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Abstract

Automated design generation is increasingly used in hardware accelerators to ef-

fectively handle the large trade-off space between performance and resource utiliza-

tion. Typically, a generator focuses on a specialized parallel architecture that fits

a particular set of algorithms. As a result, it is difficult to extend the algorithmic

support of generators. In contrast, a processor-like architecture, where the datapath

is connected to memory ports with all computations sequenced by a controller, can

provide much better flexibility. In this dissertation, I call such an architecture the

“load-store architecture” and present an approach to hardware design generation

from high-level specifications. The approach generates customized load-store ar-

chitecture designs across multiple abstraction levels for algorithm generation, loop

optimization, and hardware interpretation, respectively.

The proposed approach is inspired by the Spiral code generation frame-

work and is realized by extending Spiral. In generating algorithms for customized

load-store architectures at the data flow level, I present the importance of providing

sufficient independent iterations to accommodate the long latency of customized

pipelines. The generated algorithms are then translated to loop programs captured

in an extensible DSL for hardware-oriented loop optimizations. I identify a com-

putational pattern of imperfect loop nests and provide optimizations for reducing

execution cycle counts and decreasing memory buffer utilization as well as arith-

metic counts in address calculation. Finally, the optimized loops are interpreted to

v



register-transfer level designs in another hardware-extended DSL where local opti-

mizations are employed.

I implement the approach by extending the open-source Spiral system. I

demonstrate the flexibility of the system by generating designs for signal transforms

including WHT and DFT, and the sorting operation. Experimental results show the

benefit of hardware-oriented optimizations. In particular, the FFT IP cores gener-

ated with my approach are comparable to state-of-the-art designs. Despite further

parallelization and hardware compilation efforts to be pursued, this dissertation has

paved the way for generating competitive hardware designs with Spiral in a flexible

manner.
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Chapter 1

Introduction

Automated design generation is increasingly used in the design of hardware acceler-

ators to handle the large trade-off space between performance and resource utiliza-

tion. The Spiral framework focuses on automating the designs for digital signal

transform kernels and other structured operations. Current Spiral framework is

limited in algorithmic flexibility as it uses a streaming architecture that is only ideal

for algorithms with uniform blocks in the data flow graph representation. In this

thesis, I study embedding a customized load-store architecture, which is inspired

by processor designs, into the Spiral framework. The updated Spiral framework

could natively handle more complicated algorithms regardless of the uniformity.

The proposed hardware generation flow starts from algorithm generation,

then moves to program optimization and finally to hardware interpretation. The

first stage sets up and solves a constraint program for producing algorithms match-

ing the required architectural features. The second stage represents the generated

algorithms in imperfect loop nest programs and uses pattern-based loop transforma-

tions that are enabled by the domain-specific language (DSL) in Spiral, to optimize
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the programs. The final stage interprets the optimized programs into hardware de-

signs as interconnected modules at the register-transfer level. The approach is tested

for a compute pattern that process high-dimensional data cubes on a load-store ar-

chitecture connected with a dual-ported memory. Imperfect loop nest programs

conforming to the pattern are optimized for execution latency, RAM utilization,

and arithmetic cost, supported by DSL extensions capturing relevant properties.

My results show that imperfect loop nest programs representing algorithms

lacking ideal uniformity can now be natively implemented as hardware accelerators

using the updated framework. This approach has been applied to Walsh-Hadamard

transform, discrete Fourier transform and the bitonic sorter algorithm. In a case

study of FFT accelerators, I show that by allowing for slight non-uniformity in the

choice of algorithms, the execution latency in cycle counts is reduced and the SRAM

utilization is identical compared to the carefully optimized streaming based designs.

1.1 Motivation

The conventional wisdom in the automatic generation of hardware accelerator de-

signs has centered around customized parallel architectures for particular algo-

rithms. The popular examples include streaming architectures (Figure 1.1a) and

systolic arrays (Figure 1.1b). These architectures can achieve much higher compu-

tational throughput than what is possible in general processors by allowing direct

communications between customized functional units or processing elements. How-

ever, these high-throughput architectures only fit an important while also limited set

of algorithms. Besides, the highest throughput is not always required in application

scenarios. Hence, a question raised naturally is: can we tradeoff some throughput

for algorithmic flexibility by targeting a more general architecture?
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(a) A streaming architecture composed
of different functional units connected by
streaming links.

(b) A systolic array architecture com-
posed of homogenerous processing ele-
ments connected by neighboring commu-
nication links.

Figure 1.1: Algorithm-specific parallel architecture examples.

In this work, I attempt to answer this question by focusing on customized

load-store architectures inspired by the design of general processors, as is shown in

Figure 1.2. In a general processor, primitive arithmetic/logic operations are con-

ducted in an ALU whose I/O ports are connected to a register file. The register

file exchanges data with the memory system via load and store operations. A pro-

grammable controller devises the sequence of memory load/store operations and

ALU operations such that arbitrary computations can be performed in a processor.

In a customized load-store architecture, the memory load/store behavior is pre-

served for flexibility while both primitive operations in the datapath and compute

sequences in the controller are highly customized to specific algorithms. The peak

throughput of a load-store architecture depends on the complexity of the datapath

and the number of memory ports connected to the datapath. Figure 1.3 shows two

mature parallel paradigms known in processor designs that can be applied to cus-

tomized load-store architectures, i.e. a SIMD style design and a multi-processing

style design.

In the automatic generation of customized load-store architectures, an es-

3



Figure 1.2: From processors to customized load-store architectures.

(a) A SIMD style load-store architecture. (b) A multi-processing load-store archi-
tecture.

Figure 1.3: Scaling the processing throughput of load-store architectures.

sential task is to explore the large tradeoff space between performance and resource

utilization. This is, however, challenging due to the mutual restriction between a

wide range of algorithms and a large design space of architectures. For general pro-

cessors, designing an efficient architecture and programming for the architecture are

already complicated problems separately. In customized load-store architectures,

the best choice in one domain depends on which choices are made in the other.

Lacking a tool to reason about both sets of options at once, the cost of explor-

ing the tradeoff space between performance and resource utilization is prohibitively

high.

1.2 Spiral Code Generation Approach

The Spiral framework can contribute to the specialization of load-store architec-

tures because it offers a unique method to reason about algorithms and architectures

4



simultaneously. In this way, the architecture is by construction optimized for the

algorithm considered for hardware acceleration. The control of the customized ar-

chitecture for the specific algorithm is generated in the meantime. As a result,

the problems of designing customized load-store architectures and programming the

architectures are solved in a unified framework.

Spiral was originally for automatically generating highly optimized software

implementations of digital signal transforms and other structured algorithms for a

landscape of commodity processor platforms. The core of Spiral is a constraint

solver, which automatically derives algorithms fitting the specified architecture, and

a multi-level rewriting system for program optimizations and code generation. The

constraint solver captures algorithms, program transformations, and hardware in

a unified formal system called the operator language (OL). A constraint problem

is firstly setup by an expert user through defining the recursive specification of

algorithms, the base cases that the hardware can efficiently process, and a set of

architecture-aware rules that decompose a specification to base cases. Then, the

problem is solved by applying the rule set recursively to the specification until

termination, producing efficient algorithms for the architecture. Next, the derived

algorithms are translated to imperfect loop nest programs captured by Spiral’s Σ-

OL language for loop optimizations. Finally, the optimized loop is translated to the

icode representation for code generation. The code generation process using multi-

level domain specific languages (DSLs) is shown by the left-most flow of Figure 1.4.

In the past, Spiral has been successfully applied for generating high performance

library code for novel architectures that are difficult to human programmers.

Though was initially for program generation for off-the-shelf processors, the

constraint solver of the Spiral framework makes it suitable for algorithm-hardware

5



Figure 1.4: The Spiral code generation flows involving multi-level domain specific
languages.

co-synthesis. In addition, the multi-level rewriting system can be extended for code

generation at the register-transfer level (RTL). In the past, a Spiral approach for

algorithm-hardware co-synthesis targeting transform kernels on a streaming archi-

tecture has proven to be successful. The approach produces hardware implemen-

tations comparable to hand-tuned designs and provides much more Pareto-optimal

solutions in the tradeoff space between performance and resource utilization. In that

work, the specification is decomposed to SPL1 formulas describing the generated al-

gorithm with streaming hardware parameters. Then, the SPL formula is translated

by an external SPL compiler to produce Verilog RTL, as is shown by the right-most

flow in Figure 1.4. Traversing the tradeoff space of the streaming architecture for an

algorithm boils down to the vertical and horizontal foldings of the datapath mapped

from the data flow graph representation, as illustrated by an example in Figure 1.5,

thus it requires uniform blocks in the data flow graph that are executed stage by

1a subset of OL for linear operators.
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Bit reversalStage 0Stage 1Stage 2

communicationparallelcommparallelcommparallelcomm

(a) Data flow graph of 8-point Pease FFT algorithm where the data flows from right to left.
It is composed of an initial bit reversal permutation stage, followed by three stages with
uniform geometry containing parallel computational blocks and a stride permutation.

(b) Vertically folded streaming datapath. The left most block filled with diagonal stripes
represents streamed bit reversal permutation datapath. The solid diamond grid represents
the computational datapath. The normal grid pattern represents the streamed stride per-
mutation datapath.

(c) Horizontally folded streaming datapth.

Figure 1.5: Mapping a uniform data flow graph to streamed datapath. There exists
a degree of freedom when folding datapath in both dimensions.

stage. As a result, this method works the best in domains where the algorithms

exhibits ideal uniformity in the data flow graph representation.

Despite the earlier success, applying Spiral for customized load-store ar-

chitecture is non-trivial due to 1) the numerous possible combinations of design

variables exceeding what have been realized in commodity general-purpose proces-

sors, and 2) the extra considerations necessary in interpreting imperfect loop nest

programs to efficient hardware implementations.

A load-store architecture can be specialized in controller, memory hierarchy

and parallelism style, resulting in a large number of combinations which require

non-trivial human intervention to setup the constraint solver of Spiral. In con-
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troller designs, besides the instruction stream controller used in general purpose

processors, a specialized load-store architecture can also have a simpler ROM-based

or FSM-based controller. For memory sub-system designs, the options range from a

single-level fast SRAM for IP core designs to a multi-level hierarchy involving main

memory managed as scratchpad memory or by a cache protocol. The common par-

allelism style contains vectorization, symmetric multi-processing, and distributed

memory. To handle a particular combination in Spiral, one has to develop rules

for decomposing operations to base cases that can be directly handled in hardware.

In addition, the architectural templates of irreducible operators and OL formulas

need to be supplied to the framework for automatic hardware construction.

Algorithms generated from the constraint solver will be translated to the

imperfect loop nest programs in Σ-OL and requires optimization for features not

easily modeled in the constraint solving stage. In Σ-OL, the memory access indices

are captured symbolically to enable loop analyses and transformations difficult to

general compiler optimizers. In software code generation, Spiral has employed loop

fusion to reduce data transfers between on-chip and off-chip memory and software

pipelining to hide the latency. When interpreting loop programs to hardware im-

plementations, other properties may also be considered. One such an example is

the efficient mapping between the arrays used as intermediate buffers between loops

and the hardware memory resource.

In summary, the Spiral framework has potential for customizing load-store

architectures. However, it is nontrivial to address the large hardware design space

and loop optimizations for hardware mapping.
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1.3 My Approach

This dissertation proposes an approach to generating and optimizing hardware im-

plementations in specialized load-store architectures, through extending the Spiral

framework. Compared to the existing streaming architecture in Spiral, the load-

store architecture can inherently handle more complicated algorithms regardless of

the uniformity in the data flow graph.

The proposed approach extends the DSLs in Spiral for hardware generation.

It includes OL extensions for addressing the design space using the constraint solver,

Σ-OL extensions for loop optimizations for hardware interpretation purpose, and

icode extensions for modeling the interconnected RTL modules. The hardware icode

is finally unparsed to Chisel RTL code. The resulting hardware generation flow is

shown in the middle of Figure 1.4. Note that the hardware generation flow does not

produce a separated instruction stream to drive the customized architecture. While

this is sufficient to support simple ROM-based and FSM-based controller designs,

it can be extended to incorporate other controller designs in the future.

Because successful specialization heavily relies on exploiting the properties

of computation, this work has focused on a compute pattern that processes high-

dimensional data cubes through indexing memory entries by multi-linear functions.

This pattern covers the popular algorithms in computing the Walsh-hadamard trans-

forms, discrete Fourier transforms, and sorting.

In the architecture dimension, this work has focused on a scalar load-store

architecture with a flat on-chip memory that allows reading and writing one scalar

data word in steady state. The parallelization can be achieved with moderate effort

because the proposed extension is compatible with the parallelism paradigms in

current Spiral.
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Stage 0Stage 1Stage 2

(a) Generate an algorithm for 8-point DFT computation.

(b) Convert to iterative computing on memory.

(c) Implement using a load-store architecture.

Figure 1.6: The three steps in mapping the 8-point DFT computation to hardware
designs with the proposed approach.
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By focusing on a constrained compute patttern and architecture, this dis-

sertation makes the first step in opening up the full power of Spiral for hardware

generation. As an example, Figure 1.6 shows the representations at three abstrac-

tion levels of Spiral in decomposing the eight-point DFT computation to a cus-

tomized load-store architecture design. At the first step, the extended constraint

solver derives an algorithm for the architecture. Compared to the derived algorithm

for streaming architecture in Figure 1.5 , the algorithm for load-store architecture

treats data permutation in the form of memory indices. As a result, it allows dif-

ferent access patterns at each stage and merges the initial permutation to the first

stage. Next, the data flow graph representation in OL formula is lowered to the

imperfect loop nest program in Σ-OL that describes an iterative computation on

memory buffers. Finally, the loop program is interpreted to the icode representa-

tion that captures the interconnected RTL modules of datapath and controller unit.

The datapath is synthesized from the basic block specification of the loop program.

The controller is synthesized from the loop nest structure of the program.

1.4 Contributions

The main contributions of this dissertation are:

1. A pattern-based approach to optimizing imperfect loop nest programs for load-

store architectures. I focus on a pattern featuring static loop bounds, gather-

compute-scatter shapes in the basic blocks, and multi-linear access patterns.

This pattern can instantiate several important algorithms by configuring the

iteration space, the memory indices, and the kernel operations correspond-

ingly. Hardware-oriented optimizations including execution overlapping, re-

duced buffer allocation and simplified calculation of the multi-linear expres-
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sions are developed for this pattern.

2. A code generation framework targeting the generation of customized load-

store architectures using dual-ported memory. The framework is obtained by

extending the Spiral approach. The Σ-OL language is extended for pattern-

based loop optimizations. The icode language is extended for modeling the

interconnected RTL modules internally and produces Chisel RTL code na-

tively.

3. An implementation of the proposed approach in the Spiral system and the

application of the proposed approach to Walsh-Hadamard transforms, discrete

Fourier transforms, and bitonic sorters using a scalar load-store architecture

connected to an on-chip dual-ported memory.

1.5 Limitations

It is worth noting that this work marks the first fundamental step in extending

Spiral for generating customized load-store architectures while more efforts are

required to uncover the full power of load-store architectures. First, this work

has focused on algorithms with limited irregularity. Other algorithms may benefit

more from the flexible nature of load-store architectures. Second, this work has

constrained itself to a load-store architecture with a dual-ported memory. This

limits the peak processing throughput to one data word per cycle. To scale the

throughput, parallel techniques like SIMD and multicore can be employed which

are compatible to the Spiral framework.
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1.6 Thesis Outline

Chapter 2 presents the background of Spiral. The complete code generation flow

is introduced which emphasizes the multi-level DSLs of OL, Σ-OL and icode. The

existing Spiral hardware backend is also presented.

Chapter 3 explains the basic idea of synthesizing customized load-store ar-

chitectures from imperfectly nested loop programs. The chapter discusses the major

synthesis challenges and the proposed solutions.

Chapter 4 focuses on the development of a systematic approach to translating

imperfect loop nest programs conforming to a pattern to load-store architecture with

dual-ported memory, by extending the Spiral framework from algorithm generation

to program optimization to hardware interpretation which covers the DSLs of OL,

Σ-OL and icode.

Chapter 5 evaluates the effectiveness of the proposed approach. First, the

flexibility is investigated via the cost of adding new algorithms to the framework.

Second, the effectiveness of the program optimization for hardware generation is

studied. Third, an FFT core generated with the proposed approach is compared

against those produced by the existing Spiral hardware backend on a Xilinx FPGA

device for performance and resource utilization.

Chapter 6 presents concluding remarks and future directions.
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Chapter 2

The Spiral Code Generation

Approach

Spiral is a code generation approach aiming to provide performance portability

for well-defined, ubiquitously needed computational kernels across a wide range of

computational devices. It provides a solid foundation for this thesis to generating

hardware implementations using customized load-store architectures. The majority

of this chapter explains the principles of Spiral, and its code generation flow targeting

commodity processors which could be extended for synthesizing specialized load-

store architectures. This chapter ends by briefing the previous hardware generation

effort that focuses on a streaming architecture.

2.1 Performance Portability of Compute Kernels

Obtaining efficient implementations for complex algorithms on modern computers

is challenging due to the complicated architecture features used for scaling per-

formance from the initial stored-program computers, including the deep memory
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hierarchy, the parallel computing paradigms including SIMD, multi-core, many-

core, and distributed memory. The Spiral code generation approach is based on

an observation that the mathematics backing ubiquitous computations is quite sta-

ble while the computer platforms change frequently and span a wide spectrum of

computing power. Spiral aims to automatically generate implementations for well-

defined computational specifications on given platforms, that are comparable to

expert-tuned designs.

To address the problem of synthesizing highly efficient implementations for

computational kernels, Spiral develops a formal framework that captures com-

putational algorithms, computing platforms, and program transformations using a

unified representation called operator language (OL). Then the problem is casted

as a constrained optimization problem that is solved by multistage rewriting. The

following three sections explains the Spiral approach centering around the three

DSLs of the multistage rewriting flow. The three DSLs, from top to bottom, cap-

tures the data flow graphs (DFGs), abstract loops, and intermediate code as is shown

in Figure 1.4. Along the generation flow, efficient implementations are obtained by

lowering and optimizing the specifications step by step.

2.2 Architecture-aware Algorithm Generation in OL

Spiral focuses on computational kernels with recursive or iterative nature through

which algorithmic variants can be obtained by different expansions of the kernel

specification. The degrees of freedom in recursive breakdown span a large algo-

rithm space. The first step of Spiral is deriving the “right” algorithms for a given

computing platform. For doing that, OL is used to capture the algorithms, the

hardware architectures, and the program transformations. A constraint solver is
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setup by specifying the algorithm breakdown rules, architecture-specific breakdown

rules and the base cases. Then, the solutions are obtained by recursively apply-

ing breakdown rules to the functional specification until fully expanded. Finally,

an auto-tuning process evaluates the qualities of corresponding implementations to

select the best solution from the multiple candidates.

2.2.1 Algorithm Abstraction

Specifications

Spiral captures the specifications of computational kernels as mathematical oper-

ators with unambiguous input/output behaviors that map vectors to vectors. The

operators support taking multiple input vectors and producing multiple output vec-

tors, utilizing multiple base types for the vectors, including fields (R,C, GF (k)),

rings and semi-rings. In this work, the focus is on the kernels that map from one

vector to another vector in the the common fields of N, R or C.

Classic digital signal processing examples of operators defined in Spiral are

the Walsh-Hadamard transform (WHT),

WHTn : Rn → Rn : x 7→
[

1

2n/2
(−1)

∑
j kjnj

]
0≤k,l<n

x, (2.1)

and the discrete Fourier transform (DFT),

DFTn : Cn → Cn : x 7→
[
e2πikl

]
0≤k,l<n

x, (2.2)

Non-linear operators are also supported, with an example of the sorting net-
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work in ascending order,

χn : Nn → Nn : (ai)0≤i<n 7→
(
aσ(i)

)
0≤i<n , aσ(j) ≤ aσ(k) for j ≤ k, (2.3)

and in descending order,

Θn : Nn → Nn : (ai)0≤i<n 7→
(
aσ(i)

)
0≤i<n , aσ(j) > aσ(k) for j ≤ k (2.4)

Besides the above linear and non-linear kernels that are used in this thesis,

Spiral has modeled many more kernels as OL operators. Examples include the dis-

crete cosine transform [3], the wavelet transforms [4], the polar formatting synthetic

aperture radar [5], the matrix-matrix multiplication [6], and the Viterbi decoder [7].

Operator Language

Spiral employs data flow graphs (DFGs) to represent algorithms. The DFGs in

Spiral are modeled with the operator language (OL) for convenient manipulation.

Specifically, OL models the basic DFG fragments as operators and the meaningful

shapes of fragments using higher-order functions.

The linear transform origin of Spiral has brought linear operators that can

be represented as matrices. The specifications (2.1) and (2.2) are linear operators.

The basic linear operators contains the the identity matrix

In =



1 0 · · · 0

0 1 · · · 0

...
...

. . . 0

0 0 · · · 1


, (2.5)
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the stride permutation matrix Lnk , which reads the input at stride and stores it at

stride 1, defined by its corresponding permutation

Lnk : i(
n

k
) + j 7→ jk + i, 0 ≤ i < k, 0 ≤ j < n

k
, (2.6)

the diagonal matrix Dn generated by a function diag(d0, · · · , , dn−1),

Dn = diag(d0, · · · , , dn−1) =



d0 0 · · · 0

0
. . . · · · 0

...
...

. . . 0

0 0 · · · dn−1


(2.7)

which scales the input vector by multiplying to the weights.

In contrast to the linear operators presented above, non-linear operators

cannot be represented as matrices but they are also clearly defined as shown in the

specifications of (2.3) and (2.4).

Higher-order functions capture the shapes of DFG fragments that are essen-

tial to reason about efficient implementations. The direct sum ⊕ of operator A and

B

(A⊕B) · x =

A
B

x (2.8)

partitions the input vector into two sub-vectors to feed A and B separately and

concatenates the resulted sub-vectors to form the result vector. The Kronecker
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product ⊗ [8] of an identity matrix In and an operator Am

(In ⊗Am) · x =



Am

Am

...

Am


x (2.9)

repetitively applies Am to n size-m sub-vectors obtained by evenly divided the input

vectors. Because the computations of each Am on sub-vectors are independent, this

shape fits parallel computations. The Kronecker product ⊗ of Am and In

(Am ⊗ In) · x =


a0,0In . . . a0,m−1In

...
. . .

...

am−1,0In . . . am−1,m−1In

x (2.10)

also performs repetitive operations except that the size-m sub-vectors are obtained

from the input vector with stride of n. In another word, the same Am operator is

applied for neighboring data items thus can exploit data parallelism through vector-

izing the computations. In non-linear cases where an intuitive matrix representation

does not apply, the Kronecker product is defined formally in OL. For example, the

Kronecker product of In and a non-linear operator Bm(·) is defined as

(In⊗Bm(·))(x0 ⊕ · · · ⊕ xn−1) = Bn(x0)⊕ · · · ⊕Bn(xn−1) (2.11)

using the direct sum of vectors.

Another important higher-order operator is composition. The composition

◦ of A and B

(A ◦B)(x) = A(B(x)) (2.12)
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represents consecutive computational steps where the the input vector is firstly

manipulated by operator B, then the result is processed by operator A. Sometimes

the ◦ operator is omitted for simplicity while multiple operators can be visually

separated, as we shall see in (2.15).

Besides the existing operators in current OL, the language is arbitrarily ex-

tensible as long as the extensions are well-defined and mathematically legal. In this

work, we will slightly modify the sorting operator to add the sorting direction as a

parameter to the operator.

Breakdown Rules

In Spiral, algorithms describing how to compute a specification with a series of

compute stages are encoded as breakdown rules. Note the difference between the

algorithms modeled as breakdown rules and the fully specified algorithms obtained

by the recursive application of breakdown rules to an input specification.

A breakdown rule matches a non-terminal (a not yet fully expanded kernel

specification) and replaces the matched operator with the right-hand side of the

rule. Spiral has defined more than 200 breakdown rules, part of which relevant to

the specifications (2.1) - (2.4) are explained here.

WHT. The splitting WHT algorithm is expressed as

WHT2k1+k2 → (WHT2k1 ⊗ I2k2 ) (I2k1 ⊗WHT2k2 ), (2.13)

which encodes that the nonterminal WHT2k1+k2 is translated into a right-hand side

that involves new nonterminals WHT2k1 and WHT2k2 . In this rule, the right-hand

side nonterminals are of smaller power-of-2 sizes. Hence, the recursive application

of rule will terminate when a terminal rule specifies how a minimal size WHT2 be
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translated into an atomic OL operator which is called a “butterfly”,

WHT2 → F2 with F2 =

 1 1

1 −1

 . (2.14)

DFT. Similarly, the nonterminal DFTmk can be factorized with the general

radix Cooley-Tukey FFT algorithm

DFTn → (DFTk⊗ Im)Tnm (Ik⊗DFTm) Lnk , (2.15)

that translates the input to new nonterminals DFTm and DFTk. This rule produces

additional OL operators of stride permutation Lnk , and Tnm being a diagonal matrix

defined as

Tnm = diag(d0, . . . , dn−1), where di = ω
b i
m
c(i%m)

n . (2.16)

The termination rule of DFT goes to a butterfly operator as in (2.14)

DFT2 → F2 with F2 =

 1 1

1 −1

 . (2.17)

Sorting network. The bitonic sorter algorithm for sorting a vector of

power-of-2 sizes to ascending order is encoded in a breakdown rule

χn →Mn,χ

(
χn/2 ⊕Θn/2

)
, (2.18)

that produces nonterminals of a half size ascending sorter χn/2, a half size descending

sorter Θn/2, and a bitonic merger of ascending order Mn,χ. The bitonic merger can
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be factorized with a rule

Mn,χ →
(
I2⊗Mn/2,χ

) (
χ2 ⊗ In/2

)
, (2.19)

that involves Θ2 and a half-size merger. The descending sorter is factorized with a

rule

Θn →Mn,Θ

(
χn/2 ⊕Θn/2

)
, (2.20)

similar to (2.18) except that a bitonic merger of descending order Mn,Θ is produced.

The reversed order bitonic merger is then factorize by a rule similar to (2.19),

Mn,Θ →
(
I2⊗Mn/2,Θ

) (
Θ2 ⊗ In/2

)
. (2.21)

Since sorting is non-linear, the terminal rules define the base case sorter with defining

the behaviors explicitly, being the minmax and maxmin operation respectively, as

shown in (2.22) and (2.23).

χ2 → S2 with S2

 x0

x1

 =

 min(x0, x1)

max(x0, x1)

 (2.22)

Θ2 → Ŝ2 with Ŝ2

 x0

x1

 =

 max(x0, x1)

min(x0, x1)

 (2.23)

2.2.2 Program Transformations

Section 2.2.1 has presented the formal representations in OL how a specification

is computed through smaller problem sizes via breakdown rules. Earlier research

like [9] has shown that the computations captured now in OL, including the stride

permutations and the Kronecker products, can be converted to their mathematical
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equivalence with different computational structures to address various computer

platforms. Spiral casts the transformations enabled by mathematical equivalence

as breakdown rules and employs hardware properties (to be explained in Section

2.2.3) to constrain the application of these breakdown rules.

First, the identity matrix is the tensor product of identity matrices

Imn → Im⊗ In (2.24)

which can be used to represent loop tiling. The following example describes using

(2.24) to tile the mn iterations of applying the operator A into m iterations of n

computations of A:

Imn⊗A→ Im⊗(In⊗A)

Further, the two forms of Kronecker products (2.9),(2.10) can be mutually

converted by introducing additional stride permutations.

(
Im⊗An×n

)
→ Lmnm

(
An×n ⊗ Im

)
Lmnn (2.25)(

An×n ⊗ Im
)
→ Lmnn

(
Im⊗An×n

)
Lmnm (2.26)

Rule (2.25) specifies that the block parallel computations of Am can be equivalently

computed as vectorized Am when performing stride permutations Lmnn in advance

and Lmnm afterwards. Rule (2.26) specifies the reversed conversion with different

parameters for stride permutations.

Finally, the point-to-point data layout transformations as stride permuta-

tions can be challenging in performance when permuting a large data set. In fact,
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they can be performed in a way that exploits block granurarity.

Lkmnn →
(

Lknn ⊗ Im
)(

Ik⊗Lmnn
)
, (2.27)

Lkmnkm →
(

Ik⊗Lmnm
)(

Lknk ⊗ Im
)
, (2.28)

The rules (2.27), (2.28) involves the Kronecker product of stride permutations.

Ik⊗Lmnn encodes block permutation of size mn while Lknk ⊗ Im encodes permuta-

tion of blocks of size m. These behaviors are more efficient in communication with

memory or dedicated channels whose latency can be hidden by block transfers.

2.2.3 Hardware Abstraction

The architectural features that require data flow optimizations are captured in

the formal framework. These features include memory organizations and parallel

paradigms.

The hardware features are modeled through constraints on OL breakdown

rules via hardware tags. A breakdown rule can be associated with tags on the

left-side nonterminal, encoding a “right” way to expand the nonterminal such that

the computations can be efficiently implemented in hardware platform with the

prescribed properties in the tags.

By addressing the general data flow patterns and architectural features in

OL, Spiral has provided general tagged breakdown rules to handle common OL

formulas. For instance, the formula Am ⊗ In is inherently vectorizable and can be

efficiently implemented in v-way short-vector SIMD platforms as shown in a rule

Am ⊗ In︸ ︷︷ ︸
vec(v)

→ (Am ⊗ In/v)⊗vec(v) Iv with v|n. (2.29)

24



Rule (2.29) uses the equivalence of (2.24). The tag on the left side vec(v)

denotes v-way SIMD vectorization. On the right side, the underlying tag is removed

and it means that the expanded OL formula has been restructured for SIMD ex-

ecution. This is achieved by tagging a Kronecker product operator with the same

tag vec(v), which encodes the decision that this operator should be implemented as

v-way SIMD operations in the code generation backend. The OL shape Am⊗vec(v) Iv

is a base case for SIMD hardware platform. The entire set of SIMD base cases can

be found in [10].

Algorithm-specific tagged breakdown rules are important if direct match-

ing on general OL patterns does not produce the optimal results. Sometimes, the

combination of known OL patterns can be collaboratively optimized through inge-

niously picking the right rules, from a large identified set of program transformation

rules explained in Section 2.2.2, and applying them in a right way. For example,

though there are independent SIMD tagged rules for Im⊗An×n and Lmnm , the SIMD

vectorization of the composition of the two produced by the Cooley-Tukey FFT

factorization rule (2.15) can embrace OL stage reduction through careful program

transformation. The FFT-specific tagged rule is

(
Im ⊗An×n

)
Lmnm︸ ︷︷ ︸

vec(ν)

→
(
Im/ν ⊗ Lnνν

(
An×n ⊗ Iν

)) (
L
mn/ν
m/ν ⊗ Iν

)
︸ ︷︷ ︸

vec(ν)

, ν | m (2.30)

By comparing Rule (2.30) and the results achieved by applying Rule (2.28)

and 2.25 separately, the number of stages is reduced. This will make across-stage

optimizations to be introduced in Section 2.3 feasible.
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2.2.4 Algorithm Generation and Autotuning

With a unified formal framework for algorithms, hardware architectures, and pro-

gram transformations, the problem of generating fully-expanded algorithms of com-

putational kernels efficient for a given hardware platform is casted as a strongly

constrained optimization problem that is solved by rewriting and search.

The constrained solver is setup by defining the algorithm space as a set of

algorithmic breakdown rules, the hardware space as base cases, and the transforma-

tion space as hardware-tagged breakdown rules. It is a non-trivial task because it

requires the combination of domain-knowledge and architecture expertise from hu-

man designers. To solve the constrained optimization problem, breakdown rules are

applied recursively until all nonterminals are translated to terminals. The order of

rule applications on nonterminals is called the rule tree, and by applying rules to the

input OL specification with respect to the rule tree, we can obtain fully expanded

OL formulas representing a flat DFG.

Because breakdown rules have degrees of freedom on how a nonterminal can

be expanded, an input specification can be finally translated to many fully-expanded

algorithms. To pick the optimal algorithms from the large candidate set, Spiral

employs auto-tuning techniques to search within the design space. In the past, the

combination of genetic search, dynamic programming, line search and exhaustive

search have been used in the Spiral framework.

As an example, Figure 2.1 shows the algorithm generation and auto-tuning

approach of how to find the most efficient algorithm of DFT8 for a 2-way vectorized

processor. Hardware rules (left, red), algorithm rules (right, blue) and program

transformation rules (center, grey) together span a search space (multi-colored oval).

The given problem specification and hardware target give rise to the solution space
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Figure 2.1: Algorithm generation as a constraint problem [1].

(black line) that is a subspace of the overall search space. Each point in the solution

space (black dot) represents a DFG given as OL formula that optimized for the

SIMD architecture. An auto-tuner walks through the solution space by evaluating

the quality of each algorithm in implementations and finds the optimal solution out

of the space.

2.3 Across-stage Optimization in Σ-OL

The algorithms generated with the constraint solver are flat DFGs containing mul-

tiple compute or data reorganization stages, each of which is optimized for the

given compute platform. However, cross-stage optimization is inevitable to achieve

efficiency on modern processors.

All commodity processor architectures share a same property that data re-

sides in main memory and the processing core fetches data from memory, writes back
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results to memory in an iterative manner. Moreover, the arithmetic / logical process-

ing speed is usually much faster than data movements [11]. Consequently, efficient

computations on modern processors tend to minimize data roundtrip. Specifically,

it is important to merge neighboring stages in flat DFGs to combine computations

and data reorganization on the same data set as much as possible. In addition,

in case the data movement bandwidth falls behind the computational throughput,

multi-buffering is essential to use bandwidth efficiently [12].

This section focuses on stage fusion for the flat DFGs. Since each stage

exhibits repetitions and can be represented as a loop program, it is a loop fusion

problem. Spiral introduces the Σ-OL language to make loops explicit and memory

access patterns symbolically such that the difficult loop merging problems difficult

to general compiler optimizers can be solved via a rewriting system.

2.3.1 Lowering DFGs to Loops

To represent repetitive operations in DFGs as a loop program, one has to provide

an explicit memory abstraction, extract the kernel operation, and specifies how

data is addressed in loading from memory to the kernel and storing from the kernel

to memory. As in Spiral, a kernel always processes a vector, the load and store

operations are gather and scatter operations [13] that addressing data in memory

indirectly through an index vector.

A graphical representation of translating the two most common repetitive

data flow patterns to loop programs are shown in Figure 2.2. The left-hand side

shows the DFG. The right-hand side shows the corresponding loop program repre-

sentation that uses stacked squares for memory, places the kernel operation to the

center, gathers and scatters data prescribed by arrows. Note that although two
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(a) I2⊗F2
(b)

∑1
i=0 Sh2i,1

F2Gh2i,1

(c) F2 ⊗ I2
(d)

∑1
i=0 Shi,2

F2Ghi,2

Figure 2.2: The translation between OL and Σ-OL.

memory arrays are visualized, they can be mapped to the same physical memory

in actual implementations. The two examples have two iterations for the loop, the

first is represented by dotted-line arrows and the second is represented by solid-

line arrows. The corresponding OL and Σ-OL (will be explained soon) formulas

are provided as subgraph captions. Figure 2.2a shows the DFG of the OL formula

I2⊗F2. Figure 2.2b shows the translated loop representations where the F2 kernel

is extracted and the unit stride pattern is used for gather and scatter. In Figure

2.2c and 2.2d, the translation is shown for the OL formula F2 ⊗ I2, which results in

a stride-2 access pattern. From this example, we saw that the different data flow

patterns with the same kernel can be normalized to the same loop representation

only with varying access patterns.

2.3.2 Σ-OL

Iterative sum. Σ-OL is a superset of OL that introduces a few new constructs for

the loop abstraction. The core operator is the iterative sum operator that captures
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a loop,

n−1∑
j=0

Aj , (2.31)

where j is an induction variable with range n. For linear operators, the iterative sum

is formally defined as the summation of vectors produced at each iteration by the Aj

operator. The additions are never performed because Aj is guaranteed to produce

non-overlapping non-zero elements when j iterates. For non-linear operators, the

iterative sum is defined as non-overlapped iterative data processing from memory to

memory. The non-overlapped behavior is guaranteed by forming Aj with the gather

and scatter operators parameterized by index mapping functions for indirect access.

Index Mapping Function. The gather and scatter of a subset of data

elements in a vector is specified by an index sub-vector. Spiral employs index

mapping functions to generate index sub-vectors from an integer interval. An integer

interval is denoted by

In = 0..., n− 1.

An index mapping function f with domain In and range IN is denoted by

f : In → IN ; i 7→ f(i).

We use the short-hand notation fn→N to refer to an index mapping function of the

form f : In → IN .

The index mapping function can be arbitrarily complicated determined by

the access pattern of the algorithms. A particular important index mapping function

used in this thesis is the h function parametersized by a base b and a stride s for
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strided indexing,

hb,s : In → IN ; i 7→ b+ si. (2.32)

Gather operator. Gather is a matrix operator in which its definition gen-

erates a matrix that produces its output vector by multiplying with the input vector.

A Gather operator parameterized by an index mapping function fn→N extracts a

size-n subvector from the size-N input vector. In this work, a Gather operator is

always associated with an hn→Nb,s function for strided indexing. Let enk ∈ Cn×1 be the

canonical basis vector with entry 1 in position k and entry 0 elsewhere. An index

mapping function hn→Nb,s generates the gather matrix ([·]> is the matrix transposi-

tion),

Ghn→N
b,s

:=
[
eNh(0)

∣∣∣eNh(1)

∣∣∣ · · · | eNh(n−1)

]>
, (2.33)

which implies that for two vectors x = (x0, ..., xN−1)> and y = (y0, ..., yn−1)>,

y = Ghn→Nx ⇐⇒ yi = xh(i).

The result is used for generating code from the Gather matrices.

Scatter operator. A Scatter and a Gather with the same index mapping

function hn→N are the transposition of each other. It represents transferring data

entries of a sub-vector to the specified locations of the output vector. An index

mapping function hn→Nb,s generates the Scatter matrix

Shn→N
b,s

:=
[
eNh(0)

∣∣∣eNh(1)

∣∣∣ · · · | eNh(n−1)

]
(2.34)
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The definition (2.34) implies that for two vectors x = (x0, ..., xn−1)> and y =

(y0, ..., yN−1)>,

y = Shn→Nx ⇐⇒ yj =

 xi if j = f(i)

0 else
.

The result is used for generating code from the Scatter matrices.

Example of Σ-OL expression. Here we explain the Σ-OL expression that

describes Figure 2.2b,
1∑
i=0

(Sh2→4
2∗i,1

F2Gh2→4
2∗i,1

).

In this example, the loop containing two iterations is captured by the iterative sum

Σ operator with maximal iteration 1 starting from 0, using an induction variable

i. The unit stride access pattern is captured by the gather operator Gh2→4
2∗i,1

and

the scatter operator Sh2→4
2∗i,1

. The index mapping function h2∗i,1 produces a size-2

vector with unit stride for each input i. The matrix operator instances for the first

iteration, i.e, i = 0, is

Sh2→4
0,1

F2Gh2→4
0,1

=



1 0

0 1

0 0

0 0


1 1

1 −1


1 0 0 0

0 1 0 0

 ,

which extracts the first two data entries of the size-4 input vector to feed the F2

butterfly operator, and finally places the size-2 sub-vector result on the first two

entries of the output vector while setting 0s for the untouched elements.

Other Σ-OL Operators. Permutation is a special case of Gather with the

constraint that the index mapping function must be bijective. Though any linear
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permutation is permitted, in this work, we only deals with the stride permutation.

A permutation matrix corresponding to its defining permutation pn→n is written as

perm (pn→n) :=
[
enp(0)

∣∣∣enp(1)

∣∣∣ · · · | enp(n−1)

]>
.

Thus, the algorithm to implement gather matrices is used to implement permutation

matrices.

The diagonal matrices of size n×n can be defined by a function fn→C : In →

C,

diag
(
fn→C

)
:= diag(f(0), ..., f(n− 1)).

Translation between OL and Σ-OL. With the newly introduced opera-

tors, the aforementioned two special geometries (2.9)(2.10) of the data flow graph

captured by the Kronecker product can be lowered to Σ-OL expressions with the

following two rewrite rules,

Im ⊗An →
m−1∑
j=0

Shn→nm
nj,1

AnGhn→nm
nj,1

(2.35)

Am ⊗ In →
n−1∑
j=0

Shm→nm
j,n

AmGhm→nm
j,n

(2.36)

2.3.3 Loop Merging and Index Simplification

In practical Σ-OL expressions, the iterative sum operator is in composition with

other operators that also process data iteratively. By merging as much as computa-

tions and data reorganization into a single iterative sum operator, the data roundtrip

from memory to memory can be minimized. The loop merging is achieved in Spiral
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through applying rewrite rules for Σ-OL expressions provided by human designers.

This is possible because of the access pattern is made symbolic as index mapping

functions. Further, the index mapping functions after loop merging can be simplified

by utilizing the mathematical properties of the symbolic functions.

For instance, in FFT algorithms, the diagonal and permutation operators are

the common neighbors of iterative sums in an expression, as shown in the following

Σ-OL expression lowered from the OL formula of 4-point FFT

(
1∑
i=0

(Sh2→4
i,2

F2Gh2→4
i,2

)

)
diag(f4→C)

(
1∑
i=0

(Sh2→4
2∗i,1

F2Gh2→4
2∗i,1

)

)
perm(p4→4) (2.37)

which contains four consecutive computational stages over the input vector, each of

which can be implemented as a loop. The rewrite rules for merging Σ-OL expressions

like this are explained as follows.

Other operators than the iterative sums can be incorporated to the neigh-

boring iterative sum operator on the left side or on the right side. Rules

m−1∑
j=0

Aj

M →

m−1∑
j=0

AjM

 , (2.38)

M

m−1∑
j=0

Aj

→
m−1∑

j=0

MAj

 (2.39)

implement the distributivity law for moving operators inside iterative sums. After

applying these rules to (2.37), permutations and diagonals can be paired with the

gather or scatter operators.

The permutation can be merged into gather on the left so that another data
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pass for permutation can be saved. Rule

Grn→N perm
(
πN→N

)
→ Gπ◦r. (2.40)

merges permutations into gather by composing the index mapping functions of per-

mutation and gather.

The diagonal matrices can be swapped with the right-side scatter operation

such that the diagonal operator can be performed in sub-vector granularity together

with other computational kernels in the iterative sum. Rule

diag
(
fN→C

)
Swn→N → Sw diag(f ◦ w). (2.41)

swaps diagonal with scatter by compositing the index mapping functions of diagonal

and scatter.

By applying the above rewrite rules to (2.37), we can obtain the loop merged

Σ-OL expressions. However, the merging may create complicated index mapping

functions via composition. A particular set of rewrite rules in [2] can be applied

to simplify the index mapping functions. Finally, the merged and simplified Σ-OL

expression with only two stages is obtained:

(
1∑

i1=0

(Sh2→4
i1,2

F2Gh2→4
i1,2

)

)(
1∑

i2=0

(Sh2→4
2∗i2,1

diag(f4→C ◦ h2→4
2∗i2,1)F2Gp4→4◦h2→4

2∗i2,1
)

)
.

(2.42)
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2.4 Abstract Programs in icode

To enable loop code portability between various programming languages and appli-

cation programming interfaces, Spiral introduces the icode abstraction to capture

the syntax of C language or C-derived dialects like OpenCL. This also enables op-

timizations in basic blocks at higher level than programming languages.

2.4.1 Code Representation

The icode captures key constructs of common programming languages, including 1)

values and types, 2)arithmetic and logic operations, 3)constants, arrays and scalar

variables, and 4) assignments and control flow.

Types and variables. A sample of some types with the corresponding C

constructs are listed in Table 2.1. The integer types can be mapped to C type in a

one to one manner. The real type is mapped to float or real depending on the

bit width parameter.

Table 2.1: icode constructs modeling the primitive types of C language

icode constructs Corresponding C code constructs

TInt int

TUInt unsigned int

TReal(width) float / double

Arrays are supported with a type specifying the size and the primitive scalar

type. To address the scalar elements of an array, an nth object is added to extract

the nth-th element from a variable of array type. The array type support is listed

in Table 2.2.

A variable object can be created by specifying the name and type as presented

in the third row of Table (2.4).
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Table 2.2: icode constructs supporting C arrays

Categories icode Corresponding C code constructs

Type TArray(type,n) n/a

Location nth(v, idx) v[idx]

Operators. It is worth noting that the operators in icode are dynamic

objects that can autonomously determine the type of results according to the types

of the input. As a result, one operator object can model the same operation of

various scalar types, array types and user-defined structures. The operations of

arithmetic, relational, logical, bitwise and ternary types are listed in Table 2.3. For

certain arithmetic operations such as addition and subtraction, the arbitrary number

of operands are supported. The code v1, ..., vn represents n operands from v1

to vn divided by comma.

Statements. The statements in C code are modeled as commands in icode.

Table 2.4 lists several important commands: the assignment, the compound state-

ment, the variable declaration statement, and the for-loop statement.

Extending types and operators. Since icode is arbitrarily extensible,

the constructs beyond the C language specification can always be created. User-

defined data types and the corresponding operations can be modeled in icode. Table

2.5 presents the complex arithmetic extension where a complex data type and three

arithmetic operators are addressed. The complex data type complex t is a structure

specified by the typedef statement of C and the definition will be incorporated in

the final C code. The arithmetic operations add, sub, and mul on the complex

type are implemented as user-defined C functions. Besides, the types and functions

provided by the C standard library [14] or other API can be addressed in icode as

well. Table 2.6 lists certain math functions of the C standard libarary suppported
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Table 2.3: icode constructs modeling the operations of C language

Types icode constructs Corresponding C code constructs

Arithmetic add(v1, . . . , vn) v1 + ... + vn

Arithmetic sub(v1, . . . , vn) v1 - ... - vn

Arithmetic mul(v1, . . . , vn) v1 * ... * vn

Arithmetic div(v1, . . . , vn) v1 / ... / vn

Arithmetic imod(v1, v2) v1 % v2

Relational eq(v1, v2) v1 == v2

Relational neq(v1, v2) v1 != v2

Relational geq(v1, v2) v1 >= v2

Relational leq(v1, v2) v1 <= v2

Relational gt(v1, v2) v1 > v2

Relational lt(v1, v2) v1 < v2

Logical logic and(v1, v2) v1 && v2

Logical logic or(v1, v2) v1 || v2

Logical logic neg(v1) !v1

Bitwise bin and(v1, v2) v1 & v2

Bitwise bin or(v1, v2) v1 | v2

Bitwise bin xor(v1) v1 ^ v2

Bitwise lShift(v1,v2) v1 << v2

Bitwise rShift(v1,v2) v1 >> v2

Ternary cond(v1,v2,v3) (v1)?(v2):(v3)

Table 2.4: icode commands modeling statements of the C language

icode constructs Corresponding C code constructs

assign(loc, expr) loc = expr;

chain(icode) { icode }
decl([var(“t1”,TInt)], chain()) int t1; { }

loop(v, domain, chain(<icode>))
for(v=0; v<domain; v++)

{ <icode> }

in current icode. Furthermore, icode has been extended in the past for capturing

the instruction set extensions in the SIMD vectorized architecture such as Intel’s

SSE and AVX and the vectorized data types.

Finally, the short cuts of complicated operations can be modeled as a single
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Table 2.5: Extending icode for complex arithmetic

Categories icode constructs Spiral-defined C code constructs

Type TComplex complex t

Arithmetic add(v1, ..., vn) add(v1, ... ,vn)

Arithmetic sub(v1, ..., vn) sub(v1, ... ,vn)

Arithmetic mul(v1, ..., vn) mul(v1, ... ,vn)

Table 2.6: icode operators modeling the C math function library

icode constructs C math functions

log(v1) logf(v1) or log(v1)
sqrt(v1) sqrt(v1)

abs(v1) abs(v1)

icode operator to ease pattern matching. Table 2.7 lists the max and min operations

that are realized with cond, geq, and leq icode operations.

Table 2.7: Short cut icode operators

icode short cuts the actual icode

max(v1,v2) cond(geq(v1,v2),v1,v2)
min(v1,v2) cond(leq(v1,v2),v1,v2)

2.4.2 Code Generation

The Σ-OL expressions are converted to icode expressions with a set of rules. The

rewriting process is implemented in a recursive descent translator where every Σ-OL

operator is mapped to a specific icode object. A sample of the rules are listed in

Table 2.8. Figure 2.3 shows the icode expressions for FFT(4) translated from the

Σ-OL expression in (2.42). The generated icode can be finally unparsed (pretty-

printed) for the target compiler.
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Table 2.8: Translating Σ-OL constructs to code; x denotes the input and y the
output vector. [2]

Code(AB, y, x) → Code(B, t, x); Code(A, y, t);

Code(Σk−1
j=0Aj , y, x)→

for(j=0; j<k; j++) Code(Aj , y, x);

Code(Gfn→N , y, x)→
for(j=0; j<n; j++) y[j] = x[f(j)];

Code(Sfn→N , y, x)→
for(j=0; j<n; j++) y[f(j)] = x[j];

Code(permpn→n , y, x)→
for(j=0; j<n; j++) y[j] = x[p(j)];

Code(diagpn→C , y, x)→
for(j=0; j<n; j++) y[j] = f(j)*x[j];

2.4.3 Local Optimization

While the loop optimizations have been performed at OL and Σ-OL levels, the

basic blocks can be optimized in icode. The main basic block optimizations like

loop unrolling, array scalarization, constant folding, copy propagation, and common

subexpression elimination have been implemented in Spiral.

2.5 Generating Streaming Hardware with Spiral

The formal framework for algorithm generation introduced in Section 2.2.1 can in-

herently go beyond the general processor architectures. In the past, a streaming

architecture has been targeted in Spiral for generating high-throughput RTL im-

plementations for linear transform kernels, including the discrete Fourier transforms

(DFT), multi-dimensional DFT, real DFT and discrete sine/cosine transforms [15].

A streaming architecture continuously takes in data stream from the input ports

and produces result stream on the output ports. It is typically composed of mul-
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chain (
loop ( i2 , 2 , chain (

loop ( i4 , 2 , a s s i g n ( nth (T1 , i 4 ) ) ) ,
chain ( a s s i g n ( t1 , nth (T1 , 0) ) ,

a s s i g n ( t2 , nth (T1 , 1) ) ,
a s s i g n ( nth (T2 , 0) , add ( t1 , t2 ) ) ,
a s s i g n ( nth (T2 , 1) , sub ( t1 , t2 ) )

) ,
loop ( i3 , 2 , a s s i g n ( nth (T3 , i 3 ) , nth (T2 , i 3 ) ) ) )

) ,
loop ( i1 , 2 , chain (

loop ( i4 , 2 , a s s i g n ( nth (T1 , i 4 ) ) ) ,
chain ( a s s i g n ( t1 , nth (T1 , 0) ) ,

a s s i g n ( t2 , nth (T1 , 1) ) ,
a s s i g n ( nth (T2 , 0) , add ( t1 , t2 ) ) ,
a s s i g n ( nth (T2 , 1) , sub ( t1 , t2 ) )

) ,
loop ( i3 , 2 , a s s i g n ( nth (T3 , i 3 ) , nth (T2 , i 3 ) ) ) )

)
)

Figure 2.3: The icode for FFT-4 translated from (2.42).

tiple internal stages, in a producer-consumer relationship, that performs streaming

operations concurrently. Memory is utilized internally only when buffering is re-

quired in some streaming operations.

Code generation flow. The streaming hardware generation flow is pre-

sented at the right-most side of Figure 1.4. First, the architecture-aware algorithm

generation process produces SPL formulas for streaming processing. Then, an ex-

ternal hardware compiler takes in specifications in SPL1 and produces hardware

datapath designs in Verilog RTL.

Permutations. In a streaming architecture, data reorganization is treated

as explicit streamed operations that require internal storage buffers. The automated

implementation of streamed permutations have been studied formally for arbitrary

fixed-size permutations in [16] and for power-of-2 size permutations as bit permu-

1SPL is the predecessor of the OL language. Similar to OL, SPL captures algorithms in flat
data flow graphs but limits to linear operators.
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tations in [17].

The internal usage of memory in streamed permutation creates challenges

in sharing the precious on-chip storage elements. For instance, when integrating

the streaming core to a DRAM-based hardware acceleration environment, the repli-

cation of local memory is required though buffers have been implemented in the

hardware core itself, as is shown in [18]. In contrast, a hardware core based on a

load-store architecture can expose its local memory directly to the off-chip memory

controller. Further, distinct kernels that impose challenge in functional unit sharing

can still natively share the local memory.

Datapath folding and limitations. A major contribution of [15] is cre-

ating a large tradeoff space between throughput and area usage for streaming ar-

chitectures. It is achieved by folding the datapath horizontally and vertically [15],

as is shown in Figure 1.5. This requires the regularity in DFGs such that the folded

operations are performed with identical datapath.

However, the folding method also limits the choice of algorithms for efficient

implementations. For instance, a fully folded datapath design for FFT, implement-

ing only one streamed butterfly kernels and one streamed permutation kernel, is

locked to the iterative Pease algorithm, not to mention that the initial bit-reversal

permutation has to be performed with another streamed permutation kernel. The

load-store architecture studied in this work targets the low to medium throughput

scenario and can support a wider range of algorithms.

hardware extensions. Nevertheless, the previous work in streaming archi-

tectures has provided precious experience in extending Spiral for hardware gener-

ation. First, the stream tags introduced to the constraint solver shows how a new

architectural feature can be accommodated into Spiral. Second, it extends icode to
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capture the fully pipelined datapath for RTL implementations. Each relevant icode

construct is backed by a (parameterized) RTL module. The hardware extensions

manifested the extensibility of the Spiral approach, which encourages this work for

creating a more flexible hardware backend for Spiral.

2.6 Summary

This chapter introduces the background of the Spiral approach for code generation.

Spiral employs OL to capture algorithms, hardware features, and program trans-

formations in a unified formal framework, so as to generate architecture-specialized

algorithms. The generated algorithms are then translated to the abstract loop rep-

resentation in Σ-OL for loop merging and index simplification. Finally, optimized

Σ-OL expressions are translated to the internal representation icode where basic

block optimization is performed before unparsed to the executable program code.

The final section presents an overview of the previous Spiral hardware gen-

erator targeting a streaming architecture. The hardware extensions provide this

work experiences and lessons for developing a new hardware generation backend of

Spiral.

After introducing the background of the Spiral approach, the next chapter

will explain the high level idea of flexible hardware generation targeting customized

load-store architectures from imperfect loop nest programs.

43



Chapter 3

The Concepts of Load-store

Architecture Synthesis

In this dissertation, the flexibility of hardware design generation is achieved by

synthesizing loop programs to customized load-store architectures. This chapter

explains the high-level ideas and introduces several challenges to overcome. We will

begin with the mapping from a simple loop program to a basic load-store architec-

ture. Then, we discuss a particular form of imperfect loop nest programs amenable

to hardware acceleration. Afterwards, we elaborate the implementation flexibility of

load-store architectures. Finally, three major challenges encountered in load-store

architecture synthesis are discussed with the proposed solutions.

3.1 From Loop Programs to Load-store Architectures

Loops in high-level imperative programming languages such as C [19], are statement

constructs that capture the repetition of other statements based on the structured

programming paradigm [20]. The enclosed statements could be also loops or other
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1 i n t i ;
2 f o r ( i =0; i<N; i++) {
3 B[ i ] = A[ i ] + 1 ;
4 }

(a) A for-loop program.

(b) The corresponding hardware design.

Figure 3.1: Mapping a simple for-loop program to customized load-store architecture

statements such as an assignment that performs an operation on information located

in memory and store the results in memory for later use. In Figure 3.1a, the pseudo

code shows a for-loop encoding the repetitive computations of adding integer 1 to

each entry of a size-N array A and placing results in array B. Line 2 describes an

integer variable i to be initialized to 0 and is incremented by 1 after each execution

of the loop body enclosed by a pair of curly braces. The execution of the loop body

is guarded by the condition i<N, and does include one assignment at Line 3 which

computes one element of B. The nested structure of loops that are used in numerous

practical algorithms will be introduced in the following sections.

In this thesis, we define the load-store architecture as a style of computational

hardware organization that allows arbitrary access from the units of computations

to memories. A basic load-store architecture is composed of a memory with one

read port and one write port, a pipelined datapath connected to the memory, and

a controller that manages the behavior of the datapath. In later sections, we will

elaborate the more complicated designs that cover a wide range of computational

patterns, throughput, and configurability.

A simple loop program like Figure 3.1a can be translated to a basic load-store
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architecture design. Since the N iterations of additions are independent to each other,

they can be executed concurrently in a customized pipelined datapath, as shown in

Figure 3.1b. The pipelined datapath starts by loading a data element of array A from

memory. It is followed by an addition to the input data and ended by storing the

summation back to memory. The loading and storing operations require an address

parameter provided by their dedicated address calculation functions with the current

value of loop variables provided by the controller. The controller traverses the size-N

iteration space by using a finite state machine, a counter and a comparator.

Despite the simplicity of the above example, it clearly shows that even though

the load-store behavior resembles how a processor computes, the actual components

of the architecture can be fully customized and simplified for hardware efficiency.

3.2 Imperfectly Nested Loops

This thesis focuses on a particular form of imperfectly nested loops that is amenable

to hardware acceleration. The powerful expressibility of imperative programming

languages allows arbitrarily complex computations to be specified, while only part of

them are suitable for hardware acceleration. In fact, only a subset of loop programs

are handled in the most advanced hardware compilation methods [21][22]. Compared

to the general hardware compilers, our approach relies more on the “right” structures

of computations for obtaining efficient results.

Imperfectly nested loop is a widely used term to describe program structures

where loop statements are nested imperfectly. In a perfect way of nesting, each

loop encloses another loop as the loop body except that the innermost loop contains

a loop body with non-loop statements for computations. Since the perfect loop

nest has only one basic block, it is usually regarded as a special case in hardware
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1 f o r ( i 2 = 0 ; i 2 <= 3 ; i 2++) {
2 s13 = X[2∗ i 2 ] ;
3 s14 = X[2∗ i 2 +1] ;
4 T1[2∗ i 2 ] = s13+s14 ;
5 T1[2∗ i 2 +1] = s13−s14 ;
6 }
7 f o r ( i 1 = 0 ; i 1 <= 1 ; i 1++) {
8 f o r ( i 4 = 0 ; i 4 <= 1 ; i 4++) {
9 s21 = T1 [ i 1 +4∗ i 4 ] ;

10 s22 = T1 [ i 1 +4∗ i 4 +2] ;
11 T2[2∗ i 4 ] = s21+s22 ;
12 T2[2∗ i 4 +1] = s21−s22 ;
13 }
14 f o r ( i n t i 3 = 0 ; i 3 <= 1 ; i 3++) {
15 s29 = T2 [ i 3 ] ;
16 s30 = T2 [ i 3 +2] ;
17 Y[ i 1 +2∗ i 3 ] = s29+s30 ;
18 Y[ i 1 +2∗ i 3 +4] = s29−s30 ;
19 }
20 }

Figure 3.2: An imperfect loop nest program computing the 8-point Walsh-hadamard
transform.

synthesis [23]. In this thesis, we focus on an imperfect loop nest structure inspired

by Spiral, where each loop level allows either a single loop or multiple loops with

producer-consumer relationship. Figure 3.2 shows a code block of imperfect loop

nest programs with the desired structure. The top level contains loop-i2 and loop-

i1 which use array T1 as an intermediate buffer for data communication. Loop-i1

contains the second level composition of loop-i4 and loop-i3 using intermediate

buffer T2. As we can see, multiple basic blocks are allowed in imperfect loop nest

programs.

The imperfect loop nest programs studied in this thesis includes certain im-

portant properties that make it suitable for hardware acceleration.

Independent iterations. The loop iterations at each loop level are in-

dependent to each other. Given the arbitrary depth of nesting and the imperfect

nesting, this allows parallelism at various granularities. For instance, the repeti-

47



tive execution of the basic block of each innermost loop can be computed through

pipelined parallelism. In contrast, the iterations of an outer loop can be computed

through multiple processing elements in parallel.

Regular basic block shape. The statements at each basic block share an

identical pattern. Each basic block loads a vector from a read buffer with calcu-

lated indices. Then the input vector is processed through an arbitrary operator to

generate an output vector. Finally, the output vector is written to a write buffer

with calculated indices. This pattern allows the concurrency of data access and

computation in the pipelined datapath design of the load-store architecture.

Static loop bounds. The number of repetitions in all loops are stati-

cally determined. This results in the data-independent control flow that allows

the controller and datapath to be decoupled with limited interactions in load-store

architecture designs.

Even though the listed properties of imperfect loop nests appear to be re-

stricted, loop programs satisfy those properties have been observed in high perfor-

mance implementations of numerous algorithms, ranging from signal processing, me-

dia processing to machine learning. For example, the classic recursive Cooley-Tukey

FFT algorithm views the input data as a two-dimensional tensor and computes

with row-wise iterations followed by column-wise iterations [24]. Image encoding

algorithms are usually designed as block-wise iterative operations on 2D pixels [25].

An analytical model of matrix-matrix multiplications suggested designing the kernel

by calculating independent outer products in the innermost loop [26]. In fact, by

considering an inherently parallelizable compute pattern for hardware synthesis, our

approach separates the concerns of obtaining a “right” program specification and

synthesizing efficient hardware implementations from the specification.
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Figure 3.3: A basic load-store architecture.

3.3 Specialized Load-store Architectures

By allowing arbitrary access from units of computation to memory, a load-store ar-

chitecture can be configured to solve general problems. While a processor achieves

generality through an arithmetic logic unit and a programmable controller, a spe-

cialized load-store architecture must eliminate the high interpretation cost through

component customizations. Figure 3.3 shows a basic load-store architecture to im-

plement imperfect loop nest programs. Moreover, the parallel organizations in pro-

cessors can be applied to specialized load-store architectures for scaling the computa-

tional throughput. This section explains the specialization of load-store architecture

components and changes it brings to reasoning about efficiency.

3.3.1 Computation-specific Datapath

Building a dedicated hardware datapath to solve a specific computational problem

is an essential step in hardware specialization. In mapping imperfect loop nests

to load-store architectures, the basic block functionality can be implemented as

the specialized pipelined datapath. A datapath for a specialized functionality can
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be decomposed to cooperated hardware operators which form a directed acyclic

graph (DAG). The operators will include data access, arithmetic and logic operators.

The protocols of connecting hardware operators vary depending on operator

latencies. When latencies of any operators are statically determined, raw wires can

be used to connect I/O ports between nodes of hardware operators in the DAG.

When multiple flows of data exist in the DAG, additional flip-flop buffers could be

necessary to guarantee consistent arrival time of data signals. The overall latency

is then determined by the accumulated latencies along the signal paths.

However, when the latency of any operator is dynamically dependent on

data, latency-insensitive protocols [27] such as the elastic circuit [28] can be used to

connect hardware operators.

Since there are multiple basic blocks in an imperfect loop nest program,

multiple hardware datapaths are required. Constructing a dedicated datapath for

each basic block could be expensive in hardware resources when basic blocks are

compute-intensive. Consequently, multiplexing the expensive hardware resources

for non-overlapped basic blocks in execution is essential [29][30].

The dedicated datapath design for basic blocks in loops naturally generates

a memory-memory architecture. By removing named registers out of the load-store

architecture, it enables the native concurrency of data accesses and computations

and simplifies the control. In the meantime, it is likely to result in a deep pipeline

design that requires enough independent iterations to be executed continuously for

efficient hardware utilization. This means that a software program with sufficient

iterations for an ALU-based pipeline may not provide enough parallelism to the

dedicated hardware pipeline. Hence, special consideration must be taken in crafting

or selecting “right” loop programs for hardware synthesis.
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3.3.2 Flexibility-driven Controller

The controller of a customized load-store architecture provides parameters to each

iteration of basic blocks executed in the dedicated pipelined datapath, and manages

the swapping of basic blocks by monitoring the completions of iteration executions.

Such a controller can be implemented differently with respect to the requirement

for control flexibility.

A controller for a fixed computation task can be implemented by hardware

finite state machines (FSMs) with simple datapath. Figure 3.1b shows a design for

controlling a single loop. Controllers for more complicated loops can be built with

coordinated FSMs. Note that in traditional hardware compiler generated designs,

control signals work at low-level and are required for every clock period for the entire

time range of execution [31]. By contrast, a controller of a load-store architecture

provides control signals at higher level for each iteration of basic block execution.

Another popular controller implementation stores the control information

into a memory array addressed by a counter. It is possible to reprogram the con-

troller by writing different sequences to the memory. One potential application is

building a hardware design that can handle a various problem sizes by reconfiguring

the control memory.

Further flexibility can be achieved by allowing software programs to produce

control signals. It is possible because we decouple the controller and the datapath in

the load-store architecture. This results in partially hardened designs. The emerging

heterogeneous platforms with general purpose cores and specialized cores decoupled

closely [32][33] offer an opportunity for such an implementation. In this use case,

the overall design can be partitioned to the regular parallelism component and the

irregular and frequently changed component for hardware and software implemen-
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tation, respectively. The repetitive heavy arithmetic computations and bit-level

manipulations [34][35] can overwhelm the fixed ALUs of processors, so is promis-

ing for hardware acceleration. In contrast, the less-frequently invoked functions

could be potentially implemented as software and executed on the general purpose

cores without slowing down the hardware components. The software components

can additionally be reconfigured flexibly with much lower cost than the specialized

hardware pieces to accommodate to the change of applications.

The potential benefits of partial hardening in mapping imperfect loop nests

to load-store architectures are shown in three scenarios. First, not every component

is executed the same speed in the design. As shown in Figure ??, the load/store

unit and the kernel datapath determines the throughput upper bound of the design.

Because in our paradigm the kernel processes vectors, it only requires a new result

from the space traverser for every few cycles, depending on the vector length to be

processed. Hence, it does not harm the performance if these space are traversed

in slower software with large enough vector size. Second, implementing the space

traverser and indices calculations as software provides runtime configurability to the

design. For example, an accelerator that solves arbitrary sizes of the same problem

can be natively built with a soft iteration space traverser and the indices calculator.

Third, softening the space traverser and provide the memory interface from the

platform can minimize the states in the customized hardware, which facilitates the

time-sharing execution environment in modern computers.

Different scenarios can require different modes of partial hardening in our

framework. We show two examples in Figure 3.4. In the figures, we use dotted

blocks to contain components implemented as software, and grey blocks to contain

hardened components. Figure 3.4a shows a design that implement the space tra-
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(a) Implementing the traverser in software.

(b) Implementing the traverser and indices in software.

Figure 3.4: Possible partial hardening solutions.
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verser in software with rest into hardware. Figure 3.4b describes a softer design that

also calculates indices in software.

3.3.3 Throughput-driven Parallelism

Existing ideas of parallel architectures for general processors can be applied to our

customized load-store architecture to scale the processing throughput. Our baseline

architecture in Figure 3.3 resembles a vector processor like Cray-1 [36] because it can

process one data item per cycle. For higher throughput, the baseline architecture can

equip a vectorized load/store unit along with a SIMD vectorized kernel datapath

to achieve multiples of the baseline throughput with mostly the same control, as

shown in Figure 3.5a. The vectorized accelerator core must connect to multiple

memory banks. The data shuffle circuit may be added to the vectorized kernel to

enable local communications between the vector lanes. Another form of throughput

scaling way is symmetric multi-processing (SMP) or shared-memory, as shown in

Figure 3.5b. In this form, we duplicate the baseline accelerator core with local

memory, and coordinates the multiple cores using a task scheduler. This form can

exploit the enormous local memories for a large aggregated throughput. The vector

and SMP can combine for a better performance efficiency in hardware. Though

not presented graphically, the distributed memory architecture can also be applied

potentially to accommodate high communication cost between cores when the cores

reside in different chips.

Moreover, the load-store architecture design can serve as nodes in high

throughput architectures like streaming or systolic array. The load-store architec-

ture is powerful enough for delivering highly complicated computations to nodes of

simple parallel organizations such that high throughput can be achieved for compli-
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(a) A SIMD vectorized architecture. (b) A multicore architecture.

Figure 3.5: Load-store architecture parallelization.

cated computations.

3.4 The Challenges in Hardware Generation

In translating complicated imperfect loop nest programs to efficient load-store archi-

tecture implementations, one must have a systematic way to handle the complexity

in the algorithm space and the hardware space. Moreover, the interpretation of

loop nest programs shall go beyond the software programming syntax and support

embedding extra information for more efficient hardware generation. This section

explains three major challenges in hardware generation and how they can be resolved

by extending the Spiral approach.

3.4.1 Program Generation

The creation of imperfect loop nest programs with desired properties for load-store

architecture generation is non-trivial, as has been seen in previous intellectual ef-

forts [24][26] in high performance computing. Moreover, the algorithm space of a

given computational problem can be a large tradeoff space between computational
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complexity, parallelism, memory access pattern, memory utilization, regularity, etc.

It is possible that two algorithms conforming to our computational paradigm of the

same problem result in distinct performance and resource utilization.

Characterizing existing algorithms and discovering new algorithms is a re-

search field that requires profound domain knowledge, exceeding the scope of this

dissertation. Fortunately, Spiral has addressed plentiful algorithms, through an

architecture-aware algorithm generation process explained in Section 2.2. In the

past, Spiral has addressed linear transforms, numerical linear algebra operations

like the matrix-matrix multiply [6], polynomial evaluation, infinity norm, geofenc-

ing for unmanned aerial vehicles [37], the Viterbi decoder [7], polar formatting

synthetic aperture radar [5], Euler integration, statistical z-test, wavelet transforms

and JPEG2000 image compression [38], among many others. Spiral captures algo-

rithms in data flow graphs using the OL formalism, which are then automatically

translated to loops in Σ-OL, transformed through a powerful loop merging process

(explained in Section 2.3.3) which produces imperfect loop nest programs with de-

sired properties listed in Section 3.2. As an example, Figure 3.6 shows an 8-point

FFT algorithm generated by Spiral and the computations captured in an imperfect

loop nest using the Σ-OL language.

However, algorithms for high performance implementations on specialized

load-store architectures could be different from those on general processors. A sce-

nario of deep pipelines that demand more parallelism has been discussed in Section

3.3.1. Moreover, for parallel implementations, the hardware flexibility provides an

opportunity for algorithm-hardware co-synthesis, instead of uni-directionally trans-

forming algorithms for fixed parallel organizations. This means that hardware adap-

tation in the architecture-aware algorithm generation process is important to ob-
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(a) A Spiral-generated FFT(8) algorithm represented in a data flow graph with the corre-
sponding OL formula.

(b) Iterative computing FFT(8) on memory and the corresponding Σ-OL expression.

Figure 3.6: Translating a Spiral-generated FFT algorithm to imperfect loop nest.

taining efficient hardware implementations.

3.4.2 Program Optimization

Due to different assumptions between general processors and customized load-store

architectures, the structured imperfect loop nests need to be furthered optimized

for hardware implementations, regardless of the abundant parallelism and regular-

ity. The imperfect loop nests generated from Spiral are represented in Σ-OL intro-

duced in Section 2.3.2. In this section, we discuss three optimizations for hardware

generation that can be achieved by extending the Σ-OL representation.
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Efficient Buffer Allocation

In the Σ-OL representation, the read/write buffers of basic blocks are implicit. In

the software generation flow of Spiral, the buffers are allocated when translating

Σ-OL expressions to icode. The current buffer allocation scheme is designed based

on a common assumption that main memory is cheap and the data transfer between

on-chip and off-chip is managed by the cache sub-system automatically. Hence, it

is reasonable that the scheme does not minimize buffer utilization. However, in

hardware generation, the local memories are scarce resources, and the data transfer

between on-chip and off-chip is performed explicitly. When processing on-chip data,

the total buffer sizes makes a strong impact on resource utilization.

The basic idea of the buffer allocation scheme in current Spiral is allocating

separated intermediate buffers between the compute stages. The overall program is

specified an input buffer and an output buffer. When the computation is composed

of stages, intermediate buffers are allocated. The intermediate buffer serves as the

write buffer of the leading stage and the read buffer of the trailing stage. In this

way, the number of intermediate buffers is the number of stages minus one. Spiral

exploits in-place compute stages for reducing the intermediate buffers because in

this case the read buffer can be safely reused as the write buffer. In an extreme case

when all stages are in-place, the output buffer can replace the intermediate buffers

and no extra intermediate buffers are required.

The buffer allocation scheme is demonstrated in pseudo code examples in

Figure 3.7. In the pseudo code, the compute stages are listed vertically with respect

to the execution order. Each stage is described with two lines: the first line identifies

the stage with a name; the second line is indented and describes the read buffer and

write buffer of the current stage, divided by a right arrow. An arbitrary compute
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stage is named Compute <Id> where <Id> is a natural number. The in-place

stage must be a loop, and is named as Loop inplace <Id>. The input buffer to the

sub-program is named X and the output buffer is named Y. The newly allocated

intermediate buffers are named as T<Id>.

On the left, Figure 3.7a demonstrates the buffer allocation result for four

consecutive compute stages. At the first loop, an intermediate buffer T0 is allocated

as the write buffer for this stage and the read buffer for the next stage. Additional

intermediate buffers are allocated at each loop except for Loop inplace 2 whose read

buffer can be safely reused as the write buffer. The final stage Compute 3 writes

the results to buffer Y.

On the right, Figure 3.7b shows an unusual situation with all in-place stages

such that buffer Y can serve as the write buffer for every stage, thus avoiding

allocating dedicated intermediate buffers.

Compute 0

X −> T0

Compute 1

T0 −> T1

Loop in p l a c e 2

T1 −> T1

Compute 3

T1 −> Y

(a) Introducing intermediate buffers for
non-in-place stages.

Loop in p l a c e 0

X −> Y

Loop in p l a c e 1

Y −> Y

Loop in p l a c e 2

Y −> Y

Loop in p l a c e 3

Y −> Y

(b) Reusing the output buffer for inten-
sive in-place stages.

Figure 3.7: Allocating intermediate buffers in Spiral software generation.

By implementing the above scheme in a recursive-descent translator, allocat-

ing buffers for nested compositions is automated by using the read (write) buffer of
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the parent stage as the input (output) buffer. Figure 3.8 presents a pseudo code

example. In the pseudo code, the indentation depth denotes the depth of code

blocks in the imperfectly nested loop program. The compute stage of compositions

is denoted as Compose <Id>, where the read/write buffer description is replaced

by a deeper indented code block. In the example, the sub-program is composed

of two stages: Compose 0 and Compose 1, using T1 as the intermediate buffer.

Compose 0 is composed of two stages: Compute 2 and Compute 3, using T2 as

the intermediate buffer. Compose 1 is composed of two stages: Compute 4 and

Compute 5, using T3 as the intermediate buffer.

Compose 0

Compute 2

X −> T2

Compute 3

T2 −> T1

Compose 1

Compute 4

T1 −> T3

Compute 5

T3 −> Y

Figure 3.8: Allocating intermediate buffers in Spiral software generation.

The reduction of buffers can be addressed in two aspects and the benefit may

vary with different programs.

First, because the deep level buffers of different stages at the outer compo-

sition level do not overlap in execution, as is the T2 and T3 shown in Figure 3.8,

they can be mapped to the same physical memory. This aspect does not require

particular properties of the program, but the savings of buffers depends on the dis-
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tribution of intermediate buffers at different stages. Those programs with balanced

distribution of intermediate buffers along the compute stages benefit the most from

this technique. In another extreme where the intermediate buffer used in one stage

vastly overweigh the intermediate buffers of other stages, the benefit is negligible.

Second, the series of allocated intermediate buffers and the input and output

buffers at the same composition level, as shown in Figure 3.7a, can be possibly

replaced by swapping two buffers because the stage series are executed sequentially.

However, the swapping strategy does not always help. A counter-example is that

one extremely large intermediate buffer will call for the duplication of such a large

buffer that could be possibly larger than the aggregated size of the rest of buffers.

Hence, an effective buffer allocation scheme should consider the properties of the

program.

In implementing an efficient buffer allocation scheme, the program properties

required for the scheme can be addressed conveniently in Σ-OL. In addition, the

language can be extended to captured the program structure of interest in the buffer

allocation process. In Section 4.2.1, an optimized buffer allocation scheme based on

the Σ-OL framework is presented.

Simplified Indices Calculation

There are some types of indices that could be computed with cheaper operations

inductively [39]. Table 3.1 collects three examples from real applications, where

the expensive multiplication, exponentiation and modulo operations can be lowered

to addition, multiplication and counter operations, respectively. However, when

performing these transformations in software loop code, newly introduced inductive

computations are inserted between the nested loops, which can destroy the perfect
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Table 3.1: Indices that can be simplified with inductive calculation.

Loop variable Index function Inductive calculation Application

i
i * c0 i=0; i = i + c0 Cooley-Tukey FFT
ic1 i=1; i = i * c1 Rader FFT [2]
i mod c2 i = repeat [0,..,c2-1] Good-Thomas FFT [2]

sub-nest structure. By extending the loop representation of Σ-OL, we can embed

these computations into loops so that the perfect sub-nest structure is preserved to

conform to the proposed imperfect loop nest paradigm.

Continuous Pipelining

When the data dependencies between adjacent perfect sub-nests are unknown, the

shared datapath pipeline has to be drained before starting the execution of the trail-

ing sub-nest to avoid data hazards. The dependency can be typically resolved either

dynamically in execution time with expensive circuits [40] or statically through pro-

gram analysis. The Σ-OL representation provides a powerful rule-based static anal-

ysis scheme that allows analyzing the symbolic index mapping functions to figure

out the dependencies between sub-nests so that the trailing sub-nest can start exe-

cution earlier. The speedup upper bound of this optimization depends on the ratio

of the pipeline latency over the iteration counts of the perfect sub-nest, arriving at

the peak of 2x when the ratio equals to one.

3.4.3 Hardware Manipulation

To natively describe the spatial hardware designs without entering into the RTL

abstraction level, we adopt icode to model the RTL modules and the connections

between them to form a complete hardware design.

RTL modules. The RTL modules can be hardware operators, finite state
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machines (FSMs), memory blocks, etc. A hardware operator manipulates the input

data to produce the output data in the form of digital signals. FSMs and other RTL

modules can be defined with arbitrary interface for flexible hardware interpretation.

The icode representation of each RTL module serves as the functional speci-

fication to an RTL code generator. The hardware operators and other RTL module

are modeled differently.

RTL modules other than hardware operators are modeled as icode types,

specified by its name and possibly some parameters, which is mapped to an RTL

template by the generator. The RTL module types can be instantiated with a special

icode command and assigned to a variable for interconnection.

A hardware operator is modeled in icode similar to the existing software

operators, specified by a name, one or multiple input ports with type information.

Any hardware operators always have one output, whose type is derived from the

input types. By extending the types in icode, a hardware operator can manipulate

digital signals representing distinct data types from integer to floating point, real to

complex, scalar to vector, raw data to decoupled types1.

The RTL generation of modules can be arbitrarily complex, possibly with

extra specifications. Logic simplification is possible with the functional specification.

Figure 3.9 shows an example where a multiplexor implementation can be simplified if

identical bits exist in all inputs. The timing specification could improve the circuit

efficiency of RTL designs. The hardware platform information may be essential

for efficient resource binding especially in FPGAs, where the macro DSP blocks

and memories are necessary for higher hardware efficiency. The mature hardware

compilation methods such as the constrained scheduling [41] and resource binding

1A decoupled type encapsulates the data payload with valid and ready signals, which is a common
protocol to build latency-insensitive hardware.
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Figure 3.9: Simplify the multiplexor logic with identical bits

of expressions can be employed in our RTL generator. Existing hardware IP blocks

can be encapsulated as hardware operators or other RTL modules in our framework.

Module connections. We use icode commands to model the connections

between RTL modules. The existing assign command in icode connects the output

ports of the automatically instantiated hardware operator module to the assigned

hardware variable that models an RTL wire. Hence, the operator graph representing

by a list of assign commands can be translated to the interconnected hardware op-

erator modules in RTL. Other RTL modules are firstly instantiated with an explicit

command and then assigned to a hardware variable, with which the connection can

be modeled by a special connection command. The I/O ports to be connected are

encoded in the connection command.

3.5 Summary

This chapter introduces a high-level idea of translating imperfect loop nest programs

to customized load-store architecture designs. The algorithmic flexibility of the pro-

posed hardware generation approach is assured by the expressibility of imperfect

loop nest programs and the implementation flexibility of load-store architectures.

The key challenge is how to achieve hardware efficiency through component cus-

tomization of the load-store architecture. We have addressed problems of program
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generation, optimization and hardware manipulation, which can be solved by ex-

tending the Spiral approach.

Given the high level idea of flexible hardware generation, the next chapter

will explain how to systematically extend Spiral for synthesizing scalar load-store

architectures.
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Chapter 4

Extending Spiral for Generating

Specialized Load-store

Architectures

The previous chapter has presented a large design space of algorithms and hardware

in load-store architecture synthesis. To show a systematic method of extending

Spiral for load-store architecture generation, this chapter will focus on a more

restricted compute pattern of imperfect loop nest programs and the scalar load-

store architecture.

4.1 The Multi-linear Paradigm and the Scalar Load-

store Architecture

In this work, we introduce a computational paradigm that supports some important

and classic algorithms of the Spiral framework. The imperfect loop nest programs
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conforming to this paradigm are mapped to an elementary fully-hardened load-

store architecture that at most loads and stores one data entries from the memory

interface.

The multi-linear paradigm. This section imposes additional property re-

quirements for the general computational paradigm of imperfect loop nest programs

in the iteration space, the indices patterns, and the kernel operations:

1. All loop bounds of the loop nest are constant integers.

2. In the basic blocks, the memory gather and scatter operations are directed by

multi-linear functions of loop variables.

3. Within every basic blocks, the kernel operations, potentially parameterized,

are identical.

The above paradigm is called the multi-linear paradigm in this thesis. It

captures a lot of algorithms that orchestrate computations as iterative data manip-

ulations on a high-dimensional data cube. In the next section, we will show how to

generate algorithms conforming to this paradigm for three fundamental computa-

tional problems.

The scalar load-store architecture. This work targets an elementary

load-store architecture that is fully hardened and is only able to load/store at most

one memory data word at the steady state. We refer to this design the scalar

load-store architecture.

The mapping from the multi-linear paradigm to the scalar load-store archi-

tecture is depicted in Figure 4.1. The iteration space traversal is performed in a

hardened loop controller. An execution pipelined is implemented to load data from

memory, perform the kernel operation, and store the results back to memory. The
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kernel operations of different basic blocks are the same, as required by the multi-

linear paradigm. The parameters for each basic block is provided from the loop

controller to the pipeline components for functional correctness. According to the

paradigm, for each iteration, a data vector is gather from the memory with multiple

scalar reads, processed with the kernel implementations, then finally scattered back

to the memory with multiple scalar writes.

Figure 4.1: Implement on a scalar load-store architecture.

4.2 Optimizing Programs of the Multi-linear Paradigm

This section discusses the optimization opportunities in mapping the multi-linear

paradigm of imperfect loop nest programs to the load-store architecture. The op-

timizations exploit the properties of the multi-linear paradigm for reduced resource

utilization or improved performance. Three optimizations based on static analy-

sis are discussed in the following subsections, with increasing requirements for the

programs.
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4.2.1 Efficient Buffer Allocation

In an imperfectly nested loop, the computation is divided into several stages, thus

intermediate buffers are required for data exchange between stages.

When mapping an imperfect loop nest program to hardware designs on a

load-store architecture, each buffer occupies a certain number of entries in the

memory. Thus, reducing the total buffer entries can reduce memory utilization

in hardware.

In the multi-linear paradigm, the gather and scatter operations of every basic

blocks have a static number of entries to load and store on a fixed size data set. As

a result, the buffers required for the computations can be analyzed statically.

Reusing Deep Level Buffers

In the multi-linear paradigm, the buffer sizes allocated at the deep levels of each stage

of shallow level can be determined statically. Since the different stages of shallow

level do not overlap in execution, the intermediate buffers used in deep levels can

be shared by other stages of the shallow level. Figure 4.2 compares the allocation

schemes in multi-level compositions between the Spiral software generator and the

proposed hardware generator. On the left side, Figure 4.2a replicates Figure 3.7b

for the current Spiral. On the right side, Figure 4.2b shows the allocation scheme

for hardware generation, where the buffer T2 used in the first level-2 composition is

reused in the second level-2 composition, removing the additional T3 in Figure 4.2a.

Practically, T2 and T3 may not be the same sizes, then the larger size represents

the required buffer size in the deep levels. This strategy stays valid when more than

two levels are involved.
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Compute 0

Compute 2

X −> T2

Compute 3

T2 −> T1

Compute 1

Compute 4

T1 −> T3

Compute 5

T3 −> Y

(a) Always allocating new buffers at deep
levels.

Compute 0

Compute 2

X −> T2

Compute 3

T2 −> T1

Compute 1

Compute 4

T1 −> T2

Compute 5

T2 −> Y

(b) Reusing deep level intermediate
buffers.

Figure 4.2: Spiral software versus hardware: Allocating intermediate buffers at
deep level composition.

Swapping Buffers of Uniform Size

For allocating buffers within a composition level for reduced buffer utilization, the

buffer swapping idea mentioned in 3.4.2 is studied in this section by considering

particular program properties with uniform buffer sizes in the intermediate, output,

and input buffers. For programs with these properties, swapping can assure fewer

buffer utilization compared to the default strategy of Spiral software generator as

discussed in Section 3.4.2.

When the input, intermediate and output buffers are of the same size, the

swapping can be performed between the input buffer and the output buffer, without

additional intermediate buffers. This means that the initial data in the input buffer

will be overwritten. Such behavior could be potentially prohibited by the application

in case the integrity of the original input data is required. In this case, the in-place
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trick used in software Spiral can help avoid swapping and input buffer overwritten

when all stages except the first one are in-place. Nevertheless, in deeply nested loop

programs, the input buffer of a composition is mostly an intermediate buffer of the

previous composition level that can be safely overwritten. The two situations with

or without input buffer overwritten are presented in Figure 4.3.

Compute 0

X −> Y

Compute 1

Y −> X

Compute 2

X −> Y

(a) Swapping between the input and out-
put buffer.

Compute 0

X −> Y

Loop in p l a c e 1

Y −> Y

Loop in p l a c e 2

Y −> Y

(b) Avoid swapping and input buffer
overwritten with in-place loops.

Figure 4.3: Swapping the input/output buffers when input/output/intermediate
buffers are of uniform size.

Though the uniform size of input/intermediate/output buffers avoids the

intermediate buffers completely, such a constraint is restricted. By loosening the

constraints, the lower bound of intermediate buffer utilization can be guaranteed to

be one or two.

When only the intermediate and the output buffers are of the same size, the

number of intermediate buffers required for swapping can be performed between one

intermediate buffer and the output buffer, except a case that the output buffer can

not be the final buffer without the second intermediate buffer.
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Compute 0

X −> Y

Loop in p l a c e 1

Y −> Y

Loop in p l a c e 2

Y −> Y

(a) All in-place intermediate stages.

Compute 0

X −> T

Compute 1

T −> Y

Compute 2

Y −> T

Compute 3

T −> Y

(b) Even number of stages.

Compute 0

X −> T

Loop in p l a c e 1

T −> T

Compute 2

T −> Y

(c) Odd number of stages with in-place
stage(s).

Compute 0

X −> T1

Compute 1

T1 −> T2

Compute 2

T2 −> Y

(d) Odd number of stages without in-
place stage(s).

Figure 4.4: Allocating buffers when output/intermediate buffers are the same size.

When only the intermediate buffers are of the same size, a single intermediate

buffer is sufficient when there are only two stages of computations (shown in 4.5a), or

when all intermediate stages are in-place (shown in 4.5b). Otherwise, the swapping

between two intermediate buffers are necessary, as shown in 4.5c
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Compute 0

X −> T

Compute 1

T −> Y

(a) Only two stages.

Compute 0

X −> T

Loop in p l a c e 1

T −> T

Loop in p l a c e 2

T −> T

Compute 3

T −> Y

(b) All in-place intermediate
stages.

Compute 0

X −> T1

Compute 1

T1 −> T2

Loop in p l a c e 2

T2 −> T1

Compute 3

T1 −> Y

(c) Exist non-in-place
stage(s).

Figure 4.5: Allocating buffers when only intermediate buffers are the same size.

Since there is only one memory address space in the load-store architecture,

when mapping the multi-linear paradigm programs to the load-store architecture,

the allocation of buffers must be realized with address offsets for each gather and

scatter operation. In the existing Σ-OL formalism, buffer allocation is implicit to

the loop nest and thus will be captured explicitly with an extension. The next

section will introduce the OL extensions that makes the address offset explicit.

4.2.2 Simplified Calculations of Multi-linear Functions

The multi-linear paradigm utilizes the multi-linear expressions of loop variables

in indexing memory entries for loading and storing, whose computation can be

potentially simplified with common compiler optimization techniques. However,

one drawback of a common optimization is breaking the loop nest structure. Thus

the simplifications need to be handled specifically.

A multi-linear expression can be captured by a function
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f(j0, j1, . . . jn−1) = c0j0 + c1j1 · · ·+ cn−1jn−1,

where ck, k ∈ [0, n−1] are natural numbers and jk, k ∈ [0, n−1] are all loop variables.

A direct computation of a size-n multi-linear expression requires n multi-

plications and n− 1 additions. The computational cost could be reduced with two

well-known techniques: inductive computation and bit manipulation. The inductive

computation is a general technique that lowers the sums of multiplications of loop

variables to accumulations given that the loop variable values increase by one at

each iteration. The bit operation requires certain properties of the constant factors

but provides a cheaper solution. It converts multiplications to bit shifts when ck

is a power-of-2 number. If all ck are power-of-2 numbers and each operand of the

summation does not overlap in the bit fields of the final sum, the whole computation

can be implemented with bit shifts and bit-wise-OR operation.

Figure 4.6 shows the three approaches in calculating two size-2 multi-linear

expressions in an imperfectly nested loop program. The computational costs de-

crease from left to right. The bit manipulation approach requires zero arithmetic

cost. In inductive computation, a variable is initialized before starting each loop

execution and its value is increased by a constant value. In bit manipulation, this

example shows an ideal situation where all constant factors are power-of-2 numbers.

Thus the whole multi-linear expressions are replaced by bit shifts and bit-wise-OR

operations. Otherwise, the bit manipulation technique can be only partially applied.
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f o r ( i =0; i <4; i++)

f o r ( j =0; j <2; j++)

idx1=2∗ i+j ;

. . .

. . .

. . .

. . .

f o r ( k=0;k<2;k++)

idx2=i +4∗k ;

. . .

. . .

. . .

. . .

(a) Direct computation.

idx1 tmp =0;

idx2 tmp =0;

f o r ( i =0; i <4; i++)

idx1=idx1 tmp ;

f o r ( j =0; j <2; j++)

. . .

idx1+=1;

idx2=idx2 tmp ;

f o r ( k=0;k<2;k++)

. . .

idx2+=4;

idx1 tmp+=2;

idx2 tmp+=1;

(b) Inductive computation.

f o r ( i =0; i <4; i++)

f o r ( j =0; j <2; j++)

idx=i<<1 | j ;

. . .

. . .

. . .

. . .

f o r ( k=0;k<2;k++)

idx=i | k<<2;

. . .

. . .

. . .

. . .

(c) Bit manipulation.

Figure 4.6: Three approaches for computing multi-linear expressions.

The challenge in simplifying the computation of multi-linear expressions is

that the inductive calculation expressions inserted between the loop nest makes the

program more imperfect, reverse the effort of the multi-linear paradigm in internal-

izing the computations to the inner most loops for easier pipelined implementations.

The next section will explain the Σ-OL extension that enables computation embed-

ding in loops.

4.2.3 Overlapped Execution across Perfect Sub-nests

The multi-linear paradigm imposes identical kernel operations between basic blocks,

which shapes a particular access pattern amenable to static dependency analysis

between the perfect sub-nest. The result can enable the overlapped execution across

the boundary of perfect sub-nests for lower execution latency while the hardware
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pipeline is implemented properly.

Dependency Analysis

We analyze the dependencies between two neighboring perfect sub-nests that access

the data entries linearly in constant size vectors with different fixed strides for read

and write, respectively.

Table 4.1 shows such an access pattern of stride 1, 2, and 4 for size-8 buffer

and size-2 kernel. Each row represents an iteration. At each iteration, two data

entries are accessed. For each stride, the left columns list the values of the relevant

loop variables. The right columns list the values of two strided indices with the

corresponding multi-linear index functions described in the heading row. As we can

see, for each stride, every entry of the size-8 buffer is accessed exactly once. Stride-4

accesses the entry pair serially with the largest possible stride. Stride-2 partitions

all data entries into two groups evenly and within each group accesses each pair

with stride of 2 serially, as shown by the dashed line in the table. Stride-1 partitions

entries into four groups evenly and within each group accesses each pair with unit

stride. When comparing the access patterns between unit stride and stride-2, the

access orders for each half data entries are equivalent.

Table 4.1: The indices for accessing a size-2 vector from a size-8 buffer with various
strides.

Iteration
unit stride stride-2 stride-4

var indices var indices var indices
i 2i 2i+1 i j 4i+j 4i+j+2 i i i+4

0 0 0 1 0 0 0 2 0 0 4
1 1 2 3 0 1 1 3 1 1 5
2 2 4 5 1 0 4 6 2 2 6
3 3 6 7 1 1 5 7 3 3 7
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To analyze the dependencies using the access pattern, we assume a general

buffer size n and kernel size k. The maximal stride is n/k and the mimimal stride

is 1. For any strides s, the n data entries are partitioned into n
ks even sub-groups.

Given the write stride sw and the read stride sr, analyzing the dependencies on

the leading group of k ∗max(sw, sr) entries is sufficient because the trailing groups

follow the same pattern.

We set sl and ss as the larger and smaller stride between sw and sr, respec-

tively. The indices for the leading sub-group of the larger stride is shown in Table

4.2. For the same iteration, the values increase by sl for each of the next location.

For the same location of the indices, the values increase by 1 for each of the next

iteration.

Table 4.2: The indices for larger stride.

Iteration 1st idx · · · k-th idx

0 0 · · · (k − 1)sl
. . . · · · · · · · · ·
. . . · · · · · · · · ·
sl − 1 sl − 1 · · · ksl − 1

The indices of the smaller stride covering the sub-group of the larger stride

is shown in Table 4.3. It requires multiple sub-groups of the smaller stride to cover

a sub-group of the larger stride, as described by the dashed lines in the table. The

parameter d in the table specifies the d-th sub-group, ranging from 0 to n
ssk
−1. For

the same iteration, the values increase by ss for each of the next location. For the

same location of the indices, the values increase by 1 for each of the next iteration

within the sub-group and increase by kss in the sub-group granularity.

Assuming an execution pipeline that can overlap the iterations between the

neighboring perfect sub-nests. We define a write iteration T , ranging from 0 to
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Table 4.3: The indices for smaller stride.

Iteration 1st idx · · · k-th idx

0 0 · · · (k − 1)ss
. . . · · · · · · · · ·
ss − 1 ss − 1 · · · kss − 1
. . . · · · · · · · · ·

dss + 0 kdss + 0 · · · · · ·
. . . · · · · · · · · ·

(d+ 1)ss − 1 · · · · · · k((d+ 1)ss − 1) + k − 1
. . . · · · · · · · · ·

sl − 1, whose completion can enable the read iterations to be executed in the same

pipeline without data hazard. One has to guarantee that all the write indices at

and after iteration T are larger than the corresponding read iterations.

Table 4.4: A schedule for small write stride and large read stride.

Iteration Write indices Read indices
write read 1st · · · k-th 1st · · · k-th

0 0 · · · (k-1)ss
. . . · · · · · · · · ·
ss-1 ss-1 · · · kss-1
. . . · · · · · · · · ·

dss+0 0 kdss + 0 · · · · · · 0 · · · (k-1)sl
. . . · · · · · · · · · · · · . . . · · · · · ·

(d+1)ss-1 · · · · · · · · · k((d+1)ss-1)+k-1 . . . · · · · · ·
· · · · · · · · · · · · · · · . . . · · · · · ·

sl-1 sl-1 · · · ksl-1

When the write stride is smaller than the read stride, i.e., sw = ss sr = sl, a

schedule is shown in Figure 4.4 where each row represents a scheduling step. On the

completion of the write iteration dss that fills the beginning indices of a sub-group,

the read iterations start to execute. As long as all write indices at write iteration

dss are larger than all read indices at read iteration 0, the same property can be
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guarantee for the trailing iterations because the index values of the smaller stride

increase at the same speed or faster than the index values of the larger stride. The

condition can be captured by a formula


T = dss

kdss > (k − 1)sl

. (4.1)

Solving the inequality gives us a result about T ,

T >
(k − 1)

k
sl. (4.2)

Table 4.5: A schedule for large write stride and small read stride.

Iteration Write indices Read indices
write read 1st · · · k-th 1st · · · k-th

0 0 · · · (k-1)sl
· · · . . . · · · · · ·
· · · 0 . . . · · · · · · 0 · · · (k-1)ss
· · · · · · . . . · · · · · · · · · · · · · · ·
· · · ss-1 . . . · · · · · · ss-1 · · · kss-1
· · · · · · . . . · · · · · · · · · · · · · · ·
· · · dss+0 . . . · · · · · · kdss + 0 · · · · · ·
· · · · · · . . . · · · · · · · · · · · · · · ·
sl-1 (d+1)ss-1 sl-1 · · · ksl-1 · · · · · · k((d+1)ss-1)+k-1

· · · · · · · · · · · ·

When the write stride is larger than the read stride, i.e., sw = sl sr = ss,

a schedule is shown in Figure 4.5. On the completion of the write iteration T ,

the read iterations start to execute such that all write indices of the final write

iteration are larger than all read indices of the corresponding read iteration sl−1−T .

This guarantees the same property for the previous corresponding iterations because

the read indices decrease at the same speed or faster when reverse-counting the
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iterations. The condition can be captured by a formula

sl − 1 > k(sl − 1− T ) + k − 1 (4.3)

Solving the inequality gives us a result about T ,

T >
(k − 1)

k
sl. (4.4)

The results for both situations appear to be the same. Because T is an

integer, the results indicate that when the conditions are met, as long as the (k−1)
k sl+

1-th write iteration completes, it is safe to start the execution of the next perfect

sub-nest in the same pipeline without data hazard.

Hardware Requirements

The overlapped execution across perfect sub-nest involves the switch of basic blocks

in the hardware pipeline. Though the multi-linear paradigm requires identical kernel

operations between basic blocks, the hardware implementations of gather, kernel and

scatter operations for each basic still vary when they are parameterized differently.

The common implementation schemes for resource sharing between basic blocks

employ multiplexors that only allow one state of the implementations, and thus

prohibits overlapped execution across basic blocks. To remove the restriction in

the load-store architecture, the multiplexors can be migrated from the execution

pipeline to the loop controller, such that the execution pipeline does not require

reconfiguration in basic block switching to allow iterations from different perfect

sub-nests to be overlapped.
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Language Support

To encode the aforementioned static analysis results in the program, the next section

will introduce a Σ-OL language extension for capturing the perfect sub-nests with

explicit index functions and the iteration sequence number for synchronization.

4.3 Σ-OL Extensions for Program Optimization

To enable the optimizations introduced in the previous section for the multi-linear

paradigm of imperfect loop nest programs, the Σ-OL formalism is extended. First,

two new Σ-OL constructs are introduced to capture the properties essential to op-

timizations. Second, several rewrite rules and compiler passes are added for trans-

forming the imperfectly nested loop programs.

4.3.1 Hardware Formula Constructs

We introduce two new formula constructs to Σ-OL, with the first modeling loops

with embedded computations and the second capturing the perfect sub-nest with

the essential parameters.

Loops with embedded computations offloaded from basic blocks can preserve

the loop nest structure in the inductive calculation of multi-linear expressions. Be-

cause these embedded computations are control-flow-irrelevant, such code motion

preserves the functional correctness. We extend the loop symbol
∑

by adding the

computation of a companion variable v initialized to v0 and updated using a function

f(v) as shown in the expression

N∑
i=0

{v=v0;v=f(v)}

A
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for arbitrary operator A iterating through a loop of size N using the iterator variable

i. It is legal to have zero or multiple companion variables in a single loop.

A perfect sub-nest structure encapsulates an iteration space and a basic

block. All its iterations are computed independently with each other. A perfect

sub-nest produce data for its trailing perfect sub-nest to consume, thus needs to

synchronize with the trailing sub-nest to avoid data hazard. To accommodate with

the single address space of the memory system, the memory offsets for gather and

scatter need to be provided for each perfect sub-nest. We capture the perfect sub-

nest with a parameterized PerfNest wrapper

PerfNest
fs,fg
δ,os,og

 N∑
i=0

{v=f(i)}

Ai


which denotes fg (fs) the gather (scatter) index functions, δ the iteration sequence

number for synchronizing the trailing sub-nest, and og (os) the gather (scatter)

buffer offsets for the basic block operations. At an early stage where the offsets are

undetermined, they are denoted as ø.

4.3.2 Formula-based Program Analysis and Transformation

We develop several rewrite rules and the several syntax tree visitors to improve la-

tency and resource optimization of the input program when translating to hardware

designs. For each rewrite rule, Spiral’s rewrite system matches the left side of a rule

against a given formula and replaces the matched expression by the right-hand side

of the rule. A syntax tree visitor can traverse the loop nest program more flexibly

to collect broader information for more complicated analyses and transformations.
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Identifying Perfect Sub-nests

The perfect sub-nest of the input program can be detected with two rewrite rules.

Rule (4.5) annotates an inner most loop with the perfect sub-nest wrapper. The

index functions of gather G and scatter S are copied to the parameter fields. The

iteration sequence number for synchronization is initialized conservatively such that

the final iteration of the size-N loop must complete before the trailing sub-nest

starts computation. The memory offsets are not determined yet, thus are initialized

to ø. In this rule, the canonical loop is converted to a loop supporting embedded

computations, even though with empty companion variables temporarily.

N∑
i=0

Sfs Ai Gfg →
PerfNest

fs,fg
N,ø,ø

 N∑
i=0
{}

Sfs Ai Gfg

 (4.5)

Rule (4.6) moves the outer loop into the perfect sub-nest wrapper. Besides

moving the outer loop inside the wrapper, the iteration sequence number for syn-

chronization is updated by multiplying to the domain of the outer loop so that the

new parameter still points to the final iteration of the updated sub-nest. Other

parameters remain unchanged.

Nk∑
ik=0

PerfNest
fs,fg
δ,os,og


 Nj∑

ij=0

{}

Aij


→ PerfNest

fs,fg
Nkδ,os,og

 Nk∑
ik=0

{}

 Nj∑
ij=0

{}

Aij


 (4.6)

After all perfect sub-nests have been completely detected, the residual canon-

ical loops are converted to loops supporting embedded computations using Rule

(4.7)
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N∑
i=0

Ai →
N∑
i=0
{}

Ai (4.7)

Specifying Iterations for Synchronization

The results of the static dependency analysis in Section 4.2.3 can be added to the

PerfNest parameters to allow the early start of iterations from the trailing perfect

sub-nest in the pipeline when possible. In Rule (4.8), it first captures the required

conditions to the program in the h function of the producer scatter and the consumer

gather, then adds the iteration sequence number for synchronization to the PerfNest

parameter.

PerfNest
fs,hN,k,b,s

δ,os,og

(
A
) PerfNest
hN,k,b∗,s∗ ,fg
δ∗,o∗s ,o

∗
g

(
A∗
)
→ PerfNest

fs,hN,k,b,s

δ,os,og

(
A
) PerfNest

hN,k,b∗,s∗ ,fg
k−1
k

max(s,s∗),o∗s ,o
∗
g

(
A∗
)

(4.8)

Inductive Computations of Multi-linear Expressions

With the loop symbol with embedded computations, the multi-linear expressions

in the basic blocks can be computed inductively without breaking the loop nest

structure. The program transformation are performed in two steps: the first step

offloads the multi-linear functions from the basic blocks to the inner most loop; the

second step propagates the inductive calculation steps to each relevant loop level.

The first step of basic block computation offloading is specified in Rule (4.9).

It offloads the multi-linear expressions from an arbitrary basic block operator to

the innermost loop, after which the basic block should reference the results via

the companion variable vk. In the loop, vk is initialized to a truncated multi-

linear expression without the term containing the innermost loop variable, and is
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added the constant factor of the removed term after executing each iteration. In

implementations, a concrete formula pattern need to be instantiated to the Spiral

system so that a simple pattern match can call for this rule.

N∑
ik=0

{}

A(ck∗ik+··· ) →
N∑

ik=0

{vk=(··· ),vk+=ck}

Avk (4.9)

Rule (4.10), (4.11), (4.12) propagate the loop-embedded accumulations to

the outer loop. The principle is similar to Rule (4.9). Rule (4.10) applies to the

perfect sub-nest inside the PerfNest wrapper. Rule (4.11) and (4.12) handles the

imperfect loop nest composed of multiple perfect sub-nests and imperfect sub-nest,

respectively. Finally, the multi-linear expression without any terms degenerate to

value zero.

Nj∑
ij=0

{}

 Nk∑
ik=0

{vk=(cj∗ij+··· ),vk+=ck}

Avk

→ Nj∑
ij=0

{vj=(··· ),vj+=cj}

 Nk∑
ik=0

{vk=vj,vk+=ck}

Avk

 (4.10)

N∑
ij=0

{}

· · · PerfNest
fs,fg
δ,os,og

 Nk∑
ik=0

{vk=(cj∗ij+··· ),vk+=ck}

Avk

 · · ·


→
Nj∑
ij=0

{vj=(··· ),vj+=cj}

· · · PerfNest
fs,fg
δ,os,og

 Nk∑
ik=0

{vk=vj,vk+=ck}

Avk

 · · ·


(4.11)
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N∑
ij=0

{}

· · ·
 Nk∑

ik=0

{vk=(cj∗ij+··· ),vk+=ck}

Avk

 · · ·


→
Nj∑
ij=0

{vj=(··· ),vj+=cj}

· · ·
 Nk∑

ik=0

{vk=vj,vk+=ck}

Avk

 · · ·


(4.12)

Bit Manipulations of Multi-linear Expressions

The applications of Rule (4.9-4.12) can remove all multiplicative operations. The

result can be further optimized when the constant factors of the multi-linear expres-

sions are power-of-2 numbers. In this case, the mathematical identity a ∗ 2q = a<<q

allows us to calculate the terms or the entire multi-linear expression with cheap

binary bit mapping operations. It is also performed in two steps: the first step con-

verts the accumulations to bit shift operations in the outer-most loop; the second

step propagates the bit operations inward the loop nest.

At the first step, Rule (4.13) converts zero-initiated accumulations of power-

of-2 numbers 2q to the bit shift operation i<<q.

N∑
i=0

{v=0;v+=2q}

Ai,v →
N∑
i=0

{v=i<<q}

Ai,v (4.13)

Rule (4.14-4.16) propagate the bit operations inward the perfect and imper-

fect sub-nest. The conversion is valid when the bit shift of the inner loop does not

overlap with the bit fields manipulated by the outer loop, i.e. [p, p+log2Ni)∩ [q, q+

log2Nj) = ø. In this case, the embedded calculation of the outer loop is removed

and merged to the inner loop with a bitwise-or operation.
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Ni∑
i=0

{vi=i<<p}

 Nj∑
j=0

{vj=vi;vj+=2q}

Ai

→ Ni∑
i=0
{}

 Nj∑
j=0

{vj=i<<p|j<<q}

Ai

 , (4.14)

Ni∑
i=0

{vi=i<<p}

· · · PerfNest
fs,fg
δ,os,og

 Nj∑
j=0

{vj=vi;vj+=2q}

Ai

 · · ·


→
Ni∑
i=0
{}

· · · PerfNest
fs,fg
δ,os,og

 Nj∑
j=0

{vj=i<<p|j<<q}

Ai

 · · ·
 ,

(4.15)

Ni∑
i=0

{vi=i<<p}

· · ·
 Nj∑

j=0
{vj=vi;vj+=2q}

Ai

 · · ·
→ Ni∑

i=0
{}

· · ·
 Nj∑

j=0
{vj=i<<p|j<<q}

Ai

 · · ·
 , (4.16)

Reduced Buffer Allocation

The three strategies for reduced buffer allocation are implemented in a Σ-OL syntax

tree visitor for assigning gather and scatter address offsets to all perfect sub-nests.

The first perfect sub-nest gathers from offset zero. Assume that the input

buffer size is N , the sub-nest scatters to offset 0 or N , depending on whether the

basic block is in-place computation or not. The visitors maintains the most recent

offset and the buffer size so that it can assign a correct offset to other perfect sub-

nests in the execution order. The final buffer offset and the total memory size is

collected for hardware generation.
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Collecting Basic Blocks Parameters

As all basic blocks are required to perform the same gather, scatter and kernel

operations, potentially with different parameters. We need to extract and manage

these parameters so that the hardware generator can select the correct parameters

for basic block execution.

This process requires the pre-registration of each basic block operator and the

PerfNest construct for the pattern match shape, a function to extract parameters.

It traverses the loop nest program in execution order. When a PerfNest construct is

visited, the read and write offsets are extracted. The parameters extracted from each

basic block operator depends on the individual registered function for parameter

extractions. The parameters of each operator for all basic blocks forms a two-

dimensional array.

4.4 Generating RTL Designs

The idea of our hardware generation backend is to decompose the hardware con-

struction problem as selecting building blocks and connecting them. We have cre-

ated the initial set of hardware building blocks in the icode library. Our backend

can currently synthesize the hardware loop nest controllers and the feed-forward

pipelined datapath in Chisel RTL language from icode. As is shown in Figure (4.7)

for an 8-point WHT design, the loop nest controller is constructed as coordinating

finite state machines of single loop controllers and loop composers. The datapath is

constructed as a directed acyclic graph of primitive hardware operators. Since our

framework is built with extensibility, further extensions of the building blocks and

more advanced synthesis techniques can be added to the framework.
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Figure 4.7: Implement an 8-point WHT hardware.

Two types of interface protocols are employed in connecting the building

blocks, as shown in Figure 4.8. In the loop nest controller, FSMs are connected with

raw signals (Figure 4.8a). In the datapath, the hardware operators are connected

either with a raw interface (Figure 4.8b) or with a decoupled interface that associates

the ready / valid signal to the raw signals (Figure 4.8c). The decoupled interface

is latency-insensitive and allows distributed control of the datapath, thus provides

flexibility in hardware construction at the cost of token overhead. We allow raw

interface and decoupled interface simultaneously in our backend to enable the co-

exist of efficiency and flexibility.

89



(a) The raw interface in loop nest controller.

(b) The raw interface in datapath.

(c) The decoupled interface in datapath.

Figure 4.8: The two interface protocols used in backend.

The optimized Sigma-OL expressions can be converted to hardware designs

in icode through a translation algorithm based on a hierarchical visitor algorithm

to the syntax tree.

4.4.1 Hardware icode Constructs

In our extensions to the icode library, except for a limited set of extensions dedicated

for loop nest controllers, other extensions are mainly used in datapath design where

some general components are also used in controller construction.

Controller Extensions

To describe the coordinating FSMs design of the loop nest controllers, we have

added three FSM types, two commands and a special operator, as listed in Table

4.6. The three FSM types models the single loop, the loop composer, and the per-

fect sub-nest wrapper, respectively, whose I/O ports are shown in Figure 4.9. The

90



I/O ports of the instantiated FSM modules are connected using the new commands

loop ctrl connect and loop io connect. The former command connects the ch start /

ch complete signals of an FSM to the start /complete signals of its children FSMs.

The latter command connects the loop variables / companion variables between two

FSMs that exist a producer-consumer relationship in the loop embedded computa-

tion expressions. A special operator trigger bb models an FSM that takes in the

start signals of all perfect sub-nests and produce a basic block activation signal.

Table 4.6: The icode extensions dedicated for loop nest controllers.

Category name descriptions

type
TLoop( Model an FSM that issues all iterations of a

v,range,embed calc) loop and calculate the embedded expressions.

type
TCompose( Model an FSM that sequentialize the execution

n) of n children FSMs.

type
TPerfNest( Model an FSM that triggers the execution of

is sync expr) perfect sub-nest and indicates synchronization.

command
loop io connect( Connect the I/O ports of loop variables between

src loop, dst loop) loop FSMs.

command
loop ctrl connect( Connect the I/O ports of control signals between

src mod, dst mod) loop controller FSMs.

operator
trigger bb([perfnest 1, Produce the basic block activation signal by

.., perfnest n]) monitoring the start signal of perfect sub-nest.
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(a) The loop FSM.

(b) The perfect nest FSM.

(c) The loop composer FSM.

Figure 4.9: The I/O descriptions of loop controller FSMs.
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Datapath Extensions

To describe the uni-rate streaming datapath, we have extended the icode library.

Our extension includes types, commands, operators and location descriptors. The

new operators are the key constructions of our extension while the new types, com-

mands and location descriptors, as shown in Table 4.7, supports the new operators.

Three new types are introduced to capture the arbitrary precision type, the

decoupled token type, and a RTL module generation type. The TUIntAP(nbits,

max) type specifies an unsigned integer type with a given bit width and the maximal

possible value. The TDecoupled(t) encapsulates a normal icode type and associates

the ready and valid flags to the type payload. Operators processing data of these

new types can support bit-precise input/output and the decoupled interface natively.

The TRTLModGen(name,input,output,code) models an RTL module describing the

input, output and the internal design using icode, which is more general than the

controller FSM types dedicated for the loop nest controller.

Two new commands of our extension supports the hardware semantic. The

instantiate command instantiates a type of any RTL modules, including the loop

controller FSM modules so that it can be assigned to a variable of a corresponding

type. The define command is in charge of the definition of types and operators

constructed on demand.

The new location descriptors allow us to reference variable in particular en-

vironments. The
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Table 4.7: The icode extensions of types, commands and location descriptors.

Category name descriptions

type TUIntAP(nbits, max)
An arbitrary precision type with specified

maximal value.

type TDecoupled(t) A token type encapsulating ready/valid signals.

type
TRTLModGen(name,

Construct an RTL module with icode.
input,output,code)

command instantiate Instantiate a type of RTL module.

command define
Define a list of normal icode types of RTL .

modules.

location field(v,fvar)
Reference to a field fvar of a structured type.

variable v I/O variable

location iovar(v) Reference to an I/O variable.

location modiovar(v,vmod)
Reference to an I/O variable of an instantiated

RTL module.

location valid tk(tk) Reference to the valid flag of a token variable.

location ready tk(tk) Reference to the ready flag of a token variable.

location bits tk(tk) Reference to the payload of a token variable.

Compared to the current icode operators for software generation, the hard-

ware icode operators require hardware-specific properties. When composing hard-

ware designs with icode operators, the delay in clock cycles between the output data

and the input data of each operator must be specified so that buffers can be inserted

in proper locations to assure the functional correctness and full throughput. Fur-

thermore, when the decoupled interface is employed in operators, the token scaling
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ratio – a fractional ratio of the number of tokens produced over each token con-

sumption, is essential to guarantee the consistency between token production and

consumption of the datapath. Currently, we only handle operators with constant

delays and token scaling ratios. More dynamism can be supported in the future

with proper FIFOs inserted to the design.

The common integer arithmetic, logical and relational operators already in-

side the icode library are used as hardware operators after setting their delay to

zero and the token scaling ratio to one. We further extend the icode operators in

three groups: token regulation operators, memory operators and other customized

operators.

The token regulation operators listed in Table 4.8 assure the consistent token

production and consumption. The tk pack and tk unpack operators bridges the gap

between the scalar memory words and the vector data processed in Σ-OL kernels.

The tk range operator can drive iterative computations with its output tokens in

the absence of control flow commands. The tk buf operator works like a register in

non-decoupled interface operators. The tk rpt operator duplicates the input token

multiple times to a single consumer. The tk fork operator duplicates the input token

to multiple consumers.
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Table 4.8: The icode extensions of token regulation operators.

Operator Delay Ratio Descriptions

tk pack(tk, n) n 1
n

Accumulate n input tokens to produce a token

of size-n array type.

tk unpack(tk) 0 n
Convert a size-n array typed token to n output

tokens.

tk range(tk, n) 0 n
Produce a token stream with values range from

0 to n-1 for each input token.

tk buf(tk) 1 1 Delay a token for one clock cycle.

tk rpt(tk, n) 1 n Repeat each input token n times to the output.

tk fork(tk, n) 0 1 Duplicate each input token to n users.

The memory operators need to bind with a specific platform that provides a

memory interface. It is worth noting that mem read and mem write operators are

typed operators such that the operators can adapt to the bit width change of address

and data. In contrast to a software write operator, our mem write for hardware

returns an acknowledgement token so that it is straightforward to synchronize at

the completion of memory stores for a target iteration. The lktable operator supports

lookup table implemented using read-only memory.
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Table 4.9: The icode extensions of memory operators.

Operator Delay Ratio Descriptions

mem read(baddr,
1 1

Read a typed data from memory at base

idx, type) address baddr and with index idx.

mem write(baddr,
1 1

Write a typed data to memory at base

idx, wdata) address baddr and with index idx.

lktable(entries, loc) 1 1 Read an entry from the ROM with index loc.

Other customized operators listed in Table 4.10 are created to facilitate the

construction of hardware designs. The mux operator models the common multiplex-

ors in digital circuit. The accum operator exploits the token flexibility to perform

accumulations without control flow commands. The bit maps operator can replace

some expensive arithmetic operations for power-of-2 numbers. The add sub is an

operator usually employed in the low-level IR of hardware compilers for resource

optimization. Is it explicitly defined in our library so that this technique can be

used manually. No that the delay of any arithmetic operators depends on the plat-

form and the type of data to be processed by the operator. The comb blk operator

can encapsulate an arbitrary pipelined combinational raw data typed datapath with

decoupled interface.
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Table 4.10: The icode extensions of other customized operators.

Operator Delay Ratio Descriptions

mux(vsel, [v1, .., vn]) 0 1 Select an output from the input variables.

accum(v, stride, n) 0 n Accumulate stride to the v token n times.

bit maps(vars, bfields) 0 1 Maps variable fields to the bit field locations.

addsub(a,b,sel) TBD 1 Add or subtract two inputs depending on sel.

comb blk(in,code,delay) delay 1
Take in decoupled data and process internally

with the icode specification.

4.4.2 Synthesize RTL code from Σ-OL

This work provides two independent synthesis flow for the controller and the data-

path.

Controller Synthesis

We obtain the spatial design of loop nest controllers in two steps. First, we translate

the Σ-OL loop nest to a coordinating FSM design in icode using the rules described

in Table 4.11. Second, we generate the accessory components of the controller.

The translation between loop nest of Σ-OL and of icode is performed with a

hierarchical visitor of the syntax tree. The visitor maintains a list of icode generated

in this process. When visiting a, the assignment of the instantiation command of

the corresponding node is added to the list. Then the children nodes are visited.

Afterwards, the control connections and data connections between parent node and

children are added to the list.
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Table 4.11: Synthesize the coordinating FSMs in icode for loop nest controllers.

Σ-OL icode

Compose
assign(var compose, instantiate(TCompose(nch))

loop ctrl connect(var compose, children)

PerfNest

assign(var perfnest, instantiate(TPerfNest(is sync expr)))

loop ctrl connect(var perfnest, children)

loop io connect(var perfnest, any source loop)

∑N
i=0

assign(var loop, instantiate(TLoop(cpnv)))

loop ctrl connect(var loop, children)

loop io connect(var loop, any source loop)

The controller design is not completed until the accessory components are

generated. First, to activate the right basic block in execution, we use the trigger bb

operator to monitor the start signal of each perfect sub-nest FSM, whose output

indicates which basic block is being executed. Second, all variables captured in the

basic block unifying process as parameters will be multiplexed to become the payload

component of the control token, selected by the basic block activation signal. Finally,

simple gate logic and wire connections assures the control token can be constructed

and interface with the datapath correctly.

Datapath Synthesis

The datapath design in icode is synthesized from Σ-OL expressions in two steps.

First, each Σ-OL construct is mapped to the corresponding icode expressions. Sec-

ond, several compiler passes are employed to transform the icode with complete

information for RTL code generation.
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Table 4.12 shows the current rewrite rules we have implemented, where gather

and scatter operations, arbitrary non-parameterized OL kernels, the diagonal op-

erator, and the size-2 DFT operations are handled. For arbitrary OL kernels, an

ol2icode function translates the OL specification to icode that processes data vec-

tors such that a comb blk operator can be constructed. Although we haven’t im-

plemented an automated throughput-constrained basic block scheduler for reducing

resource utilization of comb blk operators, we provide an example of 2-point DFT

operations for using the extensible operations to achieve the same effect.

Table 4.12: Synthesize the datapath in icode.

Σ-OL icode

GhN,n,b,s
assign(y, mem read(roffset, y.t.t, accum(b, s, n)))

ShN,n,b,s
assign(y, mem write(woffset, accum(b, s, n), x))

OLContainer(tn)
assign(in, pack tk(x, n))

assign(y, unpack(comb blk(x, ol2icode(t), delay)))

Diagf assign(y, x * lktable(entries, f())

F2

assign(in, tk pack(x,2))

assign(y, addsub(nth(in,0), nth(in,1), tk range(in,2)=0))

The translated icode requires several compiler transformations before being

unparsed to the actual RTL designs. First, as illustrated in Figure 4.10 the icode

expressions using the decoupled interface requires the variables referenced multiple

times to be explicitly duplicated using the tk fork operator. Second, as shown in

Figure 4.11, the icode needs to be inspected for the case that operators process

tokens at different rates, in which the tk rpt operator needs to be inserted. Finally,

the icode expressions with determined total delay requires inserting elastic buffers
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(a) Before transformation.
(b) After transformation.

Figure 4.10: Transform icode with explicit token duplication.

(a) Before transformation.
(b) After transformation.

Figure 4.11: Transform icode with explicit temporal token duplication.

or registers depending on whether the decoupled interface is used or not. This

transformation assures functional correctness and the full throughput of the pipeline.

The algorithms for performing these transformations work similarly. The icode is

first split to assignments to a variable of a single operator using variable arguments.

Then the input variables are set the initial metric of interest. We inspect each

assignment in data flow order at which the input variable are inspected for the

metric and determines if the helper operators needed to be inserted or not. The

algorithm completes when the last assignment of the data flow has been processed.

Unparse icode to Chisel RTL Code

To translate our hardware designs in icode to Chisel RTL code, we have created

a Chisel RTL code library that provides the mapping targets of each icode type,
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operator, command and location descriptor. The process is straightforward with a

recursive-descent translator.

4.5 Algorithm Generation for Load-store Architectures

In this work, a few algorithms supported in the Spiral framework are selected for

the WHT, DFT and bitonic sorting problems because they inherently match or can

be slightly modified to match the multi-linear paradigm. This section discusses the

decision of algorithms for scalar load-store architectures. For each algorithm, the

breakdown rules can expand the specifications into OL formulas, which is translated

to Σ-OL expressions using Spiral, and then the loop fusion optimization [2] is per-

formed to obtained the Σ-OL expressions conforming to the multi-linear paradigm.

4.5.1 DFT Algorithms

There are a bunch of algorithms for calculating DFTs, with various data flow ge-

ometries that can satisfy different architectures. For a scalar load-store architecture

with a single level dual-ported memory, a reasonable goal is to maximize the uti-

lization rate of the scalar pipeline. As a result, an algorithm that provides the most

parallelism is the best.

Analysis

Here, we discuss the considerations between three famous FFT algorithms, i.e. the

recursive Cooley-Tukey FFT, the iterative Cooley-Tukey FFT and the Pease FFT.

Though the illustrative data flow graphs in Figure 4.12 are for size-8 FFT, the

pattern applies for general radix-r sizes. The three algorithms in mathematics can

be reduced to the same Cooley-Tukey decomposition, but provide different orders
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(a) Recursive Cooley-Tukey FFT. (b) Iterative Cooley-Tukey FFT.

(c) Pease FFT.

Figure 4.12: Classic algorithmic candidates in data flow graphs for FFT (N=8).

for calculating the basic butterfly operations. A shared property of all data flow

graphs is the separation between an accumulated bit reversal permutation stage

and the computation stage.

In recursive Cooley-Tukey FFT shown in Figure 4.12a, the order of compu-

tation is different as emphasized by the shading. It can be seen that the butterfly

operations with its input ready are not computed as early as possible. As a result,

the recursive algorithm is not the best for scalar load-store architectures.

In contrast, both the iterative Cooley-Tukey FFT shown in Figure 4.12b and

the Pease FFT shown in Figure 4.12c decomposes computations into several data-

dependent stages, thus exposes more parallelism than the recursive algorithm. In

particular, the Pease algorithm is favored by streaming implementations because

it provides identical geometry in each stage with parallel butterfly operations and
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stride permutations. However, the automated generation of load-store architectures

in this work prefers the iterative Cooley-Tukey FFT because it offers more oppor-

tunities for across-stage execution overlapping (see Section 4.2.3) by not enforcing

an identical geometry between stages.

Iterative FFT Breakdown Rules

The iterative radix-r Cooley-Tukey FFT algorithm is given in Formula 4.17. By

applying the algorithm to eight-point DFT and given the definition of two-point

DFT in Formula 4.18, the obtained algorithm is shown in Formula 4.19. Note that

the initial bit reversal permutation is merged to the computational stages.

DFTr` →

(
`−1∏
i=0

Dr`

i (Iri ⊗DFTr ⊗ Ir`−i−1)

)
Rr

`

r (4.17)

DFT2 = F2 =

 1 1

1 −1

 (4.18)

DFT8 =

(
4∑

i1=0

Shi1,4Df3F2Ghi1,4

)(
2∑

i2=0

2∑
i3=0

Shi3+4i2,2
Df2F2Ghi3+4i2,2

)
(

2∑
i4=0

2∑
i5=0

Sh2i5+4i4,1
Df1F2Gh2i5+i4,4

) (4.19)

Recursive FFT Breakdown Rules

Though not for performance, the classic recursive Cooley-Tukey FFT is also imple-

mented in this work to study the effect of pattern-based loop optimizations. The

classic recursive Cooley-Tukey FFT algorithm defined in Formula 4.20. After re-

cursively applying the algorithm to eight-point DFT, the obtained algorithm does
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not conform to the multi-linear paradigm by missing a diagonal operator on the

left most basic block. As a result, a special diagonal operator D0 equalizing with

the identity operator by multiplying 1s to all input data is inserted to the left most

basic block. Based on the property of twiddle factors, D0 is constructed by indexing

to the first element of the twiddle factor lookup table. The resulting algorithm is

shown in Formula 4.21 which conforms to the multi-linear paradigm.

DFTmk → (DFTk⊗ Im)Tmkm (Ik⊗DFTm) Lmkk (4.20)

DFT8 =

(
2∑
i=0

(
2∑

k=0

Shi+2k,4
D0F2Ghk,2

2∑
l=0

Sh2l,1Df2F2Ghi+2l,4

))
 4∑
j=0

Sh2j,1Df1F2Ghj,4

 (4.21)

Discussion: Twiddle Factor Scalability

In expanded algorithms of FFTs, we have made an assumption that the diagonal

operator that multiplying the twiddle factors to input data will be implemented

as a hardware block using an internal lookup table. However, this will limit the

feasible problem sizes in hardware design where a main memory is connected to the

load-store architecture and the large capacity of main memory should have stored

the large twiddle factor tables instead. On the other hand, using on-chip ROMs

for twiddle factors can save the precious memory bandwidth. Hence, both methods

worth handling properly in a design generator.

The on-chip ROM-based method could fit larger problem sizes by compress-

ing the twiddle factors by leveraging domain knowledge. The twiddle factors by
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definition is the N-th root-of-unity. The left side of Figure 4.13 shows the definition

of the k-th entry of the twiddle factors for n-point FFT as ωkn. It is a complex

number generated by sinusoids. The right side of Figure 4.13 shows a root-of-unity

in complex number plane. One well known trick is that by leveraging the symmetry

of sinusoids, only eighth of the original size need to be stored in the lookup table.

In this way, the other part of the table can be re-directed to the stored portion of

the table without accuracy loss.

Figure 4.13: Known trick: compressing twiddle factors with symmetry.

Another method for compression is based on the periodicity of twiddle fac-

tors. Figure 4.14 shows the derivation process of twiddle table decomposition from

size-mn to size-n and size-m. The decomposition introduces an extra multiplication

between entries of the two sub-tables. In this way, the accuracy of the final twid-

dle factors is tunable by specifying the precision of the multiplier. When applying

this technique, much larger problem sizes can be supported with limited capacity of

on-chip ROMs.

Figure 4.14: Decomposing size-m*n table to size-n table and size-m table.

If the twiddle factor lookup table size still exceeds the ROM capacity, a

general solution that loads data entries from the main memory is available as shown

in Figure 4.15. In the design, the diagonal operator shares the memory read interface
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Figure 4.15: A general solution that loads twiddle factors from main memory.

with the load unit through an arbitrator module. The arbitrator module determines

the right of access for each request and is expected to be configured to efficiently

utilize the memory bandwidth. However, such a design will throttle the speed of

data loading and will then limit the speed of data storing even though a dedicated

write port is monopolized by the store unit.

4.5.2 WHT and Sorting

For WHT and sorting, I temporarily implemented the recursive algorithms for

demonstration process. An efficient implementation like FFT will require similar

effort to identify the proper algorithms from numerous candidates to best saturate

the scalar customized pipeline. A performance analysis of WHT algorithms can be

found in [42].

Recursive WHT. A recursive WHT algorithm defined in Formula 4.22 is

incorporated in this work. By recursively applying the breakdown rule to eight-point

WHT and given the definition of two-point WHT in Formula 4.23, one obtained al-

gorithm is shown as a Σ-OL expression in Formula 4.24. In the generated algorithm,

the multi-linear pattern of load and store is represented by the multi-linear functions

107



of the base of each h function of gather and scatter. The kernel operations are all

2-point DFT operations.

WHTmk → (WHTm⊗ Ik) (Im⊗WHTk) (4.22)

WHT2 = F2 =

 1 1

1 −1

 (4.23)

WHT8 =(
2∑
i=0

(
2∑

k=0

Shi+2k,4
F2Ghk,2

2∑
l=0

Sh2l,1F2Ghi+4l,2

)) 4∑
j=0

Sh2j,1F2Gh2j,1

 (4.24)

Bitonic sorter. The final algorithm studied in this work solves the problem

of obtaining a sorted list of data, called the bitonic sorter. In contrast to the

previous algorithms, bitonic sorter is a non-linear operation. As suggested by the

name, a bitonic sort algorithm divides the data list into two sub-list, sorts them

with reversed direction, then merges the two sorted sub-list. The algorithm defined

in Spiral software flow hardcoded the direction of the sub-problems and utilize a

direct sum operator to combine the two sub problems, which does not conform to the

multi-linear paradigm. To enhance the regularity of the algorithm representation,

we define a new OL construct χΘn,d of sorting that adds the sorting direction as

a boolean parameter d, representing ascending sorting value true and descending

sorting with value false. Then the same algorithm is defined with the new constructs

in Formula 4.25 and 4.26.
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χΘn,d →Mn,d

(
I2⊗lχΘn/2,l=0

)
(4.25)

Mn,d =
(
I2⊗Mn/2,d

) (
χΘ2,d ⊗ In/2

)
(4.26)

M1,d =

[
1

]
(4.27)

χΘ2,d

 x0

x1

 = Kd

 x0

x1

 =

 if d min(x0, x1) else max(x0, x1)

if d max(x0, x1) else min(x0, x1)

 (4.28)

As shown in Formula 4.27, a one-point merger is an identity, thus will be

removed at the end of algorithm expansion. By applying the algorithm to a size-8

data list and providing the building blocks of sorter in Formula 4.28, an ascending

bitonic sort algorithm is obtained in Formula 4.29.

χΘ8,true =

2∑
i3=0

(
2∑

i5=0

Sh4i3+2i5,1
Ktrue

2∑
i6=0

Shi6,2 KtrueGhi6+4i3,2

)
(

4∑
i4=0

Shi4,1 KtrueGhi4,1

)
2∑

i1=0

(
2∑

i7=0

Sh2i7+4i1,1
Ki1=0Gh2i7,1

2∑
i8=0

Shi8,2 Ki1=0Ghi8,2

2∑
i2=0

Sh2i2,1 Ki2=0Gh4i1+2i2,1

)
(4.29)
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As explained above, we have formally introduced four algorithms conforming

to the multi-linear paradigm. The WHT algorithm and the iterative FFT algorithm

inherently conform to the paradigm, while the recursive FFT algorithm and the

bitonic sorting algorithm require slight modification to meet the paradigm require-

ment.

4.6 Summary

This chapter explains the extensions to the Spiral framework for addressing the

multi-linear paradigm of imperfect loop nest programs for hardware generation tar-

geting the customized scalar load-store architecture. The extensions cover the full

flow from algorithm generation to program optimization to hardware interpretation,

extended the OL, Σ-OL and icode DSLs of Spiral, respectively.

The DSL extensions at the three abstraction levels are made to capture

either the properties of the paradigm or the structures of hardware designs. In

OL, the sorting operation with the direction parameter enables the unified kernel

operation for the paradigm. In Σ-OL, the perfect sub-nest construct allows this

special program structure to be analyzed and optimized through simple pattern

matching in the form of term rewriting rules. Another Σ-OL extension is the loop

with embedded computations, which captures the optimized program with loop-

inductive computations in a way that conforms to the multi-linear paradigm. In

icode, new types of precision-precise integers and the decoupled interface make the

hardware features explicit; new operators and commands allow the modeling of

arbitrary RTL modules and their connections.

While the multi-linear paradigm imposes some properties of the program, it

still provides instantiation flexibility in the iteration space, the multi-linear gath-
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er/scatter pattern and the kernel specification such that many different algorithms

beyond the WHT, DFT and bitonic sorter can be supported.
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Chapter 5

Evaluation

In this chapter, we employ multiple dimensions of metrics to evaluate the effective-

ness of the proposed approach. They include the effectiveness of pattern-based loop

optimizations for hardware, and the quality of designs of FFT cores compared to a

state-of-the-art DFT IP generator. The metrics are obtained at different steps of

the evaluation flow as is shown in Figure 5.1, where the Spiral generated designs

are compiled to Verilog RTL code and then simulated cycle-accurately, synthesized

and place-and-routed to FPGA implementations. The details are elaborated in the

following sections.
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Figure 5.1: Obtaining experimental data from the Spiral-generated designs.

5.1 Effectiveness of Hardware Optimizations

5.1.1 Methodology

To evaluate the effectiveness of hardware optimizations perform at Σ-OL, we have

generated algorithms for WHT, DFT and bitonic sorter and implemented the load-

store architecture with our approach. The baseline implementations exclude all

hardware optimizations in the Σ-OL level. The optimized implementations are op-

timized in Σ-OL for latency, buffer resources and the arithmetic units for calculating

multi-linear expressions. Each dimension could be optimized with different depth,

and we compare the results from the baseline to the deepest optimization.

We only investigate the latency of iterative FFTs because it is the only

algorithm in this thesis that provides enough parallelism. The base implementation

forces a perfect sub-nest to complete all memory write operations of all iterations

before the next perfect sub-nest can start. The optimized implementation exploits

the multi-linear access pattern for static analysis and identifies the iteration for

synchronization whose completion unlocks the start of the next perfect sub-nest.
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To obtain the execution latency, we have crafted an accelerator wrapper in Chisel

RTL [43] and a testbench using the Chisel iotesters 2.10 [44] API. The iotesters

framework compiles the Chisel RTL code to Verilog RTL code, then invoke the

Verilator 3.904 simulator [45] to compiled the Verilog RTL code to C++ code which

is further compiled and executed for cycle-accurate simulation. This setup initializes

the input data in memory through the input data ports and retrieves the result data

from memory via the output data ports. We report the lapse of clock cycles in the

testbench between the time all input data has been loaded to the memory and the

time when the resulting data is ready to be retrieved from the memory.

To obtain the buffer utilization of the generated designs, we instrument the

buffer allocation process of Spiral to report the aggregated number of data entries

in the memory. The buffer allocation processes are implemented as four separated

passes with different levels of optimizations. Level-0 reserves the dedicated input and

output buffers and allocates intermediate buffers for every composition of loops. It

serves as the baseline. Level-1 can exploit in-place calculations in loop compositions

to reuse the read buffer as write buffer. Level-2 simulates the dynamic temporary

buffer allocation scheme by recycling the buffer entries used in deeper loop nest that

have completed computation. Level-3 is the enhanced version of level-2 that also

considers the in-place computations for further buffer savings.

To investigate the arithmetic cost of calculating multi-linear expressions, we

count the total bits of adders and multipliers in the Σ-OL expressions. The base-

line implementation calculates the expression directly, using considerable number

of adders and multipliers. We divide the optimizations into two, where the first

utilizes inductive calculations to avoid multipliers and the second further exploits

the power-of-2 constant factors to replace adders as bit mapping operations.
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5.1.2 Latency

Figure 5.2 shows the latency (in clock cycles) of the generated radix-2 FFT cores

ranging from size of 8 to size of 2048 that compares the conservative and the precise

dependency management schemes. The secondary axis presents the speedup of the

precise scheme over the conservative scheme because the latency grows fast as the

problem size doubles and makes it difficult to show the latency of small FFT sizes

in the primary axis. The average speedup is 1.16x. The speedup increases at the

beginning as the problem sizes grow from size of 8, arrives the peak of 1.41x at size

of 64, and decreases when the problem sizes grow larger. The speedup increase in

smaller size range is attributed to the growing parallelism given by the increasing

number of independent iterations in the perfect sub-nest. Because the implemented

datapath pipeline has a latency of 43 cycles, for very small size such as 4, the latency

difference between precise and conservative dependency management is negligible.

At size of 64, the number of independent iterations at each perfect sub-nest is slightly

larger than the pipeline latency so that most of the pipeline bubbles can be avoided

as long as the iteration for synchronization does not reside at the very end of the

perfect sub-nest. The speedup falls when the size getting even larger, because in

these situations, the cost of pipeline draining is relatively small compared to the

total number of independent iterations at each perfect sub-nest.
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Figure 5.2: The latency comparison between two dependency management strategies
for iterative FFTs.

Though the theoretical speedup upper bound can not exceed 2x as analyzed

in Chapter 3 and only happens for problem sizes at the same scale of the fixed

pipeline latency, this optimization is still beneficial for two reasons. First, the anal-

ysis is performed statically and does not incur additional hardware implementation

cost. Second, because the future throughput scaling of the architecture will reduce

the number of independent iterations for the same problem sizes, the problem sizes

that obtain the most benefit from this optimization will also increase.

5.1.3 Buffer Utilization

The effect of the proposed buffer allocation schemes in Section 4.2.1 is evaluated

by compared against the baseline buffer allocation scheme of current Spiral for

WHTs, FFTs and bitonic sorters. In the proposed scheme, three techniques are

employed, with increasing requirements of the program properties. To evaluate

each technique, three implementations have been created that employs the three
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techniques accumulatively. The descriptions of the implementations are listed in

Table 5.1.

Table 5.1: The implementations of four buffer allocation schemes

Name Techniques employed (accumulated)

baseline The scheme used in Spiral software generation.

hierarchical Reuses deep level intermediate buffers hierarchically.

swapping swaps uniform size buffers.

overwritten allows overwriting the data of the input buffer.

The different buffer allocation schemes can lead to various memory utiliza-

tion. In all experiments, the result of the implemented scheme is normalized to the

baseline scheme.

Figure 5.3 presents the allocation scheme comparison for iterative FFTs

across the size from 8 to 1024. The iterative FFT algorithm is composed of several

loop stages accessing the full data. Furthermore, in-place calculations exist in all but

the first stage, thus the intermediate buffers can be replaced by the output buffer

in all implementations. This result can not be improved with all three techniques

proposed in this work. Consequently, the four implementations achieve the same

memory utilization.
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Figure 5.3: The comparison of buffer utilization between different allocation strate-
gies for iterative FFTs.

Figure 5.4 presents the comparison for the recursive Cooley-Tukey algorithms

of WHT and FFT from size-8 to size-1024. The recursive algorithms are numerous

which all produce deeply nested loop programs. The algorithm decomposition that

tends to create balanced rule trees is selected. In this plot, the hierarchical and

swapping overlap perfectly. The benefit of the hierarchical implementation is mod-

erate because at each level, the computation is factorized into two stages of much

smaller sizes which derives small intermediate buffer sizes. The swapping technique

failed to reduce the memory utilization further because in the factorization into two

stages with a smaller size intermediate buffer, swapping does not apply. The over-

written implementation reduces the memory utilization from almost 1/3 by allowing

the data of the input buffer to be overwritten. This removes the largest intermediate

buffer the same as the problem size in the top-level decomposition while preserving

the input and output buffer.
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Figure 5.4: The comparison of buffer utilization between different allocation strate-
gies for recursive WHTs/FFTs.

Figure 5.5 shows the comparison for the bitonic sorter algorithm from size-8

to size-1024. This is a recursive algorithm where each breakdown step factorizes the

computation into three stages with the middle one being in-place. The plot shows

overlapped scatter dots for hierarchical and swapping, both of which reduces the

memory utilization considerably. The benefit of the hierarchical scheme comes from

the deep nested level that can reuse intermediate buffers. The swapping scheme

failed to reduce the utilization further because the input buffer at each level are all

the input buffer of the program, which prohibits swapping. When overwriting the

input buffer is allowed in the overwritten scheme, the memory utilization continues

to drop by about 20%.
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Figure 5.5: The comparison of buffer utilization between different allocation strate-
gies for bitonic sorters.

5.1.4 Optimizing Multi-linear Expressions

Then, Table 5.2 5.3 5.4 5.5 show the accumulated bits of the multiplication and

addition operations used for calculating the multi-linear expressions for a range of

problem sizes of WHT, DFT and bitonic sorters, implemented with three different

optimizations. Table 5.2 5.3 5.4 show the similar results for radix-2 algorithms

of WHT, DFT and bitonic sorter. They all succeessfully remove all multipliers

and adders because the constant factors of the multi-linear expressions of radix-

2 algorithms are all power-of-2 numbers, which can be implemented through bit

mappings.

Figure 5.5 shows the result for the radix-3 FFT where most constant factors

are not power-of-2 numbers unless the potential constant factor 1. In this situation,

the bit mapping scheme optimizes the inductive calculation implementation slightly

by replacing the accumulations of stride-1 into bit mappings.
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Table 5.2: The comparison of total arithmetic bits between different implementa-
tions of multi-linear expressions for recursive radix-2 WHTs.

Problem direct induction bitmap
size mul add mul add mul add

8 16 7 0 12 0 0
16 28 19 0 27 0 0
32 42 27 0 42 0 0
64 59 35 0 62 0 0
128 76 45 0 86 0 0
256 96 55 0 113 0 0

Table 5.3: The comparison of total arithmetic bits between different implementa-
tions of multi-linear expressions for iterative radix-2 FFTs.

Problem direct induction bitmap
size mul add mul add mul add

8 21 15 0 18 0 0
16 53 29 0 45 0 0
32 97 47 0 83 0 0
64 153 69 0 132 0 0
128 221 95 0 192 0 0
256 301 125 0 263 0 0

Table 5.4: The comparison of total arithmetic bits between different implementa-
tions of multi-linear expressions for Bitonic sorters.

Problem direct induction bitmap
size mul add mul add mul add

8 32 16 0 28 0 0
16 70 32 0 72 0 0
32 128 55 0 142 0 0
64 210 86 0 243 0 0
128 320 126 0 380 0 0
256 462 176 0 558 0 0
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Table 5.5: The comparison of total arithmetic bits between different implementa-
tions of multi-linear expressions for iterative radix-3 FFTs.

Problem direct induction bitmap
size mul add mul add mul add

27 39 20 0 32 0 24
81 95 41 0 75 0 64
243 165 70 0 136 0 122
729 260 100 0 218 0 201
2187 374 143 0 318 0 298
6561 503 184 0 431 0 407

5.2 Quality of Designs: FFTs on FPGA

This section evaluates the quality of the generated designs on an FPGA device using

the proposed approach in a case study of FFT. The cycle counts, peak frequency and

resource utilization are compared against a state-of-the-art implementation. Then

the controller design of the proposed approach is investigated for the peak frequency

and resource utilization of a range of problem sizes.

5.2.1 Methodology

The iterative radix-2 FFT algorithm is chosen to produce the FFT core designs for

evaluation. Note that this work has focused on the scalar load-store architecture

which provides a data rate of one data word per cycle. The generated design matches

the operation rate to the data rate. The generated Chisel RTL designs of the

proposed approach is encapsulated in an accelerator wrapper that initializes the

input data in memory through the input data ports and retrieves the result data

from memory via the output data ports. The overall Chisel RTL code is translated

to Verilog RTL code through the Chisel compiler.

The baseline designs are generated by the Discrete Fourier Transform Verilog
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IP Generator [46] (hereafter referred to as DFTgen) based on the current Spiral

hardware backend technology. Since DFTgen scales the architecture better than the

current implementation of the proposed approach, an architecture configuration is

chosen to generate a design with scalar throughput: iterative architecture, radix-2,

streaming width of 1. The bit-permutation method is selected. In the web interface

of DFTgen, the minimal streaming width is two. Hence, the design using streaming

width of 1 is obtained by using the backend interface of DFTgen with the help from

the author. The obtained design is depicted in Figure 5.6. The design is composed of

three main components, the twiddle factor module, the half-rate F(2) module, and

a temporal permutation module. The tool automatically generate these modules

to provide streaming rate of one word per cycle by using reasonable resources. In

this scenario, the permutation module is merely a RAM that is written and read

through indices generated dynamically with a function.

Figure 5.6: The baseline design from DFTgen.

Other configurations are employed to improve the similarity between the

designs from two approaches. The single precision floating point data format is

used for both approaches. The floating point arithmetic operators in the proposed

approach are mapped to the same RTL modules instantiated by DFTgen designs.

Both designs maps the memory and the twiddle factor lookup table to the block
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RAM resources of the FPGA.

The FPGA experiments done target the Xilinx Virtex-7 xc7z045ffg900-2

FPGA. All FPGA synthesis is performed using Xilinx Vivado 2016.2, and the area

and timing data shown in the results are extracted after the final place and route

are complete.

Latency. The latency of the designs produced with the proposed method

is obtained through RTL simulation, as described in Section 5.2.1. The latency of

DFTgen designs is reported by the generator and is defined as the lapse clock cycles

between the time the first input data sample is streamed into the FFT core and the

time when the first output data sample is streamed out of the FFT core.

FPGA resource metric. The FPGA resource metric is described by the

utilization of four types of resources, namely the lookup tables (LUTs), the flip-flops

(FFs), the DSPs, the block RAMs (BRAMs). The LUTs are the general reconfig-

urable resources on FPGA, which can simulate the arbitrary gate logic through

configuring the bits of the lookup tables. The FFs are register resources provided

by the FPGA device. The Xilinx Virtex-7 FPGAs contain dedicated arithmetic units

called DSP slices. DSP slices contain hard multipliers, accumulators, registers, and

interconnect. The multipliers in these slices are used in floating point multiplication.

The single precision floating point multiplier each use two DSP slices. The float-

ing point adder is mapped to LUTs and FFs. Xilinx FPGAs provide two types of

memories: BRAM or distributed RAM. BRAMs are 36kb dedicated hard memories

built into the FPGA. The Virtex-7 contains 545 BRAMs. Memory structures can

also be constructed with the FPGA’s LUTs which are normally used as logic. In

our experiments, all the RAMs and ROMs are mapped to BRAM resource.
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5.2.2 Latency

Figure 5.7 shows the latency comparison between the FFT cores of our approach

and of DFTgen. For the FFT size range from 16 to 2048, this work is in average

15% faster than DFTgen. The key reason is in the algorithm. While the initial

bit reversal permutation is separated from the logN FFT stages in DFTgen, it is

merged in our approach to the FFT stages. The secondary reason is across-stage

execution overlapping, as evaluated in Section 5.2.2, which is presented by the more

speedup of smaller sizes.

Note that the latency in clock cycles is not the ultimate metric to compare the

execution speed because the final performance also depends on the clock frequency.

We will evaluate the frequency latter in this section.

Figure 5.7: This work vs. DFTgen: latency comparison.

5.2.3 Resource Utilization

Figure 5.8 5.9 5.10 show the resource utilization of LUTs, FFs and BRAMs on

Xilinx FPGA for FFT sizes ranging from 128 to 2048. The primary axis presents
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the number of resources for the this work and DFTgen. The secondary axis presents

the ratio of this work over DFTgen. This work uses averagely 14% more LUTs than

DFTgen. The ratio increases slowly as the FFT sizes go larger. Since the datapath

of different sizes stays mostly the same for both designs, it is possibly due to the

implementation cost of the controller used in our approach. This work uses averagely

5% more FFs than DFTgen with similar trend as LUT utilization with respect to the

problem sizes possibly due to the same reason. In contrast, the proposed approach

utilize fewer BRAMs, in average 70% of DFTgen. The BRAMs are used exclusively

for the memory modules and the twiddle factor lookup tables in both approaches.

The twiddle factor lookup table are at the same size in both approaches. In the

proposed approach, the required memory entires are twice of the problem sizes. In

DFTgen, the number is fourfold of the problem sizes because the initial permutation

module does not share the memory with the stride permutation module in the FFT

compute stage.

It is worth noting that newer literatures have reported extra optimizations to

the permutation cores [47] and their use in streaming FFTs [48]. In particular, [48]

reports half of the RAM bank utilization compared to the DFTgen baseline used

in this study, by sharing the memory block between bit-reversal permutation and

stride permutation. This matches the number in our load-store architecture design.

However, while it is a native design with a load-store architecture, applying the

sharing technique for streaming designs requires special rewiring of the streaming

blocks with extra control. Besides, the optimization [48] does not change the cycle

counts studied in the previous sub-section because the bit reversal permutation

is still treated as a separate stage. Nonetheless, more careful study is needed to

systematically compare the two different approaches.
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Figure 5.8: This work vs. DFTgen: lookup tables comparison.

Figure 5.9: This work vs. DFTgen: flip-flops comparison.
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Figure 5.10: This work vs. DFTgen: block RAMs comparison.

5.2.4 Peak Frequency

The DFTgen designs present decent scalability in maintaining the peak frequency

near 455 MHz for FFT sizes ranging from 128 to 2048. Figure 5.11 shows the peak

frequency of the proposed approach, which degrades from 286 MHz to 250 MHz

across the size range from 128 to 2048. The analysis of the critical path shows that

the the longest path connects the hardware operators and the root compose FSM

of the controller. The path travels from the perfect sub-nest FSM up to the root

compose FSM because the design requires the fast response of the complete signal

to start the next iteration. Thus, the peak frequency can be improved in two ways.

First, the proper use of elastic buffers can truly decouple the critical path between

hardware operators and reduce the length of critical path in each size. Second, The

controller design can be improved by either reducing FSM levels. To achieve the

peak frequency of DFTgen, a different controller structure is possibly needed.
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Figure 5.11: The peak frequency on FPGAs for FFTs.

5.2.5 Controller Cost

The peak frequency evaluation has exposed a shortcoming of the controller design.

Figure 5.12 further presents the resource utilization of the controller. The Y-axis

is the percentage of resources utilization of the controller over the overall design.

Because the controller does not utilize BRAMs and DSPs, only the LUTs and FFs

utilizations are shown. The scatter plots present the steady increase of utilizations

of the two resource types while the FFT sizes increase. At FFT size of 2048, the

controller utilize 19% LUTs and 6% FFs of the overall design.
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Figure 5.12: The resource cost of controllers for FFTs.

5.3 Summary

This chapter evaluates the effectiveness of the proposed approach for load-store ar-

chitecture generation. It first reports the effectiveness of the hardware optimizations

performed in the Σ-OL level, by comparing the performance and resource utilizations

with and without high-level optimizations. It is presented that the pattern-based

optimization improve the design quality significantly. Then, a detailed comparison

between the FPGA implementations of the FFT cores generated by the proposed

method and by the existing hardware backend are performed. The comparable result

suggest that the flexible load-store architecture can be optimized well with enough

domain-specific efforts.
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Chapter 6

Concluding Remarks

The conventional wisdom of creating hardware accelerators is targeting a specific

algorithm through deeply customizing the control logic and datapath for hardware

so as to maximize efficiency. This leads to difficulties in reusing the architecture

design for other algorithms. While the load-store architecture is inherently flexible to

algorithms, it can incur considerable overhead in a generic design. The contribution

of this dissertation is to propose an approach to reason about desirable properties in

algorithms and computations before implementing the actual load-store architecture

to enable hardware acceleration of a wide scope of algorithms. In this way, the

flexibility is carefully realized by having a higher level view of hardware designs, and

by using the properties of computations to customize the load-store architecture.

6.1 Lessons Learned

This work showed us that the flexible load-store architecture can be practically used

for efficient hardware designs when specialization is addressed hierarchically from

algorithm generation to program optimization to hardware interpretation. In this
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way, the datapath can be tailored for efficient use of the given algorithm and the con-

siderable supporting circuits for a generically programmable load-store architecture

can be replaced by simpler and more specific mechanisms. Since this requires repre-

senting, analyzing and manipulating algorithms, programs, and hardware modules,

multi-level DSLs are essential to drive this approach. Spiral provides an extensible

framework to implement the proposed approach and the extensions we have made

mark a significant first step to open up the full power of Spiral for automated

hardware design generation.

We saw that, the constraint solver of Spiral is used for algorithm-hardware

co-synthesis for load-store architecture. The computational specifications addressed

by Spiral possess recursive or iterative nature, thus can be expanded for various al-

gorithms. In the software generation flow of Spiral, the fixed hardware architecture

directs the algorithm expansion process to assure efficient execution on hardware.

In the proposed approach, the abundant architectural paradigms including but not

limited to parallelism styles and memory organizations, as well as the numerous

implementation options of hardware can be considered to direct the algorithm gen-

eration process. The space of valid combinations of hardware features is larger

than that provided by commodity processors, thus may trigger new ideas in algo-

rithm designs. The algorithm-hardware co-synthesis process will allow us to explore

Pareto-optimal designs across a large tradeoff space between performance and re-

source utilization.

We saw that, by extending the Σ-OL language for capturing the desired

properties of the compute pattern of imperfect loop nest programs, the latency,

memory utilization and indices computation cost of the resulting hardware can be

significantly optimized. In this work, we have considered the following properties:
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• Fixed loop bounds

• Multi-linear indices for gather and scatter operations

• Identical parameterized kernel operations.

While the above properties constrain us to the computations of certain impor-

tant kernels, relaxation is possible with domain-specific analysis or more advanced

hardware compilation process.

We saw that, the icode extensions modeling the interconnected RTL modules

can flexibly describe hardware implementations. The connections implemented as

raw digital signals or in ready/valid protocol are both supported. Each icode opera-

tor modeling an RTL module can be treated as a code generator and can customize

itself with respect to the input characteristics. This also allows external hardware

generators to be incorporated into the Spiral framework.

6.2 Next Step: Parallelizing Load-store Architectures

Parallelism is crucially important to scale the compute throughput of load-store

architectures. The parallelization of customized load-store architectures is highly

dependent on computations. This chapter discusses how the multi-linear compute

pattern of imperfectly nested loop programs can be parallelized in the form of vector

parallelism, symmetric multi-processing and short-vector SIMD parallelism.

The compute pattern studied in this thesis possesses certain properties that

make automated parallel hardware generation possible with Spiral. First, it ensures

all independent operations in the perfect sub-nest of imperfect loop nest programs

that can be computed in parallel. Second, the multi-linear access pattern to memory
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can be transformed for various types of parallelism. Moreover, the hardware gener-

ation flow introduced in Chapter 4 is compatible with the prior parallelization work

in Spiral for general purpose processors. Thus, high performance parallel hardware

implementations using customized load-store architecture can be synthesized with

the Spiral framework.

6.2.1 Vector Parallelism

The vector parallelism in processor design means essentially pipelined execution

of many data operations [49]. This behavior is not attainable in typical pipelined

instruction set processors because the data movement operations and computations

are encoded in the same instruction stream such that data movements never coincide

with computations. The vector processors, represented by the Cray processor [36],

achieve simultaneous data movement and computation by exploiting the fact that

in vector computations the same operation is applied to every elements of a vector.

Though counter-intuitively by its name, the customized scalar load-store ar-

chitecture introduced in Section 4.4 has inherently achieved the same effect as vector

processors by architecting for the multi-linear compute pattern. The scalar algo-

rithm implemented on the architecture can already provide the compute throughput

of one word per clock period, when connecting to a dual-ported fast on-chip memory.

When interfacing with more complicated memory systems, the necessary algorithms

can be generated with the Spiral framework for high performance.

Inherent Vector Processing

The customized scalar load-store architecture can inherently achieve the processing

rate at one word per clock period as typical vector processors. Both architectures
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exploits the homogeneity of computations though with varying degrees. Special-

ization, however, enables more complicated operations on vector elements than in

vector processors.

In Cray-like vector processors, the high throughput of vector computation is

obtained through vector instructions and the chaining mechanism in execution. A

vector load/store instruction moves entire elements of a vector between a vector reg-

ister and the memory. A vector arithmetic/logical instruction performs operations

on all elements in vector registers. In hardware design, both vector movement units

and functional units are fully pipelined and allow one element to be processed per

clock period. The chaining technique allows a vector instruction to proceed as soon

as an element in the source register is produced by a previous vector instruction.

In this way, the vector registers act essentially like FIFOs and allow the continuous

streaming between pipelined hardware units.

In contrast, the customized scalar load-store architecture achieves the same

throughput easier thanks to the compute pattern it is designed for. In the compute

pattern of imperfect loop nest programs, the basic block operation is always of a

gather-compute-scatter shape. It means that, for every iteration, a vector must

be loaded from memory, processed through an arbitrary kernel operation, then the

resultant vector is stored back to memory. As a result, designing a pipeline physically

chaining the load, compute, and store units is a natural decision. The pipeline is

driven by an FSM for the base and stride of load/store indices and other necessary

parameters for computation. As long as the parameters are supplied continuously

from the FSM, the pipeline is capable of process one element per clock period.

Hence, the customized scalar load-store architecture is reminiscent to the Cray-like

vector processors.
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However, specialization enables more complexity in vector processing than

vector processors. In Cray-like vector processors, the feasible vector computation is

constrained by the limited number of vector registers and vector functional units.

Consequently, complicated computations, going beyond the intermediate storage

capacities of vector registers, have to be decomposed to multiple data passes between

memory. Moreover, the vector functional units always perform identical operation

to each element, prohibiting the computation between elements. In contrast, a

customized functional unit can enable arbitrary operation for each vector element

and can buffer a few elements to compute results with multiple vector elements.

Vectorized Algorithm Generation

While the customized scalar load-store architecture provides inherent vector pro-

cessing throughput, the actually attainable performance highly relies on the memory

system it connects with. Modern main memory, such as DRAMs, incurs long access

latency that can be partially hidden through accessing a continuous data block.

Deep memory hierarchy employing multi-level memories with different latency is

common to modern computers, which requires data locality in programs for mem-

ory performance improvements. The Spiral framework handles these scenarios and

has provided useful rules in the rewrite system for program transformation toward

blocking access.

In Spiral, the blocking access pattern is captured by OL formula Am ⊗ In,

where n continuous data items are fetched in computation. In hardware execution

of the customized scalar load-store architecture, it means n consecutive operations

to be executed in the pipeline. By using ~⊗ operator to denote this special pipelined

operations, and introducing a vectorization tag ‘vec’, the necessary rules for trans-
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forming fundamental OL operators and formulas for vectorization are listed (6.1) -

(6.3).

An ⊗ Im︸ ︷︷ ︸
vec

→ An~⊗Im (6.1)

Im⊗An︸ ︷︷ ︸
vec

→ Lmnm︸︷︷︸
vec

(
An~⊗ Im

)
Lmnn︸︷︷︸
vec

(6.2)

Lmnm︸︷︷︸
vec

→
(

Lmn/νm
~⊗Iν

)(
Imn/ν2 ⊗ Lν

2

ν︸︷︷︸
vec

)((
In/ν ⊗ Lmm/ν

)
~⊗Iν

)
, ν | m,n (6.3)

In (6.1), the tagged OL formula with the exact shape is converted to the

identical form by assigning the ~⊗ operator and dropping the tag. In (6.2), the block

parallel OL formula is converted to vectorized shape with additional stride permu-

tations. In (6.3), the stride permutation is converted to block stride permutations of

vector length ν, producing an irreducible permutation Lν
2

v which can be processed

by a customized permutation functional unit.

6.2.2 Symmetric Multi-processing Parallelism

In symmetric multi-processing (SMP), the scalar core is replicated multiple times

and share a larger memory in between. In general SMP processors, cache memory

is typically employed to move data automatically between the private memory of

cores. Ideally, the compute task is evenly distributed in each core, accessing data

resided in the local cache. When inter-core communication is necessary, the data is

better to be transferred in cache-line granularity to avoid false sharing.

The multi-linear compute paradigm is SMP parallelizable by having abun-
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dant independent iterations in the perfect sub-nest. For obtaining high performance

from an SMP architecture, existing rewrite rules in Spiral can handle the code

transformation issues. When building SMP parallelism for customized load-store

architecture, certain hardware blocks are required but the complicated ones can be

potentially generated with external tools.

Interpreting Algorithms for SMP Parallelism

The compute pattern studied in this thesis possesses rich independent iterations in

the perfect sub-nest. As seen in classic loop parallelization tricks, the perfect sub-

nest can be re-organized to have an outermost loop with the loop count equivalent

to the prescribed number of cores. Then each iteration of the outermost loop is

mapped to unique execution core. At each core, data required by the corresponding

outermost loop iteration is loaded from the shared memory, computed locally, then

the result is stored back to the shared memory.

However, the simple code transformation at loop level does not necessarily

bring higher performance. Though already load-balanced, the different cores can

possibly access different data stored in the same cache line. This causes the false-

sharing problem and can trigger substantial cache coherence traffic and thus incurs

serious performance penalty. The next subsubsection explains the existing rewrite

rules that can be used in Spiral for solving the problem.

SMP Algorithm Generation

The existing SMP rewrite rules in Spiral handle the load-balancing problem and

avoids false sharing when parallelizing OL operators. The SMP platform is captured

in two parameters: p the number of cores, and µ the cache line length. An smp(p, µ)

tag denotes OL formulas to be parallelized. After the transformation, the load-
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balanced parallel formula is denoted by the ⊗‖ operator, and the data permutation

avoiding false-sharing is denoted by the ⊗̄ operator. The relevant rules are shown

(6.4) - (6.7).

Ip ⊗An︸ ︷︷ ︸
smp(p,µ)

→ Ip ⊗‖ An. (6.4)

P ⊗ Iµ︸ ︷︷ ︸
smp(p,µ)

→ P ⊗̄Iµ. (6.5)

Am ⊗ In︸ ︷︷ ︸
smp(p,µ)

→
( (

Lmpm ⊗ In/pµ
)
⊗̄ Iµ

) (
Ip ⊗‖

(
Am ⊗ In/p

)) ( (
Lmpp ⊗ In/pµ

)
⊗̄ Iµ

)
, µ | n/p

(6.6)

Lmkk︸︷︷︸
smp(p,µ)

→
(
Ip ⊗‖ L

mk/p
k/p

)((
Lpmp ⊗ Ik/pu

)
⊗̄Iu

)
(6.7)

In (6.4), the tagged OL formula with the exact shape is converted to the

identical form by assigning the ⊗‖ operator and dropping the tag. In (6.5), block

stride permutation is converted to the identical form by assigning the ⊗̄ operator

and dropping the tag. In (6.6), the vectorizable OL formula is converted to paral-

lelizable shape with additional stride permutations. In (6.7), the stride permutation

is converted to block stride permutations of cache line length µ and the parallelized

localized stride permutation.

Hardware Building Blocks

The SMP architecture requires cache memory and the interconnect network be-

tween the cores. These are complicated hardware building blocks that require high
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development cost if by hand. The Rocket Chip generator [33] includes components

for generating a shared memory hierarchy of coherent caches interconnected with

on-chip networks. Configuration options include the number of tiles, the coherence

policy, the presence of a shared L2 cache, the number of memory channels, the

number of cache banks per memory channel, and the implementation of the under-

lying physical networks. These generators are all based around TileLink, a protocol

framework for describing a set of cache coherence transactions that implement a

particular cache coherence policy.

6.2.3 Short-vector SIMD Parallelism

A short vector architecture is an economical way to scale the performance of scalar

architecture when multiple banks of fast memory such as SRAMs are available.

In a short vector architecture, the vector core, with a vector load/store unit and

a vector functional unit, is connected to multiple memory banks, each of which

supplies a scalar data word to the core. The vector lanes parameter specifies the

number of data items that can be transferred and processed simultaneously. Similar

to the customized scalar architecture, a short vector architecture can be made a

memory-memory architecture thanks to functional unit specialization. Figure 3.5a

shows a two-lane short-vector design of specialized load-store architecture. The

vector functional unit includes a vector arithmetic / logic unit and a permutation

unit. The permutation unit handles data movements between vector lanes and can

further permute a larger data set by having an internal storage buffer.
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SIMD Algorithm Generation

The existing SIMD rewrite rules in Spiral handle the SIMD vectorization problem.

The SIMD platform is captured in parameter ν for the vector length. An simd(ν)

tag denotes OL formulas to be SIMD vectorized. After the transformation, the

SIMD vectorized formula is denoted by the ⊗‖ operator, and the data permutation

avoiding false-sharing is denoted by the ~⊗ operator. The relevant rules are shown

in (6.8) - (6.10).

An ⊗ Iν︸ ︷︷ ︸
vec(ν)

→ An~⊗Iν (6.8)

Iν ⊗An︸ ︷︷ ︸
vec(ν)

→
(
Lnv ~⊗Iv

) (
In/v ⊗ Lv

2

v︸︷︷︸
vec(ν)

) (
An~⊗Iv

) (
In/ν ⊗ Lν

2

ν︸︷︷︸
vec(ν)

)(
Lnn/ν ~⊗ Iν

)
(6.9)

Lmnm︸︷︷︸
vec(ν)

→
(

Lmn/νm
~⊗Iν

)(
Imn/ν2 ⊗ Lν

2

ν︸︷︷︸
vec(ν)

)((
In/ν ⊗ Lmm/ν

)
~⊗Iν

)
, ν | m,n (6.10)

In (6.8), the tagged OL formula with the exact shape is converted to the

identical form by assigning the ~⊗ operator and dropping the tag. In (6.9), the block

parallel OL formula is converted to vectorized shape with additional vectorized

stride permutations. In (6.10), the stride permutation is converted to block stride

permutations of vector length ν. Note that (6.9) and (6.10) produces irreducible

permutation Lν
2

ν that must be handle as the base case.
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Hardware Building Blocks

The vectorization rules produce irreducible permutations of the size of v2 where v is

the vector length. When generating software implementations for SIMD micropro-

cessors, they are implemented as in-register shuffle instructions that are supported

by the pre-built networks between vector registers. When it comes to specialized

load-store architectures, specific networks between vector registers dedicated to cer-

tain algorithms are preferred.

The permutation operations for data size at multiples of vector length can be

implemented as streamed permutations. In this way, the input as a size-v data chunk

is streamed from memory through vector loads, then flowed along the streamed

permutation unit, and finally streamed back to memory through vector stores. Since

data streamed in earlier may not be allowed to streamed out in time, a memory

buffer is required in the streamed permutation unit. Such a permutation unit can

be generated with the bit matrix method described in [50] when the data size is

power of two, and the satisfiability approach in [16] for arbitrary data size.

In this section, we looked at the parallelization problems of the customized

load-store architecture for the multi-linear compute pattern. The properties of the

compute pattern makes it easy to be interpreted to the vector parallel architecture

and the SMP architecture, while the SIMD parallel architecture requires substantial

effort for assuring SIMD vectorizable algorithms. The existing parallelization rules

are compatible to the hardware generation flow and thus can be applied for parallel

customized load-store architecture synthesis. For all parallel paradigms discussed

in this chapter, Spiral rewrite rules can assure high performance in implementa-

tions by shaping the algorithm at high level. New hardware building blocks are
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required in SMP parallelism and SIMD parallelism, while the complicated ones can

be automatically generated with existing tools.

6.3 Future Work

This thesis concludes with a brief discussion of some possible future extensions of

this work. First, by embedding a new specialized architecture to the Spiral frame-

work, extra extensions could be required to realize the full framework capability. In

addition, the compute pattern discussed in this thesis could be extended to support

more complicated computations. Moreover, diversified hardware implementation

options could be incorporated to this framework to explore a larger design space.

Finally, the combination of domain-knowledge and hardware designs may allow some

difficult hardware compilation problems to be addressed in a specific context.

Resource modeling. To explore the design space regarding the cost/per-

formance tradeoff, Spiral must obtain the quantitive metrics of the hardware im-

plementation cost and the execution performance. However, the time required for

measuring hardware implementations is typically in units of hours if not days, thus

imposes great challenges in searching for the Pareto-optimal designs. To reduce

the metric retrieval time, estimations through modeling have been employed in the

previous streaming architecture generation effort in Spiral. The resource estima-

tion turns out to be more difficult than performance estimation, because in highly

optimized hardware the full utilization of resources allows the performance to be

calculated with simple functions of design configurations.

In the previous effort in generating streaming hardware implementations with

Spiral, several solutions addressing the long synthesis time obstacles for design space

exploration have been proposed. However, porting them to the more complicated
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load-store architecture designs is non-trivial. In [51], an exact model for the DFT

streaming cores is developed to estimate the resource utilization in FPGA plat-

forms, including the slice and hard macro utilizations. Compared to the streaming

core, the design configurations for load-store architectures involve more dimensions

including the controller implementations, parallelism styles, and memory system

configurations. Thus, building an exact resource model for load-store architectures

requires substantial effort in characterizing each component. In [52], a machine

learning-based approach for predicting Pareto-optimal solutions is proposed, aim-

ing at capturing high-level features of the design, allowing the statistical models to

capture the particular patterns of the target application. Though this work is more

general than the previous one, it is an open question how to capture the high-level

features of load-store architecture designs for the machine learning-based approach.

Compute pattern extensions. In this work, the compute pattern is lim-

ited to static loop bounds, multi-linear access patterns and identical kernel oper-

ations. Though we have shown several application examples that fits the pattern,

further flexibility requires extending the pattern.

To maximize the benefit of compute pattern extensions, the algorithm gener-

ation process needs to be extended as well so that Spiral’s constraint solver produces

algorithms fitting the provided hardware parameters. Extending Spiral for new

algorithms turns out to be a difficult task. Spiral has provided extensions of the

constraint solvers for non-power-of-2 DFTs, some linear algebra kernels, and compu-

tations in software-defined radio. The ongoing effort is addressing graph algorithms

with Spiral through linear algebra operations.

In the code generation stage, depending on the exact change, the modifi-

cations require different extents of effort. To support diversified kernels in basic
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blocks, the hardware interpretation backend must handle resource sharing between

basic blocks performing different operations. Typically, compute-intensive basic

blocks can be shared by multiplexing the primitive arithmetic units in DFGs. The

techniques have been explained in literatures [29][30]. Other access patterns can be

natively supported in this framework by having a new index generation module. The

inductive calculation method used in optimizing multi-linear indices are applicable

to some other calculations such as power functions and modulo functions. Opti-

mizations for other access patterns are to be explored. The data-dependent control

flow requires extra communications between the datapath and the controller. If the

communication overwhelms the decoupled design between the controller and the

datapath, a major modification of hardware paradigm may be required.

Incorporating implementation options. This thesis has only addressed

a small set of hardware implementation options that have been developed in the

computer architecture and digital design community. Various options can be incor-

porated to this framework and are compatible with the constraint solver of Spiral

for exploring the design space.

In this work, the controller is implemented as cooperative FSMs. Other

controller implementations include ROM-based controllers and instruction-based

controllers. The ROM-based controllers store the control sequence onto a read-only

memory. It is preferred when storage resources are cheaper than logic resources.

The instruction-based controllers are specified by the supported instruction format

and produce the control sequence by fetching, decoding and executing an instruction

sequence provided by users. It incurs instruction handling overhead, but is flexible

to perform arbitrary control. These cost and benefit of these options have not been

precisely modeled, and can be addressed as commensurate implementation options in
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algorithm generation process, which will be evaluated in the final implementations.

This work handles only a single level memory, which is limited in either

problem sizes when interfacing with on-chip memory, or compute throughput when

interfacing with off-chip memory. It is beneficial to support multi-level memories

with off-chip memory because a lot of computations exhibits data locality that can

benefit from fast buffers. In the past, the Spiral framework has been extended

for the scratchpad memory of the Cell platform [53], which implements a multi-

buffering mechanism. It is also possible to interface with the memory interface

infrastructures such as CoRAM [54] and Fluid [55]. The memory system impacts

algorithm generation, thus must be considered formally in the constraint solver of

Spiral.

Finally, by developing a systematic method to synthesizing hardware accel-

erators of important computational kernels, it provides a unique opportunity to

investigate emerging hardware implementation approaches. One such example is

using partial reconfiguration in FPGAs to swap datapath implementations in the

fabric. This technique has not been widely use because of the runtime overhead in

partial reconfiguration. Because the proposed framework will gradually support a

wide range of algorithms, it is possible to have a compute specification that execute

long enough time at each of the multiple stages to amortize the partial reconfigura-

tion cost.

Fusing static and dynamic hardware compilation methods. In this

work, the hardware designs is synthesized from high-level specifications represented

by multi-level domain-specific languages. The hierarchitecal representations can pro-

vide useful information to fusing static and dynamic hardware compilation methods

in a single design.
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Since the inception of the hardware generation work of Spiral in 2008, the

hardware compilation methods have achieved substantial advancements. To date,

the most influential methods are the so-called static methods and the dynamic meth-

ods. The static methods take in the control-data flow graph (CDFG) representation,

and then calculate a legal execution schedule, which is interpreted to FSM-controlled

datapth, under the user-specified timing and resource constraints. The most recent

static compilation method is based on a system of difference constraints (SDC) [41]

and have been successfuly used in commercial hardware compilers. However, the

static method requires precise latency of operations in the CDFG, and falls short in

the scenarios with data-dependent latency and control flows. In contrast, the dy-

namic compilation method [22] maps spatially the CDFG into the elastic circuit [28]

that uses data tokens to enable distributed control. This method fits data-dependent

control but incurs higher resource utilization. The fusion of these two methods for

a single design in a general context remains an open question.

A simpler context for hardware compilation setup up in this work can ease

the fusion of the two compilation methods. First, since the designers are supposed

to specify the specification breakdown rule, the base case operators do not over-

lap in execution can be tagged with the desired compilation method. Second, the

load-store architecture has decoupled most control flows and memory accesses from

computations, thus the selection of compilation methods will be decided purly based

on the computation itself, without worrying about the complicated loop nest control

and memory interface.

General pattern-based synthesis flow. This thesis exploited the regular-

ity in basic blocks to enable execution overlapping for the sake of latency improve-

ment. Such a single unified pattern is unusual when more complicated computations
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are to be accelerated. A general pattern-based synthesis flow has been developed in

static hardware compilation for reducing multiplexor usage [29]. The flow takes in

a set of DFGs, then patterns of DFGs are searched, selected, scheduled and bound

to hardware resource. It will be benefitial to develop a similar flow that is directed

by different assumptions in our special context.

Compared to the input assumptions made in [29], this framework utilizes

multi-level abstractions for computational specifications and allows dynamic oper-

ations in basic blcoks. The high level abstractions can allow high value patterns to

be manually identified as shown in Section 4.2.3. Hence, a pattern-based synthe-

sis flow should simultaneously support manual and automatic pattern recognition

across multiple abstraction levels. The dynamic operations introduce disconnected

DFG fragments within a basic block, breaking the assumption in [29] that each frag-

ment is mapped to a basic block and never overlap in execution. Hence, the input

as a flat set of DFGs is no longer applicable. The set must contain information

of which basic block a fragment belong to. When scheduling patterns, only one of

the multiple instances belong to the same basic block can be considered to allow

concurrent execution within the same basic block, which is required by the proposed

framework in this thesis.

To summarize, this thesis proposed a flexible way to generating hardware

accelerator designs using customized load-store architectures. Since hardware spe-

cialization requires dedicated mappings between computations and hardware imple-

mentations, various hardware design paradigms and the design synthesis methods

can be incorporated into the framework. The Spiral-based framework is designed

to be extensible and allows plugging in necessary features to gradually deliver the

flexibility of the proposed approach.
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J. Wawrzynek, and K. Asanović, “Chisel: constructing hardware in a scala

embedded language,” in DAC Design Automation Conference 2012, pp. 1212–

1221, IEEE, 2012. 5.1.1

154



[44] Lawson, et al., “Chisel testers.” https://github.com/freechipsproject/

chisel-testers, 2021. Accessed: 2021-06-06. 5.1.1

[45] Snyder, et al., “Verilator.” https://www.veripool.org/verilator/, 2021.

Accessed: 2021-06-06. 5.1.1

[46] Peter A. Milder, “Dft (discrete fourier transform) verilog ip generator.”

https://www.spiral.net/hardware/dftgen.html, 2014. Accessed: 2022-06-

06. 5.2.1

[47] F. Serre, T. Holenstein, and M. Püschel, “Optimal circuits for streamed lin-

ear permutations using ram,” in Proceedings of the 2016 ACM/SIGDA Inter-

national Symposium on Field-Programmable Gate Arrays, pp. 215–223, 2016.

5.2.3
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