
MEMOCODE 2007 Co-Design Contest

Forrest Brewer
ECE Dept. UC Santa Barbara

forrest@ece.ucsb.edu

James C. Hoe
ECE Dept. Carnegie Mellon University

jhoe@ece.cmu.edu

Abstract

New to the 2007 MEMOCODE conference is the HW/SW
Co-Design Contest. Members of the technical and steer-
ing committees from MEMOCODE 2006 thought that the
co-design practice is distinct from conventional hardware
or software design practice. A co-design contest was con-
ceived to help elucidate these issues and to foster greater
interest in the design aspects of the MEMOCODE con-
ference. The contest would also serve to showcase ad-
vances in co-design tools and methodologies. Below,
we describe briefly the development of the contest for-
mat and the thinking behind the choices. The actual
call-for-participation that appeared on the contest web-
site (http://memocode07.ece.cmu.edu/contest.html) is re-
produced in the appendix section.

1 Contest Rationale

Guidelines. The purpose of the contest is to popularize co-
design as a particular science. For this reason, the contest
cannot be very short, like a CADathlon (software) contest,
nor can it be too long like a conventional hardware design
contest. Further, since there are many ways to do co-design,
the contest needs to be organized and graded in a way that
helps to develop the aims of the co-design community—not
simply a particular technique in a niche market. Since co-
design techniques span such a variety of design scales, tech-
niques, and applications, we need a design problem which
is widely understandable but for which there are not obvi-
ous solutions or well-developed product libraries. The issue
here is to try to level the playing field to avoid canned so-
lutions which, although practical, do not document the de-
sign rationale that lead to their construction. Lastly, the co-
design problem should require meaningful creation of both
hardware and software components and allow exploitation
of existing co-design flows as they are applicable.
Contest Term. The issue here is ensuring that there is
sufficient time to complete a design after learning the is-
sues particular to a given HW/SW co-execution platform.

Unlike software, where development can be made portable
across many execution platforms, the common practice in
co-design is to expose the specific hardware features so that
a design can make best use of the platform. On the other
hand, few researchers are willing to lend several of their
students to participate in a contest for periods longer than
a few weeks at the most. To make a contest feasible, we
decided to keep the term relatively short and to provide a
working code base for at least one inexpensive and easily
available platform. We ultimately opted for a problem that
we gauged could be done well in a week and allowed the
contestants a month lead-time to solve it.

Execution Platform. We did not wish to limit the competi-
tion to a particular execution platform since we thought that
many design groups would be more familiar with their pre-
ferred platforms. Instead, we left the choice of platform to
the contestants and provided a grading metric that attempts
to equalize the differences. We did, however, select the Xil-
inx XUP2VP prototyping board as the reference platform.
The XUP2VP board provides a large variety of interfaces,
is well supported, and is inexpensive. The on-board Virtex
2 FPGA (XC2VP30) has a substantial programmable logic
fabric, a fair amount of on-chip memory, and two Pow-
erPC 405 embedded processors. Further, there is a DDR
slot which can be used to provide adequate system mem-
ory to support a solid software execution platform on the
embedded PowerPC 405 processors. For the XUP2VP en-
vironment, we provided reference starter design materials,
including a software-only reference solution and a reference
HW/SW interface library comprising ready-to-use C func-
tions and Verilog modules.

Design Task. The design problem ultimately chosen is
the Blocked Matrix-Matrix Multiplication. The basic al-
gorithm, though fundamentally simple to understand, lends
itself to a large space of high-leverage optimizations in man-
aging data movement, storage, and bandwidth. We designed
the problem to required hardware involvement in the de-
sign as well as a software component. To enforce software,
execution time is measured on matrix multiplication from
from DRAM storage back to DRAM storage, and the lo-
cation of the input and output matrices is under the soft-

1



ware’s purview. In addition, the implementations are re-
quired to handle a range of matrix sizes without hardware
reconfiguration. To enforce hardware, the matrix multipli-
cation operates on matrices of 16-bit fixed-point complex
data values, thus placing software arithmetics at a signifi-
cant performance disadvantage relative to hardware. Again,
the goal is to force a solution that must balance a mix of
software and hardware elements to succeed.
Grading and Judging. In this inaugural contest, we fo-
cused on performance as the primary metric of merit. The
metric used is the speedup achieved by the contestants’ de-
sign relative to the official software-only reference design
on their platform of choice. This normalized metric at-
tempts to even the scale when dissimilar platforms are used.
However, the performance metric is formulated to not give
advantage to platforms slower than the XUP2VP, as sev-
eral important issues disappear if the clock speed and fabric
speed is made artificially slow.

We further asked the contestants to describe the design in
sufficient detail so that a panel of judges could make subjec-
tive decisions about the ’elegance’ of the approach as well
as the efficacy of a particular design. We felt that it was im-
portant for the judging panel to be able to reward a unique
or novel solution even if its overall performance is less com-
petitive.

2 Summary of Outcomes

Since this was the first year of the contest, publicity was
crucial. In addition to the MEMOCODE audience, we also
advertised at FPGA and related EDA conferences in the few
months before the March contest period. Posters and fliers
were designed and distributed at the conferences. In addi-
tion, we contacted select candidates likely to field a compet-
itive team. One issue we found was the time proximity to
DAC and to other conferences of interest to designers in this
area. (At least 2 groups did not enter because of this). At
the start of the contest, seven teams from U.S. and Europe
had registered for the reference design materials.

Since the contest was sanctioned by the MEMOCODE
conference, it was felt that some recognition of the con-
testants was necessary. We had planned to invite the top
three entrants to come to the conference for presentations
and for an open panel of judges to decide the winner at the
conference. Ultimately, only two teams, from MIT and Vir-
ginia Tech respectively, successfully submitted a final de-
sign. Both teams are invited to present at the conference.
Brief write-up of their solutions are also included in the for-
mal conference proceedings. In addition to a cash prize to
be awarded at the conference, the organizing committee are
providing travel grants to offset partially the travel cost of
student team members.

Although the contest did not have the number of entrants

as we had hoped, the two finished entries are of very high
quality and offer real technical contributions to share with
the conference audience. We believe the co-design con-
test adds an important new dimension to the MEMOCODE
conference and should remain a valuable component of the
MEMOCODE conference in the future.

In retrospect, much can be improved. For the future con-
test organizers, we offer three suggestions from this inau-
gural experience. First, the one-week term may be too op-
timistic. Feedback from one group indicated that they had
issues getting the reference design running. The reference
tool and platform should be announced well ahead of time
to give contestants ample opportunity to become familiar
with the design and execution environment. Second, the
timing of MEMOCODE07—nearly time-adjacent to DAC,
but 8000 miles away—is known to have stopped at least
two groups from entering the contest. Careful consideration
of time and location is of course crucial to the entire con-
ference. Third, the publicity in both conference and web
venues can be strengthened. Greater awareness should also
be built through word-of-mouth advertising by the program
committee and conference attendees.

3 Acknowledgments

We would like to acknowledge Nokia and Bluespec. Inc
for sponsoring this contest. We would like to thank Roland
Wunderlich for providing the reference software implemen-
tation of the matrix-matrix multiplication.

4 Appendix: Call for Participation

The text from the actual call for participation is repro-
duced in this section, detailing the design problem and grad-
ing criteria.

��� Overview

Matrix-matrix multiplication (MMM) is a linear algebra
operation familiar to everyone. This design challenge em-
phasizes your HW/SW co-design methodology’s ability to
explore algorithmic alternatives, to fine-tune performance,
and to create quickly a HW/SW co-designed/optimized im-
plementation.

The implementation of a basic triple-loop square MMM
is given below. The first three arguments A, B and C are
pointers to the square N-by-N multiplicand, multiplier
and product matrices, respectively. The fourth argument
N specifies the number of rows/columns in the square
matrices. A, B and C are row-major. The implementation
below assumes C is zero initialized. This implementation
performs N� multiplications and N� additions.

2



void mmmKernel(Number* A, Number* B,
Number* C, int N) f

int i, j, k;
for (j = 0; j < N; j++)

for (i = 0; i < N; i++)
for (k = 0; k < N; k++)

C[i*N+j] = C[i*N+j] +
A[i*N+k]*B[k*N+j] ;

g

The above straightforward implementation has poor data
reuse locality, which becomes a performance concern when
the entire data set cannot be kept in a nearby fast memory.
This can occur in a software scenario when the data set can-
not fit in the cache of the processor; this can also occur in
a HW/SW co-execution scenario when the data set cannot
fit within the hardware accelerator. In both scenarios, the
data set must be transferred frequently and redundantly be-
tween the nearby fast memory and a slower backing-store
(e.g., DRAM).

To improve data locality, a ’blocked’ MMM breaks
down the computation into a series of small MMMs of
NB-by-NB regions in the original N-by-N multiplicand
and multiplier matrices. Blocked MMM also performs N�

multiplications and N� additions but has better data locality
(requiring fewer data transfers between the fast near-by
memory and the slower backing store). A blocked MMM
implementation is given below with an additional argu-
ment, NB, the blocking size. This implementation assumes
N is an integer multiple of NB. Again, this implementation
assumes C is zero initialized. This implementation assumes
the existence of a new MMM kernel (which could be a basic
triple-loop implementation) to multiply the sub-blocks. For
complete details, please see the reference software-only
implementation released with the contest.

void mmmBlocked(Number* A, Number* B,
Number *C, int N, int NB) f

int j, i, k;
for (j = 0; j < N; j += NB)

for (i = 0; i < N; i += NB)
for (k = 0; k < N; k += NB)

mmmKernel(&(A[i*N+k]),
&(B[k*N+j]),
&(C[i*N+j]), N, NB);

g

��� Design Task

Starting from the reference software-only blocked
MMM implementation (see submission instructions), you
are to develop a HW/SW co-designed optimized implemen-
tation that partitions the computation onto a processor run-
ning software and the hardware datapath to be implemented
on an FPGA fabric. For starters, mmmKernel( ) is a

good candidate to accelerate in HW, and the choice of NB
is a tunable parameter. You might want to explore non-
square blocking. You can also consider more effective data
management to take advantage of on-FPGA memory capac-
ity. Your implementation should be optimized for 1024-by-
1024 and also 256-by-256 sized matrices. Your implemen-
tation must be able to support 2-power matrix sizes, N=64,
128, 256, 512, and 1024, without reprogramming the FPGA
fabric.

Like the reference implementation, your design must
support 16-bit fixed-point, complex data values. That is,
each matrix element is 32-bits: the more significant 16 bits
are used for the real component and the less significant 16
bits are used for the imaginary component. The multiplier
matrix (B) and the product matrix (C) use the same 16-bit
2’s-complement fixed-point format in the real and the imag-
inary component. The multiplicand matrix (A) uses a 16-bit
2’s-complement fixed-point formant with 14 bits for frac-
tion. You can assume the multiplicand matrix contains real
and imaginary values that are between 1 and -1 inclusive.
You can also assume the test cases would not cause over-
flows in the reference software-only implementation.

��� Implementation Platform

You may use any HW and SW design methodology at
your disposal. Formal methods are encouraged but not re-
quired.

You may use any FPGA development platform at your
disposal. The FPGA platform must permit a processor run-
ning software (e.g., the embedded PowerPC405 in a Xil-
inx Virtex-II Pro FPGA or a Xilinx Microblaze soft-core)
to communicate with the hardware accelerator datapath on
an FPGA fabric. The processor and/or the FPGA should
have access to off-chip memory sufficient to hold the mul-
tiplicand, multiplier and product matrices, up to 1024-by-
1024. In your implementation, the multiplicand matrix and
the multiplier matrix must start from the off-chip memory,
and the product matrix must complete in the off-chip mem-
ory.

The reference platform supported by the
contest is the Xilinx XUP development board
(http://www.digilentinc.com/Products) with 512MB of
DRAM. For those of you using XUP, we provide a
reference EDK project for the Xilinx XUP board that im-
plements a basic interface library to enable communication
between the software running on the 300MHz embedded
PowerPC405 and the 100MHz FPGA fabric through the
DSOCM interface (150+MB/sec bandwidth). The interface
is based on two circular memory FIFOs, one for each
direction of data communication between the hardware
and the software. You may develop or acquire any other
interfacing scheme you prefer.

3



��� Contest Judging

The contest will be judged in two parts:
First, an objective element of judging is based on the

combined execution time (wall-clock) of a 1024-by-1024
MMM and a 256-by-256 MMM. Second, an subjective ele-
ment of judging is based on the ’elegance’ of the solutions.

The execution time will normalized for platform differ-
ences. The effective execution time will be:

T imeeffective � �T imemeasuredN������

��� T imemeasuredN������

fCPUspeed � fFPGAcapacity � fFPGAspeed

where

fCPUspeed � min��� T imeSW�XUP �T imeSW� yourCPU�

fFPGAcapacity � min��� gatesY ourFPGA�gatesXC�V P���

fFPGAspeed � min��� frequencyY ourFPGA����MHz�

Note, this normalization penalizes platforms that are
more capable than the XUP but deliberately does not benefit
less capable platforms. Some factors that the normalization
calculation does not take into account are 1. HW/SW com-
munication bandwidth and latency, and 2. off-chip memory
bandwidth and latency. This normalization is not perfect;
hence ’gaming the system’ is fair game. In the case an en-
try is based on an extraordinary FPGA platform, the judging
panel reserves the right to determine a fair normalization on
a case-by-case basis.

You need to prepare a brief documentation describing
1. your FPGA platform, 2. your design methodology, 3.
the organization of your design and its theory of operation,
4. a brief analysis of its performance (e.g., where are time
spent and where are the bottlenecks). A panel of judges
will assess subjectively the elegance of the solution and rank
the entries accordingly. The decisions of the judges are fi-
nal. (Documentations in the form of PowerPoint slides are
perfectly acceptable. Keep in mind, the judges’ subjective
sense of elegance is likely to be influenced by the quality of
the documentation.)

The entries are ranked overall by the value
(RankTime effective � Rankelegance). In the case of
a tie, Time-effective is the tie-breaker. The top three
finishers will have the opportunity to present their design
and design methodology in MEMOCODE07’s technical
program. All entrants are invited to submit a poster for
MEMOCODE’s Poster Session. We will offer a cash prize
for the winning design (from the top three) selected at the
conference

We rely on the honor systems for initially reporting
the performance data required for T imeeffective calcula-
tion, i.e., T imemeasured�N�����, T imemeasured�N����,

T imeSW�your�CPU , FPGAcapacity�your�FPGA, and
frequencyyour�FPGA.

The winning designs must work correctly. In the case
you should come in top three, we will need to arrange ver-
ification of the correctness of your design and the perfor-
mance data.

��� Eligibility and Submission Instruc�
tions

This contest is open to industry and academic institutions
(faculty and/or students). A team may include both indus-
try and academic members. There is no limit on the size
of a team. There is no limit on the number of teams per
institution. Each person can participate in only one team.

If you are interested, please email
forrest@ece.ucsb.edu with your contact infor-
mation (team member names and affiliation). We will
respond by sending you the SW-only MMM reference
design (portable C) and the XUP HW/SW interface design
(C and Verilog in an EDK project). There are no obligations
associated with requesting the reference designs. You have
until March 19, 2007 to submit your design submission
(design source+documentation) in a tar or zip file via
http://www.ece.cmu.edu/tools/upload/ (use
memocode07@ece.cmu.edu as the recipient address).
Although you have until March 19, we estimate the design
task to be approximately a one-week effort.

4


