
START�JR� A Parallel System from

Commodity Technology

James C� Hoe Mike Ehrlich
jhoe�lcs�mit�edu mikee�lcs�mit�edu

Laboratory for Computer Science
Massachusetts Institute of Technology� Cambridge� MA ������ USA

Abstract

StarT�jr is an experimental parallel system composed of a network of personal
computers �PCs�� The system leverages the momentum of the microprocessor
and PC industries to achieve excellent single node performance at a low cost�
For parallel processing� StarT�jr uses the Flexible User�level Network Inter�
face �FUNi� to provide low�overhead� user�level interprocessor communication
over two IEEE ���� High Performance Serial Busses� This e	cient message�
passing mechanism enables StarT�jr to exploit 
ne�grained parallelism for
good parallel performance�

FUNi is based on an embedded processing system on a PCI card� Custom net�
work hardware assembled from a commercial IEEE ���� chip set providesFUNi
with access to the IEEE ���� network� In message passing� FUNi�s embed�
ded processor serves as a network coprocessor and manages an user�accessible
message�passing interface in the host memory� User�level applications directly
manipulate the interface location in host memory using cached reads and writes�
Costly physical I�O accesses to device registers on the PCI bus are avoided�
Currently� FUNi can e	ciently support both 
ne�grain message passing and
direct memory�to�memory transfers of large data blocks� FUNi can also sup�
port globally coherent shared memory by capturing and responding to memory
accesses within a designated global address range� FUNi maintains a globally
coherent shared memory cache to minimize global memory access latency� The
necessary coherence protocol processing and communication is performed by
the FUNi coprocessor�

We have demonstrated a two�node prototype of StarT�jr and are awaiting fab�
rication of additional interface cards in order to assemble an eight�node system�
StarT�jr currently supports an active message�based light�weight communi�
cation library for the C programming language� Preliminary measurements of
the communication library demonstrated overheads of ��� �sec for sending
or receiving small �� �
 bytes� messages� and an user�to�user latency of ��
�sec� Direct memory�to�memory transfers can sustain ��� MByte�sec on an
unloaded network� With regard to the shared memory operation� reading a
shared�memory location cached in FUNi takes approximately � �sec�

Keywords� StarT�jr� FUNi� network of workstations� parallel processing�
network interface� user�level� interprocessor communication



� Introduction

StarT�jr is an experimental parallel system based on a network of workstations
�NOW�� The goal is to demonstrate that an e	cient and powerful parallel system
can be inexpensively constructed from commodity technology� Thus� the 
rst�order
design directive of the system is to make maximal use of existing and proven com�
mercial technology� Commodity�like Intel Pentium�based personal computers �PCs��
in stock con
guration� currently serve as the processing nodes to o�er state�of�the�art
single�node performance at a consumer�level price� In addition to a standard local area
network �LAN� providing normal network services� two IEEE ���
 High Performance
Serial Busses��� provide the necessary interconnect for scalable parallel performance�
Stock Linux operating system� a PC freeware version of Unix� controls the operation of
the PCs�

As a corollary from the 
rst directive� the detail design of StarT�jr must not only
use the most suitable technology available� but it must also adopt to more suitable tech�
nologies as they emerge� Given this objective� the Flexible User�level Network Interface
�FUNi� for StarT�jr is designed for the industry�standard PCI���� bus� as opposed to
a speci
c processor�memory bus� Although some aspects of performance is sacri
ced�
by maintaining this generality� StarT�jr systems can also be �scalable� through time
by continually adopting more e�ective PC or workstation platforms with minimal loss
in non�transferable software and hardware investment� On the other hand� FUNi itself
also incorporates a modular design to facilitate upgrade in network performance� The
on�board embedded processor� which controls the functions of FUNi� is packaged as an
upgradable module� The lowest�level network adaptor module is also contained within
an interchangeable daughter card to allow for di�erent interconnection technologies�

To support a highly scalable parallel system� FUNi is targeted for 
ne�grain parallel
processing where interprocessor communication is short but frequent� Any ine	ciency
in communication overhead �computation cycles lost to communication� will be magni�

ed under such usage� This seems to counter FUNi�s PCI�based design since physical
I�O accesses to a PCI device � typically many tens of cycles per access � can add up
to a very large overhead during communication� To overcome this obstacle� FUNi uses
a decoupled interface paradigm to avoid direct interaction between the host processor
and the FUNi hardware� FUNi itself is based on a commercial Intel i��� embedded
processing system with direct read and write accesses to the host memory� Thus� FUNi
can act as a network coprocessor to implement a message�passing interface �e�g� send
and receive message queues� in the host memory� User processes only have to manipu�
late these message interface locations using normal memory reads and writes� Figure �
illustrates this idea�

The FUNi coprocessor 
rmware can be reprogrammed to support many �avors of
message passing interfaces and functions� In general� the FUNi interfaces are designed
such that communication overhead is transferred from the host processor to the FUNi
coprocessor� Currently� FUNi e	ciently supports both 
ne�grain message passing ��
�� bytes of payload per message� and direct memory�to�memory transfers of large data
blocks �up to ���� bytes per initiation�� To further reduce the communication overhead�
FUNi� with the general�purpose processing power of i���� can be programmed to o��
load some of the simpler message processing from the host processor� For example�
memory access requests from a remote node could be satis
ed by FUNi directly without
ever disrupting the host processor� Active messages���� processing can also be o��loaded
from the host processor�



Cached 
Read & Write

Processor

Host

M
em

or
y 

B
us

N
et

w
or

k 
A

da
pt

or

No direct interaction

PCI
Bridge Coprocessor

with

DMA Capability

DMA
Read &
Write

User

Message
Rx & Tx FIFOs

FUNi

Host DRAM

Figure �� A Message Interface based on Software Queues in User�s Virtual Memory

In addition to message passing� FUNi�s hardware can also support globally coherent
shared memory by capturing and responding to memory accesses within a designated
global address range� After an address capture� the hardware 
rst tries to satisfy the
request by consulting a globally coherent shared memory cache� If the request can�
not be satis
ed directly� the FUNi coprocessor is interrupted to perform the necessary
coherence processing and communication to complete the memory request� The pro�
grammability and processing power of the FUNi coprocessor allow for experimentation
with memory coherence protocols� Unfortunately� in the current implementation� host
processors are unable to cache the shared memory regions� thus limiting the perfor�
mance of shared memory applications�

To obtain a meaningful performance estimate� a light�weight communication library
�for the C programming language� based on active messages has been developed for
StarT�jr� The library e	ciently exposes FUNi�s message�passing and DMA features
to user�level applications� Preliminary measurements of the communication library
demonstrated overheads of ��
 �sec for sending or receiving small �� 
� bytes� mes�
sages� and an user�to�user latency of �� �sec� Direct memory�to�memory transfers can
sustain ��
 MByte�sec on an unloaded network� The low overhead is attributed to the
fact that the host processor only has to access the host memory for message passing�
The latency and bandwidth is below the capability of the raw hardware since the co�
processor 
rmware is designed to minimize overhead� By reprogramming the FUNi

rmware for an alternative interface style� the low overhead can be traded for lower
latency and better bandwidth� Currently� no software has been developed for shared
memory� However� based on low�level experiments� a single�word read of a locally�
cached shared�memory location takes approximately � �sec�

In this section� we have given an introductory overview of StarT�jr and FUNi�
The remainder of this paper presents the details of the StarT�jr system and pays
particular attention to the interprocessor communication mechanism that FUNi pro�
vides� The next section describes the current implementation of StarT�jr using stock
PCs and IEEE ���
 interconnections� Section � discusses FUNi� the interprocessor
communication mechanism in StarT�jr� Section 
 presents the results acquired from
the prototype system� Section � brie�y relates StarT�jr to other projects in the area
of NOW and network interface design� This paper concludes with a summary and a



brief discussion in Section ��

� A StarT�jr Implementation

The StarT�jr system is not 
xed to any one speci
c implementation� Following our
objective to construct the most e	cient parallel system from the best suited commercial
technology� we have left the design open to adopt new implementation technologies� In
this section� we outline the implementation of our current IEEE ���
�based StarT�jr�
We 
rst describe the commodity components �i�e� stock� commercial portion� of our
system and how each is selected� In the current StarT�jr implementation� a portion
of FUNi does contain semi�custom hardware because no adequate substitute existed�
The end of this section is devoted to the design and implementation of this semi�custom
IEEE ���
 adaptor module�

��� Commodity Components of StarT�jr

The StarT�jr system can be broken into three components� the processing nodes�
the interconnect substrate� and the network interface� Each of the components are
speci
ed or designed for trade�o�s between cost and performance� together with the
added constraint of �exibility and upgradability� The goal is to achieve the widest
range of commercial options for implementation�

����� Processing nodes

The current StarT�jr system is composed of eight stock PCs with ��� MHz Pentium
processors� These commodity�like PCs� with ��� KBytes of cache and �� MBytes of
main memory� is estimated at ����� SPECint�� and ����
 SPECfp��� Even when fully
con
gured with disk drives and I�O peripherals� the system costs under US������ This
level of price�performance ratio� made possible by the market volume of the PC industry�
is precisely what StarT�jr wants to exploit�

StarT�jr currently employs Linux� a PC version of the Unix operating system�
StarT�jr only requires the addition of a FUNi device driver to provide mapping
and protection for the interface memory region in the user�s virtual address space�
The standard OS o�ers the familiar suite of software development tools �compilers�
debuggers� windowing systems� etc�� to reduce software development overhead� Equally
importantly� pre�exiting sequential applications make StarT�jr immediately useful as
a cluster of powerful stand�alone workstations�

With PCI�compliant FUNi hardware� StarT�jr can adopt any PCI�equipped plat�
form running a selection of operating systems� This option ranges from entry�level PCs
to high�end SMP servers� and allows for a heterogeneous StarT�jr system� Further�
more� StarT�jr can automatically track the technology curve by adopting to faster�
and even cheaper� base platforms as they emerge�

����� Interconnect Substrate

The IEEE ���
 High Performance Serial Bus standard ��� is intended for multimedia
applications with real�time and bandwidth requirements� This high performance tech�
nology is available as a ready�to�integrate chip set at a negligible cost� Chip sets for
��� and ��� Mbit�sec networks are already available� and 
�� Mbit�sec and � Gbit�sec



Interchangeable

Custom Squall Module

FUNi
Network Interface

PCI Card

i960

PROCESSOR

MODULE

i960 LOCAL BUS

PLX PCI9060

INTERFACE &

BRIDGE CHIP

(DMA Channels)

Interleaved Local
Memory Banks

72-pin SIMM DRAM

72-pin SIMM DRAM

HOST PCI BUS

Squall

Interface

ModuleLink Module

1394 Firewire
or MIT Arctic

Figure �� FUNi PCI Card

are being developed� IEEE ���
 has already found applications in consumer electronics
such as disk drivers� printers� VCRs and video cameras�

Currently� two ��� Mbit�sec IEEE ���
 High Performance Serial Busses constitute
the interconnect substrate for its price�performance ratio and its ease of implementa�
tion� However� the multimedia lineage of IEEE ���
 presents a problem in the case of
network bu�er over�ow� Whereas it is of little concern to discard over�owing packets
in most multimedia applications� parallel processing systems have traditionally relied
on a reliable� loss�less network� In Section ����
 we will explain how FUNi maintains
the loss�less abstraction on top of the lossy underlying IEEE ���
 substrate�

A number of interconnect technologies can be incorporated into StarT�jr with
minimal modi
cations to the remainder of the system� For example� a network module
for the Arctic Switch Fabric ���� MBytes per link��
� has been developed concurrently
with the IEEE ���
 adaptor module� The Arctic module will allow us to construct a
larger� higher performing StarT�jr using mostly the same hardware and software�

����� FUNi Hardware

Although FUNi contains semi�custom hardware� it is mostly based on a commercial
embedded system� The custom hardware development is limited to the IEEE ���

adaptor module that plugs into an existing interface� The details of this custom module
is presented at the end of this section� The following paragraphs describe the commercial
embedded system�

FUNi is based on Cyclone Microsystem�s PCI����� Intelligent Communication

Controller����� Packaged as a plug�in PCI card� PCI����� is a general�purpose embed�
ded system� complete with a �� MHz Intel i���CF �a ���bit superscalar RISC processor�
and � MBytes �upgradable to �� MBytes� of local DRAM� A bus bridge provides i���
with direct load�store access and a DMA engine to the host memory� Eight ���bit mail�
box registers� visible to both the host and i��� by memory�mapped reads and writes�
are also available to implement handshakes and synchronizations�

PCI����� is engineered with an open�standard� Squall I�O adaptor interface on



the i��� local bus� A variety of network adaptors� such as Ethernet� ATM� etc�� are
commercially available� FUNi employs a custom IEEE ���
 adaptor module for the
Squall interface to provide i��� with access to the interconnect� Figure � illustrates the
datapath of the FUNi PCI card� In StarT�jr� i��� serves as the intelligent network
coprocessor� Section � describes how FUNi makes use of this embedded processing to
implement an e	cient low�overhead user�level message�passing interface despite being
physically located on the peripheral PCI bus�

To help track the microprocessor performance curve� PCI������s modular design
packages the i��� processor in an interchangeable module� The binary compatibility
and standardized bus interface within the i��� family allow transparent upgrades to
upcoming generations of i���� By upgrading the host system and network coprocessor
accordingly� we will be able to maintain the balance between computation and commu�
nication performance�

��� Custom IEEE ���� Interface Module for FUNi

The Squall IEEE ���
 adaptor module for FUNi provides the FUNi coprocessor with
access to two separate IEEE ���
 High Performance Serial Busses� All components on
the adaptor can be purchased �o��the�shelf�� only the PCB layout and the logics inside
two Xilinx 
��� FPGAs are custom to our system� The IEEE ���
 adaptor module for
FUNi is made up of two separate printed circuit boards� joined by a connector� The
IEEE ���
 Physical Link Module ����
PLM� PCB is speci
c to IEEE ���
 and utilizes
commercial ���
 chip sets� The other PCB� Squall Interface Module �SIM�� provides a
generalized interface between the FUNi i��� coprocessor and PLMs�

����� Squall Interface Module

SIM presents a simple generic ���bit FIFO�based transmission and reception interface to
the FUNi coprocessor� The same SIM interface can be 
tted with di�erent speci
cally
designed PLMs to support di�erent network technologies� To support two physically
prioritized networks� four hardware FIFOs are built from TI������ synchronous FIFOs�
A high and a low priority transmit FIFO pass commands and out�going packets from
the FUNi coprocessor to PLM� A high and a low priority receive FIFO provide FUNi
with access to hardware responses and in�bound packets from PLM� The SIM interface
supports both single�word and four�word�burst accesses from the i���FUNi coprocessor
to the FIFOs� The optimized burst transactions allow more than double the bandwidth
of single�word reads and writes�

SIM also includes the hardware for implementing globally coherent shared memory
on StarT�jr� During shared memory operations� the shared memory region of the
user�s virtual address space is mapped to an Address Capture Device �ACD� on SIM�
ACD is backed by a two�way set�associative Global Shared Memory Cache �GSMC�
that is managed by a combination of hardware and FUNi 
rmware� GSMC is based on
a ��KB Dual Ported Synchronous SRAM �DPSRAM� where one half of the DPSRAM
is used for the data store� and one quarter is used for the tag store� The remaining

KB of DPSRAM is available to FUNi as fast scratch memory�

When an access to a shared memory location occurs� ACD checks the two tag�control
words in the GSMC tag store that correspond to the memory reference� If ACD deter�
mines that the memory requested can be completed according to the tag�control words�
it will allow the bus transaction to access the corresponding GSMC data location to



complete the transaction� If the transaction cannot be satis
ed in hardware� ACD will
force the memory transaction to retry inde
nitely and interrupt the FUNi coprocessor
for assistance� Once interrupted� the FUNi coprocessor queries ACD for the cause and
performs the necessary coherence protocol to satisfy the memory request� This may
require communication with FUNis on other nodes over the IEEE ���
 interconnect�
The FUNi coprocessor can also maintain a large software cache in its local memory to
reduce network tra	c� Once the FUNi coprocessor is ready to complete the memory
transaction� the FUNi coprocessor updates the corresponding data and tag location in
GSMC� ACD is re�enabled to complete the retried memory transaction�

����� ���� High Performance Serial Bus Physical Link Module

���
PLM is built from a ready�to�integrate IEEE ���
 Physical Layer and Link Layer
chip sets from Texas Instruments� Connections to two independent IEEE ���
 busses
are provided� one is given a higher priority� A custom FPGA�based controller interfaces
with the SIM FIFOs and carries out the corresponding low�level handshakes with the
IEEE ���
 chip set� The speci
cs of the network implementation is contained within
PLM� This modular design allows StarT�jr to adopt a variety of di�erent interconnect
technologies with only limited modi
cations�

� FUNi

The basic FUNi message�passing interface was 
rst proposed for SBus�equipped
workstations���� The design proposed a way to implement a 
ne�grain message�passing
interface on a peripheral bus without a penalty in communication overhead from the
long access latency� The design required more intelligence in the interface hardware
to manage a message�passing interface in the host memory� Interaction between the
host processor and the network interface is achieved indirectly through these shared
memory locations� The original proposal asked for implementation of custom logics in
FPGAs� Due to the limited logic density of FPGAs� only the very basic message�passing
mechanisms were supported�

This initial study has led to the current embedded processing�based FUNi imple�
mentation� The new design still retains the same low�overhead since the memory�based
interface paradigm is una�ected� Embedded processing does slightly increase communi�
cation latency over the FPGA�based design� However� newly available processing power
and programmability enable richer features and open opportunities for experimentation�
Furthermore� by eliminating much of the custom logics� embedded processing has also
signi
cantly reduced the design and implementation complexity� Logic designs are re�
placed by 
rmware development using a standard C compiler and interactive debugger�

In the following paragraph� we describe the communication mechanism currently
supported by FUNi� FUNi is composed of two parts� an user�visible part that im�
plements the user�level message interface� and an internal part that processes network
events such as transmission and reception� and the necessary network protocols� We

rst describe the basic interaction between the FUNi 
rmware and host software at the
message passing interface� Next� we will examine the internal part of FUNi� Finally�
possibilities to extend the FUNi feature set is brie�y explored�



a read-only register

a write-only register

a free message slot

an active message slot

Hi Tx Queue Hi Rx Queue

User Virtual Address Space

Lo Tx Queue Lo Rx Queue

tail

head

tail

head

tail

head

tail

head

Figure �� FUNi User Message Interface

��� Memory�based User�level Message�Passing Interface

FUNi externally presents an abstract network interface to the user� Due to the FUNi
coprocessor� the user interface can include more complicated services not directly sup�
ported by the underlying network hardware� The interface abstraction o��loads the
tasks of dealing with the particularity of the network implementation to the FUNi
coprocessor� This does not only streamline the host processor�s communication task�
but the generalized abstraction also allows the same user software to be carried over
among di�erent network implementations�

The basic message sending and receiving interface currently implemented for
StarT�jr is based on a set of message queues for transmission �Tx� and reception
�Rx�� Figure � logically depicts this message interface in the user�s virtual address
space� The message queues are jointly maintained by the host processor and FUNi as
circular bu�ers in the host memory� Two sets of Tx and Rx queue pairs are imple�
mented to support two message priorities� Each queue is logically divided into 
x�sized
message slots� each large enough to hold the largest message� A set of memory�mapped
registers �the PCI����� mailbox registers� holds the head and tail indices associated
with each circular bu�er� During the initialization call to the device driver� the user
application supplies a region of virtual address space to be mapped to the Tx and Rx
queues pinned in the host physical memory� The index registers are also mapped into
the user�s virtual address space�

The circular bu�ers use the standard convention of head and tail indices to im�
plement FIFO queues� The head index points to the next free slot� whereas the tail
index points to the next valid slot� A queue is empty when the head and tail indices
both point to the same slot� and full when the head is immediately before the tail�
The producer of a queue increments the corresponding head index register to inform
the consumer about new slots containing messages� The consumer increments the tail
index to indicate which slots are ready for reclaim� Each index register is only incre�



mented by either the user or FUNi� and therefore does not require atomic operations
to modify�

����� User�level Message Passing� Sending

As the consumer� the FUNi 
rmware compares the head and tail index registers to
poll the Tx queues for pending out�going message� To send a message� the user process
directly composes the message in the next free slot in the Tx queue� The user�level
interface uses very simple message formats �simpler than an actual network packet�� For
normal message passing� the message header� containing the logical destination address�
message length and message type� is written to the 
rst word of the message slot� The
message payload is written to successive addresses following the message header� These
writes to cacheable memory locations incur minimum overhead� Afterwards� the user
process increments the content of the head index register to make the current message
slot visible to FUNi� Once noti
ed� FUNi issues cache�coherent read requests on the
PCI bus to retrieve the user message� presumably still in the data cache� and composes
the corresponding network packet for transmission� After each successful retrieval from
a slot� FUNi will increment the tail index to release the slot�

����� User�level Message Passing� Receiving

When a packet arrives� FUNi� acting as the producer� enqueues the message to one of
the two Rx queues depending on the message�s priority� Then� FUNi increments the
corresponding head index register to indicate the arrival of a new message� Prior to
enqueuing� the contents of the tail and the head index registers are compared to detect
queue over�ow� Section ����� explains how an over�ow is handled by FUNi�

The user process detects the presence of an incoming message by comparing the
head and tail indices of the Rx queue� However� reading the head index register involves
costly physical I�O accesses to the FUNi device� Therefore� the same information is
redundantly represented as a message�valid bit in the header word of each Rx message
slot� When FUNi enqueues a message� aside from incrementing the head index� it also
sets the message�valid bit in the message slot� Thus� to poll for new messages� the user
process should check the message�valid bit of the next message slot using a cached
memory read� As long as the Rx queue remains empty� the header word is unchanged�
and each failed poll only incurs the overhead of a cache hit� This continues until FUNi
�ushes and updates the header word to re�ect a new message arrival��

When the user process locates an unreceived message� the user process 
rst extracts
the message type and length from the message header� Then� the message payload is
read from successive addresses� After the message is received� the user process releases
the message slots by incrementing the tail index register� According to the FUNi Rx
handshake� the user also needs to clear the message�valid bit afterwards�

�The message�valid scheme is not used to eliminate the need to increment the Tx head index
by the host processor� For FUNi�s coprocessor� reading from the Tx queue in the host memory is a
much more costly operation than reading the index registers� Since the FUNi coprocessor is time�
shared among many tasks� better overall performance is achieved when the index registers are used
for the Tx queues� The host overhead of writing to the index registers can be partially hidden by the
write�bu�er of the host processor� Furthermore� the head and tail index registers do not need to be
updated immediately after each message for correct operations� Thus� the overhead of updating the
index registers can be amortized over many messages�



����� Remote DMA Transfers

With a passive network interface� a block memory transfer requires the sending process
to explicitly copy� in verbatim� each byte of transfer from the source to the interface�
Similarly� the receiving process must later copy each byte from the interface to the
destination location� To eliminate the data copying overhead� the active FUNi network
interface is extended with two types of remote DMA transfer mechanisms� In either
DMA modes� the user process only needs to enqueue a header that speci
es the source
and target virtual addresses and the length of the data block� FUNi will automatically
move the data block across the nodes�

The 
rst DMA mode� intended for medium sized blocks �a few hundred bytes�� is
only a zero�copy variant of message passing where FUNi operates on the source and
target location directly instead of the message queues� The second type of DMA can
transfer up to ���� bytes of data per initiation� In this case� payload is moved to and
from FUNi using a DMA engine� FUNi automatically packetizes the data block for
transfer over the network� The trade�o� between the two DMA modes is bandwidth
versus latency and granularity of control� The overhead of initiating a DMA transfer�
regardless of size� is comparable to normal message passing�

��� Internal FUNi Functions

In addition to providing the user interface� the FUNi coprocessor is responsible for
interfacing with the network adaptor hardware as dictated by the user application�
At the highest level� this simply involves translating between the abstract user�level
messages and the appropriate network packets� according to a 
xed rule� However�
FUNi presents an abstraction of a secured� multi�prioritized� loss�less and deadlock�
free network to simplify the work of the host processor� If these characteristics are
not directly supported by the physical network substrate� FUNi must enforce these
characteristics through network protocols� In the paragraphs below� we describe the
light�weight protocols for enforcing these assumptions and how they apply to the IEEE
���
 implementation in particular�

����� Protection and Security

StarT�jr is designed to allow multiple parallel applications to time�share the network
and processor resources while providing each application the illusion of a private and
reliable network� FUNi maintains this abstraction by automatically tagging network
packets with Group Identi
ers �GIDs��

Each parallel application on StarT�jr is assign an unique GID� When the process
of a parallel application is active on a workstation� the operating system makes the
corresponding GID available to FUNi� Every out�going packet is automatically tagged
with the GID� When the packet arrives at the destination� the receiving FUNi compares
the GID tag of the in�bound packet against the local GID� The in�bound packet is
delivered to the current process only if a match is made� A mismatched GID indicates
the correct process is not presently executing� and the in�bound packet is not delivered�
�Under the �ow control protocol of StarT�jr� FUNi will discard the undeliverable
packet and return a negative acknowledgment to the packet�s originator�� Thus� a
process is only able to communicate with its cooperating peer processes of the same
application whom all share the same application GID�



����� Network Flow Control for Performance Guarantee

When a parallel system is shared among di�erent users� another concern is gross per�
formance degradation� or even deadlock� of the network due to misuse by a user� This
issue is addressed in StarT�jr by the Acknowledgment�Retry End�to�End Flow Con�
trol Protocol carried out by the FUNi coprocessor�

The Acknowledgment�Retry Protocol in StarT�jr is a simpli
cation of the Selec�
tive Repeat Protocol����� In this sender�bu�ering protocol� FUNi is responsible for
bu�ering its out�going packets until the packet is accepted and positively acknowledged
by the receiver� When FUNi absorbs an in�bound packet from the network� a positive
acknowledgment is sent if the packet is accepted� If FUNi cannot accept the packet� a
negative acknowledgment is returned to the originating FUNi to request for a retry�

With the ability to discard incoming packets� FUNi at each node can continuously
absorb packets from the network even with only 
nite local storage� Since network
packets are continuously absorbed� the network will not deadlock regardless of the
individual behavior at each node� Thus� FUNi can never be indirectly blocked from
communication by other misbehaving nodes� Thus� the protocol can guarantee the
worst�case performance of the network� FUNi is stopped from transmitting only when
its own receivers cannot absorb and acknowledge the packets fast enough� Thus� this
protocol also serves as an automatic rate control for throttling network activities of
over�active sender nodes�

The Acknowledgment�Retry Protocol needs to be implemented on top of two physi�
cally separate or prioritized network where the higher priority network tra	c cannot be
blocked by lower priority tra	c� In IEEE ���
�based StarT�jr� this is accomplished
by using two separate IEEE ���
 busses� In the protocol� the payload packets are sent
on the low priority network� and the acknowledgments are sent on the high priority
network to avoid deadlock within the protocol itself�

����� Virtually Prioritized Networks

On top of the Acknowledgment�Retry Protocol� any number of virtual network priori�
ties can be extended to the user� Currently� FUNi has chosen to implement two levels of
priority to support the popular request�reply based user protocols� Two sets of Tx and
Rx message queues as described in Section ��� are provided to handle the two priorities
of messages independently� FUNi preferentially services the higher priority queue 
rst�
Parts of the bu�ering resources at each FUNi are also reserved for exclusive use by high
priority message tra	c� This is su	cient to guarantee the �ow of high priority mes�
sages in the system regardless of lower priority tra	c since the Acknowledgment�Retry
Protocol already guarantees that the network itself will not block�

����� Packet Loss Recovery

Although the Acknowledgment�Retry Protocol allows FUNi to continuously absorb
packets from the network� under an extreme many�to�one communication pattern�
FUNi�s hardware bu�er can become full because the FUNi coprocessor cannot keep
up with the in�ux of packets� In a traditional loss�less MPP network� this condition
would temporarily block the network� but eventually it will become freed again without
extra handling�

The Acknowledgment�Retry Protocol on a loss�less network can expect every pay�
load packet transmitted to be matched with a returning acknowledgment� whether



positive or negative� However� on IEEE ���
� when the hardware bu�er over�ows� the
partially transferred message is discarded� In this case� a discarded payload packet
would never be acknowledged� �Due to the small size of acknowledgment packets� the
acknowledgment receive bu�er is guaranteed not to over�ow�� Thus� for IEEE ���
�
based StarT�jr� the Acknowledgment�Retry Protocol is augmented with an additional
round counting scheme to restart packets with lost acknowledgments� All packets des�
tined for a particular node is tagged with a round identi
er associated with that node�
When FUNi detects a situation where packets are lost on the network� it broadcasts
a new round identi
er for itself and discards any future in�bound packets tagged with
the old round identi
er� After receiving a restart broadcast� the other FUNis will treat
unacknowledged packets as if they were negatively acknowledged and retry them with
the new round identi
er�

��� Coprocessing�based Extension to FUNi

Higher�level communication features can be developed to further o��load network pro�
cessing tasks from the host processor to the 
rmware programmable FUNi� We are
currently working on a version of the FUNi 
rmware with integrated MPI���� functions
to reduce host processing overhead during communication� Processing of light�weight
active messages and remote fetches are also candidates for transfer into the FUNi co�
processor� Other possibilities include scheduled prefetches� conditional prefetches and
advanced synchronization services� Additional performance for mission�critical appli�
cations can be obtained through 
ne�tuning the 
rmware to the speci
c tra	c pattern
and communication needs�

FUNi�s embedded processor�based implementation also encourages research in net�
work �ow control protocols� Even non�trivial protocols can be quickly tested by recoding
the 
rmware� Performance monitors can also be included during system development�
Future work in protocols can extend to address fault tolerance and network load bal�
ancing issues�

� Current Status and Results

A two�node StarT�jr prototype has been completed as a prelude to the eight�node 
nal
system� A light�weight communication library� Jam� has been developed to assist the
software development for SPMD message�passing programming� The library is based
on University of California at Berkeley�s version of the Connection Machine Active
Message �CMAM� library����� The CMAM library is ported to StarT�jr by rewriting
the low�level primitives that deal directly with the network interface�� New primitives
are added to take advantage of the features of StarT�jr and FUNi� A new set of
primitives to support larger messages� up to twenty arguments� is added� A set of data
transfer primitives is also added to take advantage of FUNi�s low�overhead remote
DMA transfer� Examples of the Jam primitives and a brief description are given in
Table �� As in CMAM� each Jam primitive is supported in two priorities� high priority
primitives have the additional su	x reply�

A benchmark suite to assess the performance of FUNi in conjunction with Jam

is executed on the two�node StarT�jr prototype� Communication overhead� one�

�Currently� all software and 
rmware additions are coded in C and compiled with GCC with opti�
mization options�



Table �� Examples of Jam Primitives

Message�passing Primitives
primitive argument description

JAM ���

JAM reply ���

dest� �func�

arg�� arg��

arg�� arg�

Sends an active message containing the pointer
func and the � integer arguments to dest�
�func�arg��arg��arg��arg�� is invoked at dest

upon arrival�
JAM n��

JAM reply n��

dest� �func�

arg	
� size

Sends an active message containing the pointer func
and up to �
 integer arguments from arg�� to dest�
�func�arg	�
�arg	�
�����arg	n��
� is invoked at
dest upon arrival�

Block Data Transfer Primitives
primitive argument description

JAM xfer ���

JAM reply xfer ���

dest�

seg addr�

word�� word��

word�� word�

Transfers � integer data to dest� The transfer seg�
ment ID and address at the destination are encoded
in seg addr� This primitive uses FUNi�s standard
message passing mechanism�

JAM mfer n��

JAM reply mfer n��

dest� seg�

�source�

�target�

nword

Transfers up to �� ��byte data to dest� The payload
is moved from local source to remote target using
FUNi�s 
�copy message passing mechanism�

JAM DMA n��

JAM reply DMA n��

dest� seg�

�source�

�target�

nword

Transfers up to ��
 ��byte data to dest� The payload
is moved from local source to remote target using
FUNi�s direct memory�to�memory transfer�

NOTE� Like CMAM� data transfers 
rst involve reg�
istering a transfer segment and a handler at the desti�
nation node� Subsequent transfers decrement a trans�
fer counter� When the transfer is completed� the reg�
istered handler is invoked�



Table �� Benchmark Summary of Jam on StarT�jr

Message�passing Primitives
send receive send receive latency

overhead overhead throughput throughput
�sec �sec MB�sec �sec MB�sec �sec �sec

JAM � ��� ��� 
�� �� 
�� �� ��
JAM reply � ��� ��� 
�� �� 
�� �� ��
JAM n
� ��
 ��� 
�� �� 
�� ��
JAM n
�� ��� ��� ��� �� ��� ��
JAM reply n
� ��� ��� 
�� �� 
�� ��
JAM reply n
�� ��
 ��� ��� �� ��� ��

Block Data Transfer Primitives
send receive send receive latency

overhead overhead throughput throughput
�sec �sec MB�sec �sec MB�sec �sec �sec

JAM xfer � ��� ��� 
�� �� 
�� ��
JAM reply xfer � ��� ��� 
�� �� 
�� �

JAM mfer n
�� ��� ��� ��� �� 
�� ��
JAM reply mfer n
�� ��
 ��� ��� �� 
�� ��
JAM dma n
��� ��� ��� ��� ���
JAM reply dma n
��� ��� ��� ��� ���

way user�to�user latency and sustained throughput of the basic Jam primitives are
measured� The send and receive overheads measure the average execution time of
the corresponding primitives on the sending and receiving host processors respectively�
User�to�user latency includes all the processing by the host and FUNi on both the
sending and receiving ends� plus the one�hop network transit latency� In addition
to MByte�sec� sustainable throughput is also given in terms of �sec� which roughly
corresponds to the occupancy of each Jam primitive on the FUNi coprocessor� Table �
gives a summary of the measured results�

Table � compares the performance of FUNi against other message passing sys�
tems� The 
rst column lists the typical performance of TCP�IP on a Linux PC with a
���MHz Pentium processor and �� Mbit�sec Ethernet� The second column shows the
performance of the original CMAM library on a ���node CM�� with �� MHz SPARC
processors� The performance of StarT�jr connected by IEEE ���
 is given in column
three� For comparison� the performance of StarT�jr connected with MIT�s Arctic
Switch Fabric�
� is given in column four� Finally� a comparison is made against a pair
of Myrinet�equipped �� MHz SPARCstation��s running UIUC�s FM library����� The
overhead and latency are measured using minimum size packets in each system� The
overhead shown includes both the send and receive overheads� and the latency is for
one�way user�to�user� In Table �� overhead and latency are also given in terms of na�
tive processor cycles to give an approximation of the communication cost in terms of
number of instructions�

The comparison shows that FUNi can give nearly an order�of�magnitude improve�
ment in performance relative to normal Unix IPC mechanisms over conventional Ether�
net� FUNi�s memory�based� decoupled user�level interface achieves lower communica�
tion overhead in comparison with the contemporary Myrinet�based system� However�
Myrinet�based systems achieved nearly 
ve�times the bandwidth and one�sixth the min�



Table �� Communication Performance Comparison

TCP�IP and CMAM and Jam and Jam and FM and
Ethernet CM� StarT�jr StarT�jr Myrinet

�IEEE ����� �MIT Arctic�
overhead ��sec� �� ��� ��� ��� ���

�cyc� ���
 ���� ��� ��� ��

latency ��sec� ���� ���� �� ���
 ����

�cyc� ���K ��� �
�

 ���
 ���
bandwidth �MB�sec� 
�� �
�
 ��� ��� ����

imum latency as compared to FUNi� Section � further discusses the comparison against
Myrinet�based systems�

FUNi�s performance� in terms of bandwidth and latency� is restricted by our design
choices to exchange latency and throughput for lowered overhead� The user�visible
latency and bandwidth of FUNi is well below the capability of the raw hardware� An
alternate FUNi 
rmware can be used to improve the bandwidth and latency of the
system� but with a penalty in overhead and overall system performance�

FUNi�s performance is also limited by the processing rate of the i��� FUNi copro�
cessor� As described in Section ���� additional protocols have to be layered on top of the
IEEE ���
 High Performance Serial Bus to present a network abstraction more suitable
for parallel computing� The amount of protocol required directly a�ects each message�s
occupancy on the network coprocessor� which translates to lower bandwidth and longer
latency in the processing�bound FUNi� For example� by switching to the Arctic Switch
Fabric which is designed from the ground�up for parallel processing� FUNi� using more
minimal protocol� can gain a factor of two to three improvement in bandwidth and
latency� We hope FUNi�s performance will increase with the availability of new gen�
erations of i��� processors� Meanwhile� FUNi has to make use of its general�purpose
processing power to assist the host processor in more sophisticated message processing
to compensate for its shortcomings�

Lastly� one should also notice that both StarT�jr and the Myrinet system perform
poorly against CM�� in terms of native processor cycles� This exempli
es the two�
fold problem that hinders the communication performance of NOW systems� First�
unlike the two�generation�old SPARC processor in CM��� modern microprocessors have
greater bias for number crunching rather than I�O performance� Secondly� unlike CM�
��s proprietary hardware� the NOWs do not have the luxury of a customized network
interface tightly coupled to the microprocessor on the memory bus�

� Related Research

The parallel processing community has long recognized the importance of low commu�
nication latency and overhead for good parallel performance� The StarT project��
�
integrated an user�level network interface directly into ISA and the datapath of a RISC
microprocessor� However� the time and e�ort required for such a hardware�intensive
project not only introduces great risks but also often results in out�dated hardware�
To close this technology gap� later projects such as StarT�ng��� and Flash���� rely on
stock mainstream commercial microprocessors but with tightly coupled external hard�
ware �using a direct connection to the processor�� In the near term� these projects



may still be less practical because their overall message�passing performance remains
hindered by the internal design of the microprocessor� despite extensive e�orts in opti�
mizing the external hardware and its interaction with the microprocessor� Nevertheless�
this tight�integration of computation and communication will become essential as the
performance between the microprocessor and the remainder of the computer system
continues to widen�

Meanwhile� the network interface design for a practical NOW system must work
within the limitations of existing system constraints� such as the bias for normal mem�
ory accesses versus I�O accesses� The SHRIMP multicomputer project��� �� speci
es
another memory�based interface to achieve low communication overhead in a stock
workstation environment� The SHRIMP network interface is designed for a network of
Pentium PCs with Xpress Bus and EISA Bus� Communication between any two PCs is
logically an uni�directional mapping of a source virtual memory region on one PC to the
target memory region on another� The network interface on the source PC snoops the
bus for writes into the mapped area of memory and automatically transmits a message
to the target PC� The target network interface then writes the data to the corresponding
location using DMA� To support this communication paradigm� SHRIMP�s hardware
needs to support specialized functions such as bus snooping and memory�management�
SHRIMP�s hardware implementation overhead is higher than FUNi�s� and SHRIMP�s
association with a speci
c processor�memory bus limits its upgrade path� SHRIMP also
does not have the bene
t of a network coprocessor�

Several academic and industry NOW projects��� �� ��� ��� ��� ��� have based their
research on a cluster of workstations interconnected by Myrinet���� Derived from Cal�
tech�s ATOMIC project���� Myrinet is available commercially as a ready�to�go high�
performance NOW interconnection package� The Myrinet package comes complete
with network routers� end�point adaptors for SBus and PCI� standard IP layers� and a
custom low�level interface layer�

Myrinet�s network adaptors are controlled by Myricom�s custom LANai embedded
processor� Much of the current research has involved taking advantage of the pro�
grammability of the LANai processor to implement fast user�level message�passing on
NOW� Both LANai and the host processor can access the LANai local memory on the
adaptor� However� unlike the FUNi coprocessor� the LANai processor does not have
access to the host memory except using a DMA engine� Thus� in 
ne�grain messaging�
either the host processor has to pay the overhead for writing messages all the way out
to the adaptor� or to pay the latency penalty for data movement by the DMA engine�
This could possibly explain the higher communication overhead compared with FUNi�
However� Myrinet�s integrated custom implementation yields far better latency and
bandwidth �less than �� �sec latency and greater than �� MByte�sec are reported���

� Discussion

The goal of StarT�jr is to achieve usable performance comparable to hardware�
intensive designs while maintaining the price�performance advantage through the use
of low�cost commodity components� The system incorporates standard hardware and
software subsystems to achieve state�of�the�art performance with minimal cost and ef�
fort� By designing for commodity technology� StarT�jr is general enough to adopt

�Latest performance 
gures for Myrinet are posted on
http���www�myri�com�myrinet�performance��



to emerging technologies� This �exibility will enable StarT�jr to maintain up�to�date
performance despite the rapid turn�over of technology�

StarT�jr employs FUNi�s memory�based network interface paradigm to overcome
the two disadvantages facing NOW development�

�� Stock microprocessors and workstations are optimized with a bias for processing
rather than non�cached� non�burst I�O operations� and

�� Stock workstations lack a generic�standard interface that is more tightly�coupled
to the processor than the peripheral bus slots�

FUNi overcomes these problems by decoupling the network interface hardware from
the host processor during communication� The FUNi coprocessor also o��loads much
of the communication overhead from the host processor� By relying on latency�hiding
software techniques and concentrating on minimizing communication overhead� StarT�
jr can provide good support for 
ne�grain message passing�

This paper describes the system design and development of the StarT�jr project�
Continuing StarT�jr research will focus on developing additional memory�based in�
terface paradigms� The research will take full advantage of the programmable FUNi
coprocessor to compensate for FUNi�s hardware tradeo�s� Although FUNi is able
to reduce the overhead of message passing� its latency is not optimal� The success
of FUNi and StarT�jr must rely on latency�hiding techniques such as split�phased
transactions and software pipelining� Future research will involve analyzing existing
programs�algorithms� communication pattern and transforming them into more latency
tolerant ones� The analysis of communication patterns will also help in designing more
suitable message interface services� Given the programmable FUNi� it is possible to

ne�tune the FUNi 
rmware on a program�by�program basis for maximum perfor�
mance�

Relying on standard technologies from the PC and the workstation industries� the
bus�based symmetric multiprocessing workstations �SMPs� have solved the chicken�and�
egg problem of large market volume versus lowered production cost� By providing good
performance for both existing sequential binaries as well as new parallel programming
paradigms� SMPs have also resolved the paradox of creating a software base without a
user base� and vice versa� By touching o� this seamless transition� SMPs have 
nally
given parallel processing a solid foothold in mainstream computing� Nevertheless� the
scalability of these bus�based parallel systems will inevitably be challenged� Sharing the
same two traits that made SMPs successful� NOW systems such as StarT�jr will play
a crucial role in resolving the scalability bottleneck and further extending this seamless
transition into parallel computing�

� Acknowledgments

This research is supervised by Professor Arvind and is supported by the Advanced
Research Projects Agency of the Department of Defense under O	ce of Naval Research
contract N����
����J����� and Ft� Huachuca contract DABT������C������ Special
thanks to Intel for their donation of the Pentium PCs and to Texas Instruments for their
assistance in manufacturing the ���
 interface cards� Many thanks to our colleagues�
B� S� Ang� M� J� Beckerle� A� Boughton� D� Chiou� R� Greiner� J� E� Hicks� L� Rudolph�
and X� Shen on the StarT�ng and StarT�voyager sister projects�



References

��� M� A� Blumrich� C� Dubnicki� E� W� Felten� K� Li� and M� R� Mesarina� Two virtual
memory mapped network interface designs� In Proceedings of Hot Interconnects II�
August ���
�

��� M� A� Blumrich� K� Li� R� Alpert� C� Dubnicki� E� W� Felten� and J� Sandberg�
Virtual memory mapped network interface for the SHRIMP multicomputer� In
Proceedings of ��st ISCA� April ���
�

��� N� J� Boden� D� Cohen� R� E� Felderman� A� E� Kulawik� C� L� Seitz� J� N� Seizovic�
and W� Su� Myrinet � a gigabit�per�second local�area network� IEEE Micro�
February �����

�
� G� A� Boughton� Arctic routing chip� In Proceedings of Hot Interconnects II�
August ���
�

��� D� Chiou� B� S� Ang� Arvind� M� J� Beckerle� A� Boughton� R� Greiner� J� E�
Hicks� and J� C� Hoe� StarT�NG� Delivering seamless parallel computing� Technical
Report CSG Memo ���� MIT Laboratory for Computer Science� February �����

��� R� Felderman� A� DeSchon� D� Cohen� and G� Finn� Atomic� A high�speed local
communication architecture� Journal of High Speed Networks� ����� February ���
�

��� M� D� Hill� J� R� Larus� and D� A� Wood� Tempest� A substrate for portable
parallel programs� In Proceedings of COMPCON Spring �	� March �����

��� J� C� Hoe� Network interface for message�passing parallel computation on a work�
station cluster� In Proceedings of Hot Interconnects II� August ���
�

��� IEEE standard of a high performance serial bus� �����

���� Intel� i�
� Microprocessor User Guide for Cyclone EP and PCI�SDK Platform�
��� edition� �����

���� K� K� Keeton� T� E� Anderson� and D� A� Patterson� LogP quanti
ed� The case for
low�overhead local area network� In Proceedings of Hot Interconnects II� August
�����

���� J� Kuskin� D� Ofelt� M Heinrich� J� Heinlein� R� Simoni� K� Gharachorloo�
J� Chapin� D� Nakahira� J� Baxter� M� Horowitz� A� Gupta� M� Rosenblum� and
J� Hennessy� The Stanford FLASH multiprocessor� In Proceedings of ��st ISCA�
April ���
�

���� Message Passing Interface Forum� MPI� A Message Passing Interface Standard�
��� edition� June �����

��
� R� S� Nikhil� G� M� Papadopoulos� and Arvind� �T� A multithreaded massively
parallel architecture� In Proceedings of ��th ISCA� May �����

���� S� Pakin� V� Karamcheti� and A� Chien� Fast Messages� E	cient� portable com�
munication for workstation clusters and massively�parallel processors� submitted
for publication� April �����



���� S� Pakin� M� Lauria� and A� Chien� High performance messaging on workstations�
Illinois Fast Messages �FM� for Myrinet� In Proceedings of Supercomputing ��	�
�����

���� PCI Special Interest Group� PCI Local Bus Speci
cation� ��� edition� June �����

���� M� R� Swanson and L� B� Stoller� Low latency workstation cluster communica�
tions using sender�based protocols� Technical Report UUCS�������� Department
of Computer Science� University of Utah� January �����

���� A� S� Tanenbaum� Computer Networks� Prentice Hall� �����

���� T� von Eicken� D� E� Culler� S� C� Goldstein� and K� E� Schauser� Active Messages�
a mechanism for integrated communication and computation� In Proceedings of

��th ISCA� May �����


