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Abstract

StarT�jr is an experimental parallel system composed of a network of personal
computers �PCs�� The system leverages the momentum of the microprocessor
and PC industries to achieve excellent single node performance at a low cost�
For parallel processing� StarT�jr uses the Flexible User�level Network Inter�
face �FUNi� to provide low�overhead� user�level interprocessor communication
over two IEEE ���� High Performance Serial Busses� This e	cient message�
passing mechanism enables StarT�jr to exploit 
ne�grained parallelism for
good parallel performance�

FUNi is based on an embedded processing system on a PCI card� Custom net�
work hardware assembled from a commercial IEEE ���� chip set providesFUNi
with access to the IEEE ���� network� In message passing� FUNi�s embed�
ded processor serves as a network coprocessor and manages an user�accessible
message�passing interface in the host memory� User�level applications directly
manipulate the interface location in host memory using cached reads and writes�
Costly physical I�O accesses to device registers on the PCI bus are avoided�
Currently� FUNi can e	ciently support both 
ne�grain message passing and
direct memory�to�memory transfers of large data blocks� FUNi can also sup�
port globally coherent shared memory by capturing and responding to memory
accesses within a designated global address range� FUNi maintains a globally
coherent shared memory cache to minimize global memory access latency� The
necessary coherence protocol processing and communication is performed by
the FUNi coprocessor�

We have demonstrated a two�node prototype of StarT�jr and are awaiting fab�
rication of additional interface cards in order to assemble an eight�node system�
StarT�jr currently supports an active message�based light�weight communi�
cation library for the C programming language� Preliminary measurements of
the communication library demonstrated overheads of ��� �sec for sending
or receiving small �� �
 bytes� messages� and an user�to�user latency of ��
�sec� Direct memory�to�memory transfers can sustain ��� MByte�sec on an
unloaded network� With regard to the shared memory operation� reading a
shared�memory location cached in FUNi takes approximately � �sec�

Keywords� StarT�jr� FUNi� network of workstations� parallel processing�
network interface� user�level� interprocessor communication



� Introduction

StarT�jr is an experimental parallel system based on a network of workstations
�NOW�� The goal is to demonstrate that an e	cient and powerful parallel system
can be inexpensively constructed from commodity technology� Thus� the 
rst�order
design directive of the system is to make maximal use of existing and proven com�
mercial technology� Commodity�like Intel Pentium�based personal computers �PCs��
in stock con
guration� currently serve as the processing nodes to o�er state�of�the�art
single�node performance at a consumer�level price� In addition to a standard local area
network �LAN� providing normal network services� two IEEE ���
 High Performance
Serial Busses��� provide the necessary interconnect for scalable parallel performance�
Stock Linux operating system� a PC freeware version of Unix� controls the operation of
the PCs�

As a corollary from the 
rst directive� the detail design of StarT�jr must not only
use the most suitable technology available� but it must also adopt to more suitable tech�
nologies as they emerge� Given this objective� the Flexible User�level Network Interface
�FUNi� for StarT�jr is designed for the industry�standard PCI���� bus� as opposed to
a speci
c processor�memory bus� Although some aspects of performance is sacri
ced�
by maintaining this generality� StarT�jr systems can also be �scalable� through time
by continually adopting more e�ective PC or workstation platforms with minimal loss
in non�transferable software and hardware investment� On the other hand� FUNi itself
also incorporates a modular design to facilitate upgrade in network performance� The
on�board embedded processor� which controls the functions of FUNi� is packaged as an
upgradable module� The lowest�level network adaptor module is also contained within
an interchangeable daughter card to allow for di�erent interconnection technologies�

To support a highly scalable parallel system� FUNi is targeted for 
ne�grain parallel
processing where interprocessor communication is short but frequent� Any ine	ciency
in communication overhead �computation cycles lost to communication� will be magni�

ed under such usage� This seems to counter FUNi�s PCI�based design since physical
I�O accesses to a PCI device � typically many tens of cycles per access � can add up
to a very large overhead during communication� To overcome this obstacle� FUNi uses
a decoupled interface paradigm to avoid direct interaction between the host processor
and the FUNi hardware� FUNi itself is based on a commercial Intel i��� embedded
processing system with direct read and write accesses to the host memory� Thus� FUNi
can act as a network coprocessor to implement a message�passing interface �e�g� send
and receive message queues� in the host memory� User processes only have to manipu�
late these message interface locations using normal memory reads and writes� Figure �
illustrates this idea�

The FUNi coprocessor 
rmware can be reprogrammed to support many �avors of
message passing interfaces and functions� In general� the FUNi interfaces are designed
such that communication overhead is transferred from the host processor to the FUNi
coprocessor� Currently� FUNi e	ciently supports both 
ne�grain message passing ��
�� bytes of payload per message� and direct memory�to�memory transfers of large data
blocks �up to ���� bytes per initiation�� To further reduce the communication overhead�
FUNi� with the general�purpose processing power of i���� can be programmed to o��
load some of the simpler message processing from the host processor� For example�
memory access requests from a remote node could be satis
ed by FUNi directly without
ever disrupting the host processor� Active messages���� processing can also be o��loaded
from the host processor�
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Figure �� A Message Interface based on Software Queues in User�s Virtual Memory

In addition to message passing� FUNi�s hardware can also support globally coherent
shared memory by capturing and responding to memory accesses within a designated
global address range� After an address capture� the hardware 
rst tries to satisfy the
request by consulting a globally coherent shared memory cache� If the request can�
not be satis
ed directly� the FUNi coprocessor is interrupted to perform the necessary
coherence processing and communication to complete the memory request� The pro�
grammability and processing power of the FUNi coprocessor allow for experimentation
with memory coherence protocols� Unfortunately� in the current implementation� host
processors are unable to cache the shared memory regions� thus limiting the perfor�
mance of shared memory applications�

To obtain a meaningful performance estimate� a light�weight communication library
�for the C programming language� based on active messages has been developed for
StarT�jr� The library e	ciently exposes FUNi�s message�passing and DMA features
to user�level applications� Preliminary measurements of the communication library
demonstrated overheads of ��
 �sec for sending or receiving small �� 
� bytes� mes�
sages� and an user�to�user latency of �� �sec� Direct memory�to�memory transfers can
sustain ��
 MByte�sec on an unloaded network� The low overhead is attributed to the
fact that the host processor only has to access the host memory for message passing�
The latency and bandwidth is below the capability of the raw hardware since the co�
processor 
rmware is designed to minimize overhead� By reprogramming the FUNi

rmware for an alternative interface style� the low overhead can be traded for lower
latency and better bandwidth� Currently� no software has been developed for shared
memory� However� based on low�level experiments� a single�word read of a locally�
cached shared�memory location takes approximately � �sec�

In this section� we have given an introductory overview of StarT�jr and FUNi�
The remainder of this paper presents the details of the StarT�jr system and pays
particular attention to the interprocessor communication mechanism that FUNi pro�
vides� The next section describes the current implementation of StarT�jr using stock
PCs and IEEE ���
 interconnections� Section � discusses FUNi� the interprocessor
communication mechanism in StarT�jr� Section 
 presents the results acquired from
the prototype system� Section � brie�y relates StarT�jr to other projects in the area
of NOW and network interface design� This paper concludes with a summary and a



brief discussion in Section ��

� A StarT�jr Implementation

The StarT�jr system is not 
xed to any one speci
c implementation� Following our
objective to construct the most e	cient parallel system from the best suited commercial
technology� we have left the design open to adopt new implementation technologies� In
this section� we outline the implementation of our current IEEE ���
�based StarT�jr�
We 
rst describe the commodity components �i�e� stock� commercial portion� of our
system and how each is selected� In the current StarT�jr implementation� a portion
of FUNi does contain semi�custom hardware because no adequate substitute existed�
The end of this section is devoted to the design and implementation of this semi�custom
IEEE ���
 adaptor module�

��� Commodity Components of StarT�jr

The StarT�jr system can be broken into three components� the processing nodes�
the interconnect substrate� and the network interface� Each of the components are
speci
ed or designed for trade�o�s between cost and performance� together with the
added constraint of �exibility and upgradability� The goal is to achieve the widest
range of commercial options for implementation�

����� Processing nodes

The current StarT�jr system is composed of eight stock PCs with ��� MHz Pentium
processors� These commodity�like PCs� with ��� KBytes of cache and �� MBytes of
main memory� is estimated at ����� SPECint�� and ����
 SPECfp��� Even when fully
con
gured with disk drives and I�O peripherals� the system costs under US������ This
level of price�performance ratio� made possible by the market volume of the PC industry�
is precisely what StarT�jr wants to exploit�

StarT�jr currently employs Linux� a PC version of the Unix operating system�
StarT�jr only requires the addition of a FUNi device driver to provide mapping
and protection for the interface memory region in the user�s virtual address space�
The standard OS o�ers the familiar suite of software development tools �compilers�
debuggers� windowing systems� etc�� to reduce software development overhead� Equally
importantly� pre�exiting sequential applications make StarT�jr immediately useful as
a cluster of powerful stand�alone workstations�

With PCI�compliant FUNi hardware� StarT�jr can adopt any PCI�equipped plat�
form running a selection of operating systems� This option ranges from entry�level PCs
to high�end SMP servers� and allows for a heterogeneous StarT�jr system� Further�
more� StarT�jr can automatically track the technology curve by adopting to faster�
and even cheaper� base platforms as they emerge�

����� Interconnect Substrate

The IEEE ���
 High Performance Serial Bus standard ��� is intended for multimedia
applications with real�time and bandwidth requirements� This high performance tech�
nology is available as a ready�to�integrate chip set at a negligible cost� Chip sets for
��� and ��� Mbit�sec networks are already available� and 
�� Mbit�sec and � Gbit�sec
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are being developed� IEEE ���
 has already found applications in consumer electronics
such as disk drivers� printers� VCRs and video cameras�

Currently� two ��� Mbit�sec IEEE ���
 High Performance Serial Busses constitute
the interconnect substrate for its price�performance ratio and its ease of implementa�
tion� However� the multimedia lineage of IEEE ���
 presents a problem in the case of
network bu�er over�ow� Whereas it is of little concern to discard over�owing packets
in most multimedia applications� parallel processing systems have traditionally relied
on a reliable� loss�less network� In Section ����
 we will explain how FUNi maintains
the loss�less abstraction on top of the lossy underlying IEEE ���
 substrate�

A number of interconnect technologies can be incorporated into StarT�jr with
minimal modi
cations to the remainder of the system� For example� a network module
for the Arctic Switch Fabric ���� MBytes per link��
� has been developed concurrently
with the IEEE ���
 adaptor module� The Arctic module will allow us to construct a
larger� higher performing StarT�jr using mostly the same hardware and software�

����� FUNi Hardware

Although FUNi contains semi�custom hardware� it is mostly based on a commercial
embedded system� The custom hardware development is limited to the IEEE ���

adaptor module that plugs into an existing interface� The details of this custom module
is presented at the end of this section� The following paragraphs describe the commercial
embedded system�

FUNi is based on Cyclone Microsystem�s PCI����� Intelligent Communication

Controller����� Packaged as a plug�in PCI card� PCI����� is a general�purpose embed�
ded system� complete with a �� MHz Intel i���CF �a ���bit superscalar RISC processor�
and � MBytes �upgradable to �� MBytes� of local DRAM� A bus bridge provides i���
with direct load�store access and a DMA engine to the host memory� Eight ���bit mail�
box registers� visible to both the host and i��� by memory�mapped reads and writes�
are also available to implement handshakes and synchronizations�

PCI����� is engineered with an open�standard� Squall I�O adaptor interface on



the i��� local bus� A variety of network adaptors� such as Ethernet� ATM� etc�� are
commercially available� FUNi employs a custom IEEE ���
 adaptor module for the
Squall interface to provide i��� with access to the interconnect� Figure � illustrates the
datapath of the FUNi PCI card� In StarT�jr� i��� serves as the intelligent network
coprocessor� Section � describes how FUNi makes use of this embedded processing to
implement an e	cient low�overhead user�level message�passing interface despite being
physically located on the peripheral PCI bus�

To help track the microprocessor performance curve� PCI������s modular design
packages the i��� processor in an interchangeable module� The binary compatibility
and standardized bus interface within the i��� family allow transparent upgrades to
upcoming generations of i���� By upgrading the host system and network coprocessor
accordingly� we will be able to maintain the balance between computation and commu�
nication performance�

��� Custom IEEE ���� Interface Module for FUNi

The Squall IEEE ���
 adaptor module for FUNi provides the FUNi coprocessor with
access to two separate IEEE ���
 High Performance Serial Busses� All components on
the adaptor can be purchased �o��the�shelf�� only the PCB layout and the logics inside
two Xilinx 
��� FPGAs are custom to our system� The IEEE ���
 adaptor module for
FUNi is made up of two separate printed circuit boards� joined by a connector� The
IEEE ���
 Physical Link Module ����
PLM� PCB is speci
c to IEEE ���
 and utilizes
commercial ���
 chip sets� The other PCB� Squall Interface Module �SIM�� provides a
generalized interface between the FUNi i��� coprocessor and PLMs�

����� Squall Interface Module

SIM presents a simple generic ���bit FIFO�based transmission and reception interface to
the FUNi coprocessor� The same SIM interface can be 
tted with di�erent speci
cally
designed PLMs to support di�erent network technologies� To support two physically
prioritized networks� four hardware FIFOs are built from TI������ synchronous FIFOs�
A high and a low priority transmit FIFO pass commands and out�going packets from
the FUNi coprocessor to PLM� A high and a low priority receive FIFO provide FUNi
with access to hardware responses and in�bound packets from PLM� The SIM interface
supports both single�word and four�word�burst accesses from the i���FUNi coprocessor
to the FIFOs� The optimized burst transactions allow more than double the bandwidth
of single�word reads and writes�

SIM also includes the hardware for implementing globally coherent shared memory
on StarT�jr� During shared memory operations� the shared memory region of the
user�s virtual address space is mapped to an Address Capture Device �ACD� on SIM�
ACD is backed by a two�way set�associative Global Shared Memory Cache �GSMC�
that is managed by a combination of hardware and FUNi 
rmware� GSMC is based on
a ��KB Dual Ported Synchronous SRAM �DPSRAM� where one half of the DPSRAM
is used for the data store� and one quarter is used for the tag store� The remaining

KB of DPSRAM is available to FUNi as fast scratch memory�

When an access to a shared memory location occurs� ACD checks the two tag�control
words in the GSMC tag store that correspond to the memory reference� If ACD deter�
mines that the memory requested can be completed according to the tag�control words�
it will allow the bus transaction to access the corresponding GSMC data location to



complete the transaction� If the transaction cannot be satis
ed in hardware� ACD will
force the memory transaction to retry inde
nitely and interrupt the FUNi coprocessor
for assistance� Once interrupted� the FUNi coprocessor queries ACD for the cause and
performs the necessary coherence protocol to satisfy the memory request� This may
require communication with FUNis on other nodes over the IEEE ���
 interconnect�
The FUNi coprocessor can also maintain a large software cache in its local memory to
reduce network tra	c� Once the FUNi coprocessor is ready to complete the memory
transaction� the FUNi coprocessor updates the corresponding data and tag location in
GSMC� ACD is re�enabled to complete the retried memory transaction�

����� ���� High Performance Serial Bus Physical Link Module

���
PLM is built from a ready�to�integrate IEEE ���
 Physical Layer and Link Layer
chip sets from Texas Instruments� Connections to two independent IEEE ���
 busses
are provided� one is given a higher priority� A custom FPGA�based controller interfaces
with the SIM FIFOs and carries out the corresponding low�level handshakes with the
IEEE ���
 chip set� The speci
cs of the network implementation is contained within
PLM� This modular design allows StarT�jr to adopt a variety of di�erent interconnect
technologies with only limited modi
cations�

� FUNi

The basic FUNi message�passing interface was 
rst proposed for SBus�equipped
workstations���� The design proposed a way to implement a 
ne�grain message�passing
interface on a peripheral bus without a penalty in communication overhead from the
long access latency� The design required more intelligence in the interface hardware
to manage a message�passing interface in the host memory� Interaction between the
host processor and the network interface is achieved indirectly through these shared
memory locations� The original proposal asked for implementation of custom logics in
FPGAs� Due to the limited logic density of FPGAs� only the very basic message�passing
mechanisms were supported�

This initial study has led to the current embedded processing�based FUNi imple�
mentation� The new design still retains the same low�overhead since the memory�based
interface paradigm is una�ected� Embedded processing does slightly increase communi�
cation latency over the FPGA�based design� However� newly available processing power
and programmability enable richer features and open opportunities for experimentation�
Furthermore� by eliminating much of the custom logics� embedded processing has also
signi
cantly reduced the design and implementation complexity� Logic designs are re�
placed by 
rmware development using a standard C compiler and interactive debugger�

In the following paragraph� we describe the communication mechanism currently
supported by FUNi� FUNi is composed of two parts� an user�visible part that im�
plements the user�level message interface� and an internal part that processes network
events such as transmission and reception� and the necessary network protocols� We

rst describe the basic interaction between the FUNi 
rmware and host software at the
message passing interface� Next� we will examine the internal part of FUNi� Finally�
possibilities to extend the FUNi feature set is brie�y explored�
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��� Memory�based User�level Message�Passing Interface

FUNi externally presents an abstract network interface to the user� Due to the FUNi
coprocessor� the user interface can include more complicated services not directly sup�
ported by the underlying network hardware� The interface abstraction o��loads the
tasks of dealing with the particularity of the network implementation to the FUNi
coprocessor� This does not only streamline the host processor�s communication task�
but the generalized abstraction also allows the same user software to be carried over
among di�erent network implementations�

The basic message sending and receiving interface currently implemented for
StarT�jr is based on a set of message queues for transmission �Tx� and reception
�Rx�� Figure � logically depicts this message interface in the user�s virtual address
space� The message queues are jointly maintained by the host processor and FUNi as
circular bu�ers in the host memory� Two sets of Tx and Rx queue pairs are imple�
mented to support two message priorities� Each queue is logically divided into 
x�sized
message slots� each large enough to hold the largest message� A set of memory�mapped
registers �the PCI����� mailbox registers� holds the head and tail indices associated
with each circular bu�er� During the initialization call to the device driver� the user
application supplies a region of virtual address space to be mapped to the Tx and Rx
queues pinned in the host physical memory� The index registers are also mapped into
the user�s virtual address space�

The circular bu�ers use the standard convention of head and tail indices to im�
plement FIFO queues� The head index points to the next free slot� whereas the tail
index points to the next valid slot� A queue is empty when the head and tail indices
both point to the same slot� and full when the head is immediately before the tail�
The producer of a queue increments the corresponding head index register to inform
the consumer about new slots containing messages� The consumer increments the tail
index to indicate which slots are ready for reclaim� Each index register is only incre�



mented by either the user or FUNi� and therefore does not require atomic operations
to modify�

����� User�level Message Passing� Sending

As the consumer� the FUNi 
rmware compares the head and tail index registers to
poll the Tx queues for pending out�going message� To send a message� the user process
directly composes the message in the next free slot in the Tx queue� The user�level
interface uses very simple message formats �simpler than an actual network packet�� For
normal message passing� the message header� containing the logical destination address�
message length and message type� is written to the 
rst word of the message slot� The
message payload is written to successive addresses following the message header� These
writes to cacheable memory locations incur minimum overhead� Afterwards� the user
process increments the content of the head index register to make the current message
slot visible to FUNi� Once noti
ed� FUNi issues cache�coherent read requests on the
PCI bus to retrieve the user message� presumably still in the data cache� and composes
the corresponding network packet for transmission� After each successful retrieval from
a slot� FUNi will increment the tail index to release the slot�

����� User�level Message Passing� Receiving

When a packet arrives� FUNi� acting as the producer� enqueues the message to one of
the two Rx queues depending on the message�s priority� Then� FUNi increments the
corresponding head index register to indicate the arrival of a new message� Prior to
enqueuing� the contents of the tail and the head index registers are compared to detect
queue over�ow� Section ����� explains how an over�ow is handled by FUNi�

The user process detects the presence of an incoming message by comparing the
head and tail indices of the Rx queue� However� reading the head index register involves
costly physical I�O accesses to the FUNi device� Therefore� the same information is
redundantly represented as a message�valid bit in the header word of each Rx message
slot� When FUNi enqueues a message� aside from incrementing the head index� it also
sets the message�valid bit in the message slot� Thus� to poll for new messages� the user
process should check the message�valid bit of the next message slot using a cached
memory read� As long as the Rx queue remains empty� the header word is unchanged�
and each failed poll only incurs the overhead of a cache hit� This continues until FUNi
�ushes and updates the header word to re�ect a new message arrival��

When the user process locates an unreceived message� the user process 
rst extracts
the message type and length from the message header� Then� the message payload is
read from successive addresses� After the message is received� the user process releases
the message slots by incrementing the tail index register� According to the FUNi Rx
handshake� the user also needs to clear the message�valid bit afterwards�

�The message�valid scheme is not used to eliminate the need to increment the Tx head index
by the host processor� For FUNi�s coprocessor� reading from the Tx queue in the host memory is a
much more costly operation than reading the index registers� Since the FUNi coprocessor is time�
shared among many tasks� better overall performance is achieved when the index registers are used
for the Tx queues� The host overhead of writing to the index registers can be partially hidden by the
write�bu�er of the host processor� Furthermore� the head and tail index registers do not need to be
updated immediately after each message for correct operations� Thus� the overhead of updating the
index registers can be amortized over many messages�



����� Remote DMA Transfers

With a passive network interface� a block memory transfer requires the sending process
to explicitly copy� in verbatim� each byte of transfer from the source to the interface�
Similarly� the receiving process must later copy each byte from the interface to the
destination location� To eliminate the data copying overhead� the active FUNi network
interface is extended with two types of remote DMA transfer mechanisms� In either
DMA modes� the user process only needs to enqueue a header that speci
es the source
and target virtual addresses and the length of the data block� FUNi will automatically
move the data block across the nodes�

The 
rst DMA mode� intended for medium sized blocks �a few hundred bytes�� is
only a zero�copy variant of message passing where FUNi operates on the source and
target location directly instead of the message queues� The second type of DMA can
transfer up to ���� bytes of data per initiation� In this case� payload is moved to and
from FUNi using a DMA engine� FUNi automatically packetizes the data block for
transfer over the network� The trade�o� between the two DMA modes is bandwidth
versus latency and granularity of control� The overhead of initiating a DMA transfer�
regardless of size� is comparable to normal message passing�

��� Internal FUNi Functions

In addition to providing the user interface� the FUNi coprocessor is responsible for
interfacing with the network adaptor hardware as dictated by the user application�
At the highest level� this simply involves translating between the abstract user�level
messages and the appropriate network packets� according to a 
xed rule� However�
FUNi presents an abstraction of a secured� multi�prioritized� loss�less and deadlock�
free network to simplify the work of the host processor� If these characteristics are
not directly supported by the physical network substrate� FUNi must enforce these
characteristics through network protocols� In the paragraphs below� we describe the
light�weight protocols for enforcing these assumptions and how they apply to the IEEE
���
 implementation in particular�

����� Protection and Security

StarT�jr is designed to allow multiple parallel applications to time�share the network
and processor resources while providing each application the illusion of a private and
reliable network� FUNi maintains this abstraction by automatically tagging network
packets with Group Identi
ers �GIDs��

Each parallel application on StarT�jr is assign an unique GID� When the process
of a parallel application is active on a workstation� the operating system makes the
corresponding GID available to FUNi� Every out�going packet is automatically tagged
with the GID� When the packet arrives at the destination� the receiving FUNi compares
the GID tag of the in�bound packet against the local GID� The in�bound packet is
delivered to the current process only if a match is made� A mismatched GID indicates
the correct process is not presently executing� and the in�bound packet is not delivered�
�Under the �ow control protocol of StarT�jr� FUNi will discard the undeliverable
packet and return a negative acknowledgment to the packet�s originator�� Thus� a
process is only able to communicate with its cooperating peer processes of the same
application whom all share the same application GID�



����� Network Flow Control for Performance Guarantee

When a parallel system is shared among di�erent users� another concern is gross per�
formance degradation� or even deadlock� of the network due to misuse by a user� This
issue is addressed in StarT�jr by the Acknowledgment�Retry End�to�End Flow Con�
trol Protocol carried out by the FUNi coprocessor�

The Acknowledgment�Retry Protocol in StarT�jr is a simpli
cation of the Selec�
tive Repeat Protocol����� In this sender�bu�ering protocol� FUNi is responsible for
bu�ering its out�going packets until the packet is accepted and positively acknowledged
by the receiver� When FUNi absorbs an in�bound packet from the network� a positive
acknowledgment is sent if the packet is accepted� If FUNi cannot accept the packet� a
negative acknowledgment is returned to the originating FUNi to request for a retry�

With the ability to discard incoming packets� FUNi at each node can continuously
absorb packets from the network even with only 
nite local storage� Since network
packets are continuously absorbed� the network will not deadlock regardless of the
individual behavior at each node� Thus� FUNi can never be indirectly blocked from
communication by other misbehaving nodes� Thus� the protocol can guarantee the
worst�case performance of the network� FUNi is stopped from transmitting only when
its own receivers cannot absorb and acknowledge the packets fast enough� Thus� this
protocol also serves as an automatic rate control for throttling network activities of
over�active sender nodes�

The Acknowledgment�Retry Protocol needs to be implemented on top of two physi�
cally separate or prioritized network where the higher priority network tra	c cannot be
blocked by lower priority tra	c� In IEEE ���
�based StarT�jr� this is accomplished
by using two separate IEEE ���
 busses� In the protocol� the payload packets are sent
on the low priority network� and the acknowledgments are sent on the high priority
network to avoid deadlock within the protocol itself�

����� Virtually Prioritized Networks

On top of the Acknowledgment�Retry Protocol� any number of virtual network priori�
ties can be extended to the user� Currently� FUNi has chosen to implement two levels of
priority to support the popular request�reply based user protocols� Two sets of Tx and
Rx message queues as described in Section ��� are provided to handle the two priorities
of messages independently� FUNi preferentially services the higher priority queue 
rst�
Parts of the bu�ering resources at each FUNi are also reserved for exclusive use by high
priority message tra	c� This is su	cient to guarantee the �ow of high priority mes�
sages in the system regardless of lower priority tra	c since the Acknowledgment�Retry
Protocol already guarantees that the network itself will not block�

����� Packet Loss Recovery

Although the Acknowledgment�Retry Protocol allows FUNi to continuously absorb
packets from the network� under an extreme many�to�one communication pattern�
FUNi�s hardware bu�er can become full because the FUNi coprocessor cannot keep
up with the in�ux of packets� In a traditional loss�less MPP network� this condition
would temporarily block the network� but eventually it will become freed again without
extra handling�

The Acknowledgment�Retry Protocol on a loss�less network can expect every pay�
load packet transmitted to be matched with a returning acknowledgment� whether



positive or negative� However� on IEEE ���
� when the hardware bu�er over�ows� the
partially transferred message is discarded� In this case� a discarded payload packet
would never be acknowledged� �Due to the small size of acknowledgment packets� the
acknowledgment receive bu�er is guaranteed not to over�ow�� Thus� for IEEE ���
�
based StarT�jr� the Acknowledgment�Retry Protocol is augmented with an additional
round counting scheme to restart packets with lost acknowledgments� All packets des�
tined for a particular node is tagged with a round identi
er associated with that node�
When FUNi detects a situation where packets are lost on the network� it broadcasts
a new round identi
er for itself and discards any future in�bound packets tagged with
the old round identi
er� After receiving a restart broadcast� the other FUNis will treat
unacknowledged packets as if they were negatively acknowledged and retry them with
the new round identi
er�

��� Coprocessing�based Extension to FUNi

Higher�level communication features can be developed to further o��load network pro�
cessing tasks from the host processor to the 
rmware programmable FUNi� We are
currently working on a version of the FUNi 
rmware with integrated MPI���� functions
to reduce host processing overhead during communication� Processing of light�weight
active messages and remote fetches are also candidates for transfer into the FUNi co�
processor� Other possibilities include scheduled prefetches� conditional prefetches and
advanced synchronization services� Additional performance for mission�critical appli�
cations can be obtained through 
ne�tuning the 
rmware to the speci
c tra	c pattern
and communication needs�

FUNi�s embedded processor�based implementation also encourages research in net�
work �ow control protocols� Even non�trivial protocols can be quickly tested by recoding
the 
rmware� Performance monitors can also be included during system development�
Future work in protocols can extend to address fault tolerance and network load bal�
ancing issues�

� Current Status and Results

A two�node StarT�jr prototype has been completed as a prelude to the eight�node 
nal
system� A light�weight communication library� Jam� has been developed to assist the
software development for SPMD message�passing programming� The library is based
on University of California at Berkeley�s version of the Connection Machine Active
Message �CMAM� library����� The CMAM library is ported to StarT�jr by rewriting
the low�level primitives that deal directly with the network interface�� New primitives
are added to take advantage of the features of StarT�jr and FUNi� A new set of
primitives to support larger messages� up to twenty arguments� is added� A set of data
transfer primitives is also added to take advantage of FUNi�s low�overhead remote
DMA transfer� Examples of the Jam primitives and a brief description are given in
Table �� As in CMAM� each Jam primitive is supported in two priorities� high priority
primitives have the additional su	x reply�

A benchmark suite to assess the performance of FUNi in conjunction with Jam

is executed on the two�node StarT�jr prototype� Communication overhead� one�

�Currently� all software and 
rmware additions are coded in C and compiled with GCC with opti�
mization options�



Table �� Examples of Jam Primitives

Message�passing Primitives
primitive argument description

JAM ���

JAM reply ���

dest� �func�

arg�� arg��

arg�� arg�

Sends an active message containing the pointer
func and the � integer arguments to dest�
�func�arg��arg��arg��arg�� is invoked at dest

upon arrival�
JAM n��

JAM reply n��

dest� �func�

arg	
� size

Sends an active message containing the pointer func
and up to �
 integer arguments from arg�� to dest�
�func�arg	�
�arg	�
�����arg	n��
� is invoked at
dest upon arrival�

Block Data Transfer Primitives
primitive argument description

JAM xfer ���

JAM reply xfer ���

dest�

seg addr�

word�� word��

word�� word�

Transfers � integer data to dest� The transfer seg�
ment ID and address at the destination are encoded
in seg addr� This primitive uses FUNi�s standard
message passing mechanism�

JAM mfer n��

JAM reply mfer n��

dest� seg�

�source�

�target�

nword

Transfers up to �� ��byte data to dest� The payload
is moved from local source to remote target using
FUNi�s 
�copy message passing mechanism�

JAM DMA n��

JAM reply DMA n��

dest� seg�

�source�

�target�

nword

Transfers up to ��
 ��byte data to dest� The payload
is moved from local source to remote target using
FUNi�s direct memory�to�memory transfer�

NOTE� Like CMAM� data transfers 
rst involve reg�
istering a transfer segment and a handler at the desti�
nation node� Subsequent transfers decrement a trans�
fer counter� When the transfer is completed� the reg�
istered handler is invoked�



Table �� Benchmark Summary of Jam on StarT�jr

Message�passing Primitives
send receive send receive latency

overhead overhead throughput throughput
�sec �sec MB�sec �sec MB�sec �sec �sec

JAM � ��� ��� 
�� �� 
�� �� ��
JAM reply � ��� ��� 
�� �� 
�� �� ��
JAM n
� ��
 ��� 
�� �� 
�� ��
JAM n
�� ��� ��� ��� �� ��� ��
JAM reply n
� ��� ��� 
�� �� 
�� ��
JAM reply n
�� ��
 ��� ��� �� ��� ��

Block Data Transfer Primitives
send receive send receive latency

overhead overhead throughput throughput
�sec �sec MB�sec �sec MB�sec �sec �sec

JAM xfer � ��� ��� 
�� �� 
�� ��
JAM reply xfer � ��� ��� 
�� �� 
�� �

JAM mfer n
�� ��� ��� ��� �� 
�� ��
JAM reply mfer n
�� ��
 ��� ��� �� 
�� ��
JAM dma n
��� ��� ��� ��� ���
JAM reply dma n
��� ��� ��� ��� ���

way user�to�user latency and sustained throughput of the basic Jam primitives are
measured� The send and receive overheads measure the average execution time of
the corresponding primitives on the sending and receiving host processors respectively�
User�to�user latency includes all the processing by the host and FUNi on both the
sending and receiving ends� plus the one�hop network transit latency� In addition
to MByte�sec� sustainable throughput is also given in terms of �sec� which roughly
corresponds to the occupancy of each Jam primitive on the FUNi coprocessor� Table �
gives a summary of the measured results�

Table � compares the performance of FUNi against other message passing sys�
tems� The 
rst column lists the typical performance of TCP�IP on a Linux PC with a
���MHz Pentium processor and �� Mbit�sec Ethernet� The second column shows the
performance of the original CMAM library on a ���node CM�� with �� MHz SPARC
processors� The performance of StarT�jr connected by IEEE ���
 is given in column
three� For comparison� the performance of StarT�jr connected with MIT�s Arctic
Switch Fabric�
� is given in column four� Finally� a comparison is made against a pair
of Myrinet�equipped �� MHz SPARCstation��s running UIUC�s FM library����� The
overhead and latency are measured using minimum size packets in each system� The
overhead shown includes both the send and receive overheads� and the latency is for
one�way user�to�user� In Table �� overhead and latency are also given in terms of na�
tive processor cycles to give an approximation of the communication cost in terms of
number of instructions�

The comparison shows that FUNi can give nearly an order�of�magnitude improve�
ment in performance relative to normal Unix IPC mechanisms over conventional Ether�
net� FUNi�s memory�based� decoupled user�level interface achieves lower communica�
tion overhead in comparison with the contemporary Myrinet�based system� However�
Myrinet�based systems achieved nearly 
ve�times the bandwidth and one�sixth the min�



Table �� Communication Performance Comparison

TCP�IP and CMAM and Jam and Jam and FM and
Ethernet CM� StarT�jr StarT�jr Myrinet

�IEEE ����� �MIT Arctic�
overhead ��sec� �� ��� ��� ��� ���

�cyc� ���
 ���� ��� ��� ��

latency ��sec� ���� ���� �� ���
 ����

�cyc� ���K ��� �
�

 ���
 ���
bandwidth �MB�sec� 
�� �
�
 ��� ��� ����

imum latency as compared to FUNi� Section � further discusses the comparison against
Myrinet�based systems�

FUNi�s performance� in terms of bandwidth and latency� is restricted by our design
choices to exchange latency and throughput for lowered overhead� The user�visible
latency and bandwidth of FUNi is well below the capability of the raw hardware� An
alternate FUNi 
rmware can be used to improve the bandwidth and latency of the
system� but with a penalty in overhead and overall system performance�

FUNi�s performance is also limited by the processing rate of the i��� FUNi copro�
cessor� As described in Section ���� additional protocols have to be layered on top of the
IEEE ���
 High Performance Serial Bus to present a network abstraction more suitable
for parallel computing� The amount of protocol required directly a�ects each message�s
occupancy on the network coprocessor� which translates to lower bandwidth and longer
latency in the processing�bound FUNi� For example� by switching to the Arctic Switch
Fabric which is designed from the ground�up for parallel processing� FUNi� using more
minimal protocol� can gain a factor of two to three improvement in bandwidth and
latency� We hope FUNi�s performance will increase with the availability of new gen�
erations of i��� processors� Meanwhile� FUNi has to make use of its general�purpose
processing power to assist the host processor in more sophisticated message processing
to compensate for its shortcomings�

Lastly� one should also notice that both StarT�jr and the Myrinet system perform
poorly against CM�� in terms of native processor cycles� This exempli
es the two�
fold problem that hinders the communication performance of NOW systems� First�
unlike the two�generation�old SPARC processor in CM��� modern microprocessors have
greater bias for number crunching rather than I�O performance� Secondly� unlike CM�
��s proprietary hardware� the NOWs do not have the luxury of a customized network
interface tightly coupled to the microprocessor on the memory bus�

� Related Research

The parallel processing community has long recognized the importance of low commu�
nication latency and overhead for good parallel performance� The StarT project��
�
integrated an user�level network interface directly into ISA and the datapath of a RISC
microprocessor� However� the time and e�ort required for such a hardware�intensive
project not only introduces great risks but also often results in out�dated hardware�
To close this technology gap� later projects such as StarT�ng��� and Flash���� rely on
stock mainstream commercial microprocessors but with tightly coupled external hard�
ware �using a direct connection to the processor�� In the near term� these projects



may still be less practical because their overall message�passing performance remains
hindered by the internal design of the microprocessor� despite extensive e�orts in opti�
mizing the external hardware and its interaction with the microprocessor� Nevertheless�
this tight�integration of computation and communication will become essential as the
performance between the microprocessor and the remainder of the computer system
continues to widen�

Meanwhile� the network interface design for a practical NOW system must work
within the limitations of existing system constraints� such as the bias for normal mem�
ory accesses versus I�O accesses� The SHRIMP multicomputer project��� �� speci
es
another memory�based interface to achieve low communication overhead in a stock
workstation environment� The SHRIMP network interface is designed for a network of
Pentium PCs with Xpress Bus and EISA Bus� Communication between any two PCs is
logically an uni�directional mapping of a source virtual memory region on one PC to the
target memory region on another� The network interface on the source PC snoops the
bus for writes into the mapped area of memory and automatically transmits a message
to the target PC� The target network interface then writes the data to the corresponding
location using DMA� To support this communication paradigm� SHRIMP�s hardware
needs to support specialized functions such as bus snooping and memory�management�
SHRIMP�s hardware implementation overhead is higher than FUNi�s� and SHRIMP�s
association with a speci
c processor�memory bus limits its upgrade path� SHRIMP also
does not have the bene
t of a network coprocessor�

Several academic and industry NOW projects��� �� ��� ��� ��� ��� have based their
research on a cluster of workstations interconnected by Myrinet���� Derived from Cal�
tech�s ATOMIC project���� Myrinet is available commercially as a ready�to�go high�
performance NOW interconnection package� The Myrinet package comes complete
with network routers� end�point adaptors for SBus and PCI� standard IP layers� and a
custom low�level interface layer�

Myrinet�s network adaptors are controlled by Myricom�s custom LANai embedded
processor� Much of the current research has involved taking advantage of the pro�
grammability of the LANai processor to implement fast user�level message�passing on
NOW� Both LANai and the host processor can access the LANai local memory on the
adaptor� However� unlike the FUNi coprocessor� the LANai processor does not have
access to the host memory except using a DMA engine� Thus� in 
ne�grain messaging�
either the host processor has to pay the overhead for writing messages all the way out
to the adaptor� or to pay the latency penalty for data movement by the DMA engine�
This could possibly explain the higher communication overhead compared with FUNi�
However� Myrinet�s integrated custom implementation yields far better latency and
bandwidth �less than �� �sec latency and greater than �� MByte�sec are reported���

� Discussion

The goal of StarT�jr is to achieve usable performance comparable to hardware�
intensive designs while maintaining the price�performance advantage through the use
of low�cost commodity components� The system incorporates standard hardware and
software subsystems to achieve state�of�the�art performance with minimal cost and ef�
fort� By designing for commodity technology� StarT�jr is general enough to adopt

�Latest performance 
gures for Myrinet are posted on
http���www�myri�com�myrinet�performance��



to emerging technologies� This �exibility will enable StarT�jr to maintain up�to�date
performance despite the rapid turn�over of technology�

StarT�jr employs FUNi�s memory�based network interface paradigm to overcome
the two disadvantages facing NOW development�

�� Stock microprocessors and workstations are optimized with a bias for processing
rather than non�cached� non�burst I�O operations� and

�� Stock workstations lack a generic�standard interface that is more tightly�coupled
to the processor than the peripheral bus slots�

FUNi overcomes these problems by decoupling the network interface hardware from
the host processor during communication� The FUNi coprocessor also o��loads much
of the communication overhead from the host processor� By relying on latency�hiding
software techniques and concentrating on minimizing communication overhead� StarT�
jr can provide good support for 
ne�grain message passing�

This paper describes the system design and development of the StarT�jr project�
Continuing StarT�jr research will focus on developing additional memory�based in�
terface paradigms� The research will take full advantage of the programmable FUNi
coprocessor to compensate for FUNi�s hardware tradeo�s� Although FUNi is able
to reduce the overhead of message passing� its latency is not optimal� The success
of FUNi and StarT�jr must rely on latency�hiding techniques such as split�phased
transactions and software pipelining� Future research will involve analyzing existing
programs�algorithms� communication pattern and transforming them into more latency
tolerant ones� The analysis of communication patterns will also help in designing more
suitable message interface services� Given the programmable FUNi� it is possible to

ne�tune the FUNi 
rmware on a program�by�program basis for maximum perfor�
mance�

Relying on standard technologies from the PC and the workstation industries� the
bus�based symmetric multiprocessing workstations �SMPs� have solved the chicken�and�
egg problem of large market volume versus lowered production cost� By providing good
performance for both existing sequential binaries as well as new parallel programming
paradigms� SMPs have also resolved the paradox of creating a software base without a
user base� and vice versa� By touching o� this seamless transition� SMPs have 
nally
given parallel processing a solid foothold in mainstream computing� Nevertheless� the
scalability of these bus�based parallel systems will inevitably be challenged� Sharing the
same two traits that made SMPs successful� NOW systems such as StarT�jr will play
a crucial role in resolving the scalability bottleneck and further extending this seamless
transition into parallel computing�
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