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Abstract

This paper presents the StarT�X PCI card� a net�
work interface unit for the Arctic Switch Fabric��
�
StarT�X provides a user�level hardware interface for
message passing on a cluster of PCI�equipped host
platforms� StarT�X supports three message�passing
mechanisms that are tuned for di�erent granularities
of communication� On a SUN E
��� with StarT�X� a
processor can send and receive a 	��byte message in
less than ��� and ��
 usec respectively and incur less
than 
�	 usec user�to�user latency� StarT�X�s remote
memory�to�memory DMA mechanism can transfer
large data blocks at over 	� MByte�sec on SUN
E
����s� StarT�X�s hardware was developed in just
over a year by a one�man team� StarT�X and Arctic
are currently installed on MIT�LCS�s Xolas Cluster
of SUN E
����s and support MPI��

 and Cilk���

programming interfaces� The performance of these
high�level programming interfaces and a numerical
application� MITMatlab���
� are reported�

� Introduction

The StarT�X PCI card is an NIU �Network Interface
Unit� for the Arctic Switch Fabric��
� an experimental
system area network� StarT�X provides a user�level
hardware interface for message passing on a cluster
of PCI�equipped host platforms� StarT�X is not de�
signed for NIU research� but rather� is engineered
to be used by a local community of computer and
computational scientists on a cluster of SUN E
���
��UltraSPARC SMP�s �Symmetric Multiprocessors��
Despite being a one�man e�ort� this project took just

�Funding for this work is provided in part by the Defense
Advanced Research Projects Agency of the Department of De�
fense under the O�ce of Naval Research contract N���������
J����� and Ft� Huachuca contract DABT	���
�C���
��

over a year from inception to running MPI��

 and
Cilk���
 parallel applications�
StarT�X is one of the latest developments in a

series of StarT��� 
� �	
 parallel processing cluster
projects� As a successor to StarT�Jr���
� StarT�X
shares many of StarT�Jr�s message�passing mecha�
nisms� However� StarT�X achieves signi�cantly bet�
ter performance than StarT�Jr in both bandwidth
and latency by handling critical operations in hard�
ware instead of embedded processing�
Salient features of StarT�X are�

� Three message�passing modes

�� Memory�mapped message queues with pro�
grammed I�O interface

�� Cacheable virtual message queues imple�
mented in the host memory

�� Remote memory�to�memory DMA transfer
with automatic packetization

� Two message priorities

� Option of FIFO or non�FIFO� ordered message
delivery

This paper presents the StarT�X NIU and its per�
formance on a cluster of SUN E
��� SMP�s� Sec�
tion � �rst discusses the forces that motivated and
constrained the StarT�X project� To put StarT�X
in context� Section � describes two commercial inter�
connect technologies that were also considered for the
SUN cluster� Section � presents the StarT�X datap�
ath� Section 
 explains the three StarT�X message�
passing mechanisms� Section 	 reports StarT�X re�
lated software developments and their performance�
Section � concludes with a few remarks regarding the
development of StarT�X�

�To utilize randomized up�route in the Arctic Switch Fab�
ric�s fat�tree topology�

�
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Figure �� StarT�X PCI Short Card

� Background and Constraints

The StarT�X project rose out of the demand for
better intra�cluster communication beyond the stock
����Mbit Ethernet on a cluster of SUN E
��� SMP�s�
The Arctic Switch Fabric was put forth as a high
performance alternative� The Arctic Switch Fab�
ric is a packet�switched binary fat�tree network with
a bi�directional bandwidth of ��� Gbit�sec on each
link� However at the time� Arctic did not have a
suitable adapter to interface to a SUN E
���� This
prompted us to investigate the practicality of devel�
oping StarT�X to �ll this gap�

Our conversations with the cluster�s users revealed
that an NIU like StarT�X would be useful only if
it could be developed quickly� A prolonged devel�
opment time would make StarT�X unattractive be�
cause several commercial alternatives� like Myrinet�
SCI� ATM� etc� were readily available� Furthermore�
the SUN E
��� cluster itself would become obsolete
in only a few years� Given these considerations� the
StarT�X project was launched with a strict ���month
time constraint�

Since the issues in interfacing Arctic to a host had
been studied in two other Arctic NIU designs��� ��
�
StarT�X could leverage many design overlaps instead
of working from scratch� Thus� only one full�time
sta� was assigned to the project despite the time pres�
sure� A deliberate e�ort was made to avoid turning
StarT�X into a research project� The foremost goal is
to quickly engineer a �exible� high�performance NIU�
under a level of e�ort and risk that is justi�able by
the advantages Arctic has to o�er� To further en�

sure many returns on this investment� we included
platform�independence� i�e� PCI���
� as a require�
ment so StarT�X could also target other clusters�

� Clustering Technologies

Besides standard local area networks� various spe�
cialized interconnection technologies are available to
construct parallel processing clusters from all major
platforms of stand�alone PC�s or workstations� This
section describes two commercial high�performance
clustering hardware that is compatible with SUN En�
terprise servers�
SUN o�ers a clustering package to support key ap�

plications on a cluster of servers interconnected by
Dolphin SCI �Scalable Coherent Interface���
� Cur�
rent Dolphin SCI adapters support non�cacheable re�
mote read and write operations and are available
for either SBus ����bit� or PCI ����bit� �� MHz��
Four�port switch units� with 	�� Gbit�sec per port�
can be composed to connect up to �	 endpoints�
To explore the full performance of the SCI hard�
ware� Ibel et al����
 implemented Active Message and
Split�C for lightweight user�level communication� On
two SUN Ultra�� workstations connected back�to�
back with SBus adapters� their programming inter�
face achieved a round�trip latency as low as ���� usec
and bandwidth up to �
 MByte�sec�
Myricom supplies another high�performance clus�

tering package for SUN UltraSPARC platforms� The
Myrinet��
 package comes complete with network
routers� end�point adapters for SBus ����bit� or PCI
����bit� �� MHz�� standard IP layers� and a cus�

�
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Figure �� StarT�X Datapath

tom low�level interface layer� An arbitrary network
topology can be constructed from a selection of ��
� and ���port switches� Myrinet adapters are con�
trolled by Myricom�s custom LANai embedded pro�
cessors� Several research projects make use of the
adapter�s programmability to experiment with dif�
ferent interface schemes for fast user�level message
passing� On a cluster of SUN Ultra�� workstations
with SBus adapters� Culler et al����
 have reported a
round�trip latency of ���� usec and peak bandwidth
of �� MByte�sec using Active Message and custom
LANai �rmware��

� StarT�X Datapath

The StarT�X NIU �Figure �� conforms to the PCI���

short card ����� by 	�	�� standard� To complete the
development within a limited time frame� we designed
a datapath based on a simple integration of o��the�
shelf parts plus a small number of programmable logic
devices� As depicted in Figure �� the datapath can be
organized into four functional categories� PCI inter�
face �front�end�� message queues� Arctic link interface
�back�end�� and glue logic�

PCI Interface�
At the front�end� StarT�X incorporates the S
���

PCI Interface chip from AMCC��
� The interface
shelters the internal StarT�X datapath from the elec�
trical and logical issues of interfacing to a ���bit
�� MHz PCI bus� The S
����s PCI slave inter�
face and two DMA engines serve as the basis for
StarT�X�s message�passing mechanisms� Although
SUN E
��� supports 	��bit 		 MHz PCI� StarT�X
could not target for it within the development time

�Working with the PCI version of Myrinet adapters on In�
tel or Digital platforms� other projects have seen higher per�
formance on Myrinet� 
See http���www�myri�com�

frame� StarT�X would have to develop a custom
ASIC to support 		 MHz or a custom PCI inter�
face design to support 	��bit PCI with an FPGA at
�� MHz�

Message Queues� StarT�X employs
four IDT���	�� synchronous FIFO�s to implement
two transmit and two receive message queues� Each
queue holds a maximum of twenty messages �up to �	
bytes per message�� These on�board bu�ers smooth
the e�ects of transient throughput mismatch between
the PCI and Arctic link interfaces� The queues also
provide synchronization for data crossing between the
front�end�s �� MHz PCI clock domain and the back�
end�s �� MHz��� MHz network clock domain�

Arctic Link Interface�

An Arctic link achieves �	� MByte�sec using �	 dif�
ferential PECL signals in parallel clocked at �� MHz�
An Arctic cable bundles two links running in oppo�
site directions� A 
V�CMOS�PECL conversion cir�
cuitry sits between StarT�X�s front�end and the link
cable connector� The circuitry is implemented using
�� ���K Series PECL chips that occupy half of the
board space� The link interface is an example where
StarT�X derived overlapped designs from other Arc�
tic NIU�s to save on development time�

Custom Glue Logic�

The glue logic is implemented using a Xilinx
����E�� FPGA and two Xilinx ���	�
 EPLD�s� The
fast 
�nsec EPLD is necessary to operate S
��� at its
maximum throughput� The glue logic design is cap�
tured in RTL�level Verilog for synthesis by the Syn�
opsys Hardware Compiler and Xilinx�s XACT tools�
The glue logic is functionally sub�divided into a front�
end and a back�end� but the two partitions are packed

�
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Figure �� �a� PIO Mode Abstraction and �b� StarT�X Message Format

in a single FPGA to conserve board space� The front�
end logic� synchronous to the �� MHz PCI clock� me�
diates the interaction between the S
��� PCI inter�
face and the message queues� The front�end logic
also creates the di�erent personalities of the three
StarT�X message�passing mechanisms� The back�end
logic sits between the message queues and the link
interface� It checks or generates a �	�bit CRC for
each message entering or leaving on the Arctic link�
The back�end logic also provides multiplexing and de�
multiplexing between the �	�bit �� MHz Arctic link
interface and the ���bit �� MHz message queue inter�
face�

� StarT�X Mechanisms

In designing a platform�independent NIU� it is di��
cult to optimize all aspects of communication perfor�
mance in a single mechanism� Instead� StarT�X pro�
vides three separate user�level message�passing mech�
anisms� each optimized for a di�erent range of oper�
ations� These mechanisms are selected based on our
experience with the StarT�Jr���
 cluster�

��� Programmed I	O 
PIO� Mode

The PIOmode presents a simple FIFO�based network
abstraction depicted in Figure ��a�� This memory�
mapped mechanism is similar to CM�
�s data network
interface���
� The PIO mode requires the user to di�
rectly manipulate the StarT�X hardware� and thus�
has the highest processor overhead and the lowest
bandwidth of the three mechanisms� However� this
mechanism also has the simplest software interaction
and achieves the lowest user�to�user latency� This
mode is intended for �ne�grain message passing where
messages are short and frequent�
In this mode� the user communicates in the unit of

a message� The StarT�X message format is shown in
Figure ��b�� A message contains two ���bit header

words followed by a variable size payload between
� and �� ���bit words� A message is addressed by
the receiver�s ID in the down�route �eld� Specifying
the up�route selects a deterministic path in a fat�tree
network and ensures FIFO ordering of same�priority
messages on the same path� Setting the random up�
route bit in the header instructs StarT�X to randomly
distribute network tra�c on the up�route portion of
the fat�tree for load balancing� StarT�X provides
two pairs of transmit and receive queues to bu�er
high and low�priority messages separately� A prior�
ity bit in the header word indicates the message�s
priority and selects between one of the two virtual
networks in the Arctic Switch Fabric� Congestion in
the high�priority network can block messages in the
low�priority network� but not vice versa�

To send a message� the user enqueues the mes�
sage� word�by�word� directly into a transmit queue
via PIO writes to a memory�mapped interface loca�
tion� After the last word is enqueued� StarT�X au�
tomatically launches the message without requiring
a separate command� The receiver can later retrieve
this message with PIO reads from the receive queue�s
memory�mapped address� A memory�mapped status
register indicates when new packets are waiting in the
receive queues� and when a transmit queue is full�

A major handicap of PIO�based mechanisms is the
cost of PIO accesses� On a SUN E
���� a ��byte PIO
read from a PCI register could stall the �		 MHz
UltraSPARC�� processor for ���� usec� This can be
viewed as either �	�� cycles of processor overhead
per word received or a maximum receive bandwidth
of less than � MByte�sec� StarT�X applies two opti�
mizations to speed up and reduce the number of PIO
operations�

Whereas CM�
 maps its registers to unique ad�
dresses� each StarT�X interface register is redun�
dantly mapped to all four�byte aligned locations of

�StarT�X can also raise an interrupt on the arrival of a new
packet�

�



Processor

Physical
 Queues

StarT-X
Host

Rx DMA
Engine

Virtual 
Queues

DRAM

Tx DMA
Engine

Cached 
Loads,
Stores

PCI
DMA

Figure �� Cacheable Virtual Interface Message Queues

an entire virtual page� Thus� instead of repeatedly
storing to the same address� the user stores to con�
secutive word addresses when enqueuing a message�
This behavior triggers both the processor and the
PCI bus bridge to merge multiple back�to�back stores
into a single burst transaction to achieve better band�
width� Although most hardware cannot merge PIO
read transactions� the same optimization does allow
the user to issue fewer PIO reads by issuing wider
load instructions� For example� on SUN E
���� the
user can receive a 	��byte message using a single 	��
byte load �ldda�� This optimization raises the peak
PIO receive bandwidth from � to �� MByte�sec ����	
usec per 	��byte read��

Besides message reception� polling the status regis�
ter accounts for the remainder of the costly PIO read
operations� When sending a message� the user must
check the status registers to avoid over�owing the
transmit queue� The user must also read the status
register to detect new messages in the receive queues�
On CM�
� these conditions are only reported as true
or false� and must be re�tested after each operation�
To reduce the number of PIO reads to the status reg�
ister� StarT�X reports the exact number of messages
in the receive queues and the number of messages
that the transmit queues guarantee to accept before
over�owing� All four message counts are packed into
a single status word so in the best case the cost of a
status read can be amortized over �� message sends
and �� receives�

��� Cacheable Virtual Interface 
VI�
Mode

Modern architectures are tuned for orders�of�
magnitude higher performance for cached accesses to
main memory than for PIO accesses� StarT�X�s sec�
ond mode of message passing takes advantage of this
performance disparity� The VI mode virtually ex�
tends the high�priority transmit and receive queues
into the memory system� Figure � illustrates this ab�
straction� The user interacts with StarT�X indirectly

through memory� and hence� avoids costly PIO ac�
cesses�
The VI mode makes use of a pinned� contiguous

physical memory region for DMA �direct memory
access�� The VI memory region is mapped into a
cacheable virtual memory region of the user process�
To send a high�priority message� instead of enqueu�
ing directly to the hardware transmit queue� the user
process only writes the message to the cacheable VI
region� The user then invokes StarT�X�s transmit
DMA engine to enqueue the message into the physical
transmit queue� The user does not need to explicitly
�ush the message from the processor cache because
PCI DMA is cache�coherent� Multiple out�bound
messages can be queued consecutively in memory and
be transmitted with a single DMA invocation� This
mode speeds communication by eliminating the PIO
overhead associated with message handling� The user
does incur a hefty overhead of a device driver call�

to initiate a DMA request� Hence� transmitting in
VI mode is only e�cient in communication patterns
where each DMA invocation can be amortized over a
large batch of out�bound messages�
Receiving in the VI mode does not su�er from

the same ine�ciency and can be activated indepen�
dently from the VI transmit mode� On systems that
do not support extra�wide PIO�read instructions� a
combination of PIO�mode transmit and VI�mode re�
ceive produces the best overall message�passing per�
formance� When receiving� the user �rst reserves a
large bu�er �several megabytes� in the VI memory
region� After the user programs the receive DMA en�
gine with the base and the size of the receive bu�er�
subsequent incoming high�priority messages �ll the
bu�er sequentially as they arrive without further user
intervention� The user only needs to re�program the
engine when the current receive bu�er is exhausted�
Extending the network bu�ers into physical mem�

�The device driver call guards against illegal physical mem�
ory accesses by user processes� This safety check is a require�
ment for StarT�X to co�exist in the cluster with other projects
running production code� On our experimental Linux�PC clus�
ter� DMA is activated by user processes directly�






ory greatly expands the e�ective network bu�er size�
This extra capacity can help prevent network con�
gestion when a receiver is overwhelmed by a burst of
incoming messages�

��� Remote DMA 
RDMA� Transfer
Mode

The RDMA mode is optimized for maximum band�
width when transferring a large data block between
two hosts� The hardware mechanism for the RDMA
mode is the same as the VI mode with the addition
of logic to packetize the RDMA data stream into
messages and then to reconstruct the original data
stream at the receive node� To initiate a RDMA
transfer� the sender programs two StarT�X registers
with the message header words and then invokes the
transmit DMA engine to transfer data from main
memory� StarT�X inserts the user�supplied message
header words into the data stream at the appropriate
intervals to feed a properly formatted message stream
into the high�priority transmit queue� The receiv�
ing StarT�X reconstructs the original data stream by
stripping the headers from the message stream and
delivering the data stream to the receiver�speci�ed
memory locations�
A caveat to this mechanism is that the hardware

formatted message stream does not contain sequenc�
ing or memory addressing information� The receiv�
ing hardware cannot reorder an out�of�order message
stream or distinguish messages from multiple inter�
leaved incoming streams� This simple mechanism
depends on an ordered� uninterrupted high�priority
transmission into the receiver�s queue� Therefore�
RDMA cannot use StarT�X�s random up�route fea�
ture� Furthermore� RDMA senders must use an addi�
tional protocol to acquire exclusive right before trans�
mitting to a receiver� The RDMA mode operation
also cannot co�exist with other high�priority message�
passing modes� RDMA operations do not interfere
with low�priority message passing in the PIO mode�

� Software Development and

Performance

The �rst StarT�X cluster of four SUN E
����s came
online in December� ����� Since then� the project
has focused on developing communication libraries to
support end users� applications� This section presents
the performance of several communication libraries at
di�erent levels of software abstraction� This section
also presents our experience with a large MPI numer�
ical application that has been ported to the StarT�X

cluster�

��� JAM Communication Library

At the lowest level� the JAM kernel library pro�
vides a thin software veneer for C applications to ac�
cess StarT�X�s user�level hardware mechanisms� The
hardware abstractions for the three StarT�X message�
passing mechanisms are relayed directly to the user�
The library does not add extra features through
software� This low�level interface is intended to be
the building block of higher�level communication li�
braries�

����� PIO Mode Performance

The characteristics of JAM PIO�mode primitives
are studied using the LogP Signature microbench�
mark devised by Culler et al��	
� The experiment
measures the time �Ttotal� required for a source pro�
cessor �Ps� to send a sequence of m messages to a
remote processor �Pr�� pausing for d usec between
each message� Each of the m messages generates a
reply message from Pr � With �nite network bu�er�
ing� Ps may have to receive some reply messages be�
fore it can �nish sending all m messages� A LogP
signature is generated by plotting the average time
�Ttotal�m� as a function of m for di�erent d�s� The
send and receive overhead �Os� Or� and the gap �g��

can be extracted from the LogP signatures� Network
latency �L �

Tround�trip
�

�Os�Or� requires a separate
round�trip time measurement�
Figure 
 gives the LogP signatures of JAM PIO

primitives in three di�erent usages� Signatures �a�
and �b� are for using a set of generalized send and
receive primitives on �	�byte and 	��byte messages
respectively� These primitives can transfer variable�
length messages between any word�aligned memory
bu�er and the message queues� Signature �c� is for
using a set of primitives specialized for 	��byte mes�
sages on SUN UltraSPARC systems� These prim�
itives take advantage of ldda and stda instructions
to transfer 	��byte messages between 	��byte�aligned
memory bu�ers and the network queues� The exper�
iments are conducted on two SUN E
��� ��processor
SMP�s� One �		 MHz UltraSPARC�� processor in
each SMP serves as Pr or Ps� In all cases� Ps and
Pr exchange high�priority messages along a �xed net�
work path over two router stages� Each data point

�The LogP Signature normally determines the gap which is
related to the single worst bandwidth bottleneck on the path
between a sender and a receiver� However� if g � 
Or�Os�� the
time for Pr to bounce each message appears as an arti�cial gap
in the experiment� A di�erent experiment has shown g � Or

for StarT�X�Arctic�
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Table �� Performance Characteristics of PIO Message Passing� �a� �	�byte Message �b� 	��byte Message �c�
	��byte Message using ldda�stda

represents the average over ��� trials�
Table � summarizes the extracted performance pa�

rameters� The results can be scaled to larger clusters
because the user�perceived performance is not bound
by Arctic�s fat�tree network ���� MByte�sec�link�
���
 usec�hop�� However� these results will vary for
di�erent host architectures since the results directly
re�ect the host architecture�s PIO capability�
A row�by�row comparison shows a signi�cant im�

provement from the burst PIO optimization �row
�c��� A 	��byte message can be transferred on Ultra�
SPARC systems using burst PIO�s at nearly the same
cost as a �	�byte message �row �a��� Whereas� row
�b� shows the dismal e�ect of accumulating single�
beat PIO overheads on long 	��byte messages�

����� RDMA Mode Performance

Figure 	 shows StarT�X�s RDMA bandwidth and la�
tency as a function of transfer size from two exper�
iments� Experiment �a� measures the time for S�
bytes of data to ping�pong ��� times between two
SMP�s� Graph �a� plots the average one�way trans�
fer latency �Lone�way� and the e�ective bandwidth
�S�Lone�way�� The peak RDMA bandwidth should
only be limited by the e�ciency of the host�s memory
system and its ���bit �� MHz PCI bus� We have ob�

served the RDMA bandwidth of over �� MByte�sec
on Pentium PC�s� Experiment �b� measures the time
for two SMP�s to exchange S�bytes of data simul�
taneously ��� times� Graph �b� plots the average
time per exchange �Lexchange� and the e�ective band�
width ��S�Lexchange�� In an exchange� transmit and
receive RDMA�s are carried out simultaneously� but
the aggregate bandwidth actually decreases due to
PCI bus contentions� These experiments do not ac�
count for the software protocol overhead discussed in
Section 
���

��� High
Level Interfaces

To support application development� two high�level
communication interfaces have been implemented on
top of the JAM primitives�

JAM Remote Procedure Call �RPC��

The JAM RPC library supports a simple non�
blocking remote procedure call abstraction� The li�
brary is developed to support the runtime system of
distributed Cilk���
� a multi�threaded dialect of C�
The library contains two main primitives� JAM rpc��
to launch a procedure with an arbitrary�size argu�
ment bu�er on a remote processor� and JAM poll�� to

�
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Figure 	� RDMA Bandwidth and Latency� �a� one�way �b� exchange

service the network and carry out pending procedure
calls� The RPC interface supports multi�threading
to allow parallel processes on an SMP to share a
StarT�X NIU� The JAM rpc�� implementation auto�
matically switches between PIO and RDMA modes
according to the argument size�

MPI�StarT� MPI�StarT���
� a derivation of
MPICH��
� has been developed to support the
popular standardized programming interface� The
MPICH channel interface is implemented using JAM
primitives� MPI�StarT selects between PIO and
RDMA modes to minimize transfer latency� An op�
timization allows same�SMP MPI processes to com�
municate at over �
� MByte�sec using SMP�s shared
memory�

Graphs �a� and �b� in Figure � plot the latency
and e�ective bandwidth to transfer S bytes of data
using JAM RPC and MPI�StarT� The measurements
are conducted on the same hardware as the JAM
kernel interface experiments� The experiment mea�
sures the time for S�bytes of data to ping�pong ���
times between two SMP�s� The graphs plot the av�
erage one�way transfer latency L and the e�ective
bandwidth �S�L�� L for the smallest transfer size is
�
�� usec for JAM RPC and ���
 usec for MPI�StarT�
On large transfers� both JAM RPC and MPI�StarT
approaches the peak StarT�X RDMA bandwidth on
SUN E
����

��� Applications on a StarT
X Cluster

MITMatlab���
 is a parallel numerical�linear�algebra
package that supports the popular Matlab user in�
terface� MITMatlab�s parallel back�end uses MPI
for communication and is easily portable to StarT�X
by linking with MPI�StarT� We did not modify the

MITMatlab source code for this demonstration� Ta�
ble � summarizes the wall�clock time for multiply�
ing two column�distributed single�precision �oating�
point n� n matrices using P processors� When test�
ing on less than eight processors� we measure the
performance both when the processors are on the
same SMP and when the processors are divided be�
tween two SMP�s� For P � �	 and P � ��� the
experiments run on two and three ��processor SUN
E
��� SMP�s respectively� Each SMP has only one
StarT�X NIU� The results from the single SMP ex�
periments are comparable to the results from MIT�
Matlab linked with SUN�s MPI library for shared
memory� Our initial performance when using more
than one SMP was poor because the stock MPICH
broadcast implementation is oblivious to the di�er�
ence between inter�SMP and intra�SMP communica�
tion bandwidth� However� after modifying the broad�
cast primitive� we have seen speedup on con�gura�
tions of up to �� processors over three SMP�s� A com�
parison of rows corresponding to P � x� P � x � x
and P � �x shows that doubling the number of pro�
cessors through StarT�X is as e�cient as through the
SMPmemory bus� On two full SMP�s �P � ����� lin�
ear speedup is still achieved on a �k��k matrix multi�
ply� At three SMP�s �P � ������ the speedup does
drop to �� percent below the expected linear speedup�
Nevertheless� this level of performance and scalability
is already well beyond what can be achieved on the
same cluster using SUN�s MPI library over ��� Mbit
switched Ethernet�

� Summary

This paper presents StarT�X� a ���bit �� MHz PCI
NIU that supports user�level intra�cluster communi�
cation over the Arctic Switch Fabric� StarT�X and
Arctic are currently installed on MIT�LCS�s Xolas
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Figure �� Bandwidth and Latency of High�level Communication Interfaces� �a� JAM RPC �b� MPI�StarT

Matrix Size
����� ���� ���
 � ���
 ��
� � ��
�

time time time
�sec� �sec� �sec�

P���� 
�	 �
�� NA

P�� 
�� �
�� NA

P���� ��
 �	�� �����

P�� ��� ���� ����	

P���� ��� ���� �����

P�
 ��� ���� �����

P�
�
 ��� ���� �����

P�
�
�
 ��	 
�
 �
�	

Table �� Wall�clock Time for n� n Matrix Multiplication on P Processors� ��P � � � �� �� means a total
of �� processors on � SMP�s��

Cluster of SUN E
��� SMP�s� High�level program�
ming interfaces �MPI and Cilk� and applications have
been developed in a joint e�ort between research
groups� At the moment� there is a plan to apply
StarT�X and Arctic in a cluster of �� Intel SMP�s to
support MITgcmUV��
� a global ocean simulation�

During this one�year StarT�X development� two
lessons left a strong impression� First� VLSI tech�
nologies are improving so rapidly such that it is im�
portant to plan and track the technology changes
even for a short ���month project� When our project
started� we had ruled out implementing a custom 	��
bit or 		 MHz PCI interface because a ���bit �� MHz
burst�capable master interface was barely feasible
on FPGA�s that had guaranteed availability at that
time� A more recent survey has revealed FPGA�s
that would make us reconsider� Second� assuming
one had a su�ciently fast interconnect� it is not di��
cult to build PCI NIU�s that can operate beyond the
limit of most hosts� I�O system by supporting burst
PCI transactions� However� at the same time� these
NIU�s performance would still be sub�par in compar�

ison to the rest of the system� i�e� processor and
memory� This is either a re�ection on the relegated
importance of I�O performance in current architec�
tures� or an indication that a truly high�performance
NIU does not belong on the I�O bus�
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