
an available new rename register

— when to reclaim a rename register?
— how to recover after misprediction or exception

[Internal Use Draft] Superscalar Club Meeting #3, Slide 15, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]



CarnegieMellon

ROB Rename Register Management

from [Gonzalez, et al., 2010]

Register Map Table

Log. Reg.

ROB/RF | ROB pointer

to “form”
architectural state
for decode

Architectural Register File

committed
inorder state

Reorder Buffer

—qb———————————

Value

same physical array

look-ahead

state

Need to copy from lookahead to inorder on commit

[Internal Use Draft] Superscalar Club Meeting #3, Slide 16, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]



Register file

Register map table

Phyv. Reg. ID

to “form”

Logical Register

inorder and
lookahead

. .r Tail
architectural state Unified storage ™" 7
for decode allocated for

CarnegieMellon

“Free List” Physical Register File
Management

Free List

Head

N

from [Gonzalez, et al., 2010]

No need to copy from lookahead to inorder on commit

[Internal Use Draft] Superscalar Club Meeting #3, Slide 17, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]



CarnegieMellon

For Example Intel P3 vs P4

Pentium III {5 NetBurst RF ROB

Data Status Data Status
Frontend RAT
__EAX
EBX
ECX
EDX
RAT ES|
EAX EDI
T EBX ESP
ECX EBP
EDX | o
ES| X
EDI Retir t RATN G e
ESP
EBP ERX :
ECX
EDX -
ESI & i
— EDI J-foll
_—: R RF E;: o
i O I

Figure 5: Pentium® Ill vs. Pentium® 4 processor register allocation
[The Microarchitecture of the Pentium 4 Processor, Intel Technology Journal, 2001]

[Internal Use Draft] Superscalar Club Meeting #3, Slide 18, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]




PReg Life Cycle, R10K

current IR freelist
rs [ rt [ rd “ - 12]4]1 -
\\ (\ef" )
e u ,/
R R 1 aIIocate p
R map-table h":7 /3. deallocate
\\\ """’ ROB aSL ~:,
\‘ — \~\ )
N & e ) \\~ N ’,'r/ head
: —
2. displaced \\
~

e at any moment, each preg index (ptag) must be in
exactly one entry of map-table, valid free, or valid last

e # preg (and freelist size) can be decoupled from ROB
e Steps 1and 2 need to be reversible

[Internal Use Draft] Superscalar Club Meeting #3, Slide 19, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]



CarnegieMellon

Easier Than You Think

. . free
e # physical register (preg) = ROB list
# arch reg (=32)
. e (—27 i
# ROB entries (=32 in RlOK)head—» i

e At any moment

— 32 preg hold committed
inorder state

— rest associated 1 per ROB
entry---either in-use

. tail —¢ *I"-head
(lookahead dest) or not in- .

use (freelist)
e Freelist management can ride ROB’s coattail

[Internal Use Draft] Superscalar Club Meeting #3, Slide 20, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]




CarnegieMellon

Management Algorithm

e At rename/dispatch

: ROB free
— rename rd to corresponding last list
ROB/freelist preg
— save in ROB rd’s previous /Et-re

preg mapping (read from head — /
map-table before updating)

— if no dest or rd=r0, save
unused new preg as last

e At commit ( do nothing
— current dest preg = inorder tail —+
— write last mapping into j:?
freelist (deallocated) \

save old mapping

e Onrewind? On exception: from map-table

[Internal Use Draft] Superscalar Club Meeting #3, Slide 21, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]



CarnegieMellon

Register Map-table

map busy unified physical regfile
table table (inorder, lookahead, free)
ptag busy data
Y busy if corresponding
rs - preg value not
X 0% » “available” (even
through forwarding)

e Torenamers, look up ptag and busy

e R10K map-table needs 4-way x (3 read + 1 write port)!!
Also need redirect across same-cycle renamed instructions

e On rewind, map-table restored by Branch Rewind Stack

e On exception, map-table restored sequentially from last

[Internal Use Draft] Superscalar Club Meeting #3, Slide 22, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]



Let’s Talk About

e Register renaming
e |nstruction Scheduling

e Speculative Execution Rewind

[Internal Use Draft] Superscalar Club Meeting #3, Slide 23, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]



CarnegieMellon

Dataflow Execution Ordering

e Maintain a buffer of many pending instructions,
a.k.a. reservation stations (RSs)

— wait for functional unit to be free

— wait for register RAW hazards to resolve (i.e.,
required input operands to be produced)

e |ssue instructions for execution in dataflow order

— select instructions in RS whose operands are
available

— give preference to older instructions (heuristical)

e A completing instruction frees pending, RAW-
dependent instructions to execute

Sounds like good plan but exactly how?

b Meeting #3, Slide 24, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]



Micro-Dataflow Scheduling

e The scheduler dispatches according to
— availability of pending instructions’ operands
— availability of the functional units
— chronological order of the instructions

Is oldest-first the “best” strategy?
e Find instructions such that
valid[id] && Locked1[id] && !Locked2[id] &&

IDispatched[id] && !Executed[id] &&
notBusy(fxnUnit[id])

Think about the circuits & multiply for superscalar

[Internal Use Draf b Meeting #3, Slide 25, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]



R10K Integer Queue

e Like Tomasulo’s Reservation Stations but without
operand value

— operands represented by renamed ptag and busy
status

— an instruction issues when operands ready (either in
regfile or can be forwarded in time)

e Keep in mind, busy is cleared when dependent-on
instruction selected for issue not when it completes

e WakeUp signal received 3 cycles before becomes available

Producer Wake-Up Select Drive Execution aWriteBack
'.v( Wakeup signal ( Data bypass )
Consumer Wake-Up Select Drive éecution

[Internal Use Draft] Superscalar Club Meeting #3, Slide 26, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]



CarnegieMellon

Basic Integer Timing (Best Case)

dataflow :
%eq,\ Request resolution :
& g :
S ! .
\ Issue l, : I,’s result
Qoe": " . forwarded
<@ Operands : l, tol,:
2\ Execute : l, 4 ,
6&’6%6 : : )
\C T~ I’s result
written to RF
ly's gew gla:cta combinationally I,’'s operand I ’s result
€p.into Y latched latched

latched I, requests issue
L, I, granted issue
L, I, fetches operands (RF or forwarding)
L, I, announces data dep. resolution (to I,)

[Internal Use Draft] Superscalar Club Meeting #3, Slide 27, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]



Integer Queue Entry

ptag from LD4_:G>7

CarnegieMellon

How many priority
tag from ALU2—
prag Trom ::@_ CAM ports do scheduler
- you count? 1-per-cyc
or 1
I —= 5
> | Op| [Dest] JOpA]|Rdy OpB|Rdy| |OpC|Rdy| | —» =
ED——»request
\/ \\"/ X Z X Z X Z grant
Yy v X
? tch operand (RF or forwaﬁeD
y y y v issue/op, stage 3
- > e > e > e D> - b |mmmm—m———

[Internal Use Draft] Superscalar Club Meeting #3, Slide 28, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]

execute, stage 4




CarnegieMellon

Scheduling Loop Critical Path

ptag from LD4_:G>7

ptag from ALU2—

How many
CAM ports do

priority
scheduler
1-per-cyc

> [Op | |Dest

OpB|Rdy| [OpC|Rdy

X16

—
»D——»request
5

you count?
ar
|OpA||Rdy

R

S

étch operand (RF or forwaﬁdD

e

——-p -=p

-_I> --------- > ------ > ---------

grant

issue/op, stage 3

execute, stage 4

[Internal Use Draft] Superscalar Club Meeting #3, Slide 29, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]



Forwarding

ALU, result

ptag

sta

L
=
(o] 0)
Q .
Q g R
(o]0] > -
Q
.|E >
= —ALU
7 Y L T N P >
.................. >
........... >
.. ...... »
>
Q
>
O
| -
Q > o
o]4) -] >
_8 wn 7))
= 212
N | O
3 ©
<!I12

ge 3 5 stage 4

[Internal Use Draft] Superscalar Club Meeting #3, Slide 30, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]

CarnegieMellon



CarnegieMellon

Load Data Path

Load result {(also to floating-point register)
B aed Address
= calc,ulétor —- Addl:ess error check
@ ™~ | 64-pitjladder | Virtual address
8’ L i 1
= ! 4"-’
)
g [ iRa PAdY
= > | e (39:12)
Tl A 64 entried
Bypass : 2-way
I
= !
— i 1
----------- | 88 .
I e I .
| 33 T i
o : /" VAdr(}3:5)
e 1| | 2 banks, interleaved
o I '
%] |
B I
5 |
i I
I Retry I ;
: Store ! ‘ Way
: ; A St 8 select
I I VAdr(j13:3)
: Func | Refill bypgass
. 7 Bank select
| | |
stage 2 I stage3 Corftrol stage : stage 5

[Internal Use Draft] Superscalar ClubgMeeting #3, Slide 31, James C. Hoe, CMU/ECE/CA %CIVI ©2023'[Do not redlstrlbute ][Flg 10 Yeager 1996 IEEE MICfO]



CarnegieMellon

Best Case Load Timing

Request | Lo l, | ( l, | f
' Lo’séresult
Issue l; : forivarded
i : ' toly
Operands : :
: - :
Addr Calc : : 3 :
: E L 5 :
D-cache/TLB |: : L, : 5
L,’s address : '° .
presented to  Eyecute . L, I

cache & TLB - L, requests issue
|-> L, granted issue if tag
and data array free next cycle

[Internal Use Draft] Superscalar Club Meeting #3, Slide 32, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]



L,’s address
presented to
cache & TLB

Request | kg

Issue

Operands

Addr Calc

D-cache/TLB

Execute

3"
& & : :
6@ 60\\) \02\'@( : ®
(e\/dc, e (@

- Ly wilf

. . . ferynfate
L, requests issue .

L L, granted issue if tag

and data array free next cycle

[Internal Use Draft] Superscalar Club Meeting #3, Slide 33, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]

—Neaopno00000000

CarnegieMellon

Load Timing if Miss or Other Issues

canceled and
lose 1 issue
cyc sinfce too
late to-find an
alternate




to IntQs

[Internal Use Draft] Superscalar Club Meeting #3, Slide

from IntQ

Address Queue

from IntQ 4_:@

CarnegieMellon

v

4, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]

.
— request
X 2 \ir/ grant
stage 3: issue
stage 4: addr calculation
> ) —stage 5: cache lookup > — stage 6: Writeback



CarnegieMellon

“Tentative” Release and Cancellation

IntQ Dest 4_’,@7
IntQ Dest —::@—

Load Dest —
(tentative)

or

A 4

OpA set

reset

Rdy

set 1-cyc cancellation

window if released
by load

A 4

cancel
issue
decision

[Internal Use Draft] Superscalar Club Meeting #3, Slide 35, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]

set reset

tentative

cache miss




Let’s Talk About

e Register renaming
e [nstruction Scheduling

e Speculative Execution Rewind

[Internal Use Draft] Superscalar Club Meeting #3, Slide 36, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]



CarnegieMellon

Control Flow Speculation

NT
NT T
NT T NT T NT C T

e [eading Speculation

— follow through multiple branch predictions
— track speculative instructions as lookahead
— preserve parch state at branch dispatch for rewind

[Internal Use Draft] Superscalar Club Meeting #3, Slide 37, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]



CarnegieMellon

Mis-speculation Recovery

NT
NT T
NT T NT T NT C: ET

e When a branch is evaluated, if prediction
confirmed, nothing more to do (except to
deallocate no-longer-needed recovery state)

e Else use recovery state (deallocate after use)
— clear wrongpath instructions and their effects
— restart down “correct” path

[Internal Use Draft] Superscalar Club Meeting #3, Slide 38, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]



CarnegieMellon

Rewinding Tomasulo with ROB

e |norder RF state never needs undo’ing \/
e Lookahead RF state tied to ROB \/

e Restoring architectural state view (i.e. map-table)

— at decode, record in ROB, the logical dest and the
overwritten previous mapping

— on rewind, walk-back ROB one entry at a time to

re Sto re registe r m a p—ta b I e Architectural Register File

Value

What happens if previous Register Map Tabl
mapping is to an already ‘]
retired ROB entry? How do

from [Gonzalez, et al., 2010]



CarnegieMellon

Rewind cannot wait for the head/oldest

e Set tail ptr to after mispredicted Branch Stack
branch to restart .. .. (more next wk)
| I._L'_East
e \What about Latest? | atesthst =
oldest
can’t
____voungest | | _bhe
e




CarnegieMellon

Restoring State on Rewind

e ROB held state—easy

— rewind by decrementing tail pointer; head pointer
never affected by rewind

— R10K freelist synchronized with ROB

e Recover overwritten state—expensive
— take full snapshot (e.g. map table) at branch time
— constant time restore on mispredict

e Delete non-ROB wrongpath state—messy
— locate anything younger than rewind point
— many sites to check (e.g., issue queue, FU pipeline)
— too expensive to decide by comparing tags

[Internal Use Draft] Superscalar Club Meeting #3, Slide 41, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]



Branch Rewind Stack (BRS)

e Not a stack; not a monolithic structure
— allocate a slot when a branch dispatch
— deallocate when branch resolve (right or wrong)
— deallocate when branch (on wrongpath) killed
e A BRS slot snapshots at branch dispatch
— tail (but not head) pointer of ROB
— head (but not tail) pointer of freelist (if decoupled)

— complete map-table (Map-table cannot be vanilla
multiported SRAM)

R10K dispatch stops after 1st branch in a cycle
e On misprediction, restore from snapshot

[Internal Use Draft] Superscalar Club Meeting #3, Slide 42, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]



Rewinding Out-of-Order Entities

e A bitmask indicate currently allocated BRS slots
— each set-bit corresponds to an unresolved branch

— a speculative, out-of-order entity picks up bitmask
value at time of its creation—mneed to be removed if
any of the indicated branches mispredicts

e Examples of speculative out-of-order entities
— instructions in RS or anywhere else not ROB
— a BRS slot itself
e A resolved branch broadcasts its BRS position
— ignored by older entities, bit not set in their mask
— caught by younger entities, bit is set in their mask

[Internal Use Draft] Superscalar Club Meeting #3, Slide 43, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]



CarnegieMellon

Mis-speculation Recovery

0000
abort xx1x

NT T NT

1110
e Allocate BRS entry on decoding a branch;

highlighted bit indicate allocated to that branch
e |nst pickup current BRS mask of unresolved branch

— non-zero mask means speculative
— 1 bit indicates dependence on unresolved branch

e |f--1- branch mispredicts, abort insts w. mask xx1x

[Internal Use Draft] Superscalar Club Meeting #3, Slide 44, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]



CarnegieMellon

Mis-speculation Recovery

0000

reset 1000

NT T

NT T NT

e Level 3 branch resolved

— no longer occupy a stack entry

— subsequent insts only depend on level 1 and 2
e |f 1--- branch resolves to be correct

— reset 1--- in all insts (including branches)

— free corres ondingu BRS entry for reuse

[Internal Use Draft] Superscalar Club Meeting #3, Slide 45, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]



CarnegieMellon

Mis-speculation Recovery

0000

abort 0100

0000 nonspeculative

NT T

NT T NT

e Level 1 branch resolved

— no longer occupy a stack entry

— following inst segment no longer speculative
e |f-1-- branch mispredicts

— abort all insts with mask x1xx

— free corres ondingu BRS entry for reuse

[Internal Use Draft] Superscalar Club Meeting #3, Slide 46, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]



CarnegieMellon

Mis-speculation Recovery

0000

NT T NT

e No unresolved branches
e No BRS in use

e No speculative instructions

[Internal Use Draft] Superscalar Club Meeting #3, Slide 47, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]



CarnegieMellon

Mis-speculation Recovery

0000

NT T NT

e On next branch prediction, allocate any free BRS
entry to continue speculatively

[Internal Use Draft] Superscalar Club Meeting #3, Slide 48, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]



CarnegieMellon

Reset and Abort

reset abort
mask mask priority

scheduler
J( J( (1-hot)

intersect ——

A

.................................................‘; .................... g 4__’
OpB || Rdy BrMask P —

e On misprediction, any out-of-order entity with branch
mask intersecting with the abort mask is eliminated

e On correct prediction, the corresponding bit (reset
mask) is cleared in ALL branch masks in system

Either way, corresponding BRS slot freed for reuse

[Internal Use Draft] Superscalar Club Meeting #3, Slide 49, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]



CarnegieMellon

What about Exception

e Different from branch misprediction rewind
— could occur at any instruction (not just branches)
— doesn’t happen very frequently
— only handled as the oldest instruction in ROB

e Easy to clear younger instructions once exception
is oldest in ROB:

— rewind ROB tail pointer (and freelist head pointer)
— zap all out-of-order structures and state
e No backup map-table at all exception points
— R10K reads back sequentially from last of ROB
— Intel P4 maintains a retirement map-table

[Internal Use Draft] Superscalar Club Meeting #3, Slide 50, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]



CarnegieMellon

Before Next Time

e Memory Dataflow
— Section 6.4 of Gonzalez, et al.
— “Memory Reference Instructions”, Metaflow, p65.
— “Address Queue”, R10K, p34.
— “Memory Hierarchy”, R10K, p37.

— download, build, and do walk-thru in README.md

— run in a debugger to step through a few
instructions’ worth of operations

— drill into a specific structure, e.g., map table

[Internal Use Draft] Superscalar Club Meeting #3, Slide 51, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]



