CarnegieMellon

Superscalar’ Club Meeting #2

*we really mean: superscalar speculative out-of-order

James C. Hoe
Department of ECE
Carnegie Mellon University

[Internal Use Draft] Superscalar Club Meeting #2, Slide 1, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]

Today’s Goal:
One step closer to understanding R10K

[Internal Use Draft] Superscalar Club Meeting #2, Slide 2, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]

CarnegieMellon

References Used

*Popescu, et al., The Metaflow Architecture, 1991.

e Yeager, MIPS R10K Superscalar Microprocessor,
1996.

e Gonzalez, et al., Processor Microarchitecture: An

Implementation Perspective, Synthesis Lectures,
2010.

e Hennessy&Patterson, Computer Architecture: A
Quantitative Approach, 5th Edition, 2017.

e Johnson, Superscalar Microprocessor Design, 1990.

e Shen&Llipasti, Modern Processor Design:
Fundamentals of Superscalar Processors, 2013.

[Internal Use Draft] Superscalar Club Meeting #2, Slide 3, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]

Agree on Terminology btw Us
(not a universal agreement)

[Internal Use Draft] Superscalar Club Meeting #2, Slide 4, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]

R3
R7
R8
R7
R4
R3
R8
R3

[Internal Use Draft] Superscalar Club Meeting #2, Slide 5, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]

Instruction
Sequence

hn

]

s 41}
. (2)
. (3)
. (4)
- e (5)
v (6)
- (7)
- (8)

Program State Views

ltems in In-
Order State

R3

- (1)

R8
R7

. (3)
. (4)

A

»

view from commit

ltems in

Lookahead

R4

R3 :

R8

R3 :

State

- (5)
. (6)
- (7)
- (8)

CarnegieMellon

ltems in Qv
Architectural _8
State O

()]

©

A E

R7 := . (4) 8
R4 := . (5) Y
R8 := ...(D ;
()]

R3 := . (8) S

Figure 5-1. lllustration of In-Order, Lookahead, and Architectural States

from [Johnson, 1990]

[Cache

|

Fetch Decode

[Internal Use Draft] Superscalar Club Meeting #2, Slide 6, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]

Execution Stages

CarnegieMellon

Not shown
rename table, aka
register alias table, aka

»| L/S Queue register map table

DCache g
N
| Reorder i > g
Buffer Registers || 3§
aka . o
. [
bl qctive o;;era: s
list etc =
> o

A——p]

- [ssue

S| Queue %

© |aka > 2
Q i 8
L reservation & S
© .) Q
station o =

Rename [ssue Execution Write-back Commit

CarnegieMellon

Generic Mental Model

fetch
]

decode
]

rename tbl
S } dispatch

@ & . hedul
& & el RS schedule

R ROB

Q,Q ISSue

regfile
77| (inorder & lookahead)

1 \ 4 \ 4 1 \ 4

<
-
e :
®_- H
o = s ALU1| |ALU2| | LD/ST
S :
Q

CarnegieMellon

Metaflow DRIS

[Internal Use Draft] Superscalar Club Meeting #2, Slide 8, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]

[Interna

CarnegieMellon

Metaflow Lightning SPARC Processor

e Superscalar fetch, issue, and execution
e Micro-dataflow instruction scheduling
e Register renaming + memory renaming
e Speculative execution with rapid rewinding
e Precise Exceptions
circa 1991

Claimed “Factor of 2-3 performance
advantage from architecture”

| Use Draft] Superscalar Club Meeting #2, Slide 9, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]

CarnegieMellon

Metaflow Datapath

branch pred.

v

I-cache

Y v v vy

iIssue

Y v v v v

DRIS
(Renaming + Reservation

Stations + Reorder Buff.)

A\ 4

A\ 4

A

y

F Retire

lookahead state

/ inorder state
4 /

A A

/

v v ¥V vy

Register File

Y Vv vy

A

y

v

Scheduler

@@@7@7@

[Internal Use Draft] Superscalar Club Meeting #2, Slide 10, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]

Log. Reg.

[Internal Use Dra

CarnegieMellon

5

L Y
35
L 3
Sl
g
gé
o .S

ROB Rename Registers

IArchltecturaI Register Fil

from [Gonzalez, et al., 2010]

Register Map Table

ROB/RF | ROB pointer

Reorder Buﬁe:r
|

to “form”
architectural state
for decode

Value

B o v

physically one
SRAM array

b Meeting #2, Slide 11, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]

look-ahead

state

DRIS is ROB-like

e Circular Queue Structure

e |nstructions held in original
program order

WN—-~0O

oldest

— new entry allocated at tail
of queue when instruction
Issues

— completed entry
committed inorder from
head of queue to update
regfile or memory N-2

N-1

younqgest

B

e |nstruction’s position in
ROB is its unique tag

[Internal Use Draft] Superscalar Club Meeting #2, Slide 12, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]

Color Bit

e Head and tail pointers count around N-entry DRIS
using 1+log,(N) bit
— bottom log,(N) index bits work the way you think
— top bit color bit alternate each round through
e Given indicesiandj, i older than j when
if (color(i)==color(j)) then index(i) < index(j)

else index(i) > index(j)

j—>

tqil | _voungest

head

oldest

J

I >
tGI/ > youngest head

i oldest

[Internal Use Draft] Superscalar Club Meeting #2, Slide 13, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]

DRIS is also everything else

e ROB: inorder record of in-flight instructions
e Rename Regfile: Data holds lookahead state of RD

e Rename Table (CAM-based): given operand rs,
search RD youngest to oldest for re-definition

e Reservation Station: if |(Lockl || Lock2)

e Address Queue: ...

Source 1 Source 2 Destination
Lock1| RN1 | ID1 ||Lock2] RN2 | ID2 ||latest] RD | Data
Status

Dispatched | Fxn Unit | Executed PC

Know everything, look everywhere philosophy . . .

[Internal Use Draft] Superscalar Club Meeting #2, Slide 14, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]

CarnegieMellon

“Issue”: (Decode+Dispatch+Rename)

e A new ID (aka tag) is allocated to each instruction
when issued into DRIS

— IDis index to next free DRIS circular queue entry

e Search DRIS (young to old) to see if rs1/2 matches
RD of older entry i.

— if found, set ID1/2 to i; set Lock1/2 if |Executed|i]
— if not found, set ID1/2 to (?) ; set RN1/2=rs1/2

Source 1 Source 2 Destination

Lock1l] RN1 | ID1 [|Lock2] RN2 | ID2 ||latest| RD | Data

[Internal Use Draft] Superscalar Club Meeting #2, Slide 15, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]

Rename: add rd, rs, rt

Source 1

Source 2

Destination

Lockl]| RN1 | ID1

Lock2] RN2 | ID2

Iatestl RD |Data

[Internal Use Draft] Superscalar Club Meeting #2, Slide 16, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]

Rename: add rd, rs, rt

Assume new is ID of current instruction

RN1[new]=rs ; RN2[new]=rt ;
default | Locked1[new]= false; Locked2[new]=false,
value _ID1[new]= “not valid”; ID2[new]="not valid”;, 7?7
forall valid id // over all active DRIS entries
If (RD[id] ==rs) && Latest[id])
ID1[new] = id ;
Locked1[new]=!Executed[id] ;
forall valid id
If (RD[id] ==rt) && Latest[id])
ID2[new] = id ;
Locked2[new]=!Executed[id] ;

Source 1 Source 2 Destination
Lock1| RN1 | ID1 ||Lock2] RN2 | ID2 ||latest] RD | Data

[Internal Use Draft] Superscalar Club Meeting #2, Slide 17, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]

CarnegieMellon

Associative Lookup for Just 1 Rename

®
o
invalid |latest| RD hfad
ptr
invalid |latest| RD /

valid latest RD
valid latest RD

Return _ Sk -
My Tag Vakhid latest RD patlr
valid |latest| RD /

invalid |latest RD

invalid |latest RD

Need round-robin
priority encoder to
resolve multiple hits
if not for Latest

IS

[Internal Use Draft] Superscalar Club Meeting #2, Slide 18, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]

Superscalar Rename

e Replicate the previous circuit, 2 per instruction

e All new entries read and update DRIS together

— replicated circuits all rename relative to same
“architectural” view (i.e., from same tail ptr)

— what happens for 3-wide rename:

addrl, r2, r3 addrl, rl, r3
add ré4, r5, r6 VS addrl, rl, r4d
add r7,r8, r9 add rl, r1, r5

e Must do on-the-fly RAW dependence check and
re-direct, O(N?) complexity

[Internal Use Draft] Superscalar Club Meeting #2, Slide 19, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]

CarnegieMellon

Rest is Easy: add rd, rs, rt

RD[new] =rd ;

forall valid id <

— onhe more CAM

if (RD[id] == rd)

Latest[id]=false ;

Latest[new]=true
Dispatched[new]= faise ;
Executed[new]= false ;
FxnU[new]=Integer ALU ;

Source 1

Source 2

Destination

Lock1] RN1 | ID1

Lock2]| RN2 | ID2

Iatestl RD |Data

Dispatched | Fxn Unit | Executed

PC

[Internal Use Draft] Superscalar Club Meeting #2, Slide 20, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]

Micro-Dataflow Scheduling

e The scheduler dispatches according to
— availability of pending instructions’ operands
— availability of the functional units
— chronological order of the instructions

Is oldest-first the “best” strategy? What is?
e Find instructions such that
valid[id] && Locked1[id] && !Locked2[id] &&

IDispatched[id] && !Executed[id] &&
notBusy(fxnUnit[id])

Think about the circuits & multiply for superscalar

[Internal Use Draft] Superscalar Club Meeting #2, Slide 21, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]

CarnegieMellon

Issue: add rd, rs, rt

e A issued instruction is sent to the functional
unit with its operands and its id

e Operands come from:

— DRIS: Data[ID1/2[id]] when ID1/2[id] is
younger than head ptr

in lookahead state

— Regfile: Regfile[RN1/2[id]] when ID1/2[id] is
older than head ptr (producer was already
retired at decode or has since retired)

in inorder state

Source 1 Source 2 Destination
Lock1] RN1 | ID1 [|Lock2] RN2 | ID2 ||latest| RD | Data

[Internal Use Draft] Superscalar Club Meeting #2, Slide 22, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]

CarnegieMellon

Writeback/Complete

e A Fxn unit returns both the result and the
associated id

Datalid]=result ;
Executed[id]=true ;
e Unlock RAW dependent instructions

— forall valid i
if (ID1[i]==id) Locked1[i]=false;

e CAMS
— forall valid i yes, MO
if (ID2[i]==id) Locked2][i]= false;
Source 1 Source 2 Destination

Lockl] RN1 | ID1 [|Lock2] RN2 | ID2 ||latest| RD | Data

[Internal Use Draft] Superscalar Club Meeting #2, Slide 23, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]

Retire

e |nstructions retire from DRIS inorder from oldest
— must be Dispatched, wait if not Executed

— not on wrongpath
— no older exceptions, itself could be

e Commit lookahead state to inorder state
Regfile[RD[retiree]]=Datalretiree]

e Similarly, SW can only write memory when
retiring

Source 1 Source 2 Destination
Lock1| RN1 | ID1 ||Lock2] RN2 | ID2 ||latest] RD | Data

[Internal Use Draft] Superscalar Club Meeting #2, Slide 24, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]

CarnegieMellon

Logical vs. Physical

Rename
Reservation Stations Registers
A (RAM)
Source 1 Source 2 i Destinatiof ‘
Lock1 | RN1 ID1 Lock2| RN2 | ID2 latest| RD Data
(CAM) (RAM) (CAM) (CAM*)
Issue forward additiofg) nverse
complications map
table
Status
Dispatched|| Fxn Unit || Executed || PC
—)
~—

Reorder Buffer (RAMs)

[Internal Use Draft] Superscalar Club Meeting #2, Slide 25, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]

The Cost of Implementing DRIS

e To support N-way rename per cycle
— Nx3 associative lookup and read
— Nx2 indexed read, Nx2 indexed write
e To support N-way issue per cycle
— 1 prioritized associative lookup of N entries
— N indexed write
— Nx2 indexed read in DRIS
— Nx2 indexed read in Regfile
e To support N-way complete per cycle
— N indexed write to DRIS
— Nx2 associative lookup and write in DRIS
e To support N-way commit per cycle
— N indexed lookup in DRIS
— N indexed write to DRIS
— N indexed write to Regfile

[Internal Use Draft] Superscalar Club Meeting #2, Slide 26, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]

CarnegieMellon

Why CAM and not MAP Table?

Architectural Register File

from [Gonzalez, et al., 2010]

Register Map Table

committed
inorder state

Log. Reg.
ROB/RF | ROB pointer
Reorder Buffer
§e)
o
to “form” <
architectural state Value x Y
O O
for decode KSI

What happens on exception and branch rewind?

[Internal Use Draft] Superscalar Club Meeting #2, Slide 27, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]

Precise Exceptions

CarnegieMellon

e On exception, stop fetching

oldest

e Wait until exception oldest in

DRIS, set tail ptr to head ptr
exception %

e Donel!

younqgest

Does this work for branch rewind?

- -

[Internal Use Draft] Superscalar Club Meeting #2, Slide 28, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]

CarnegieMellon

Rewind cannot wait for the head/oldest

e Set tail ptr to after mispredicted Branch Stack
branch to restart (more next wk)
| I._L'_East
e \What about Latest? | atesthst =
aldest
can’t
___voungest | | _be
g
- CAM'

[Internal Use Draft] Superscalar Club Meeting #2, Slide 29, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]

CarnegieMellon

To Sum Up

e Superscalar, speculative, out-of-order made
“easy” by centralizing bookkeeping (if you could
know everything at the same time)

e Circuits too elaborate (gratuitous use of large
CAM especially) and inefficient (size and critical
path) for what need to be accomplished

e On branch rewind

— identifying younger instructions occupying out-of-
order structures by index-comparison too costly

— how to recovery the “latest” column?

e What is IPC when ILP=1? (paper doesn't say but it
is handled the right way)

[Internal Use Draft] Superscalar Club Meeting #2, Slide 30, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]

CarnegieMellon

Issue and Forwarding Timing

o WakeUp signal received when value becomes available

Producer | Wake-Up Select Drive Execution p#riteBack
,‘C Wakeup signal)
0' ‘
Consumer ‘Wake-un Select Drive Execution
3 cycles bubb e)y
| |

o WakeUp signal received 3 cycles before becomes available

Producer Wake-Up Select Drive Execution a\WriteBack
' (Wakeup signal (Databypass)
) K.

Consumer Wake-Up Select Drive xecution

from [Gonzalez, et al., 2010]

[Internal Use Draft] Superscalar Club Meeting #2, Slide 31, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]

CarnegieMellon

Scheduling Consumer of Loads

S I g £ 1

o Conservative WakeUp signal generated after Hit/Miss Computation

Producer | Wake-Up Select Drive cddrass RUMISs & Ve
computation|computation| Agcess
Y tanal)
~ \Wakeup signal)
Consumer ‘Wake—Up Select Drive Execution
42 cycles bubbled>

e Speculative WakeUp of load consumers

Address Hit/Miss L1 cache

Producer | Wake-Up Select e computation| computation| ~Access) (Data bypass)
. {_ Wakeup signal
v

Consumer Wake-Up Select Drive ‘é(ecution

What if LW misses?

from [Gonzalez, et al., 2010]

[Internal Use Draft] Superscalar Club Meeting #2, Slide 32, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]

CarnegieMellon

Forwarding Paths Required

register file register file

RO R1 WO W1 R2 R3 RO RI WO W1 R2 R3

- \/ ? I
FUO \ FUI -

> o
__/

from [Gonzalez, et al., 2010]

[Internal Use Draft] Superscalar Club Meeting #2, Slide 33, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]

CarnegieMellon

Forwarding Path Complexity

register file register file

RO RI WO W1 R3 RO RI WO Wl R2 R3
r3

R2
1 COED GOCO G

FUO FUI

. 4 4

3 1

HEim

IJLI

from [Gonzalez, et al., 2010]

[Internal Use Draft] Superscalar Club Meeting #2, Slide 34, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]

Read R10K very, very carefully
for next week

[Internal Use Draft] Superscalar Club Meeting #2, Slide 35, James C. Hoe, CMU/ECE/CALCM, ©2023 [Do not redistribute.]

