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Abstract

Field-programmable gate arrays (FPGAs) have undergone a dramatic transformation from a logic tech-

nology to a computing technology. This transformation is pulled by the computing industry’s need for

more power/energy efficiency than software can achieve and, at the same time, more flexibility than ASICs.

Nonetheless, FPGA designers still share a similar design methodology with ASIC designers. Most notably,

at design time, FPGA designers commit to a fixed allocation of logic resources to modules in a design. In

other words, FPGAs are mostly still used like an “ASIC” despite being runtime reprogrammable. Through

partial reconfiguration (PR), parts of an FPGA design can be reconfigured at runtime while the remainder

continues to operate without disruption. PR enables what has been possible on general-purpose processors

for decades. For instance, multiple tasks can be time-multiplexed on a smaller FPGA, which can result in

area/device cost, power and energy reduction, compared to statically mapping tasks on a larger FPGA. PR

can become a relevant technology for an emerging class of AI-driven applications that (1) need to support

many compute intensive tasks with real-time requirements and (2) are often deployed on a small, low-end

FPGA due to area, cost, power or energy concerns (e.g., smart cars/robots/cameras at the Edge). For such

applications, using a large expensive FPGA is typically not a viable option.

Though PR is a promising technology and has been supported by FPGA tools for over a decade, it is

still a feature waiting to be proven for its commercial value. The reconfiguration time (between few to tens

of milliseconds on today’s FPGAs), also referred as PR time, is often considered as one of the major hurdles

preventing a more widespread use of PR. While the non-trivial PR time represents a technical challenge,

we believe that a more important question to address is “When, how and why should an FPGA designer

consider using PR?”. Addressing this question requires to (1) identify applications that can tolerate PR time

and still benefit from a PR approach, (2) design good architectural and runtime management strategies to

build efficient designs leveraging PR, and (3) evaluate whether the area/device cost, power or energy benefits

are important enough to justify a transition from a statically mapped design.

This thesis seeks to advance the state-of-the-art in the dynamism of computing FPGAs by tackling the

aforementioned challenges. Specifically, we demonstrate that a design exploiting PR can be more area/device

cost, power or energy efficient than a statically mapped design (ASIC-style design) with slack. Slack occurs

when all resources occupied by an ASIC-style design are not active all the time. Using PR, a designer can

attempt to reduce slack by changing the allocation of resources over time. In this work, we identify slack’s

reduction as the most important opportunity for improvement available to PR-style designs. We refer to a
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PR-style design as a design in which logic resources are allocated to different modules of one design over time

using PR. We develop efficient PR allocation and execution strategies to reduce slack, and show through

analytical modeling and implemented designs that a PR-style design can outperform an ASIC-style design

in challenging scenarios that have to deliver required performance under strict area, cost, power, and energy

constraints. Further, we leverage the findings and analysis from our theoretical investigation to develop a

soft-logic-realized framework for accelerating computer vision with real-time requirements (30+ fps). This

framework includes the necessary architectural and runtime management strategies to support spatial and

temporal sharing of the FPGA fabric at a very fine-grain (i.e. the time interval between reconfigurations

is within millisecond range) while meeting performance requirements. Using the framework, we design and

implement efficient PR-style designs to quantify the performance, area/device cost, power and energy benefits

of PR-style designs relative to ASIC-style designs and to software implementations. Notably, we show that

a PR-style design can be more power and energy efficient than an ASIC-style design even when frequently

reconfiguring the fabric (i.e. when more than half of the execution time is spent reconfiguring the fabric)

and under specific conditions. We also make projections on the impact of higher PR speed on the costs

and benefits of using PR at a very fine-grain. Through our study, we find that, while higher reconfiguration

speed can make a PR-style more area/device cost efficient, the power/energy overhead incurred in a PR-style

design due to, for instance, fabric reconfigurations and additional data movement can make a PR approach

less power/energy efficient than an ASIC-style design.
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Chapter 1

Introduction

1.1 Motivations, Challenges and Goals

Motivations. Field-programmable gate arrays (FPGAs) have undergone a dramatic transformation from

a logic technology to a computing technology [14,45,65]. This transformation is pulled by the computing

industry’s need for more power/energy efficiency than software can achieve and, at the same time, more

flexibility than ASICs. Nonetheless, FPGA designers still share a similar design methodology with ASIC

designers. Most notably, at design time, FPGA designers commit to a fixed allocation of logic resources to

modules in a design. In other words, FPGAs are mostly still used like an “ASIC” despite being runtime

reprogrammable. Through partial reconfiguration (PR), parts of an FPGA design can be reconfigured at

runtime while the remainder continues to operate without disruption. PR enables what has been possible on

general-purpose processors for decades. For instance, multiple tasks can be time-multiplexed on a smaller

FPGA, which can result in area/device cost, power and energy reduction, compared to statically mapping

tasks on a larger FPGA.

Partial Reconfiguration Overview. Using PR, an FPGA is divided into multiple runtime reconfigurable

regions called reconfigurable partitions (RPs) or PR regions. The non reconfigurable part of the design

typically includes the I/O infrastructure defining the interconnection between the PR regions to the rest of

the system. The number, sizing and interconnection between reconfigurable partitions are decided at design

time during the floorplanning process. Reconfigurable partitions can be reprogrammed at runtime with

module bitstreams built offline. Any module built at design time can be separately mapped in a specific

reconfigurable partition if the module has matching I/O interfaces with the reconfigurable partition and
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consumes less resources than available in the reconfigurable partition. The set of module bitstreams built at

design time constitutes a module library.

At runtime, the reconfigurable partitions can be reprogrammed with different modules over time to

accelerate different tasks. The reprogramming of the PR regions can be triggered from outside the FPGA

(e.g., an external CPU), by logic on the fabric, or by an embedded processor.

Challenges. Though PR is a promising technology and has been supported by FPGA tools for over a

decade, it is still a feature waiting to be proven for its commercial value. The non-trivial reconfiguration

time (between few to tens of milliseconds on today’s FPGAs), also referred as PR time (assumed to be

proportional to the PR region size), is often considered as one of the major hurdles preventing a more

widespread use of PR. However, despite the steady improvement of PR technology over the past decade

(faster PR time, better tool support), PR still remains an under-appreciated capability. While the non-

trivial PR time represents a technical challenge, we believe that a more important question to address is

“When, how and why should an FPGA designer consider using PR”. Addressing this question requires to

(1) identify applications that can tolerate PR time overhead, (2) design good architectural and runtime

management strategies to build efficient designs leveraging PR, and (3) evaluate whether the area/device

cost, power or energy benefits of design are important enough to justify a transition from a statically mapped

design.

Goals. This thesis seeks to advance the state-of-the-art in the dynamism of computing FPGAs by tack-

ling the aforementioned challenges. Specifically, we demonstrate that a design exploiting PR can be more

area/device cost, power or energy efficient than a statically mapped design (ASIC-style design) with slack.

Slack occurs when all resources occupied by an ASIC-style design are not active all the time, that is, resources

are under-utilized in the ASIC-style design. Using PR, a designer can attempt to reduce under-utilization by

changing the allocation of resources over time. In this work, we find that reducing slack is the most important

opportunity for improvement available to PR-style designs. We refer to a PR-style design as a design in which

logic resources are allocated to different modules of one design over time. In return, a PR-style design may

be faster, smaller, and/or consume less power/energy than an ASIC-style design. We develop efficient PR

allocation and execution strategies to reduce slack, and show through analytical modeling and implemented

designs that a PR-style design can outperform an ASIC-style design in challenging design scenarios that

have to deliver required performance under strict area, cost, power, and energy constraints (e.g., [48,86]).

In this work, we also leverage PR to spatially and temporally share the FPGA fabric by multiple tasks
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for domain-specific acceleration. Specifically, we investigate the costs and benefits of using PR at a very

fine-grain (i.e. the time interval between reconfigurations is within the millisecond range). Note that, in

this work, we do not focus on using PR in a “role-and-shell” approach [9,42]. In this use-case, the FPGA is

reconfigured very infrequently i.e. at a coarse-grain (minutes, hours or days between reconfigurations). Most

FPGA resources are contained in a single PR region that is enclosed by a static shell region that provides

I/O and isolation. Independent designs with different functionalities, or roles, can be loaded as required in

the PR region over time (e.g., [9,42]). Each role is an ASIC-style design created to use the entire PR region

alone, with no consideration for sharing resources or interacting with other roles.

The work presented in this thesis is especially relevant for an emerging class of AI-driven applica-

tions that (1) need to support many compute intensive tasks with real-time requirements (e.g., smart

cars/robots/cameras at the Edge) and (2) are often deployed on a small, low-end FPGA due to area, cost,

power or energy concerns [10,97]). For such applications, using a large expensive FPGA is typically not a

viable option.

1.2 Partial Reconfiguration for Design Optimization

In this thesis, we address the questions of when, how and why FPGA designers should consider using PR.

Notably, we demonstrate that a PR-style design can reduce slack with better resource scheduling, and

therefore, improve upon an ASIC-style. By improving upon an ASIC-style design, we mean either that (1)

a PR-style design is smaller or consumes less power/energy than the ASIC-style design while achieving the

same performance, or (2) a PR-style design achieves better performance and uses less area or power/energy

than the ASIC-style design. The first part of the thesis covers the theoretical foundations to tackle the

aforementioned questions and focuses on applications with a single task. The second part of this work

leverages the analysis and findings from the first part, and discusses the practical challenges, costs and

benefits of using PR for domain-specific acceleration with multiple tasks spatially and temporally sharing

the fabric. In the remainder of this section, we give an overview of our work.

Reducing Slack with PR. In this work, we find that reducing slack is the main means for PR-style

designs to improve over ASIC-style designs. Slack stems from hard-to-avoid source of inefficiencies (e.g.,

operation dependencies or pipeline imbalancing) and results in some of the occupied resources being left idle

or under-utilized. In other words, all occupied resources in the design are not active all the time. In ASIC-

style designs, a module must occupy logic resources even when it is inactive since resources are statically
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allocated. Slack can result in (1) the design not running at the desired performance given an area budget, or

(2) the design running at the desired performance but being too big to fit in the given area. In an ASIC-style

design, the designer is not exploiting the fact that FPGA logic resources can be re-allocated over time. Using

PR, a designer can attempt to reduce slack by changing the allocation of resources over time.

PR Execution Strategies. To reduce slack and improve over the performance-area Pareto front of ASIC-

style designs, we develop a set of PR execution strategies (allocation and scheduling) for a non-trivial range

of applications. An application consists of a set of independent tasks. A task is modeled as a directed graph

where nodes are processing stages, and edges represent stage dependencies. Each processing stage is acceler-

ated on the FPGA by a hardware module that includes the necessary FPGA logic, hardened compute block

and memory resources. Modules can execute concurrently and have multiple implementation variants with

different performance-area trade-offs. Dependent modules share data either through (1) external memory or

(2) on-chip memory. This choice of an execution model allows to cover a range of applications that benefit

from FPGA acceleration (e.g., streaming pipelines). For instance, in video analytics or image processing

applications, data is streamed from an input source (e.g., camera) directly to a processing pipeline mapped

on the FPGA. Pipeline stages are accelerated by modules that share data through on-chip connections.

Analytical Modeling. Further, while FPGA tools have been improving at a rapid pace, FPGA design

development is still tedious and even more so when designing with PR. Consequently, it is important to

determine whether a PR-style design can improve upon an ASIC-style design during the early stage of

design development i.e. before crafting a PR-style design. To this end, we propose a first-order analytical

model to help a designer (1) determine a suitable PR execution strategy for a given problem and (2) analyze

the throughput and latency of ASIC-style and PR-style designs. The model enables quick exploration of the

design space to help decide if a PR-style design can be beneficial. The model accounts for the impact of

PR time on performance, and assumes the existence of a module library that has been pre-characterized in

terms of latency, throughput, area, etc.

Framework for Computer Vision Acceleration. Starting from Chapter 5, we discuss our investigation

on designing and implementing PR-style designs for domain-specific acceleration. Specifically, we present the

design and implementation of a soft-logic-realized framework for accelerating computer vision applications

with real-time performance requirements (30+ fps). Computer vision is picked as an example domain that

can benefit from PR since many vision applications can (1) be accelerated by streaming pipelines, and

therefore, benefit from FPGA acceleration, (2) are deployed on systems with limited area, power or energy
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budget, and (3) have slack and tolerance for current DPR overhead. We explain in more details the latter

point in Chapter 5.

In the framework, vision tasks can spatially and temporally share the FPGA. Spatial sharing means that

multiple tasks can be mapped and executed simultaneously on the FPGA. Temporal sharing means that

different tasks can be reprogrammed over time. The framework has the following components:

• a plug-and-play architecture with multiple PR regions that communicate with each other and the rest

of the system via a static I/O infrastructure,

• a runtime system which manages the reprogramming of the FPGA with tasks specified in an application

code. In our implemented prototype, the runtime system and the application code both run on an

embedded CPU.

• a module library which contains pre-built modules that are used to reprogram the PR regions.

While most works use PR at a coarse grain (hours or days between reconfigurations, for instance, in a

“role-and-shell” approach) due to the significant reconfiguration time on today’s FPGAs, we further explore

a more aggressive, fine-grain use of PR (few milliseconds between reconfiguration) referred to as real-time

time-sharing. In real-time time-sharing, multiple vision pipelines can round-robin execute in the time scale

of camera frame (16.7 ms): in 16.7 ms, multiple pipelines are reconfigured on the FPGA and each pipeline

processes one frame. To support such an aggressive PR usage, the framework includes the necessary archi-

tectural and runtime mechanisms for hiding, amortizing, and reducing the reconfiguration time.

PR Benefits Evaluation and Projection. Using the framework, we implement PR-style designs for

accelerating vision applications to: (1) demonstrate that real-time time-sharing is feasible despite the non-

trivial reconfiguration time on today’s FPGAs. By designing the appropriate architectural and runtime

strategies to mitigate PR time, we show that multiple pipelines can be real-time time-shared and achieve

useful performance (30+ fps). (2) quantify the area/device cost, power and energy benefits of PR-style

designs relative to ASIC-style designs and software implementations in case studies of implemented designs.

Notably, we demonstrate that using PR at fine-grain can be beneficial in terms of area/device cost, power

or energy even when most of the execution time is spent reconfiguring the fabric.

We conduct a limit study to further our understanding of the costs and benefits when doing real-time

time-sharing, and notably, make projections for higher PR speeds. Real-time time-sharing serves as a proxy

for very aggressive, fine-grain PR usages that can be highly beneficial in terms of area/device cost but also
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incur the most overhead in terms of time and power/energy due to (1) the very frequent reconfigurations,

(2) the difference in clock frequency compared to an ASIC-style design to compensate for PR time, and

(3) the additional data movement required compared to an ASIC-style design (to fetch the PR bitstreams

and to load/store intermediate data from/to off-chip memory). In this study, we highlight the importance

of accounting for the power/energy overhead when using PR at a very fine-grain for a fair comparison be-

tween PR-style and ASIC-style designs. While the area/device cost efficiency of a PR-style design grows

with increased PR speed, we demonstrate that a PR-style design can be less power/energy efficient than

an ASIC-style design due to the power/energy overhead incurred when using PR. This finding emphasizes

the importance of developing analytical models and performing preliminary analyses to gain a better under-

standing of the potential costs and benefits of a PR-style design prior to implementing a physical solution.

1.3 Contributions

The work of this thesis explores the questions of when, how, and why FPGA designers should consider using

PR. Specifically, the contributions are as follows:

• We identify slack as an opportunity that can be exploited by PR-style designs to improve upon ASIC-

style designs. Slack occurs when some occupied resources in a design are not active all the time due

to hard-to-avoid sources of inefficiencies (e.g., operation dependencies, pipeline imbalancing).

• We develop a set of PR execution strategies to reduce slack in ASIC-style designs and improve a design’s

performance or area. We also propose an analytical model to help the designer choose the best PR

execution strategy for a given problem and evaluate whether a PR-style design is more beneficial than

an ASIC-style design.

• We develop a soft-logic-realized framework for spatial and temporal sharing of the FPGA by multiple

computer vision tasks. The framework includes the necessary architectural and runtime management

strategies to support coarse and fine-grain temporal sharing. Notably, we investigate a specific fine-

grain usage of PR referred to as real-time time-sharing. In real-time time-sharing, multiple vision tasks

are reconfigured on the FPGA and each pipeline processes one frame in the time-scale of a camera

frame.

• Using the framework, we design and implement application examples to (1) demonstrate the feasibility
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of real-time time-sharing despite the non-trivial PR time on today’s FPGAs and (2) quantify the

area/device cost, power and energy benefits of PR-style designs relative to ASIC-style designs and

software implementations. Notably, we show that a PR-style design can be more power/energy efficient

than an ASIC-style design even when most of the execution time is spent on fabric reconfiguration in

a case study.

• We also make projections on the benefits and costs of doing real-time time-sharing with faster PR.

While faster PR results in greater area/device cost efficiency, the power/energy overhead of a PR-style

design can outweigh the benefits of using a smaller FPGA.

1.4 Thesis Outline

The remainder of this thesis is organized as follows. Chapter 2 provides background information on the

architecture of an FPGA and partial reconfiguration. Chapter 3 discusses the terminology used in this

thesis and presents the insights behind why a PR-style design can be faster or smaller than an ASIC-

style. Chapter 4 presents the PR execution and allocation strategies for developing efficient PR-style designs

and explains our analytical model. Chapter 5 presents our soft-logic-realized framework for accelerating

computer vision applications and details the architectural and runtime mechanisms to support real-time

time-sharing. Chapter 6 presents our quantification on the area/device cost, power and energy benefits of

PR-style designs relative to ASIC-style designs for applications built on top of our framework. Chapter 7

discusses the potential cost and benefits of having faster PR. Chapter 8 discusses related work. Finally,

Chapter 9 presents concluding remarks and future directions.
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Chapter 2

Background

This section first covers the basic architecture of an FPGA before discussing the motivations behind using

an FPGA for computing. Finally, we explain the PR design flow in more details.

2.1 FPGA Architecture

Field Programmable Gate Arrays (FPGAs) are semiconductor devices built off arrays of lookup table (LUT)-

based blocks referred to as configurable logic blocks (CLBs) [91] or arithmetic logic modules (ALMs) [43] in

Xilinx and Intel terminology, respectively (Figure 2.1). CLBs and ALMs consist of lookup tables (LUTs),

registers, and multiplexers, and are integrated with other components on an FPGA, such as embedded

memory blocks, embedded digital signal processing (DSP) blocks, via programmable interconnect. Embedded

memory and DSP blocks are typically organized in columns and interleaved in a specific pattern depending

on the target FPGA. An FPGA fabric is subdivided into multiple regions called clock regions or sectors

(terminology specific to Intel Stratix 10 FPGAs) in Xilinx or Intel’s terminology, respectively. Clock regions

may contain a different amount and type of resources depending on the target FPGA. The distribution of

resources (LUTs and hard blocks) on the fabric is not necessarily uniform. On the other hand, sectors are

homogeneously-sized, that is, they contain the same amount and type of resources.

After the device has been manufactured, FPGA hardware resources can be reconfigured to implement

different functions by modifying the content of the FPGA configuration memory made of volatile memory

cells (mostly static random access memory(SRAM)-based). The configuration memory is organized into

an array of configuration frames which are the smallest addressable segments of the FPGA configuration
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Figure 2.1: A typical FPGA architecture is comprised of two layers: a hardware logic and a configuration

memory layer.

memory. Reconfigurable frames are built from a discrete number of configuration frames. A reconfigurable

frame represents the smallest reconfigurable region within an FPGA. In Xilinx devices, a reconfigurable frame

is one element (CLB, block RAM, DSP) wide by one clock region high [93]. The number of resources in these

frames vary by device family [93]. Please refer to [93] for more detailed information, rules and restrictions.

Data written to the configuration memory cells is contained in a bitstream file generated at design time.

A bitstream contains all the necessary information to specify how logic resources available (CLBs, on-chip

memory blocks, DSP blocks, routing resources) on the FPGA should be configured to execute a given

functionality.

2.2 ASIC-Style Design for Computing

The features of post-manufacturing programmability differentiate FPGAs from Application Specific Inte-

grated Circuits (ASICs), which are hardened for application specific functions. General-purpose processors

rely on a fixed architecture support to deliver software-based programmability through a set of instructions.

In other words, instructions are scheduled to execute on a fixed number of compute units and leverage a fixed

caching architecture that can not be changed post-manufacturing. In contrast, FPGAs’ reprogrammability

is hardware-based and allows to create application-specific architectures by reconfiguring the available logic

and routing resources. As transistors are directly used to accelerate application-specific computations, using
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an FPGA may provide better silicon area utilization, potentially leading to improved performance and/or

greater area, power and energy efficiency.

With the computing industry’s need for more energy-efficiency than software can achieve and, at the

same time, more flexibility than ASICs, there is a growing emphasis on deploying FPGAs for domain-

specific acceleration [35,38,45]. FPGAs have been proven particularly beneficial for accelerating streaming

computations when data is produced at a given rate by an off-board source and is directly streamed to

the FPGA for processing (e.g., video analytics or network function processing). We are also starting to

see FPGAs’ post-manufacturing programmability being recognized as a deciding feature in selecting FPGAs

over ASICs, for instance, in the data centers by the industry’s largest players [9,12,68].

2.3 Partial Reconfiguration

The discussion of PR in this section is based on the Xilinx PR flow [93].

Partial Reconfiguration (PR) allows some regions of the FPGA fabric, referred to as PR regions or

reconfigurable partitions (RPs), to be reprogrammed at runtime [93]. At design time, the FPGA needs

to be partitioned in (1) a non reconfigurable region that typically includes the I/O infrastructure, and (2)

one or multiple PR regions that can be reprogrammed individually at runtime. Each PR region can be

reprogrammed with partial bitstreams built for this region at design time to accelerate specific functions.

Static Region and Reconfigurable Partitions. The cartoon in Figure 2.2(a) depicts an FPGA fabric

organized into a top-level static region enclosing a runtime reconfigurable region subdivided as two recon-

figurable partitions. In Xilinx environment, a reconfigurable partition appears in the top-level design as a

“black-box” submodule with know I/O ports but opaque internals. In Figure 2.2(a), the two reconfigurable

partitions are shown to have the same port list, simply A and B in this toy example. A reconfigurable

partition can have an arbitrary rectilinear outline and can cross clock regions. Resources enclosed within

the outline (e.g., LUTs, BRAM blocks) are part of the reconfigurable partition and can be reprogrammed

at runtime.

Build Flow. At design time, the locations of the PR region I/O pins, the port nets, and the physical

boundary of the static and PR regions are fixed. The net for a port (whether input or output) terminates

at a reserved interface point called partition pin. Partition pins are automatically created and placed by the

tool when defining a reconfigurable partition. It is also possible for the designer to change the location of the

partition pins. These virtual I/O are established within interconnect tiles as the anchor points that remain
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Figure 2.2: An FPGA fabric organized into a top-level static region enclosing a runtime reconfigurable

region subdivided as two reconfigurable partitions. The partition pins in (a) have been arbitrarily placed;

the partition pins in (b) have been placed deliberately.

consistent from one module to the next. No physical resources such as LUTs or flip-flops are required to

establish these anchor points, and no additional delay is incurred at these points [93]. In Figure 2.2(a), the

partition pins A and B are shown as to have been placed arbitrarily by the tool. The figure also shows the

placed-and-routed nets that connect the partition pins out to the static region. Figure 2.2(b) shows another

version where the partition pins have been deliberately placed during floorplanning.

Bitstream Versions. In addition to defining a layout for the fabric at design time i.e. determining

the number, shape and size of reconfigurable partitions), modules are synthesized and placed & routed

for the reconfigurable partitions. Any module compiled at design time can be separately mapped in a

specific reconfigurable partition if the module satisfies two requirements (1) the module has matching I/O

interfaces with the reconfigurable partition (same I/O ports) and (2) the module consumes less resources than

available in the reconfigurable partition. When a module can be placed in multiple RPs, the module needs

to be separately placed-and-routed for the different RPs to produce non-interchangeable, partition-specific

versions of bitstreams.

Reconfiguring at Runtime. At runtime, the reconfiguration of a reconfigurable partition can be initiated

from outside the FPGA (e.g., an external CPU), by logic on the fabric, or by an embedded processor. The

set of partial bistreams compiled at design time constitutes a module library that can be stored in on-chip or

off-chip memory at system boot-up (e.g., from BRAM, DRAM or flash). To reconfigure an RP, the module

is paused (all incoming and outgoing traffic is stopped); the incoming partial bitstream is loaded from the

storage medium and passes through a PR interface to reprogram the PR region; finally, the new module is

started. A PR interface is essentially a gateway to the configuration memory cells. Different PR interfaces

are available on Xilinx Zynq FPGAs such as the processor configuration access port (PCAP) or the internal

configuration access port (ICAP) depending on whether the reconfiguration process is triggered from a hard
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embedded processor or from logic on the fabric, respectively. On Intel Stratix 10 FPGAs, reconfigurations

occur through the secure device manager (SDM). Note that, in this work, our PR-style designs are deployed

on Zynq SoC FPGAs with embedded ARM cores. PR is managed by software running on the ARM core

and bitstreams are held initially in flash, and loaded into DRAM for use at system boot-up.

While one reconfigurable partition is undergoing reconfiguration, the logic on the rest of the fabric is not

affected except the portions that interact directly with the reconfigurable partition’s input/output ports. The

disruption during PR must be accounted for explicitly by the enclosing design with the help of auxiliary status

signals that indicate the readiness of the PR module. The minimum time to reconfigure a reconfigurable

partition is on the order of milliseconds. The total time is a function of the size of the loaded bitstream. For

standard PR (uncompressed bitstreams), the bitstream size is a function of the reconfigurable partition size

regardless of the actual degree of resource utilization within.

In summary, building an efficient PR-style design requires to find (1) a good partitioning on the FPGA

at design time, that is, decide on the number, the size and the connectivity between PR regions. Note

that it is not necessary that all the reconfigurable partitions be the same size. For example, if the module

workload mix is known ahead of time, one could improve mappability by creating asymmetrically resourced

reconfigurable partitions tuned to the module workload at design time. For example, one would want to

allocate reconfigurable partitions to be large enough for the largest required module or combination of

modules. In other words, a PR-style design can consist of few large PR regions, many small PR regions, or

a mix of small and large PR regions depending on the use-case. (2) a good allocation and execution strategy

to allocate modules to PR regions and an execution time-slot, respectively. The module-to-RP and time-slot

allocation can be managed by an external processor, an embedded processor, or logic on the fabric. The

allocation strategy can be decided offline or online depending on the use-case.
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Chapter 3

The incentives for using PR

This chapter first presents the terminology used in the remainder of the thesis. We then further elaborate

on the concept of slack which we find to be the most important feature to have for an application to benefit

from PR. Finally, we introduce a simplified analytical model and the area-time volume representation of an

FPGA to explain the intuitions behind how PR can reduce slack and improve a design’s performance or

area. The next chapter continues with a more complete examination of the model.

3.1 Terminology

Application and Task Model. We refer to an application as a set of independent tasks. A task is

modeled as a directed graph where nodes are processing stages, and edges represent stage dependencies.

Each processing stage is accelerated on the FPGA by a micro or a macro hardware module that includes

the necessary FPGA logic, hardened compute blocks and memory resources. Micro hardware modules

accelerate processing stages that typically have low or medium compute complexity including linear algebra

computations on (1) single data elements (e.g., scaling, threshold operations), (2) a small neighborhood of

data elements (e.g., 2D stencil-based operations such as 2D convolutions) and (3) a large region of data

elements (e.g., matrix-matrix multiplications). Macro modules are built with many micro modules and

accelerate multiple processing stages at a time or even an entire task (e.g., stereo vision or optical flow

computation). More examples of micro and macro modules are given in Section 5.3.4 of Chapter 5. In

the remainder of the thesis, we do not make a distinction between micro or macro hardware modules, and

generally refer to a micro or a macro module as a hardware module. A module can be reconfigured in a PR
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Figure 3.1: Example of an application with two independent tasks task0 and task1 accelerated on an FPGA.

task0 has two stages accelerated by dependent modules that share data through external memory .task1 has

three stages accelerated by dependent modules that share data through on-chip connections.

region as long as it has the same set of I/O ports and uses less resources than available in the PR region.

Modules have multiple Pareto-Optimal implementation variants with different performance-area trade-

offs, e.g., the larger the variant, the faster it is. Figure 3.1 shows an example of an application with two

independent tasks task0 and task1 accelerated on the FPGA. task0 has two processing stages and task1 has

three processing stages. Dependent modules in task0 share data through external memory while dependent

modules in task1 share data through on-chip memory connections.

ASIC-Style and PR-Style Designs. When we say that an application is accelerated on the FPGA,

we mean that all tasks supported by the application are accelerated on the FPGA. We refer to the FPGA

implementation of the application as an FPGA design. When we say that an application is mapped statically,

we mean that the design does not use PR, and we refer to it as an ASIC-style design. On the other hand,

when using PR to implement the application, the design is referred to as a PR-style design. In a PR-

style design, the fabric is divided into multiple PR regions or reconfigurable partitions (RP). The time to

reconfigure a PR region is referred to as reconfiguration time or PR time.

3.2 Reducing Slack for Design Optimization

3.2.1 Slack: Inefficiency in ASIC-Style Designs

In our work, we found that applications that most benefit from PR are the ones for which the ASIC-style

implementation has slack. Slack occurs when logic resources occupied by the ASIC-style design are not
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Figure 3.2: Example of an interactive application with slack deployed on an automotive system. In an

ASIC-style design, some of the occupied resources are not active all the time since only a subset of tasks

(tasks are shown in red) is requested by an user at a time depending on the external environment (city or

highway & day or night).

actively utilized 100% of the time. Slack stems from hard-to-avoid sources of inefficiencies (e.g., operation

dependencies, pipeline imbalancing) and can therefore be considered as inefficiency in a design. An example

of an application with slack is shown in Figure 3.2. In this interactive application deployed on an automotive

system, many tasks need to be accelerated on the FPGA but not of all them are needed at the same time.

The subset of tasks needed at a given time is requested by the user depending on the environment (city or

highway & day or night). Therefore, when mapping this application on the FPGA in an ASIC-style fashion,

not all logic resources occupied by the design are actively utilized all the time. Instead of mapping this

application statically on a possibly large FPGA, tasks could be temporally shared on a smaller FPGA with

PR resulting in a reduction of device cost, and potentially, power and energy. In this work, we mostly focus

on using PR for area, device cost, power or energy reduction. Another option is to use PR to execute more

tasks than could be statically mapped on a given FPGA size (by swapping inactive tasks with active ones).

In the rest of this section, we use another simplified and idealized example to develop the intuitions

behind how a PR-style design can either be (1) smaller while running at the same performance or (2) faster

using the same area compared to an ASIC-style design with slack. Chapter 4 will present a more complete
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Figure 3.3: In an ASIC-style design, logic resources that are inactive must still occupy the fabric. In a

PR-style design, slack can be reduced with better area-time scheduling.

model.

3.2.2 Partial Reconfiguration to Improve Performance or Area

Simplified Execution Model. We consider an application with a single task that has two dependent

stages, stageA and stageB . Each stage is accelerated by a module for which multiple implementation variants

exist. Each implementation variant is characterized by the latency function Lati(). Lati(a) is the latency

achieved by the module variant for stagei using a logic resources. For a given stagei, larger variants have

lower latency i.e., Lati(a)<Lati(b) if a > b. stageB can start only after stageA is finished. Each stage runs

once per execution of the application. The latency of the application is the sum of the two dependent stages’

latencies.

ASIC-Style Design. Consider two common design objectives: (1) minimize latency given an area bud-

get, or (2) minimize area given a latency upper bound. For simplicity, assume LatA(a)=LatB(a) for any a.

In that case, to achieve optimality in either objective, the total logic resources, Atotal, must be equally

divided between stageA and stageB ’s modules (AA=AB=0.5Atotal). The latency of the application is

2LatA/B(0.5Atotal). Solving either optimization scenarios repeatedly for different latency or area targets

will produce a set of ASIC-style implementations that trade off latency against logic resources. Starting

from this, we ask the question: can a PR-style design improve over the Pareto front of an ASIC-style design?

PR-Style Design. The above scenario for the ASIC-style design is shown in Figure 3.3.a. In this area-time

volume representation of the FPGA, the fabric area is 100% occupied by the modules for stageA and stageB .
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However, due to the dependency between the two modules, only one of the two modules is active at a time.

In other words, the ASIC-style design has slack since some resources available to the design are not active

all the time. In the area-time volume view, we see there are slack volumes when a module is idle i.e. when

resources are occupied but not used.

In contrast to an ASIC-style design where resource allocation cannot change over time, it is possible to

reduce slack with better area-time scheduling in a PR-style design. Therefore, a PR-style design may be

able to achieve a smaller area-time volume by being faster, by using fewer resources, or both. For instance,

to minimize latency given the same area budget, we can allocate the entirety of Atotal to a module for

stageA first and then to stageB (Figure 3.3.b). By doing so, the PR-style design’s latency is reduced as both

modules now run faster using all the resources available. On the other hand, a PR-style design can maintain

the same latency using half the resources by allocating 0.5Atotal to a module for stageA first and then to

stageB (Figure 3.3.c). With slack reduced, both PR-style designs fit into smaller area-time volumes than the

ASIC-style design. Notice in Figure 3.3.b and Figure 3.3.c, a small amount of slack appears when switching

between modules to reflect the non-zero delay to perform PR. The full model in Chapter 4 will account for

the effect of PR time.

Other Forms of Slack. In the area-time volume representation, slack represents inefficiency. In ASIC-

style designs, slack stemming from module dependencies cannot be eliminated without changing the initial

algorithm or implementation; it is a consequence of statically allocating resources. We find that reducing

slack is the most important opportunity for improvement available to PR-style designs. Slack can arise in

other forms in ASIC-style designs.

In our simplified example, we assume that module variants exist for any amount of resources. In practice,

module variants for a stage only exist at certain performance/resource combinations. The modules selected to

fit an area budget in an optimal ASIC-style design may not sum up perfectly to use all the resources. Further,

when the modules of stageA and stageB are executed in a pipelined fashion to improve the throughput of many

independent executions, it may not be possible to always find equal throughput variants for the two stages;

in the resulting unbalanced pipelines, a too-fast stage has to stop or slow down to wait for the other stage.

A more subtle example of slack exists when implementing a generic engine capable of accelerating different

algorithms or neural networks. This generalized engine consists of a superset of features to accommodate all

possibilities but only a subset of features is needed at a time (e.g., NPU [27], DPU [95]). A PR-style design

could potentially reduce this type of slack (only the variant needed at a time occupies the fabric).
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Chapter 4

Analytical Approach to PR

This chapter discusses different PR execution strategies to design area-efficient PR-style designs and presents

our complete analytical model briefly introduced in the previous chapter.

4.1 Overview

Optimization Goals. To derive our performance model, we consider the problem of maximizing an appli-

cation’s performance given an area budget.

• minimize the application’s latency given an area budget A. We label this problem as min L given A.

• maximize the application’s throughput given an area budget A. We label this problem as max T given

A.

Execution Model. Table 4.1 lists all the parameters used in our model. In this chapter, an application

consists of a single task with N dependent stages; each stage is accelerated by a module. Dependent modules

share data either through external or on-chip memory depending on data size. Though our discussion focuses

on tasks with dependent stages, our model also applies if stages are independent. A single start-to-finish

execution of a module is referred to as a run. If a task requires multiple independent runs, modules can

execute concurrently. Figure 4.1 illustrates this execution model. The example application consists of three

dependent stages stageA, stageB , and stageC accelerated by three modules. In this application, each module

needs to complete three runs R0, R1, and R2. Modules execute concurrently to complete the runs as quickly

as possible, subject to the dependency constraints.
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Table 4.1: Model parameters.

A Area budget

N Number of stages in a task

P Performance

L Latency

T Throughput

B Batch size

R Execution run

M Module

ai Area of module variant accelerating stagei

Lati() Latency of module variant accelerating stagei

Tputi() Throughput of module variant accelerating stagei

TimePR() Time to reconfigure a PR region

F Scaling factor

BWi Memory bandwidth requirement of the module variant that accelerates stagei

BWtotal Total memory bandwidth available

Figure 4.1: Example timeline of an application with three dependent stages accelerated by modules MA,

MB , and MC .

We consider two performance metrics, latency and throughput. Latency is defined as the start-to-finish

time required for all modules accelerating a task to complete one run (including I/O time for data read

and write and compute time). Throughput is defined as the number of runs completed per unit time in

steady-state.

Performance-Area Trade-offs. For each module, a finite set of implementation variants exists. A variant

accelerating stagei is characterized by its area ai, its latency Lati(ai), and its throughput Tputi(ai) as

functions of area. We assume that Lat∗ and Tput∗ are monotonically increasing functions but make no

further assumption on their shape, e.g., performance can scale sub-linearly or linearly with area.
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Figure 4.2: In an ASIC-style design, dependent modules share data through either external (blue) or on-chip

memory (orange) depending on data size.

PR-Style Design Considerations. We define TimePR(a) as the time to reconfigure a PR region of size

a, and assume that PR time is proportional to the PR region size.

4.2 ASIC-Style

We first derive the equations for the ASIC-style design that are applicable whether dependent modules share

data through external or on-chip memory (Figure 4.2). In both cases, the number of buffers required to hold

intermediate data is N + 1. In all equations, we define I as the set of subscripts for stages in the task.

Min L Given A. Let LatAsic(A) be the latency of the ASIC-style design given A resources.

LatAsic(A) =
∑
i∈I

Lati(ai),
∑
i∈I

ai ≤ A (4.1)

Max T Given A. Let TputAsic(A) be the throughput of the ASIC-style design given A resources.

TputAsic(A) = min({Tputi(ai) | i ∈ I}),
∑
i∈I

ai ≤ A (4.2)

4.3 PR-Style

4.3.1 Ignoring PR Time: PR-Style Performance Bounds

Ignoring PR time, we first derive the lower and upper bounds on the latency and throughput, respectively,

achievable by any PR-style design presented in the next subsections. The simplest and most efficient execu-

tion strategy is to schedule stages serially on one PR region. Each module runs once before the PR region

is reconfigured with the next module. In the best-case scenario, the PR region is of size A and the highest

performance variant using A resources exists for all modules.
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Figure 4.3: Example of serialized execution in a PR-style design with one PR region when batching (B = 3).

Min L Given A. Let LatPR,1,min(A) be the lower bound on latency for the PR-style design with one PR

region.

LatPR,1,min(A) =
∑
i∈I

Lati(A) (4.3)

Max T Given A. Let TputPR,1,max(A) be the upper bound on throughput for the PR-style design with one

PR region.

TputPR,1,max(A) =
1∑

i∈I

1
Tputi(A)

(4.4)

4.3.2 Including PR Time: Serialized Execution on one PR Region

When accounting for PR time and scheduling stages serially on one PR region, each module runs once before

the PR region is reconfigured with the next module. Given N stages, the PR region is reconfigured N times.

Compute and reconfigurations are serialized.

Min L Given A. Let LatPR,1(A) be the latency of the PR-style design with one PR region.

LatPR,1(A) =
∑
i∈I

Lati(ai) + N × TimePR(A) (4.5)

Scheduling stages serially on one PR region of the largest size may not result in the design’s minimum

latency. Though using larger variants leads to a decrease in compute time, it also has the effect of increasing

PR time, which may offset the speedup benefit of larger variants. In the next subsection, we discuss a

scheduling alternative where compute and reconfigurations are overlapped.

Max T Given A: Batching to Amortize PR Time. Let TputPR,1(A) be the steady-state throughput

of the PR-style design with one PR region.

TputPR,1(A) =
1∑

i∈I

1
Tputi(ai)

+ N × TimePR(A)
(4.6)
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Figure 4.4: Interleaved execution on two PR regions. PR time can be hidden by overlapping compute and

reconfiguration.

If PR time is non-trivial compared to compute time, we can amortize PR time by executing each module

B times (i.e. batching B runs) before reconfiguring the PR region (Figure 4.3). Let TputPR,1(A) be the

steady-state throughput of the PR design with one PR region when batching runs.

TputPR,1(A) =
B∑

i∈I

B
Tputi(ai)

+ N × TimePR(A)
(4.7)

Batching allows us to reduce the ratio of total PR time to total compute time at a greater resource cost

to buffer intermediate results. Given enough buffering capacity, PR time can be almost totally amortized

for large enough B.

4.3.3 Including PR Time: Special Cases

Min L Given A: Interleaved Execution on Two PR regions. When optimizing for latency, interleaving

stage execution on multiple PR regions allows us to overlap reconfigurations and compute to hide PR time,

which may result in better latency than serializing stage execution on one PR region. Figure 4.4 shows

an example of interleaved execution for k = 2. In this example, TimePR(A/2) = Lati(ai),∀i ∈ I. By

overlapping compute and reconfigurations, PR time is completely hidden. Having k > 2 may be beneficial

provided that multiple PR regions can be reconfigured simultaneously. Simultaneous reconfiguration of

multiple PR regions is not supported from a user standpoint using current FPGA tools and PR flow. In this

work, we only consider the case where k = 2, and define LatPR,2(A) as the latency of the PR-style design

with two PR regions.

LatPR,2(A) =
∑
i∈I

max(TimePR(A/2),Lati(ai)) (4.8)
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Figure 4.5: The strategy for choosing module variants depends on the design objective: (1) maximize

performance (P) given an area (A) budget or (2) minimize area given a performance bound. Example for

the three-stage task accelerated by modules MA (red), MB (green), and MC (blue) shown in Figure 4.2.

Max T Given A: Serialized Execution on k PR regions. When optimizing for throughput, it is

generally preferable to choose the smallest k to reduce a design’s complexity in terms of buffering management

since each PR region requires its own intermediate buffer. A k-PR region solution should be considered when

appropriately large module variants are not available for all modules in a single PR region solution.

When having multiple PR regions executing in parallel (similar to k-way SIMD), stage execution can be

serialized on each PR region of size A/k. On each PR region, each module runs once or multiple times before

the PR region is reconfigured. Let TputPR,1(A/k) be the steady-state throughput of a single PR region of size

A/k and TputPR,k(A) be the steady-state throughput of the PR-style design with k PR regions. Assuming

that k reconfigurations can occur simultaneously,

TputPR,k(A) = k × TputPR,1(A/k) (4.9)

As explained previously, only one reconfiguration can happen at a time using current tools. The above

throughput can still be achieved by offsetting the start of compute on each PR region by a sufficient number

of PR times to ensure that two PR regions are not reconfigured simultaneously.

4.3.4 PR Strategies to Minimize Area Given a Performance Bound

Serialized Execution on one Small PR Region. To derive the model, this chapter focuses on the

problem of maximizing performance given an area budget. Another important design goal that we investigate

in this work is to minimize area given a performance bound. This latter objective is most relevant for

applications that are primarily concerned with efficiency rather than maximum performance (e.g., video
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analytics, image processing applications). Depending on the design objective targeted, the strategy for

picking module variants differs. In the case of maximizing performance given an area budget, the best

strategy is to schedule tasks serially on one large PR region and pick the largest module variants available.

In the case of minimizing area given a performance bound, the best strategy is to schedule tasks serially on

a small PR region and pick the smallest module variants available. Figure 4.5 illustrates these two strategies

using the example application shown in Figure 4.2.

Slack From Higher Clock Frequency Than Needed. When minimizing area given a performance

bound, the best-effort ASIC-style design uses the smallest module variants operating at the required fre-

quency to achieve the desired performance. The ASIC-style design’s operating frequency may be less than

the maximum achievable frequency. If the ASIC-style ran faster than needed (i.e. if it was clocked at the

maximum achievable frequency), the design would have slack since occupied resources would not be active all

the time. This form of slack can be leveraged by a PR-style design that should use the smallest module vari-

ants operating at a higher frequency than the ASIC-style design to compensate for PR time. If the PR-style

design does not run at the desired performance using the smallest variants operating at the maximum clock

frequency, the variants’ size should be increased incrementally until the target performance is achieved. Note

that the same latency and throughput equations presented in the previous sections of this chapter can be

used for the problem of minimizing area given a performance bound. The techniques discussed to amortize

or hide reconfiguration time also remain relevant.

Example Applications. Some examples of real-world applications in which the objective is to meet a

performance target subject to area, power or energy constraints include video analytics, interactive and

robotic applications. In these applications, data is produced by an input source running at a fixed rate,

and the processing pipeline runs at a rate equal or greater than the input source. For instance, in a video

analytics application, the input source is a camera, and the processing pipeline can operate at a rate equal

or greater than the camera’s rate. In a robotic application, a robot needs to process events in a given time

frame, and not necessarily as fast as possible, i.e. there is a latency upper bound to process an event. In

these examples, the objective is not to maximize performance but rather to minimize metrics such as area,

cost, power or energy while meeting latency or throughput requirements. Chapter 5 discusses in greater

details the practical challenges and benefits of using PR for these types of applications.
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4.3.5 Memory Requirements in PR-style designs

In this section, we discuss the buffering and memory bandwidth requirements of a PR-style design. Compared

to an ASIC-style design, a PR-style design requires additional buffering capacity for batching and additional

external memory bandwidth when faster module variants are used. A module variant is faster if it uses more

resources and/or operates at a higher clock frequency. For the Max T Given A problem, we also model

the impact of limited memory bandwidth on throughput.

Buffering Requirement. In a PR-style design, each PR region requires two intermediate buffers to hold

its intermediate input and output data. The intermediate buffers can be stored in on-chip or off-chip

memory depending on the data size. The on-chip buffering option is preferred to minimize the latency

and power/energy for data movement. In practice, when batching to amortize reconfiguration time, the

buffering capacity required by a PR-style design exceeds the amount of on-chip memory available on current

FPGAs (few MBs on large FPGAs). The amount of data to buffer can range from tens to hundreds of MBs

depending on the use-case. We quantify this surplus in the next section. Chapter 7 discusses the additional

power/energy overhead in a PR-style design due to additional data movement to/from on-board external

memory.

If the intermediate buffers are stored in on-chip memory, additional architecture support is needed so

that the output of the upstream module stored on chip is used as the input to the next module. One

possible solution is to design an intermediate on-chip memory controller to connect the PR region to the

intermediate buffers instead of having static, direct connections between the PR region and the buffers.

The on-chip memory controller fetches the data from the appropriate intermediate buffer to send to the PR

region, and writes the output from the PR region to the appropriate buffer.

Max T Given A: Memory Bandwidth Requirement. When maximizing throughput given an area

budget, the best strategy is to serialize module execution on one PR region. An upper bound on the memory

bandwidth required by the PR-style design can be determined by considering the read and write bandwidth

required by the fastest variant in the design i.e. the variant with the highest throughput.

When the memory bandwidth required by the variant is greater than the total memory bandwidth

available in the system, the variant throughput is going to be degraded by some factor proportional to

the memory bandwidth required. We introduce a scaling factor F to model the impact of limited memory

bandwidth on a variant’s throughput. F is equal to the ratio of memory bandwidth required by the variant

to the memory bandwidth available in the system if the bandwidth required by the variant is greater than
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Table 4.2: Resource utilization of the two PR-style designs P1 and P2 post place & route on the Ultra96

v2 board at 150 MHz. In both designs, most resources are spent for compute. In P2, the PR regions are

almost equally-sized.

P1 (1 PR region) P2 (2 PR regions)

I/O infrastructure PR region Total I/O infrastructure PR region 0 PR region 1 Total

LUT 3366 (4.8%) 61,920 (87.8%) 65,286 (92.5%) 5231 (7.4%) 28,800 (40.8%) 30,240 (42.9 %) 64,271 (91%)

BRAM36Kb 0 198 (91.7%) 198 (91.7%) 0 108 (50%) 108 (50%) 216 (100%)

DSP 0 288 (80%) 288 (80%) 0 144 (40%) 216 (60%) 360 (100%)

PR time (ms) N/A 12 N/A N/A 6 6 N/A

the bandwidth available. Otherwise, F is equal to 1. Let Tputi,peak(ai) be the peak throughput of the

module variant that accelerates stagei, BWi the bandwidth requirement of the variant, and BWtotal the

total bandwidth available in the system.

Tputi(ai) = F × Tputi,peak(ai), F =


BWi/BWtotal, if BWi > BWtotal

1, otherwise

(4.10)

We can replace this expression of Tputi(ai) in the throughput equations presented in this section.

4.4 Evaluation

4.4.1 Experimental Setup

We develop three compute-bound applications representative of real-world applications with cost constraints

[36,54,79]. For all studies, we use a low-end FPGA board (Ultra96 v2) with a XC7ZU3EG Zynq part

that has 70,560 LUTs, 216 BRAMs and 360 DSPs. These studies serve as concrete examples of ASIC-

style designs with slack (due to module dependencies or modules having mismatched throughput). Each

application consists of three dependent stages, with some stages being more compute intensive than others,

which perform common vision processing such as detection or classification. Dependent modules share data

through external memory since the amount of on-chip memory on the Ultra96 is not sufficient to hold the

inter-module buffers in on-chip memory. Note that having more stages per application would favor PR-style

designs, since the length of the dependency chain would increase. In other words, we choose to focus on

more challenging design scenarios (shorter pipelines).
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Figure 4.6: Three PR-style designs are considered in these studies: (a) P1 with a single large PR region on

which stages are scheduled sequentially, (b) P2 with two almost equally-sized PR regions on which stages

are executed in an interleaved fashion, and (c) P1,s with a single smaller PR region (one PR region of P2)

on which stages are scheduled sequentially.

Design Scenario. In the studies, we solve the max T given A and min L given A problems from Section

4, and also consider the problem of minimizing area given a latency upper bound, which we refer to as given

L min A. Using our model, we search the design space to find the best-achievable ASIC-style and PR-style

designs for a given problem. The best-achievable design consists of the set of module variants resulting in

the design’s maximum throughput, minimum latency or minimum area possible given the module variants

available. We use Vivado 2019.1 to build our designs [94].

PR-Style Designs. Figure 4.6 shows the three PR-style designs we consider in these studies: (1) P1 with

a single large PR region on which stages are scheduled sequentially, (2) P2 with two almost equally-sized PR

regions on which stages are executed in an interleaved fashion, and (3) P1,s with a single smaller PR region

(one PR region of P2) on which stages are scheduled sequentially. Table 4.2 reports the resource utilization

of P1 and P2 (the PR region of P1,s has the same size as PR region 1 of P2) on the Ultra96 v2 board at

150 MHz. In both designs, most resources on the Ultra96 v2 are used for compute. The time to reconfigure

a PR region through the processor configuration access port (PCAP) when partial bitstreams are stored in

external DDR is 12 ms (partial bitstreams of 5.5 MB for P1) and 6 ms (partial bitstreams of 2.8 MB for

P2). We use one ARM core to manage the operation of the fabric at runtime (i.e. reconfiguration of the PR

regions and module execution). PR bitstreams are stored into on-board external DDR.

When optimizing for latency, we report the latency of P1, P1,s, and P2 whenever possible. We refer to

latency (or frame latency) as the time to process one input frame by the application, i.e. the time it takes

for each module to run once. When optimizing for throughput, we report the throughput of P1 for different

batch sizes B. In the context of our studies, the input to an application is a frame. When B > 1, the module

27



Figure 4.7: Module variant throughput vs area (LUT, BRAM36k and DSP) post place & route on the

Ultra96 v2 board at 150 MHz for the six modules used in the studies. Each module has up to three variants.

processes B frames before the PR region is reconfigured.

Performance Density. In addition to latency and throughput, we also compare the performance density of

ASIC-style and PR-style designs. Performance density is defined as the number of frames processed per unit

time per unit area. This metric quantifies how efficiently a design utilizes available resources. The higher the

performance density, the more area-efficient the design is (less slack in the area-time volume). Since there

is no simple definition for area on an FPGA, we consider the resources used by the bottleneck resource as a

proxy for area. For instance, if BRAM is the bottleneck as it is the case in our studies, performance density

is computed as the number of frames processed per unit time per BRAM. For latency, we divide 1/latency

by the number of BRAM used in the design. For throughput, we simply divide throughput by the number

of BRAM used in the design.

Module Characterization. In the studies, we use six modules: hog [46], cnn [33], lstm [69], viola [98],

flow [17], and stereo (developed in-house). Each module has up to three implementation variants generated

with Vivado HLS 2019.1 [92] (Figure 4.7). The variants are provided by the module developer or obtained

by changing parameters in the HLS source code, such as the number of compute engines, the data precision,

and the on-chip buffering size. The modules’ interfaces are modified to conform to our PR region interfaces.

In our studies, all PR regions have the same interfaces, namely, one AXI memory-mapped, one AXI-lite, a

clock, a reset, and an interrupt. All data transfers, including data sharing between modules in the ASIC-style

design, happen through external DRAM.

Modules operate on 256×256 frames, except for the lstm module which operates on 32×32 frames.

Modules process one frame at a time. Therefore, frame latency is the inverse of throughput, and includes

both compute and data movement time. Data movement accounts for no more than 15% of the end-to-

end latency. For all variants, module throughput scales mostly linearly with its resources. The bottleneck

resource for all modules is either LUTs or BRAM on the Ultra96 v2.
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Table 4.3: Resource utilization, throughput and frame latency of the variants used in P1.

hog cnn lstm stereo flow viola

LUT 55,635 27,573 47,745 51477 40,509 42,283

BRAM36Kb 109 180 144 96.5 195 91.5

DSP 114 11 13 0 49 101

Throughput (fps) 116 32 2.1k 240 180 41.3

Frame latency (ms) 8.6 31.2 0.48 4.2 5.6 24.2

Table 4.4: Resource utilization and frame latency of the variants used in P2.

hog cnn lstm stereo flow

LUT 27,879 15,009 7461 23,551 20,106

BRAM36Kb 53.5 92 80.5 96.5 95.5

DSP 114 11 13 0 48

Frame latency (ms) 17.9 62.5 0.87 8.3 11.1

4.4.2 Model Validation: Case Study Results

In this section, we illustrate how to use our model and validate its effectiveness in three case studies. We

show that (1) our first-order model allows to accurately estimate a design’s throughput and latency. (2) Our

analysis helps determine the most suited PR execution strategy for a problem. Notably, when optimizing

for latency, it is important to evaluate both PR execution strategies (serialized execution on one PR region

and interleaved execution on multiple PR regions) to find the best one for a given problem. (3) PR-style

designs improve performance and performance density upon ASIC-style designs with slack. (4) Given an

area budget, if the ASIC-style design is too big to fit, using PR can help make the design fit and run at

useful performance.

Study 1: Activity Recognition. The first case study performs activity recognition and is based on [36].

Three dependent stages are accelerated by a hog, a cnn and a lstm modules. This study explores the max

T given A and min L given A problems. In this study, we explain how to use our model for quick design

space exploration. The same methodology is used for the two other studies.

Max T Given A. Table 4.5 shows the resource utilization and the throughput of the ASIC-style design

and the module variants used. The ASIC-style design’s throughput is equal to 16 fps and is limited by
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Table 4.5: Resource utilization, average memory bandwidth, and throughput of the ASIC-style design and

the module variants used post place & route on the Ultra96 v2 board at 150 MHz for the activity recognition

study.

Module variants ASIC-style

hog cnn lstm I/O Infrastructure Modules Total

LUT 15,495 (22%) 14,614 (20.7%) 7715 (10.9%) 6082 (8.6%) 37,824 (53.6%) 43,906 (62.2%)

BRAM36Kb 34 (15.7%) 92 (42.6%) 80.5 (37.3%) 0 206.5 (95.6%) 206.5 (95.6%)

DSP 64 (17.8%) 10 (2.8%) 7 (1.9%) 0 81 (23%) 81 (23%)

Memory bandwidth (MB/s) 23.6 42.7 3.3 N/A N/A 69.6

Throughput (fps) 30 16 271 N/A N/A 16

the throughput of the slowest module (cnn). The hog and lstm variants are roughly 2× and one order of

magnitude faster than the cnn variant, respectively. The amount of computation per frame for the lstm

variant is much less than the two other modules. Therefore, the ASIC-style design has slack, and there is

opportunity for PR to improve.

Based on our analysis and on module variants available, batched execution on a single PR region solution

(P1) should provide best performance. Figure 4.8 shows the estimated and measured throughput, and

the intermediate buffering capacity required for P1 vs. batch size B. We use equation 4.7, measured

throughput variants (Table 4.3) and PR time (Table 4.2) to compute these estimations. We observe that (1)

as predicted by the model, when B increases, PR time gets amortized, but with diminishing return when

B ≥ 32. (2) For all B, the estimated and measured throughput match within 2.35%. (3) At B = 64, the

throughput of the PR-style design is 24.7 fps, which represents a 54.4% improvement over the ASIC-style

design. (4) Intermediate buffering capacity linearly increases with B, and is equal to 50.3 MB for B = 64.

The intermediate buffers are stored in on-board external memory (on the Ultra96, 2 GB of external DDR is

available). The external memory bandwidth (read and write) requirement for P1 is 91.2 MB/s due to the

hog module. This represents a 31% increase over the ASIC-style design which needs on average 69.6 MB/s

(Table 4.5).

The ASIC-style design uses 206.5 BRAMs (95.6% of BRAM resources) and has a performance density

of 0.077 fps per BRAM. P1 uses 198 BRAMs (91.7% of BRAM resources available) and has a performance

density of 0.12 fps per BRAM, which represents a 55.8% improvement over the ASIC-style design.

Min L Given A. When optimizing for latency, the ASIC-style design has slack since modules are dependent

(one frame processed at a time), and therefore, we expect PR to be beneficial. Figure 4.9.activity shows the
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Table 4.6: Resource utilization and latency of the ASIC-style design and module variants used post place &

route on the Ultra96 v2 board at 150 MHz for the depth and motion estimation study.

Module variants ASIC-style

hog stereo flow I/O Infrastructure Modules Total

LUT 27,244 (38.6%) 13,767 (19.5%) 10,943 (15.5%) 3366 (4.8%) 51,924 (73.6%) 55,320 (78.4%)

BRAM36Kb 52.5 (24.3%) 79.5 (36.8%) 70.5 (32.6%) 0 202.5 (93.8%) 202.5 (93.8%)

DSP 114 (31.7%) 0 44 (12.2%) 0 158 (43.9%) 158 (43.9%)

Frame latency (ms) 17.8 16.7 22.2 N/A N/A 56.7

Figure 4.8: Throughput of P1 vs. B for the first case study.

frame latency of the latency-optimized ASIC-style design (As), and the three PR-style designs (P1, P1,s,

and P2). We estimate the latency of As using equation 4.1 and measured module latencies (Table 4.5). The

ASIC-style design has an estimated latency of 99.5 ms, which exactly matches our measurement.

We estimate the latencies of the PR-style designs using equations 4.5 and 4.8, measured latencies from

Tables 4.3 and 4.4, and PR time from Table 4.2. The estimated latencies for P1, P1,s, and P2 are 76.6 ms,

102 ms, and 92.4 ms, respectively. The measured latencies for P1, P1,s, and P2 are 76.8 ms, 102.2 ms,

and 92.6 ms, respectively. We observe that (1) estimated and measured latencies match within 0.26%,

and (2) among the three PR-style designs, P1 has the smallest latency, as predicted by the model (22.8%

improvement over the ASIC-style design). Note that PR time accounts for a non-negligible fraction of the

frame latency of P1 (46.9%). However, P1 still outperforms P2, illustrating that the ratio of PR time to

compute time should not be considered alone when optimizing for latency.

Considering performance density, As uses 206.5 BRAMs and has a performance density of 0.049 per-
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Figure 4.9: Frame latency of the ASIC-style design (As) and the PR-style designs P1, P1,s and P2 for the

three studies. In the facial recognition study, the resources on the Ultra96 v2 are insufficient to map As,

P1,s, and P2.

seconds per BRAM. P1 uses 198 BRAM and has a performance density of 0.066 per-seconds per BRAM

(34.7% improvement over ASIC-style).

Study 2: Depth and Motion Estimation. The second case study performs depth and motion estimation,

and is based on [79]. Three dependent stages are accelerated by a hog, a stereo, and a flow module,

respectively. This study explores the min L given A problem.

Figure 4.9.depth shows the frame latency of the latency-optimized ASIC-style design (As), and the three

PR-style designs (P1, P1,s, and P2). We estimate the latency of As using equation 4.1 and module latencies

from Table 4.6. The estimated latency of As is 56.7 ms (matches the measured latency). Using the same

procedure described in the first case study, we obtain latency estimations for P1, P1,s, and P2 of 54.4 ms,

55.3 ms, and 43.3 ms, respectively. The measured latencies for As, P1, P1,s, and P2, are 56.7 ms, 54.4 ms,

55.3 ms, and 43.3 ms, respectively. We observe that (1) estimated and measured latencies match within

0.18%, and (2) among all PR-style designs, P2 has the lowest latency, as predicted by the model (23.6%

improvement over the ASIC-style design), reinforcing the fact that using the largest variants available may

not achieve minimum latency.

Considering performance density, As uses 202.5 BRAMs (93.8% of BRAM resources available) and has a

performance density of 0.087 per-seconds per BRAM. P2 uses 216 BRAMs, and has a performance density

of 0.11 per-seconds per BRAM (26.4% improvement over the ASIC-style design). Note that P1,s uses only

108 BRAMs while achieving a 2.46% latency improvement compared to As. P1 uses 2× more BRAM but

only improves latency by 1.8% compared to P1,s. P1,s has a performance density of 0.165 fps per BRAM

(92.2% improvement over the ASIC-style design). In a design scenario where area is to be minimized given
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a latency upper bound of 60 ms, P1,s would be the best design choice.

Study 3: Facial Emotion Recognition. The final study performs facial emotion recognition, and is

based on [54]. Three dependent stages are accelerated by a viola, a cnn and an lstm module, respectively.

This study explores the min L given A and given L min A problems.

Min L Given A. The resources on the Ultra96 v2 are insufficient to map As, P1,s, and P2. In the case of

As, 243 BRAMs are needed to map the smallest variants for the viola, the cnn and lstm modules (only 216

BRAMs are available on the Ultra 96 v2 board). In the cases of P1,s, and P2, it is not possible to map the

smallest variant available for the viola module since this variant consumes more LUT resources (35K LUTs)

than available in the PR region of P1,s and P2 (30k LUTs available). Figure 4.9.facial shows the frame

latency of P1. Using the same procedure as in the first case study, we estimate the frame latency of P1 to

be 92.2 ms. The measured latency is 92.1 ms (0.11% error). P1 uses 198 BRAMs and has a performance

density of 0.055 per-seconds per BRAM. In summary, when the ASIC-style design is too big to fit, PR can

make the design fit and achieve useful performance (less than 100 ms).

Given L Min A. Given a latency upper bound of 100 ms, we want to estimate the minimum area needed

by an ASIC-style design to achieve this requirement. On a larger FPGA board (Ultrascale+ 102), the ASIC-

style design consisting of the smallest module variants available uses 65, 987 LUTs, 249.5 BRAMs, and 56

DSPs, and achieves a latency of 100.2 ms post place & route at 150 MHz. The performance density of the

ASIC-style design is 0.04 per-seconds per BRAM. Considering the PR-style design from min L given A,

P1 improves latency by 8% and performance density by 27.3% compared to the ASIC-style design.

4.5 Summary

This chapter presents a set of PR execution strategies to build efficient PR-style designs that can (1) be

faster given an area budget or (2) smaller given a performance bound than ASIC-style designs with slack. We

discuss our first-order model to quickly and accurately estimate the relative merits of ASIC-style and PR-

style designs in the early stage of design development. The model considers the trade-offs between PR region

size, PR time and module performance. We also account for the impact of memory bandwidth requirements

on module performance. Though limited, this choice of execution model and performance metrics allows

us to cover a non-trivial range of design scenarios and applications (e.g., video analytics/image processing

pipelines, feed-forward neural networks).

We validate our first-order model in three study applications that serve as practical examples of ASIC-
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style designs with slack. Notably, we show that (1) our first-order model allows to accurately estimate a

design’s throughput and latency. (2) Our analysis helps determine the most suited PR execution strategy

for a problem. (3) PR-style designs improve performance and performance density upon ASIC-style designs

with slack. (4) Given an area budget, if the ASIC-style design is too big to fit, using PR can help make the

design fit and run at useful performance. The model relies on the existence of a module library consisting

of Pareto-optimal module variants used to build the ASIC-style and PR-style designs. The accuracy of the

model depends on (1) how well the library has been characterized in terms of area, latency, throughput,

and memory bandwidth requirement and (2) the ability to place and route modules at the required clock

frequency, which can be challenging depending on the problem. The model could be improved to account for

this clock frequency uncertainty, for instance, by defining different levels of confidence based on the design’s

complexity. In Chapter 9, we further elaborate on the limitations of the work presented in this chapter.
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Chapter 5

Design with PR for Domain-Specific

Acceleration

While the previous chapters offer a theoretical foundation to understand when, why and how PR can be

beneficial compared to an ASIC-style approach for applications with a single task, this chapter discusses in

greater details the practical challenges of using PR to accelerate applications with multiple tasks. Specifically,

this chapter describes our investigation on using PR for computer vision applications where multiple tasks

can be spatially shared and real-time time-shared on the fabric.

The rest of this chapter is organized as follows. Section 5.1 motivates the use of PR for accelerating vision

applications and discusses the challenges when doing real-time time-sharing. In this usage mode, multiple

vision pipelines can round-robin execute within the time-scale of a camera frame. Section 5.2 reviews the

operation of a streaming vision pipeline on an FPGA. Section 5.3 presents the design of our framework.

Section 5.4 presents a detailed evaluation of our framework where we show that multiple tasks can spatially

share and real-time time-share the FPGA and achieve real-time performance (30+ fps).

5.1 Motivations and Challenges

In this section, we first explain why computer vision applications are good candidates for a PR approach. We

then discuss the practical challenges and potential benefits of using PR at a fine-grain for computer vision

acceleration. Notably, we investigate the feasibility of doing real-time time-sharing on today’s FPGAs. In
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Figure 5.1: Example of a computer vision application with three independent tasks accelerated by streaming

pipelines running simultaneously. Each pipeline needs to run at the same rate as the input camera.

this usage mode, multiple vision pipelines can round-robin execute within the time-scale of a camera frame.

Why PR for Computer Vision. Due to their flexibility, power and energy efficiency, FPGAs have been

increasingly used to accelerate vision applications [9,12,35,86,96]. For the most part, vision applications are

mapped statically when accelerated on an FPGA. However, an ASIC-style approach might fall short for a

rapidly emerging class of vision applications [60,78] that are highly concerned about efficiency in terms of cost,

power and energy, and not only raw performance (e.g., automotive, robotic or video analytics applications).

These emerging application need to support many different tasks with real-time requirements, and have

stringent area, cost, power or energy constraints. An example of such application was presented in Chapter

3 (Figure 3.2). The dynamic adaptation requirement of this interactive vision system leads to a potentially

large number of tasks to execute at runtime. For all tasks to run at the desired performance, an ASIC-style

design may require more resources than available on the target FPGA. Using a larger FPGA is not an option

for these applications with very limited power or energy budget and/or cost constraint (e.g., robotic or smart

SSD applications [49]). For such use-cases, a PR approach can provide a solution if (1) the ASIC-style has

slack, and (2) the amount of slack is sufficient for a PR-style design to operate at the desired performance.

Another potential advantage of using PR for these applications is to reduce the volume of data sent to a

remote server or to the cloud. By accelerating as many tasks as possible on the FPGA, closer to the sensors

at the Edge, the requirements in terms of bandwidth can be reduced and response time can be improved.

Slack in Computer Vision Applications. For most real-time vision applications that we target in this

chapter, the ASIC-style design has slack since it can be clocked at a frequency lower than the maximum

achievable frequency to meet the desired performance. If clocked at the maximum frequency, the ASIC-style

design would run faster than needed, and therefore, occupied resources would not be active all the time.

Figure 5.1 presents an example application to illustrate this point. In this application, three pipelines are
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Figure 5.2: A single large PR region solution (top) or a solution with multiple smaller PR regions (bottom)

would fail in many use-cases when doing real-time time-sharing on today’s FPGAs.

mapped statically on the FPGA. We focus our explanation on the operation of a single pipeline since the

two other pipelines operate similarly. A pipeline needs to process full HD frames (1920-by-1080 pixels per

frame) produced by a HDMI camera at 60 fps, that is, a frame needs to be processed by the pipeline in less

than 16.7 ms. Assuming that each module accepts and outputs one pixel per clock, the simplest option is

to choose an operating frequency of 148.5 MHz such that the pipeline runs at 60 fps i.e., the time to process

a frame by the pipeline is 16.7 ms in steady-state. Another option is to clock the ASIC-style design at the

maximum achievable clock frequency. For this example, let us assume a maximum frequency of 300 MHz

which is readily achievable on current FPGA platforms for typical vision processing modules. When clocked

at 300 MHz, the pipeline would be idle half of the time since it needs to wait for the camera to produce data.

Also, the ASIC-style design clocked at 300 MHz would consume more power than the ASIC-style design

clocked at 148.5 MHz. Therefore, in this example, the best option is to clock the ASIC-style design at 148.5

MHz even though the maximum achievable frequency is 300 MHz. In other words, computing at a faster

rate than the rate at which the input data is produced does not provide any benefit in this example.

On the other hand, in a PR-style design, clocking the design at the maximum possible frequency is
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beneficial to compensate for the reconfiguration time. In the PR-style design clocked at 300 MHz, the

pipeline would process a frame in 6.9 ms, and would remain inactive during 9.8 ms until a new frame is

produced by the camera. During this inactive time, the FPGA can be reconfigured with another pipeline

that can start execution after its reconfiguration. Hypothetically, if both pipelines can be reprogrammed on

the FPGA and can process a frame in less than 16.7 ms, this process can be repeated infinitely. We refer

to this specific fine-grain usage of PR as real-time time-sharing. By doing real-time time-sharing, instead

of using a larger FPGA on which the three pipelines are statically mapped, one can use a smaller FPGA

potentially resulting in device cost, power and energy savings.

Note the difference between using PR at a fine-grain and real-time time-sharing. Real-time time-sharing

is a specific fine-grain usage of PR in which multiple pipelines are temporally shared on the FPGA and

round-robin executed within the time-scale of a camera frame. In other words, all pipelines need to process

the same input frame from the camera (no frame skipping).

Real-Time Time-Sharing Challenges. To realize real-time time-sharing in practice, the biggest chal-

lenges are (1) to develop efficient PR execution strategies for maximizing the number of real-time time-shared

pipelines and ensuring that all pipelines run at the desired performance (30+ fps), which is not trivial given

the significant reconfiguration time on current FPGAs, and (2) to design architectural mechanisms to pre-

vent camera data loss during pipeline reconfigurations. Considering the application example in Figure 5.1,

a single large PR region solution (PR time is greater than 10 ms with a bitstream size larger than 1 MB)

in which one full pipeline is reconfigured at a time would fail in many use-cases due to the large PR time

(Figure 5.2). A PR solution with multiple smaller PR regions connected to each other (Figure 5.2) would

also fall short since PR reconfigurations are serialized on current FPGAs (i.e. one reconfiguration happens

at a time). All PR regions need to be reconfigured before the pipeline can start execution resulting in a

non-trivial reconfiguration time in many scenario.

In the next section, we present the design of our framework leveraging PR for temporal and spatial

sharing of multiple vision pipelines on an FPGA. The framework includes the necessary architectural and

runtime mechanisms to tackle the aforementioned challenges and to support coarse-grain temporal sharing,

real-time time-sharing and spatial sharing of the FPGA fabric. This framework aims at facilitating the

implementation of PR-style designs used for our evaluation of PR costs and benefits in Chapters 6 and 7.
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5.2 Background

This section uses the simple streaming vision pipelines depicted in Figure 5.1 to explain the operation of

standard streaming vision pipelines necessary to comprehend real-time time-sharing.

We assume that the streaming vision pipeline is driven by a camera and outputs to a display, and that

pixels are continuously streamed into the pipeline. The camera streams pixels into the first stage of the

pipeline at a steady rate. Tframe,camera is the time between the first pixel and last pixel of a frame produced

by a camera; the frame rate is 1
Tframe,camera

. In a simple pipeline, all pipeline stages consume and produce pixels

at the same steady rate as the camera, logically computing an output frame from each input frame. The

stages may need to buffer multiple lines of the frame but never a complete frame. There is a delay between

when the first pixel of a frame enters a stage (or a pipeline) and when the first pixel of the same frame exits

a stage (or a pipeline); this time is Tfill,stage. After the first pixel exits, the last pixel exits Tframe later. In

steady-state with continuous streaming inputs, a complete frame would exit every Tframe.

For example, considering a camera that outputs full-HD frames at 60 fps, Tframe,camera=16.7 milliseconds.

When stages accept one pixel per clock, the pipeline needs to operate at a minimum frequency of 148.5 MHz

to run at 60 fps. If a stage requires buffering of 10 lines of the frame, Tfill of that stage will be at least 0.13

milliseconds (10 lines× 1920 pixels
line × 1

148.5 MHz ).

Under basic operation, any given stage just needs to keep up with the pixel rate from the camera.

However, a stage running by itself could be clocked faster resulting in shorter Tframe,stage and Tfill,stage. For

example, this is applicable when the streaming input and output of a stage are sourced from and sinked into

DRAM instead of camera and display.

5.3 Spatial and Temporal Sharing of the FPGA by Multiple Com-

puter Vision Pipelines

This section first gives an overview of our framework. Sections 5.3.2, 5.3.3, 5.3.4, and 5.3.5 describe into

greater details the design of the important components in the framework for spatial and coarse-grain tem-

poral sharing of the FPGA. Section 5.3.6 discusses the operation of real-time time-sharing and presents the

architectural and runtime mechanisms needed to support this mode of operation.
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Figure 5.3: The framework is built on top of (1) a plug-and-play architecture divided into multiple recon-

figurable partitions (RPs), (2) a runtime system which manages the reprogramming of the FPGA with the

pipelines specified in the application code, and (3) a module library which contains pre-compiled vision

modules used to reprogram the RPs.

5.3.1 Overview

In the framework, multiple computer vision pipelines can spatially and temporally share the FPGA. By

spatial sharing, we mean that multiple pipelines can be mapped and executed simultaneously on the fabric.

When more pipelines need to be accelerated than what the device can fit, the different pipelines can be

time-shared on the FPGA; the FPGA can be reprogrammed at runtime with different sets of pipelines at a

coarse or fine grain. We refer to repurposing as a coarse-grain usage of PR, i.e. the time interval between

reconfigurations is within minute to hour range (similar to a “role-and-shell” approach). Real-time time-

sharing is the specific fine-grain usage of PR that we investigate with a time interval between reconfigurations

within the millisecond range.

Figure 5.3 shows the three main components of the framework:

• a plug-and-play architecture divided into multiple PR regions. The static I/O infrastructure consists

of a software programmable crossbar that provides connectivity between PR regions and the rest of

the system (camera, display, external memory, embedded CPU).
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Figure 5.4: Sample of the application code used to repurpose the FPGA with three tasks.

• a runtime system which manages the reprogramming of the FPGA with an application (set of pipelines)

specified in an application code. In our implementation, the runtime system and the application code

both run on an embedded CPU.

• a module library which contains pre-built vision modules used to reprogram the PR regions.

5.3.2 Programming Model

In the framework, the set of tasks to be reprogrammed and executed on the FPGA is specified in an

application code. This section explains how to create a set of tasks in the application code using the

proposed APIs and objects.

The process of creating and starting a task follows three steps: (1) create a task object, (2) specify the

different fields for the task object (e.g. address of input/output buffers in external memory, image size), (3)

start the task. This process is repeated for each task to be accelerated on the FPGA. Figure 5.4 shows an

example of an application code to specify three vision tasks. In this example, each task takes as input one

or two images stored in external memory and produces an output that is stored in external memory.

41



5.3.3 Plug-And-Play Architecture

As shown in Figure 5.3, the framework is built on top of a plug-and-play architecture which connects the

PR regions and the external I/O (i.e. cameras, display and on-board external memory) via a static I/O

infrastructure. The static I/O infrastructure is composed of a software programmable crossbar and direct

memory access (DMA) engines. A PR region can communicate with another PR region and with external I/O

through the software programmable crossbar. DMA engines allow data transfers between external on-board

memory and the modules reprogrammed in the PR regions.

At design time, the plug-and-play architecture can be parameterized for different PR-style designs and

modes of operation (i.e. repurposing or real-time time-sharing), that is, the number of PR regions, their size

and I/O interfaces can be customized for a given design. The number of crossbar endpoints and the number

of DMA engines are also parameters that can be changed at design time.

PR Region: Size and I/O Interfaces. When doing repurposing, PR regions can be large since PR time

can be amortized over long enough time interval between reconfigurations. In this case, the scheduling entity

can be an entire task or pipeline. When doing real-time time-sharing, using a large PR region approach is

not a viable solution. Instead, we reconfigure each processing stage of a task in a small PR region. Section

5.3.6 discusses real-time time-sharing in more details.

In our framework, PR regions can have either streaming or memory-mapped interfaces. In the same

design, all PR regions have the same I/O interfaces for data transfers. PR regions with streaming I/O

interfaces can have up to two input interfaces and one output interface. PR regions with memory-mapped

I/O interfaces can have up to four memory-mapped I/O interfaces. PR regions have one control interface

used to send commands or parameters (e.g., start, filter size) to the module and to get the module status

(e.g., done, idle).

Software Programmable Crossbar. The crossbar can be programmed at runtime in software (not

reprogrammed in a PR sense) to provide general connectivity between the PR regions, the external I/O and

the DMA engines. The software programmable crossbar allows multiple PR regions to communicate with

each other, which is important to connect dependent hardware modules. Section 5.3.6 gives a more complete

explanation on the benefits of the software programmable crossbar when doing real-time time-sharing.
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Figure 5.5: Example of an interactive application built on top of the framework. At user’s request, a set of

tasks specified in the application code is repurposed on the FPGA. The general connectivity of the software

programmable crossbar allows to create complex tasks by module composition.

5.3.4 Module Library

The module library contains PR bitstreams used to reprogram the PR regions. Modules from the library have

the same I/O interfaces as the PR regions. The library consists of macro and micro modules (see Chapter

3 Section 3.1 for the definition of a macro and a micro module). Each module has a set of parameters

(e.g., image resolution, kernel weights, kernel size, downsampling factor) that can be configured in the

application code. A macro module essentially accelerates a task or a full pipeline, and consists of many

micro modules that accelerate stages of a task. An example of a macro module to accelerate a CNN for car

detection is shown in Figure 5.11). The “car detection” macro module consists of a pipeline of micro modules

that operate on single data elements (e.g., relu), small neighborhood of data elements (e.g., pooling), and

large neighborhood of data elements (e.g., 3D convolutions casted as matrix-matrix multiplications). Micro

or macro modules can be composed to design a wide range of vision pipelines. More complex tasks can

be created when composing multiple macro modules as illustrated in Figure 5.5.b. In this example, two

complex tasks are shown; each task consists of two macro modules. The first task consists of a pyramid and

a pedestrian detection stages accelerated by a “pyramid” (GP) and a “pedestrian detection” (PD) macro

module, respectively. The second task has a pyramid and car detection stages accelerated by a “pyramid”

(GP) and a “car detection” (CD) macro module, respectively.
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5.3.5 Runtime System

The reprogramming of the FPGA is managed by the runtime system which has five main functions:

• parse the application code,

• allocate PR regions and a time-slot for each task specified in the application code, and reprogram the

PR regions with the appropriate modules from the module library,

• program the software programmable crossbar to effect the required connectivity,

• configure the DMA engines to map the correct input/output buffers to the tasks,

• configure the modules with user-specified parameters and start the modules.

Figures 5.5 (a) and (b) illustrate the operation of the framework at runtime. In this example, the

framework is implemented on a System-on-Chip (SoC) platform with an embedded CPU and an FPGA.

The interactive application to accelerate on the FPGA is specified in the application code that runs on the

embedded CPU. Two sets of tasks are specified in the application code. At user’s requests (via touchscreen),

one set of tasks is reprogrammed and executed on the FPGA. The plug-and-play architecture has six PR

regions connected to external memory via the software programmable crossbar that has seven DMAs. The

module library is stored into on-board external memory. The runtime system is executed on the embedded

CPU.

At the first user’s request, the runtime system parses the application code and reprograms the FPGA

with the first set of tasks with one stereo, one flow, two Gaussian pyramid (GP), and one SIFT (Figure 5.5

(a)). At the second request, the runtime system parses the application code and reprograms the FPGA with

the second set of tasks with two complex tasks (Gaussian pyramid + pedestrian detection and Gaussian

pyramid + car detection)), one SIFT and one stereo (Figure 5.5 (b)). The runtime system (1) reprograms

the car and pedestrian detection tasks on the FPGA (the four other tasks are already programmed on the

device), (2) changes the crossbar links (highlighted in red) to chain the Gaussian pyramid to the car detection

task, and to compose the second Gaussian pyramid with the pedestrian detection task, (3) configures the

required DMA engines (note that one DMA engine is shared between the flow and the pedestrian detection)

and (4) start the execution of the tasks.
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Figure 5.6: Time-sharing by two three-stage pipelines. A pipeline starts processing only after all stages have

been configured.

5.3.6 Real-Time Time-Sharing Support

This section describes the operation of a basic real-time time-sharing system and its performance model.

We then explain the technical challenges, the architectural and runtime mechanisms to support this mode

of operation.

Real-Time Time-Sharing Operation. In real-time time-sharing, multiple pipelines round-robin execute

in the time scale of a camera frame, i.e. all pipelines process the same camera input frame in the time

scale of a camera frame. Since every input frame needs to be processed by every pipeline, initially we take

Tframe,camera to be the basic scheduling quantum Tround for one round of round-robin execution. Each pipeline

Pi is assigned a timeslice Tslice,Pi
.

When doing real-time time-sharing, each pipeline stage is assigned its own RP. This design choice is

motivated by two reasons: (1) to reduce RP size, and therefore, reconfiguration time since a pipeline stage

can be reconfigured in a smaller RP than a full pipeline, and (2) to reduce the number of reconfigurations

required, and therefore, reconfiguration time since vision pipelines may share common stages (see for example

Figure 5.16). The high cost of reconfiguring a RP can be avoided when an already configured processing

stage can be retained and reused across pipelines.

Performance Model. During a pipeline’s timeslice, the partitions needed by the pipeline are configured

first, and then one camera frame is fully processed. If the total time to configure a pipeline Pi is Tconfig,Pi
,

Tslice,Pi
= Tconfig,Pi

+ Tfill,Pi
+ Tframe,Pi

Note in the above, Tfill and Tframe are for when the pipelines are operating against DRAM.

For a valid real-time schedule,
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∑
all Pi

Tslice,Pi
≤ Tround = Tframe,camera

If the above condition is satisfied, all pipelines can keep up with the camera’s frame rate.

Camera Input Buffering. Two main challenges need to be addressed when doing real-time time-sharing.

We first discuss the input buffering issue before addressing the problem of high reconfiguration time. In real-

time time-sharing, the same input frame from the camera needs to be presented to all pipelines during their

respective time-slice (no frame skipping). Therefore, during pipeline reconfigurations, data produced by the

camera needs to be double-buffered (1) to prevent camera data loss during pipeline reconfigurations, and (2)

for every pipeline to process the frame stored in one buffer while the camera writes a new frame in the other

buffer. Double-buffering also allows for decoupling the camera and pipeline rates. In an ASIC-style design,

the camera and pipeline rates can be the same since the pipelines only need to stay in sync with the camera.

When doing real-time time-sharing, the pipeline rate has to be greater than the camera rate to compensate

for PR time (e.g., by clocking the PR-style design at a higher clock frequency than the ASIC-style design if

possible). For pipelines in a PR-style design to run at a greater rate than in the ASIC-style design, there

needs to be unexploited slack in the ASIC-style design (refer to Chapter 4 Section 4.3.4).

Given enough on-chip memory, one could double buffer the input frame from the camera in on-chip

memory. However, the amount of data to buffer, which ranges from few KBs to MBs depending on the

reconfiguration time and the camera frame rate and resolution, exceeds the on-chip memory available on

low-end FPGAs (typically less than 4 MB on current low-end FPGAs). Therefore, in our implementations,

we double buffer the input from camera into on-board external DRAM. For the frame rate and resolution

targeted in this work, external memory bandwidth is not the bottleneck. To give an idea, assuming a camera

running at 60 fps for full HD frames (YUYV422), the memory bandwidth requirement is approximately 249

MB/s to write the camera output to on-board external memory.

During each timeslice, the runtime framework drives the active pipeline with a pixel stream from DRAM

at the maximum rate the pipeline can handle, or up to the DRAM bandwidth. The output of the pipeline

is also double-buffered into DRAM so that multiple pipeline output streams can be merged for display by

a function (e.g., XOR) or rendered simultaneously on a split-screen. Figure 5.6 illustrates an execution

timeline when two three-stage pipelines are time-shared as described above.

Overcome Reconfiguration Time. This straightforward approach is not sufficient for achieving useful

frame rates given the reconfiguration speed on today’s FPGAs. The time to reconfigure a PR region ranges

between a few to 10s of milliseconds on current FPGAs. Therefore, the time to reconfigure the PR regions
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Figure 5.7: Using the software programmable crossbar, reconfiguration of RPs can be avoided by retaining

and reusing already configured stages across pipelines. The main connectivity modes supported by the

crossbar are 1. substitution 2. insertion/deletion 3. stage reordering.

for a pipeline is often comparable with the processing time. The time to reconfigure the PR regions is also

significant relative to Tframe,camera. If we use real-time time-sharing as described in previous section, the

time to configure a pipeline alone will exceed Tframe,camera in most non-trivial scenarios. Next, we introduce

additional techniques needed to achieve usable performance. These optimizations aim at (1) reducing the

number of reconfigurations (configurable streaming interconnect), (2) hiding (staggered-start execution) or

(3) amortizing (batching) the reconfiguration time when possible.

Configurable Streaming Interconnect. As explained above, in vision processing, even when pipelines

have different functionalities, they may share common stages. The high cost of reconfiguring an RP can be

avoided when an already configured processing stage can be retained and reused across pipelines.

Figure 5.7 identifies different ways for multiple pipelines to reuse common stage configurations. The

simplest scenario is when switching from pipeline (a) to pipeline (b) where the two pipelines have the same

topology and differ only in one stage. To switch from (a) to (b) (and vice versa), only the middle RP has to

be reconfigured. When switching from (b) to (c), no RP reconfiguration is needed if there is a way to skip

over the MD stage of (b). Furthermore, by retaining MD even though it is not used by (c), a switch from

(c) back to (b) can also be done without RP reconfiguration. On the other hand, also with MD in place, a

switch from (c) to (d) does not require reconfiguration but requires a different streaming connectivity than

going to (b). In fact, one can switch between (b), (c), (d) arbitrarily without RP reconfigurations but as

combinations of deletion, insertion, or reordering by changing the connectivity between already configured

RPs.

To support these different scenario, we provide a flexible software programmable crossbar to ensure
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Figure 5.8: Time-sharing by two three-stage pipelines. A stage of a pipeline starts processing as early as

possible, that is, when the stage is configured AND its upstream stage is producing output.

connectivity between RPs and other infrastructural elements. The crossbar connects all elements in the

system—RPs, camera , display and streaming DRAM DMA engines—as inputs and outputs. The cross-

bar can be set by the controlling software between pipeline reconfigurations to establish the desired static

streaming topology for the next timeslice. Configuring the interconnect by software is 3-orders of magni-

tude faster than reconfiguring an RP. The statically decided streaming connectivity topology never has two

streaming sources going to the same destination so the crossbar can be simple and efficient with no need for

flow control nor buffering. (To support forks and joins in the pipeline, some RPs have multiple input or mul-

tiple output interfaces while others have exactly one input and one output interface.) For simple streaming

connections, the upstream and downstream stages are connected with a single-cycle buffered path. When a

DRAM streaming connection is used to allow for buffering and stage decoupling, the source and sink RPs’

streaming interfaces are redirected to/from the DMA engines of the infrastructure instead.

This flexible crossbar turned out to be a critical mechanism. The area expense of this interconnect

infrastructure is well justified by the reconfiguration time savings. As we will see in the evaluation section,

given the currently high cost of reconfiguration, practical time-sharing is only feasible if the number of

reconfigured partitions between pipeline switches is kept to a minimum.

Staggered-Start: Overlap Reconfiguration and Compute. When doing real-time time-sharing as

described above (Figure 5.6), we waited until all of RPs of a pipeline have been configured before starting

processing. When all stages are ready, streaming processing can progress synchronously throughout the

pipeline. However, given that reconfiguration time of a partition is significant relative to processing time, we
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are motivated to overlap processing and reconfiguration by (1) reconfiguring the PR regions in order from

first to last; and (2) streaming input into the earlier stages as soon as they are ready. Figure 5.8 illustrates

the execution timeline for the same two pipelines used in Figure 5.6 but now starting a stage as soon as

possible, in other words, when the stage is configured and its upstream stage is producing output.

In this staggered-start execution, it is possible for an upstream stage to start producing output before

its downstream stage is ready. Thus, it becomes necessary to introduce buffering as a part of the streaming

connection abstraction between a downstream stage being reconfigured and its upstream stage to support

staggered start. The buffering capacity must be sufficient to capture all of the output of an upstream stage

until the downstream stage is ready. Data is buffered into DRAM since the amount of data may exceed

BRAM capacity. Hence, to buffer and delay the data stream until the downstream stage is ready, we need to

use a decoupling DMA engine between each downstream stage being reconfigured and its upstream stage. In

the worst case, we have found it necessary to support the option for streaming connections to be physically

realized as a circular-buffer in DRAM. When the number of stages in a pipeline is large, the designer needs

to provision sufficient external memory bandwidth and ensures that external memory bandwidth does not

become the bottleneck.

With staggered start, Tslice,P of pipeline P is upper bounded by

Tconfig,P + Tfill,P + Tframe,P

In the case when all the stages have comparable processing time Tslice,P is lower bounded by

Tconfig,P + Tfill,Slast
+ Tframe,Slast

where Tfill,Slast
and Tframe,Slast

are Tfill and Tframe of the last pipeline stage only. When some stages have much

longer configuration or processing time Tslice,P is more tightly lower bounded by

MAX over all stages Si: (∑
Sj<Si

Tconfig,Sj

)
+ Tfill,Si

+ Tframe,Si

Amortization and Downsampling. In the basic scheme presented in previous section, a round of round-

robin execution is completed for each quantum Tround=Tframe,camera. This is not necessary. We can increase

Tround to be a multiple g×Tframe,camera. In this case, we would double-buffer g frames at a time from camera

into DRAM. During each pipeline’s timeslice, the runtime framework drives the active pipeline with g

consecutive active frames from the DRAM double-buffer. Thus the cost of reconfiguration is amortized over
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a longer processing time. This option can be used with or without staggered start. In both cases, Tslice,Pi
of

pipeline Pi is now upper bounded by

Tconfig,Pi
+ Tfill,Pi

+ g× Tframe,Pi

For a valid real-time schedule,

∑
all Pi

Tslice,Pi
≤ Tround = g× Tframe,camera

The runtime framework can still produce a smooth video output when g > 1 because the output is also

double-buffered. Beside the added storage cost, a major downside of increasing g is the very large increase

in end-to-end latency through the runtime framework (which now includes the time to buffer multiple input

and output frames).

Also note, increasing g improves scheduling by amortizing the reconfiguration cost. Therefore, it cannot

help when the sum of the pipeline’s processing time already exceeds Tframe,camera. In this case, the only option

is to downsample the video stream from camera into the pipeline. If the runtime framework selectively only

passes every s frames of the camera input to the pipelines, the pipeline timeslices only need to fit within the

new scheduling quantum of

Tround= g × s× Tframe,camera

5.4 Evaluation

This section presents our evaluation of the framework. We first evaluate the performance of vision tasks when

(1) executed individually, (2) spatially sharing the fabric, and (3) temporally sharing the fabric at a coarse-

grain (repurposing) i.e. the time interval between reconfigurations is within minute to hour range. We show

that tasks executed individually within our framework (1) achieve comparable performance to tasks mapped

statically on the FPGA, and (2) are up to two orders of magnitude faster than a CPU implementation.

When up to six vision tasks are executed simultaneously within our framework deployed on a Zynq FPGA,

we show that they can achieve the same performance as when executed individually (up to 169 MPixels/s).

Second, we demonstrate that it is possible to time-share up to three pipelines on a Zynq 7000 Series FPGA

and achieve 30+ fps. Chapter 7 further evaluates the benefits and costs of real-time time-sharing for different

PR speeds in a simulation-based limit study.
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Figure 5.9: In our prototype framework for repurposing, the FPGA is connected to external memory (via

12 DMA engines), to two HDMI cameras and to two HDMI displays.

Table 5.1: Resource used by the plug-and-play architecture (static I/O infrastructure and six reprogrammable

partitions) and percentage utilization (in parenthesis) on the Zynq 7045 FPGA. The static infrastructure

comprise a 20-endpoint crossbar and 12 DMA engines. The six reprogrammable partitions contain roughly

the same amount of logic and memory resources.

I/O Infrastructure Compute (6 PR partitions)

Crossbar DMA engines Misc

LUT 5580 (3%) 22,270 (10%) 2428 (1%) 173,400 (80%)

BRAM 0 36 (7%) 7 (1%) 500 (92%)

DSP 0 0 0 840 (93%)

5.4.1 No Real-Time Time-Sharing Setup

Implementation. We implement a prototype of the framework (Figure 5.9) for repurposing on the ZC706

board [91] using Vivado 2015.2 tool chain [89]. The plug-and-play architecture (also referred as PR-style

design) has six reprogrammable partitions connected to on-board external memory, to two HDMI cameras

and to two HDMI displays via the software programmable crossbar. Two ARM cores are available on the

Zynq boards. We use one core that runs Linux to load input test images into external memory, and to

save the output of vision tasks to disk. The other bare-metal core executes the runtime system and the

application code.
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Figure 5.10: The PR time for a single partition is proportional to its size, and ranges from 2 ms to tens of

ms on an FPGA from the Zynq 7000 Series family.

PR-Style Design Area. We first characterize the area and repurposing overhead of the PR-style design

implemented. Table 5.1 reports the number of logic resources used by the static I/O infrastructure and the

reprogrammable partitions on the Zynq 7045 FPGA. The six reprogrammable partitions consume more than

80% of the FPGA logic and memory resources and have similar size, i.e., they contain approximately the

same number of logic and memory resources. The static I/O infrastructure comprise a 20-endpoint crossbar

and 12 DMA engines. Each DMA engine allows for one concurrent read and write streaming accesses to

external memory.

Repurposing Time Overhead. The time overhead for repurposing the FPGA with a single module is the

sum of the times for:

• reprogramming a partition with the module. Figure 5.10 shows the average time for reprogramming

the partitions through the processor configuration access port (PCAP) on the FPGA when scaling

the number of partitions. We observe that the reprogramming overhead ranges between 17 to 102 ms

depending on the size of the PR region.

• programming the crossbar links,

• configuring the DMA engines.

We ran hundreds of tests to ensure that the time for programming the crossbar links and for configuring

the DMA engines in software is negligible compared to the time spent for reprogramming a partition. (The

crossbar and DMA operations take in the order of few microseconds.) Therefore, the time to repurpose the

FPGA with a single a module is, at first order, equal to the time to reprogram a partition.
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Figure 5.11: Architecture of the CNN used for inference for the car detection task.

Module Library. When repurposing, the scheduling entity is a task, that is, a PR region is reprogrammed

with a macro module that accelerates an entire task or pipeline at a time. We implement six macro modules

using Xilinx high-level synthesis tool (Vivado HLS 2015.2 [88]) to integrate into our module library. We

performed hundreds of cycle-accurate simulations to ensure the functional correctness of each module. We

have used these modules to build live demonstrations of this framework shown at multiple venues.

• stereo: we implement depth from stereo vision based on the block matching algorithm [71] using a 7×7

search window. In this example, we process eight lines and disparities in parallel.

• flow : we implement 1 iteration of Lucas-Kanade [57] to compute the dense optical flow information

using a 5×5 search window. We use floating point type for the linear algebra operations (e.g., matrix-

matrix multiplications, matrix inversion) performed by the algorithm.

• SIFT : we implement the Scale Invariant Feature Transform (SIFT) algorithm [56] to detect key points

in an image.

• pyramid : we implement a pyramid of Gaussian based on [1]. The input image is first blurred with a

Gaussian filter before being downsampled by a vertical and horizontal factor that can be changed at

runtime.

• car detection: we implement a 5-layer convolutional neural network (CNN) inference for car detection

based on a binary classifier. We use the Keras library [11] written in Python to train the network using

the Udacity 2017 challenge training data set. The network architecture is depicted in Figure 5.11. This

network processes 64× 64 images.
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Table 5.2: Clock and measured throughput of the stereo, flow and face detection modules when executed

individually (1) within our framework and (2) within frameworks that use a static FPGA design flow.

stereo flow face detection

Clock (MHz) Throughput (MPixels/s) Clock (MHz) Throughput (MPixels/s) Clock (MHz) Throughput (MPixels/s)

Darkroom [37] (Zynq 7100) 169 148 169 165 N/A N/A

Rigel [38] (Zynq 7100) 169 148 169 165 N/A N/A

[74] (Zynq 7045) N/A N/A N/A N/A N/A 2.5

Framework (Zynq 7045) 169 152 169 161 169 2.3

Table 5.3: Measured throughput of the stereo, flow, SIFT, pyramid, car detection, and pedestrian detection

modules when executed individually within our framework vs. when executed on a i7-3770@3.40 GHz

machine. Within our framework, all modules are clocked at 169 MHz.

stereo flow SIFT pyramid car detection pedestrian detection

Throughput on a i7-3370@3.40 GHz (in MPixels/s) 13 10 4 230 4 4

Throughput within the framework (in MPixels/s) 152 161 161 169 169 169

• pedestrian detection: we implement a 5-layer CNN inference architecture to detect pedestrians. The

CNN inference architecture is based on the CNN architecture used for accelerating the car detection

task. We use the Keras library written in Python to train the network using the training data set from

[16].

We also use a face detection implementation from [74] based on the Viola Jones feature detection algorithm

[84]. We change the interfaces of the design so that it can be compiled and executed within our framework.

This face detection module processes image sizes of up to 256× 512.

5.4.2 No Real-Time Time-Sharing Results

In this section, we present an evaluation of the framework to demonstrate that modules executed individually

within our framework (1) have performance comparable to modules mapped statically, and (2) are up to

two orders of magnitude faster than CPU implementations. We also demonstrate that when up to six tasks

are executed simultaneously on the FPGA, each task can achieve the same throughput as when executed

individually (up to 169 MPixels/s).
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Table 5.4: Resource utilization of the stereo, flow, SIFT, pyramid, face detection, car detection, and pedestrian

detection modules executed individually within our framework. The number in parenthesis represents the

percentage of resource utilization on the Zynq 7045 FPGA.

stereo flow SIFT pyramid face detection car detection pedestrian detection

LUT 20396 (9%) 7509 (8%) 28397 (13%) 12234 (6%) 47134 (22%) 71543(33%) 71543(33%)

BRAM 61 (11%) 80 (15%) 37 (7%) 24 (4%) 125 (23%) 44.5(8%) 44.5(8%)

DSP 0 (0%) 39 (4%) 83 (9%) 55 (6%) 104 (12%) 126(14%) 126(14%)

Performance of Individual Modules. We first characterize the performance and the area of the seven

modules presented in section 5.4.1 when reprogrammed and executed individually within the framework. We

compare the performance of tasks executed within the framework with (1) tasks mapped statically and (2)

CPU implementations.

Table 5.2 reports the throughput achieved by the stereo, flow and face detection modules when compiled

and executed individually (1) within our framework, and (2) within frameworks that use a static FPGA

design flow [37,38,74]. The FPGA that we use (Zynq 7045) has 21% less logic cells than the FPGA (Zynq

7100) used by Darkroom [37] and Rigel [38]. Still, we observe that the stereo and the flow modules placed

and routed within our framework can be clocked at the same frequency as modules placed and routed

with Darkroom and Rigel (169 MHz). Our implementation of the stereo and the flow modules achieves a

throughput of 152 and 161 MPixels/s, respectively, which is comparable to the performance obtained for

modules placed and routed within Darkroom and Rigel. Within our framework, the face detection module

is clocked at 169 MHz and achieves a throughput of 2.3 MPixels/s which is comparable to the throughput

reported in [74].

Table 5.3 reports the throughput of the stereo, flow, SIFT, pyramid, car detection and pedestrian detection

modules when executed individually (1) within our framework and (2) on a i7-3770@3.40 GHz. The CPU

implementations are written in Python and use APIs from the OpenCV [44] and the Keras library. Most

tasks accelerated on the FPGA are one to two orders of magnitude faster than the CPU implementation.

Module Resource Utilization. Table 5.4 shows the resource utilization of the stereo, flow, SIFT, pyramid,

face detection, car detection and pedestrian detection modules. Three modules (face detection, car detection

and pedestrian detection) consume more FPGA resources than available in a single reprogrammable partition.
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Figure 5.12: The FPGA can be reprogrammed with up to six stereo, flow or pyramid, with up to five SIFT,

with up two car detection or with up two pedestrian detection modules at once, while utilizing less than 80%

of the FPGA logic resources.

To repurpose the FPGA with these three modules, we use the amorphous technique (Chapter A.2) to fuse

the resources from multiple reprogrammable partitions into one larger reprogrammable partition that can

be repurposed with any of these modules.

Performance of Concurrent Modules. Next, we evaluate the performance of multiple modules sharing

the fabric, that is, multiple modules are mapped and are executed simultaneously on the fabric. We show

that module performance degrades when increasing the number of modules mapped simultaneously. This

performance degradation is mainly due to the limited amount of on-board external memory bandwidth

available for streaming data to multiple modules and writing the results back. We use all modules presented

in section 5.4.1 except for the face detection module since its performance is not on par with the performance

of other modules.

We first consider reprogramming the FPGA with identical and independent modules that are executed

simultaneously. To evaluate the number of identical and independent modules that can be reprogrammed on

the FPGA, we report the logic utilization when scaling the number of identical modules reprogrammed on

the FPGA in Figure 5.12. We aim at using less than 80% of logic resources available in the reprogrammable

partitions to ease the placement and routing process. To achieve a logic utilization of less than 80%, the

FPGA can be reprogrammed with up to six stereo, flow, and pyramid modules, with up to five SIFT modules,

with up to two car detection, and with up to two pedestrian detection modules.

Figure 5.13 shows the average throughput of a vision module when executed with up to five other

identical and independent modules. As the baseline, we report the throughput of the module when executed
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Figure 5.13: Average throughput of a module when running concurrently with up to five other identical and

independent modules. When up to four stereo, four flow, six pyramid, five SIFT, two car detection or two

pedestrian detection execute concurrently, the throughput of a stereo, flow, pyramid, SIFT, car detection or

pedestrian detection is the same as when executed by itself within the framework.

individually within the framework. For the cases of SIFT and pyramid, the performance of each module

when executed concurrently with four other SIFT or five other pyramid, respectively, is the same as when

executed individually (161 MPixels/s and 169 MPixels/s, respectively). When executing two car detection,

the performance of a single car detection is the same as when executed individually (169 MPixels/s). When

executing two pedestrian detection, the performance of a single pedestrian detection is the same as when

executed individually (169 MPixels/s). In the case of the stereo and the flow modules, the performance of a

stereo and a flow module when executed concurrently with less than three other stereo or three other flow,

respectively, is the same as when executed by itself within the framework (152 MPixels/s and 161 MPixels/s,

respectively). When more than five stereo and flow modules are running simultaneously, the performance

of a single module degrades by approximately 54% (71 MPixels/s).

Random Module Combinations. To demonstrate that the performance of multiple concurrent modules

is limited by the amount of memory bandwidth available, we generate tens of random module combinations

and repurpose the FPGA with one random module combination at a time. In each module combination, we

choose randomly up to six modules among the stereo, flow, car detection and pedestrian detection modules,

that require two concurrent external memory accesses (one read and one write), and the SIFT and pyramid

modules, that require three concurrent external memory accesses (two reads and one write).

Figure 5.14 reports the average throughput (in MPixels/s) of a vision module executed in a random

module combination vs. the total number of concurrent accesses to external memory required by all modules
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Figure 5.14: Average throughput of a single module executed within a random module combination vs.

number of concurrent accesses to external memory required by the set of modules in a random module

combination.

in a combination. We annotate Figure 5.14 with some random module combinations. We observe that the

average performance of a single vision module when the number of concurrent accesses to external memory

is strictly less than 13 is 161 MPixels/s with a population standard deviation of 6.3. With more than 13

concurrent accesses to external memory, the performance of a single module degrades by up to 25% on

average with a population standard deviation of 6.8. For more than 13 concurrent accesses, up to 6.1 GB/s

of memory bandwidth are needed to stream data continuously from (to) external memory to (from) multiple

modules.

Module Composition Performance. In this last set of results, we discuss the performance of complex

tasks formed by composing macro modules (refer to Section 5.3 for examples of complex tasks). We show

that the performance of a single complex task executed in the framework is up to two orders of magnitude

faster than a CPU implementation.

Figure 5.15 reports the average runtime to process a single image by two complex tasks composed of two

modules for different input image sizes when one task is (1) executed individually within our framework and

(2) executed individually on a i7-3770@3.40 GHz. Both tasks blur an image before doing CNN inferencing.

The first task is composed of a pyramid and a car detection module. The second task has a pyramid and a

pedestrian detection module. On the CPU, the time for processing an image by the pyramid + car detection
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Figure 5.15: Average runtime to process one image by the pyramid + car detection and pyramid + pedestrian

detection tasks for different image sizes when executed (1) within the framework and (2) on a i7-3370@3.40

GHz machine.

task is 2.2, 25, 95, 294 and 417 ms for 64 × 64, 240 × 360, 480 × 640, 720 × 1280 and 1080 × 1920 images,

respectively. On the FPGA, the time for processing an image by the pyramid + car detection task is 0.032,

0.5, 2, 5.6 and 12.5 ms for 64× 64, 240× 360, 480× 640, 720× 1280 and 1080× 1920 images, respectively.

The FPGA implementation of the pyramid + car detection task is up to two orders of magnitude faster than

the CPU implementation. Accelerating the pyramid + pedestrian detection task on the FPGA yields the

same performance benefits as when accelerating the pyramid + car detection task.

5.4.3 Real-Time Time-Sharing Setup

The previous sections presented a characterization and an evaluation of the framework used for spatial

and temporal sharing of the fabric at a coarse-grain. This section discusses the experimental setup to

evaluate the performance of real-time time-shared tasks in our framework. Specifically, we characterize

the resource utilization of the plug-and-play architecture before diving into the details of the management

software executing on the embedded CPU. We also describe the implementation of the modules used in this

case-study and their memory bandwidth requirements. The next section presents our real-time time-sharing

results.

Implementation. We implement a prototype of the framework for real-time time-sharing. The prototype

system is built on a Xilinx ZC706 development board with a Xilinx XCZ7045 Zynq SoC FPGA. (Table 5.5

gives the specifications of this board.) The FPGA is connected to a camera (VITA 2000-sensor) that supports

up to full HD resolution at 60 fps (1080p@60fps). The video output of the time-shared pipelines is displayed
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Table 5.5: Xilinx ZC706 board specification

FPGA Xilinx XCZ7045

Hard CPU Cores 2 x ARM A9

LUT 218,600

BRAM36Kb 545

DSP 900

DRAM Bandwidth 12.8 GB/s (Fabric only)

on a split-screen.

Static I/O Infrastructure. The backbone of the plug-and-play architecture is the software programmable

crossbar discussed in Sections 5.3.3 and 5.3.6. This interconnect infrastructure provides streaming connec-

tions between ten RPs for vision processing stages, the camera controller input, HDMI controller output, as

well as five DMA engines for streaming to and from DRAM buffers. The interconnect is based on a custom

crossbar implementation but the interface follows AXI4-Stream standard. Once configured, the interconnect

infrastructure is capable of streaming frames at 1080p@60fps between a fixed pair of source and sink RPs.

Two RPs can also be connected by a DRAM streaming connection that incorporates a circular-buffer FIFO

in DRAM. Except for the camera and display controllers, the entire system–static I/O infrastructure and

reconfigurable partitions—are by default clocked at 200 MHz. The camera and display controllers are clocked

at 148.5 MHz.

Management Software. At runtime, a manager running on the embedded ARM processor core manages

the creation, execution and time-sharing of vision pipelines. The specification of each pipeline (such as

number of stages, module running in each stage and connectivity between stages) is registered with the

runtime manager. To switch execution to a new pipeline, the runtime manager assigns a stage to an RP if the

RP already has the required module. The RPs for the remaining stages are reconfigured through the PCAP

interface with bitstreams loaded from on-board DRAM. Once the partitions are reconfigured, the runtime

manager configures the modules (e.g., setting image size, kernel size), DMA engines, and interconnect to

effect the required connectivity before starting pipeline execution. The built-in camera and display controllers

are initialized once when the FPGA is first started.

For time-sharing, the runtime manager will cycle through all of the registered pipelines once for every g

frames of video. The runtime manager will poll the active pipeline for completion before initiating a switch

to the next pipeline. This runtime manager does not do scheduling or enforce maximum time quantum. If
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Table 5.6: Logic resource used by the static I/O infrastructure and the reconfigurable partitions on the

Xilinx XCZ7045.

static I/O infrastructure Reconfigurable

Crossbar DMA engines Misc

LUT 4940 (2%) 10725 (5%) 30578 (14%) 122400 (56%)

BRAM36Kb 0 15 (3%) 23.5 (4%) 360 (66%)

DSP 0 0 0 300 (33%)

total time to cycle through all of the pipelines exceeds the time quantum of g× s×Tframe,clock, the processing

falls out of sync to produce glitching output.

Vision Modules. When doing real-time time-sharing, the scheduling entity is a pipeline stage, that is, a

module reprogrammed in a PR region accelerates a pipeline stage. We use Xilinx Vivado HLS to develop

the vision modules used in this study. We also make use of the HLS video library that offers a subset

of HLS-synthesizable OpenCV functions. These HLS-based modules can be incorporated into our runtime

framework since our interconnect supports AXI4-streaming interface.

Logic Resource Utilization. Table 5.6 breaks down the fabric resource utilization between the static

I/O infrastructure and reconfigurable partitions. The I/O infrastructure requires a non-trivial amount of

resources. The crossbar is only a small fraction of the total infrastructure. On the other hand, the DMA

engines to stream data through DRAM is quite expensive. On a large FPGA like the Xilinx XCZ7045,

ample resources remain to be divided as ten independent reconfigurable RPs. We aimed for a total fabric

utilization of roughly 70% to ease the placement and routing process.

DRAM Bandwidth. The peak DRAM bandwidth available on the Xilinx ZC706 development board is

12.8 GB/s (DRAM on the PS side). This bandwidth is shared by all of the DRAM streaming connections

through AXI HP ports. To support 1080p@60fps, each DRAM streaming connection requires a total of 497

MB/sec of memory bandwidth (read and write). DRAM streaming connections include the double-buffers for

the camera input and display output, and the decoupling buffers needed to support staggered start execution

(Section 5.3.6).

We created a microbenchmark to measure the total DRAM bandwidth actually utilized when increasing

the number of active thru-DRAM streaming connections. On the Xilinx ZC706 development board, up to five

concurrent thru-DRAM streaming connections can be supported for 1080p@60fps. Since two thru-DRAM
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Figure 5.16: Logical view of three pipeline examples: (a) color-based object tracking where objects of up to

three different colors are tracked, (b) background subtraction, (c) corner and edge detection.

streaming connections are taken up by camera and display for double-buffering, we are left with only three

usable thru-DRAM streaming connections for decoupling the staggered start of RPs (Section 5.3.6). This

restricts the applicability of the staggered start optimization in the prototype.

5.4.4 Real-Time Time-Sharing Results

This section presents our real-time time-sharing results on a case study of implemented designs. This

evaluation aims to show that useful real-time performance (30+ fps) can be achieved when time-sharing

multiple streaming vision pipelines on today’s FPGAs. We first discuss the opportunities of using PR for

accelerating computer vision pipelines, and start to quantify the benefits of real-time time-sharing in terms

of area over an ASIC-style approach. We then present our results when measuring the achieved throughput

of time-shared pipelines under different operating conditions with the camera running at 720p@60 fps and

1080p@60 fps. Chapter 7 further elaborates on the costs and benefits of real-time time-sharing for different

PR region sizes, compute times, and PR speeds in a simulation-based study.

ASIC-Style Design Limitation. The dynamic adaptation requirement of interactive real-time vision

systems leads to a potentially large number of pipelines to execute at runtime. These pipelines can have

a variable topology and number of stages. Figure 5.16 shows the logical view of three pipeline examples

that have different number of stages and topology. A non-linear pipeline topology allows to overlay different

masks, computed on each branch, on the original camera frame. Each pipeline branch can execute one or a

combination of vision modules listed in Table 5.7 leading to many potential different pipelines.

Traditionally, one way to implement such a system is to map all pipelines simultaneously and statically

on the FPGA (ASIC-style approach). Table 5.8 presents the logic resources used by seven of the most
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Table 5.7: Vision modules used in our evaluation.

Edge detection computes a binary mask of vertical and horizontal edges using a Sobel filter [44]

Color-based object tracking tracks objects based on their color

Template tracking tracks a given template by computing sum-of-absolute differences and by thresholding

Corner detection computes a binary mask of corners using a Harris corner detector [44]

Blob detection detects blobs by using morphological operations and thresholding

Gaussian blur blurs an image by using a Gaussian filter

Background subtraction removes frame background by thresholding

Table 5.8: Logic resource used by seven 3-branch pipelines. When individually mapped in an ASIC-style

design, each pipeline runs at 250 MHz.

edge + corner edge+template blob+color edge+color corner+template background + corner background + edge

LUT 13147 13098 14142 13601 14085 14797 13810

FF 12455 11635 11423 11234 12146 13222 12711

BRAM36Kb 5 5 3.5 3.5 5 3.5 3.5

resource-expensive 3-branch pipelines, when each pipeline is mapped individually and directly on the FPGA

(ASIC-style approach). These numbers give an idea of the potential cost of mapping a large number of

pipelines statically on an FPGA. For instance, mapping all seven pipelines would consume more than 90k

LUTs. If all possible linear and non-linear pipelines were to be mapped statically and simultaneously, they

would possibly not fit on the FPGA. Note that mapping those pipelines individually and directly to the

FPGA results in the best possible performance. When mapped individually on the FPGA, each of these

pipelines can make timing at 250 MHz. We expect performance to degrade with an increasing number of

parallel pipelines to map statically.

PR Performance Results. PR presents a viable alternative to overcome the resource limitation and the

inflexibility of an ASIC-style design. When using PR, we expect the performance to degrade compared to

the ASIC-style design due to the RP I/O placement port constraint that can add wire delay. For real-

time time-sharing, the performance needs to be sufficient for correct pipeline operation for 720p@60fps and

1080p@60fps input video. Also, there should be enough slack to interleave pipelines at the time scale of a

camera frame.
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To assert the performance of a PR system, we use the system described in the previous section. The ten

RPs are differently sized to support repurposing and real-time time-sharing. The four largest RPs (bitstream

size of 1.1 MB) are used for repurposing while the six smallest RPs (bitstream size of 300 KB) are used for

real-time time-sharing. We generate partial bitstreams for the seven modules such that all modules can be

hosted in any of the smallest RP. We are able to generate partial bitstreams at 200 MHz in the PR-style

design. Despite the expected performance degradation, pipelines can operate correctly for 720p@60fps and

1080p@60fps input video when using PR. An operating speed of 200 MHz also allows to time-share pipelines

at the time scale of a camera frame.

Reconfiguration Overhead. Before presenting the performance of time-shared pipelines, we need to

simplify the set of pipelines that we use for the time-sharing evaluation. To do so, we perform a first set

of experiments to assert that the cost of switching from one pipeline to another is dominated by the PR

time. The time cost for switching pipelines is the sum of the time (1) to reconfigure the PR regions, (2)

to configure the interconnect, the DMA engines and the modules and (3) to start the pipelines. In these

experiments, the pipelines occupy up to ten stages and have up to three branches.

We generate randomly tens of pipeline pairs (with different topology, different stages, and different number

of stages), and measure the time to interleave two pipelines in a pair. We find that the time overhead that

most matters is the time spent in RP reconfiguration. RP reconfiguration dominates the cost of a pipeline

switch by three orders of magnitude. The time cost of reconfiguring the interconnect for topology change,

and other configuration and startup cost, are within the range of 50s to 100s of microseconds depending on

the number of RPs and interconnect links to reconfigure. Switching between pipelines with different topology

does not impact time-shared performance. If switching from one pipeline to another does not change the

state of any RP, the switch is almost free. (This is the case, for instance, when the set of stages used by one

pipeline is a subset of the stages used by the other pipeline.)

Performance of Time-Shared Pipelines. For this evaluation, we only consider linear pipelines since

pipeline topology does not impact performance as established previously. For these experiments, pipelines

have up to six stages, and two interleaved pipelines differ by one, two, three, four, five and six RPs. (We

only reconfigure the six smallest RPs while the four largest RPs remain unchanged. The time spent in

reconfiguring RPs is proportional to the number of RPs to reconfigure since the six RPs have the same size.)

When time-sharing, we execute pipelines (1) two at a time, and (2) three at a time.

Figure 5.17 first summarizes the achieved throughput in fps when the PR-style design is driven with a
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Figure 5.17: Throughput in fps for each time-shared pipeline for 720p@60fps input video when we execute

(a) two pipelines or (b) three pipelines at a time. We reconfigure between one to six RPs per pipeline switch.

Each time-shared pipeline processes g consecutive frames before reconfiguration.

Figure 5.18: Throughput in fps for each time-shared pipeline for 1080p@60fps input video when we execute

(a) two pipelines or (b) three pipelines at a time. We reconfigure between one to six RPs per pipeline switch.

Each time-shared pipeline processes g consecutive frames before reconfiguration.

720p@60fps video stream, and when we execute (a) two pipelines at a time (b) three pipelines at a time by

time-sharing. In Figure 5.17.a and Figure 5.17.b, there are six sets of bars corresponding to cases where we

reconfigure between one to six RPs to switch from one pipeline to another. For each case, bars for different g

are shown. g corresponds to the batching size, that is, the number of frames processed by each module before

the PR region is reconfigured. Figure 5.17.a shows that two pipelines can be time-shared at 60 fps when one

RP is reconfigured per pipeline transition, without batching i.e. g = 1. Factoring in reconfiguration time

for more than one RP, the time-shared execution of the two pipelines can only keep up when the input is

downsampled by s = 2, i.e., each pipeline runs at 30 fps (video output at 30 fps is still visually smooth), by

s = 3, i.e., each pipeline runs at 20 fps, or by s = 4, i.e., each pipeline runs at 15 fps. Running the runtime

framework at g = 2 (two consecutive frames are processed) can restore the frame rate of each pipeline to

60 fps with up to three RP reconfigurations. Factoring in reconfiguration time for more than three RPs, the
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time-shared execution of the two pipelines reconfiguration can only keep up when the input is downsampled

by s = 2, i.e., each pipeline runs at 30 fps.

When time-sharing by three pipelines (Figure 5.17.b), the interleaved execution only keeps up for g = 1

when the input is downsampled by s = 2 (one RP reconfiguration), i.e., 30 fps, or by s ≥ 3 (more than one

RP reconfiguration), i.e., ≤ 30 fps. Increasing g to 3 in this case allows s to be reduced to 2 (except for the

last case when six RPs are reconfigured).

Figure 5.18 similarly summarizes the achieved performance measured in frames-per-second when the

runtime framework is driven with a 1080p@60fps video stream, and when we execute (a) two pipelines or

(b) three pipelines at a time by time-sharing. For 1080p processing, the higher processing time required by

two pipelines, without considering reconfiguration time, already would not have fit into the g = 1 scheduling

quantum of 16.7 ms. In this case, increasing g does not help. Thus, time-shared execution of two pipelines

(Figure 5.18.a) requires downsampling by s ≥ 2, i.e., ≤ 30 fps. Time-shared execution of three pipelines

(Figure 5.18.b) would require further downsampling to s ≥ 3, i.e., ≤ 20 fps.

5.5 Summary

This chapter discusses the motivations and practical challenges of using PR for computer vision acceleration.

Computer vision applications are good candidates for a PR approach since (1) they benefit from FPGA

acceleration, (2) they are concerned with efficiency in terms of cost, power and/or energy rather than

performance only, and (3) they have slack and can tolerate current PR overhead. When an ASIC-style

solution falls short, PR presents a viable alternative to overcome the inflexibility and the resource limitation

of an ASIC-style design.

We investigate a very fine-grain PR usage referred to as real-time time-sharing in which multiple pipelines

are round-robin executed in the time scale of a camera frame. We discuss the challenges, such as asynchronous

module execution, rate mismatch and wasteful reconfigurations, that arise in this new mode of operation.

We design and implement a framework including the required architectural/runtime mechanisms to support

spatial sharing, coarse-grain temporal sharing (i.e. repurposing) and real-time time-sharing. Real-time time-

sharing is a very aggressive usage of PR compared to repurposing, and therefore, requires the development

of techniques to mitigate the impact of reconfiguration time on a design’s performance.

In our evaluation, we first leverage our framework to implement PR-style designs for repurposing (the

scheduling entity is a task). We demonstrate that tasks executed individually within our framework (1)

66



achieve comparable performance to tasks mapped statically on the FPGA, and (2) are up to two orders of

magnitude faster than a CPU implementation. When up to six vision tasks are executed simultaneously

within our framework deployed on a Zynq FPGA, we show that they can achieve the same performance as

when executed individually (up to 169 MPixels/s). Second, we use our framework to implement PR-style

designs for real-time time-sharing (the scheduling entity is a pipeline stage). We demonstrate the feasibility

of realizing real-time time-sharing on current FPGAs (up to three time-shared vision pipelines can run at

30+ fps on a Zynq 7000 Series FPGA).
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Chapter 6

Quantifying PR Benefits on Case

Studies

This chapter presents our quantification of PR benefits for two case studies of implemented designs.

6.1 Overview

Using the framework presented in Chapter 5, we design and implement two application case studies to

evaluate the area/device cost, power and energy benefits of PR-style designs relative to ASIC-style designs

and software implementations. Both applications have slack since only a subset of tasks is needed at a given

time. Also, both applications are deployed on systems with stringent area/device cost, power or energy

constraints, and therefore, can potentially benefit from the additional efficiency offered by a PR approach.

In the interactive application deployed on an automotive system (Figure 6.1), the tasks needed at a given

time are requested by the user depending on the environment (city or highway & day or night). In the

navigation application deployed on a robotic system (Figure 6.2), the task needed depends on the number

of objects present in the scene and their color. If these applications were mapped statically on an FPGA,

resources occupied by the design would not be active all the time.

In our power/energy evaluation, we evaluate the impact of reconfiguration frequency on the PR power/energy

overhead. Notably, we investigate whether a PR-style design is still more power/energy efficient than an

ASIC-style design when the reconfiguration time accounts for almost half of the total execution time. In
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Figure 6.1: Example of an interactive application deployed on an automotive Headlight system [78]. The

tasks needed (in red) are requested by the user based on the environment (city or highway & day or night)

which changes infrequently. Each task is accelerated by one module.

the interactive application, reconfigurations happen infrequently due to the environment not changing fre-

quently.Hence, the reconfiguration time is negligible compared to the compute time. On the other hand, in

the navigation application, the task needed may change very frequently (e.g., every tens of milliseconds).

Therefore, the reconfiguration time is significant relative to the compute time.

6.2 Implementation

We deploy our framework on the Zynq 706 and the Zynq 702 boards [91] to accelerate the interactive and

the navigation application, respectively. A PR-style design provides most benefits if the FPGA has just

enough resources to fit the set of concurrent tasks using the highest amount of resources in an application.

The Zynq 706 board has an XC7Z045 FPGA which is large enough to fit the set of tasks using the highest

amount of resources in the interactive application. The Zynq 702 board has an XC7Z020 FPGA (smaller

than the XC7Z045 FPGA) which is large enough to fit the module using the highest amount of resources in

the navigation application.

Two ARM CPUs are available on each board. We use one CPU that runs Linux to load the input test

images (full HD) into on-board DRAM, and to save the output of vision applications. The other bare-metal

CPU executes the runtime system and the application code which specifies the sets of tasks to accelerate in

an application. In both applications, the scheduling entity is a task which is accelerated by one module from
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Figure 6.2: Example of a navigation application deployed on a robotic system. The task needed (in red)

depends on the objects present in the scene, and may change very frequently. Each task is accelerated by

one module.

the module library. The module library (the PR bitstreams) is loaded into on-board DRAM at system boot

up. The PR regions are reconfigured through the processor configuration access port (PCAP).

6.3 PR-Style Design Characterization

Area Results. To quantify the area benefits of a PR-style design over an ASIC-style design, we first

characterize the resource utilization of the PR-style design. Table 6.1 reports the resource utilization of

the plug-and-play architecture on the (1) the Zynq 706 board with an XC7Z045 FPGA and (2) the Zynq

702 board with an XC7Z020 FPGA. On the XC7Z045 FPGA, the I/O infrastructure comprises a software

configurable crossbar with 16 endpoints and eight DMA engines. We implement four reconfigurable par-

titions which occupy more than 80% of the FPGA resources. Three reconfigurable partitions have similar

size and contain approximately the same amount of logic and memory resources; the fourth partition has

approximately three times more resources than the other partitions to fit the largest module needed in the

interactive application. When the set of tasks using the highest amount of resources is mapped on the FPGA,

the PR-style design (including the I/O infrastructure) consumes 74%, 58%, and 18% of LUT, BRAM, and

DSP resources, respectively.

On the smaller XC7Z020 FPGA, the I/O infrastructure comprises two DMA engines. We implement

a single reconfigurable partition that is large enough to fit the largest module needed in the navigation

application. When the largest module is mapped on the FPGA, the PR-style design (including the I/O

70



Table 6.1: Resource utilization of the plug-and-play architecture on (1) the Zynq 706 and (2) the Zynq 702

board. The percentage of resource utilization is given in parenthesis. In both cases, most of the FPGA

resources are used for compute.

Zynq 706 Zynq 702

I/O infrastructure Available for compute I/O infrastructure Available for compute

Crossbar DMA engines Misc Four PR regions Crossbar DMA engines Misc One PR region

LUT 5580 (3%) 18,270 (9%) 2428 (1%) 185,400 (85%) 0 7388 (14%) 1035 (2%) 26,000 (49%)

BRAM36Kb 0 36 (7%) 7 (1%) 500 (92%) 0 14 (10%) 6 (4%) 80 (57%)

DSP 0 0 0 840 (93%) 0 0 0 120 (55%)

infrastructure) consumes 62%, 33%, and 38% of LUT, BRAM, and DSP resources, respectively.

In both cases, most of the FPGA resources are used for compute. The I/O infrastructure uses less than

16% of logic resources. Note that a similar amount of logic resources would be needed to build the I/O

infrastructure in an ASIC-style design.

Individual Module Performance. To accelerate the tasks required in our two applications, we implement

the 12 modules shown in Figures 6.1 and 6.2 using Vivado HLS [90]. A significant amount of effort was put

in implementing and ensuring the functional correctness of these modules. More information about the

modules can be found in [78] and [44].

The 11 modules used in the interactive application are all clocked at 169 MHz in the PR-style design

mapped on the Zynq 706 board. The 11 modules achieve a throughput that ranges between 152 and 167

MPixels/s, which is sufficient to achieve 60 fps for full HD frames. Similarly, the six modules used in the

navigation application are all clocked at 169 MHz in the PR-style design mapped on the Zynq 702 board.

In our frameworks, the stereo and the flow modules achieve a throughput of 152 and 161 MPixels/s,

respectively. Our CPU implementations of the stereo and the flow, based on OpenCV and running on a

i7-3770@3.40 GHz, achieve a throughput of 13 and 10 MPixels/s, respectively. In [37] and [38], the authors

report a throughput of 148 and 165 MPixels/s for their static FPGA designs of the stereo and the flow

modules, respectively, which is comparable to the performance we get.

Repurposing Overhead. The overhead for repurposing the FPGA with a single module is the sum of

the time for reprogramming a partition with the module, and configuring the crossbar links and the DMA

engines. In practice, the time for configuring the crossbar links and the DMA engines (in the order of
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Table 6.2: Resource utilization of six modules used in the interactive application after place & route on the

XC7Z045 FPGA. The percentage of resource utilization is given in parenthesis. The six modules are not

evenly sized.

lane highlighting sign detection car detection pedestrian detection animal detection bike detection

LUT 1185 (1%) 16,576 (8%) 84,258 (39%) 80,756 (39%) 81,432 (37 %) 37,122 (17%)

BRAM36Kb 16 (3%) 50 (9%) 104 (19%) 99 (18%) 99 (18%) 59 (11%)

DSP 0 10 (1%) 126 (14%) 156 (17%) 234 (26 %) 70 (8%)

Table 6.3: Resource utilization of six modules used in the navigation application after place & route on the

XC7Z020 FPGA. The percentage of resource utilization is given in parenthesis. The six modules are almost

evenly sized (in terms of LUT).

stereo flow color-based detection SIFT blob detection Gaussian pyramid

LUT 18,396 (34.6%) 17,509 (33%) 16,501 (31%) 23,513 (44%) 20,855 (39%) 19,135 (36%)

BRAM36Kb 61 (44%) 60 (43%) 25 (18%) 26.5 (19%) 33 (24%) 47 (34%)

DSP 0 39 (18%) 0 83 (38%) 41 (18%) 55 (25 %)

hundreds of microseconds) is negligible compared to the time spent for reprogramming a partition. At

first order, the time overhead for repurposing is equal to the time for reprogramming a partition which is

proportional to it size.

In the PR-style design mapped on the Zynq 706 board, the time to reprogram (1) the three smaller

partitions is approximately 22.2, 25 and 32.3 ms and (2) the largest partition is 73.4 ms. In the PR-style

design mapped on the Zynq 702 board, the time to reprogram a partition is 19.7 ms. Despite the non-trivial

time to reconfigure a partition, both applications meet their performance requirements (more details in next

section).

In Sections 6.4 and 6.5, we quantify the benefits of PR-style designs mapped on smaller FPGAs over

ASIC-style designs mapped on larger FPGAs for the interactive and the navigation application examples. We

show that a PR-style design reduces logic resource utilization by 2.5× and 3.2×, device cost by approximately
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10× and 4×, and power/energy consumption by 28% and 30% (with impact on cooling cost) compared to

an ASIC-style design for the interactive and the navigation application, respectively.

6.4 Case Study 1: Interactive Application

Overview. In this application, the user can pick one of the four sets of tasks shown in Figure 6.1. In

each set, up to four tasks are requested simultaneously; each set is accelerated by up to four modules. In

the framework, when the FPGA is spatially shared by up to four modules, each module achieves 60 fps for

full HD images. In this application, the FPGA is reconfigured with a different set of tasks within minute

to hour range depending on the user’s selection. The total reconfiguration time is negligible over the total

execution time. Therefore, the reconfiguration time, power and energy overheads will not be considered for

this evaluation.

Area Model. Before presenting our results, we offer a simple model to reason about the potential area

benefits of a PR-style design over an ASIC-style design. We consider an application with a total number

Nmodules of modules to accelerate on the FPGA. For this simple model only, we assume that one module

is needed at a time. We do not take into account the area utilization of the I/O infrastructure. In the

ASIC-style design, all modules are mapped simultaneously on the FPGA; we use the smallest FPGA on

which the ASIC-style design fits. For the PR-style design, we use the smallest FPGA that fits the largest

module requiring the highest amount of resources in the application.

We define RS/D as the ratio of the amount of resources available on the FPGA used for the ASIC-style

design to the amount of resources available on the FPGA used for the PR-style design. A larger ratio

represents a greater saving. In the best-case scenario, all modules are evenly sized (i.e. they consume

approximately the same amount of resources). In this case, RS/D-bestcase = Nmodules. In the worst-case

scenario, modules are not evenly sized; the largest module is significantly larger than all other modules

combined. In this case, RS/D-worstcase = 1. Finally,

1 < RS/D ≤ Nmodules

In the interactive application, RS/D is close to the worst-case scenario since modules are not evenly sized

(Table 6.2). In the navigation application, even though modules are evenly sized (Table 6.3), RS/D is not

close to the best-case scenario due to the quantization of FPGA sizes. In practice, using the smallest possible

FPGAs to map the ASIC-style and the PR-style designs may not be feasible.
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Table 6.4: Resource utilization of the ASIC-style design after place & route on the XC7VH870T FPGA and

on the XC7Z035 FPGA for the interactive and navigation application, respectively. The resource utilization

percentage is given in parenthesis. In both cases, the ASIC-style design consumes more resources than

available on the FPGA used for the PR-style design.

interactive navigation

I/O infrastructure only Modules only Total I/O infrastructure only Modules only Total

LUT 36,278 (7%) 449,026 (82%) 485,304 (89%) 8423 (5%) 115,899 (67.5%) 126,322 (72.5%)

BRAM36Kb 43 (3%) 835 (59%) 878 (62%) 20 (2%) 252.5 (28%) 272.5 (30%)

DSP 0 (0%) 770 (29%) 770 (29%) 0 218 (43.6%) 218 (43.6%)

ASIC-Style Design Area. Since no FPGA is large enough in the Zynq family to map the ASIC-style

design, we use the XC7VH870T FPGA from the Virtex 7 family which is the smallest FPGA on which the

ASIC-style design fits. The XC7VH870T FPGA uses the same process node (28 nm) as the XC7Z045 FPGA.

The ASIC-style design maps 13 modules to accelerate all tasks shown in Figure 6.1, and has a software

configurable crossbar with 25 endpoints, eight DMAs and additional control logic for enabling/disabling

module combinations. We clock the design at 169MHz (same frequency as in the PR-style design). Table 6.4

shows the resource and percentage utilization of the ASIC-style design after place & route on the XC7VH870T

FPGA. The XC7VH870T FPGA has 2.5× more LUT and BRAM resources, and 2.8× more DSP blocks than

the XC7Z045 FPGA. The XC7VH870T FPGA is approximately 10× more expensive than the XC7Z045

FPGA.

Power Results. We estimate the power consumed by the ASIC-style and by the PR-style designs when

one set of tasks is active at a time (Figure 6.1). We use the Xilinx Power Estimation tool [87] for estimating

the power consumption of both designs based on their resource utilization after place & route assuming (1)

nominal voltage, (2) same switching activity and frequency, and (3) clock gating the inactive part of the

ASIC-style design. Maximum effort for clock gating is applied so that amount of non-leakage power consumed

by the inactive part of the design is minimized. (We perform many power measurements on the actual Zynq

706 board when the design is running in steady-state, calibrate the model with our measurements, and find

that our power estimations match with the power measurements within 3%.)

Figure 6.3 reports our estimations of the total power consumed by (1) the ASIC-style design and (2) the

PR-style design for each set of tasks with corresponding error bars. The power consumption is broken down
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Figure 6.3: Power consumed by the (1) PR-style design labeled dynamic and (2) ASIC-style design labeled

static in four environments shown in Figure 6.1. The power savings mainly result from a reduction of leakage

power.

into the leakage and non-leakage power. The ASIC-style design consumes 28%, 29%, 30.5%, and 30.5% more

total power than the PR-style design for the City & Day, Highway & Day, City & Night, and Highway &

Night environment, respectively. The ASIC-style design consumes more power/energy than the PR-style

design for two reasons: (1) the larger FPGA dissipates more leakage power than the smaller FPGA and (2)

the ASIC-style design is larger than the PR-style design and uses more clocking resources, resulting in extra

non-leakage power consumed. On average, the ASIC-style design dissipates 50% more leakage power and

consumes 14.5% more non-leakage power than the PR-style design.

6.5 Case Study 2: Navigation Application

Overview. We build a navigation application on top of the framework running on the Zynq 702 board

(Figure 6.2). Figure 6.4 illustrates the execution of this application during a fixed time interval for the ASIC-

style and the PR-style designs. In the reference ASIC-style design (Figure 6.4 (a)), the system monitors the

scene for changes. When an event happens (i.e. detection of a colored object), the system processes this

event (by executing one of the five possible tasks) and then returns to its monitoring state. In the PR-style

design (Figure 6.4 (b)), when an event happens, an idle phase starts. The active module is turned off before

starting the reconfiguration of the partition with one of the five possible modules. The idle phase ends when

the partition is reconfigured. In this application, an event needs to be processed in less than 34 ms. Though

the ASIC-style design can keep monitoring the scene for changes while processing an event, the PR-style
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Figure 6.4: Example execution timeline of the navigation application for (a) the ASIC-style design (reference

case), (b) the PR-style design, and (c) the ASIC-style design (equalized case).

design meets the application requirement (the time to reconfigure a partition is 19.7 ms and the average

time to process an event is 12.2 ms).

Depending on the number of objects to detect in the scene, the FPGA may be reconfigured very frequently.

The total reconfiguration time may not be negligible compared to the total execution time. In the worst-case

scenario, the ratio of reconfiguration to compute is 1:1. In this evaluation, we take into account the total

energy spent for reconfiguration by the PR-style design as a function of the number of reconfigurations per

second. For a fair comparison, we also consider the conservative case where the compute time is identical in

both the ASIC-style and the PR-style designs (Figure 6.4 (c)).

ASIC-Style Design Area. We use the XC7Z035 FPGA to map the ASIC-style design since it is the smallest

FPGA from the same family as the XC7Z020 FPGA on which the ASIC-style design fits. The ASIC-style
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Figure 6.5: Total energy consumed by the PR-style design (D) and the ASIC-style design (in the reference

case (S1), in the equalized case (S2)) vs frec (tinterval = 3600 s).

design maps six modules used in this application, has two DMA engines and a software configurable crossbar

with eight endpoints to connect the six modules and the DMA engines. We clock the design at 169MHz

(same frequency as in the PR-style design). Table 6.4 shows the resource and percentage utilization of the

ASIC-style design after place & route on the XC7Z035 FPGA. The XC7Z035 FPGA has 3.2×, 3.6× and

4× more LUT, BRAM and DSP resources, respectively, than the XC7Z020 FPGA. The XC7Z035 FPGA is

approximately 4× more expensive than the XC7Z020 FPGA.

Energy Model. We develop an energy model to breakdown the total energy into relevant components for

the ASIC-style and the PR-style designs. The model considers the energy expended during a fixed time

interval of length tinterval. In this time interval, we enforce that the ASIC-style and the PR-style designs

process the same number of events.

The total energy consumed by the reference ASIC-style design (i.e. the system is never idle) Etotal, static reference

during tinterval is equal to the total energy spent for compute Ecompute, static reference.

Etotal, static reference = Ecompute, static reference

The total energy consumed by the equalized ASIC-style design (i.e. the system can be idle) Etotal, static equalized

during tinterval has two contributions: (1) the total energy spent for compute Ecompute, static equalized and (2)

the total energy spent when the design is idle Eidle, static equalized.

Etotal, static equalized = Ecompute, static equalized + Eidle, static equalized

The total energy consumed by the PR-style design Etotal, dynamic during tinterval has three contributions:
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(1) the total energy spent for compute Ecompute, dynamic, (2) the total energy spent when the design is idle

Eidle, dynamic, and (3) the total energy spent for reconfiguration Ereconfig.

Etotal, dynamic = Ecompute, dynamic + Eidle, dynamic + Ereconfig

Ereconfig depends on the number of reconfigurations during the time interval considered and is rewritten as

Ereconfig = Erec,partition × frec × tinterval

Erec,partition is the energy for reconfiguring a single partition. frec × tinterval is the number of partition

reconfigurations during the time interval considered. frec is the number of reconfigurations per second in Hz.

Energy Results. We use the same methodology as in the first study for the power/energy estimations.

Figure 6.5 reports the total energy consumed in Joules (J) during a fixed time interval of length tinterval = 3600

s for the (1) PR-style design Etotal, dynamic, (2) ASIC-style design (reference case) Etotal, static reference, and

(3) ASIC-style design (equalized case) Etotal, static equalized for different number of reconfigurations per second

frec (in Hz). We report the total energy spent (leakage and non-leakage) (1) for compute and (2) when the

design is idle. We also report the total reconfiguration energy Ereconfig. When no reconfiguration happens,

Etotal, static reference and Etotal, static equalized are greater than Etotal, dynamic since (1) the ASIC-style design

dissipates more leakage power than the PR-style design due to the use of a larger FPGA and (2) the ASIC-

style design uses more clocking resources than the PR-style design resulting in a higher non-leakage power

consumption.

As frec increases, we observe that both Etotal, static reference and Etotal, static equalized remain greater than

Etotal, dynamic even when the compute to reconfiguration ratio is almost 1:1 (i.e. for frec = 25 Hz, tcompute =

1827 s and trec = 1773 s). Table 6.5 breaks down the total energy consumed by the ASIC-Style and PR-

style designs for frec = 25 Hz. We observe that Ereconfig is very small compared to Ecompute, dynamic and

Eidle, dynamic even for a large number of reconfigurations (the total number of reconfigurations is 90,000).

The PR-style design consumes 30% and 35.5% less total energy than the ASIC-style reference design in the

best-case scenario (frec = 0 Hz) and in the worst-case scenario (frec = 25 Hz), respectively (the modules used

for event processing consume slightly more power/energy than the detection module). The PR-style design

consumes 30% and 26% less total energy than the ASIC-style equalized design in the best-case scenario

(frec = 0 Hz) and in the worst-case scenario (frec = 25 Hz), respectively.

78



Table 6.5: Energy breakdown when tinterval = 3600 s and frec = 25 Hz. When the ratio of reconfiguration

to compute is almost 1:1, Etotal, dynamic is smaller than Etotal, static reference and Etotal, static equalized due to

Ereconfig being very small.

dynamic static reference static equalized

Ecompute (J)

non-leakage 1736 5491 2741

leakage 1462 3600 1827

total 3198 9091 4568

Eidle (J)

non-leakage 1064 N/A 1596

leakage 1418 N/A 1773

total 2482 N/A 3369

Ereconfig (J)

non-leakage 177 N/A N/A

leakage N/A N/A N/A

total 177 N/A N/A

Etotal (J)

non-leakage 2977 5491 4337

leakage 2880 3600 3600

total 5857 9091 7937

6.6 Summary

Based on the framework presented in Chapter 5, we develop two PR-style designs for applications with

slack and quantify their benefits in terms of area/device cost, power and energy relative to software imple-

mentations and ASIC-style designs. These applications benefit from dynamic FPGA mapping since (1) all

tasks are not needed at the same time, and (2) reducing area, power or energy is as important as meeting

performance requirement. In these two studies, we show that a PR-style design mapped on a smaller FPGA

results in a reduction in logic resource utilization by 2.5× and 3.2×, device cost by approximately 10× and

4×, and power/energy consumption by 28% and 30% compared to an ASIC-style design mapped on a larger

FPGA.

Note that in the second study (navigation application), the ASIC-style design can keep monitoring the

environment for changes while processing an event. On the other hand, events may be missed in the PR-

style design (the detection module is stopped when an event is processed). Therefore, PR can be only used

if the use-case tolerates events’ skipping. Also, for our power/energy comparison in the second study, we
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could have included a third ASIC-style baseline design clocked at 60.8 MHz (instead of 169 MHz) such that

events are processed in exactly 34 ms. By decreasing the clock, we expect the power/energy gap between

the ASIC-style and the PR-style designs to reduce.

In the studies presented in this chapter, the clock frequency of the ASIC-style and PR-style designs are

identical. Also, in both studies, the data source and sink of the ASIC-style and PR-style designs is the

on-board external memory. In the next chapter, we consider the cases where (1) the PR-style design is

clocked at a much higher clock frequency than the ASIC-style design to compensate for PR time resulting

in a potentially greater amount of non-leakage power dissipated and (2) the input and output data in the

ASIC-style design are not stored in external memory. Instead, they are directly streamed in and out of the

modules. On the other hand, the module input and output of the PR-style design are stored in external

memory. Therefore, the PR-style design incurs additional power and energy overhead for the external

memory accesses.
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Chapter 7

Projection: Overheads and Benefits of

Real-Time Time-Sharing

Motivations. In Chapter 5, we mainly focus on the challenges for realizing real-time time-sharing in practice

and demonstrate its feasibility on Zynq-7000 FPGAs. This chapter examines into further details the costs

and benefits of real-time time-sharing on current and simulated FPGAs with higher PR speeds. Real-time

time-sharing serves as a proxy for very aggressive, fine-grain PR usages that can be highly beneficial in

terms of area/device cost but also incur much higher overhead in terms of time and power/energy compared

to coarse-grain usages of PR. When doing real-time time-sharing, the power/energy overheads in PR-style

designs stem from: (1) the very frequent reconfigurations for time-multiplexing, (2) the difference in clock

frequency compared to an ASIC-style design to compensate for PR time (refer to Chapters 4 and 5 Sections

4.3.4 and 5.1, respectively, for a more detailed explanation), and (3) the additional data movement required

compared to an ASIC-style design to fetch the PR bitstreams and to load/store intermediate data from/to

off-chip memory. While we expect an improvement in area/device cost benefits with faster PR speed, in

this chapter, we ask whether real-time time-sharing is a more power/energy efficient approach than mapping

tasks statically on an FPGA when considering all power/energy overheads aforementioned. To address

this question, we conduct a limit study to derive the number of tasks that can be successfully real-time

time-shared on a given FPGA, and examine the impact of different PR region sizes, PR speeds and frame

resolutions on the number of time-shared tasks. We then estimate the area, device cost, power and energy

of PR-style and ASIC-style designs.
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Figure 7.1: The PR-style design has a single PR region on which modules are reconfigured serially. When

doing real-time time-sharing, there is additional data movement to load/store intermediate module data

from/to external memory.

7.1 Overview

PR-Style Design. In this simulation-based study, we use the simplest designs and setup to understand the

impact of PR region size, compute time, and PR speed on the costs and benefits of real-time time-sharing.

The PR-style design has a single PR region which is reprogrammed with one module at a time (Figure 7.1).

In contrast to Chapter 5 where a module accelerates a pipeline stage, in this study, a module accelerates an

entire task or pipeline. Modules are reprogrammed serially on the PR region with no batching allowed.

We assume that a HDMI camera produces data at a fixed frame rate. In this study, we choose a camera

rate of 30 fps (i.e. tcamera,frame = 33.3 ms) which is typical for many image processing or video analytics

applications. Data produced by the camera is stored in on-board external memory. Each module reads an

entire input frame from external memory, processes the full frame, and writes the entire output frame to

external memory before the PR region is reconfigured with the next module. This reconfiguration-compute

loop is repeated for every module. Similar to the setup presented in Chapter 5, we assume that the output of

a module is sent to a display and that the PR bitstreams are stored in the on-board external memory. The

static I/O infrastructure comprises three DMAs for which the area overhead is accounted for in our results.

One DMA is needed to store the camera data to external memory during PR reconfigurations, another to

send the output to the display, and a third to transfer the input and output data between the module and
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Table 7.1: Specifications for the six PR regions used in this study.

PR region size vvsmall vsmall small medium large vlarge

LUT 6250 12,400 24,960 50,400 100,800 200,160

BRAM36Kb 24 48 96 168 336 636

DSP 48 96 192 336 1176 2040

PR bitstream size (MB) 0.69 1.4 2.8 5.8 9.8 17.9

treconfig for PR speed=0.45 GB/s 1.5 3.1 6.2 12.8 21.6 39.5

treconfig for PR speed=1 GB/s 0.69 1.4 2.8 5.8 9.8 17.9

treconfig for PR speed=2 GB/s 0.35 0.7 1.4 2.9 4.9 9

treconfig for PR speed=5 GB/s 0.14 0.28 0.56 1.16 1.96 3.58

the on-board external memory.

We make the following assumptions to further simplify the study: (1) all modules have the same size

as the PR region, that is, modules use exactly the same amount of logic resources as available in the PR

region. (2) All modules operate at the maximum possible frequency in the PR-style design to compensate for

the reconfiguration time and to real-time time-share as many tasks as possible in 33.3 ms. (3) All modules

consume and produce one pixel per clock in steady-state. The time to process a frame is identical for all

modules even if differently-sized. In other words, larger modules are not faster than smaller ones.

Condition for Successful Real-Time Time-Sharing. For a number Nmodules of modules to be suc-

cessfully real-time time-shared on the FPGA, all modules are programmed on the FPGA once and process

one input frame in less than Tcamera, frame. We define tcompute as the time needed by one module to process

one frame (tcompute is identical for all modules). treconfig is the time to reconfigure the PR region with one

module. For successful real-time time-sharing, the following condition needs to be satisfied

Tcamera, frame >= Nmodules ∗ (tcompute + treconfig) (7.1)

Therefore, the maximum number of tasks that can be real-time time-shared during the time interval of

Tcamera, frame is

Nmodules = bTcamera, frame/(tcompute + treconfig)c (7.2)
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Table 7.2: Module compute time and external memory bandwidth requirements (read and write) in PR-style

designs clocked at 300 MHz when doing real-time time-sharing at 30 fps for different frame resolutions.

Frame resolution Number of pixels tcompute (ms) External memory bandwidth requirement (MB/s)

480p 450,450 1.5 54

720p 1,237,500 4.1 148.5

1080p 2,475,000 8.3 297

Study Parameters. We vary the size of the PR region and the PR speed to better understand the impact

of treconfig on real-time time-sharing. We also consider different frame resolutions to evaluate the impact of

tcompute on the number of real-time time-shared tasks. Table 7.1 shows the logic resources, the uncompressed

PR bitstream size and treconfig for different PR speeds for the six PR region sizes used in this study. We

consider four PR speeds: 0.45 GB/s, 1 GB/s, 2 GB/s and 5 GB/s. 0.45 GB/s corresponds to the PR speed

achieved on current FPGAs (Zynq Ultrascale+ device family) while speeds above 1 GB/s are projected

speeds (from conservative to very ambitious).

In this study, another parameter is the maximum clock frequency at which modules can be clocked at.

On current FPGAs, computer vision processing modules can typically be clocked at a maximum frequency

ranging between 200 to 400 MHz depending on the computation accelerated and on the target FPGA (about

200 MHz on 28 nm Zynq 7000 FPGAs and about 400 MHz on 20 nm Zynq Ultrascale+ FPGAs based on

implemented vision modules). On larger recent FPGAs (e.g., Intel Stratix 10), the maximum clock frequency

can even be higher. For this study, we assume that all modules can be clocked at a maximum frequency

of 300 MHz which represents a middle ground for Zynq 7000 and Zynq Ultrascale+ devices (i.e. PR-style

designs operate at 300 MHz). Table 7.2 reports the module compute time tcompute when modules are clocked

at 300 MHz in the PR-style design and the external memory bandwidth requirement for read and write

(assuming two bytes per pixel) to do real-time time-sharing at 30 fps for different frame resolutions.
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Figure 7.2: Number of real-time time-shared tasks at 30 fps for different PR region sizes, frame resolutions

and PR speeds.

7.2 Real-Time Time-Shared Tasks Results

Figure 7.2 shows the number Nmodules of tasks that can be successfully real-time time-shared for different

PR region sizes, frame resolutions, and PR speeds. We also report an upper bound on the number of tasks

that could be time-shared if PR speed is infinite i.e. treconfig = 0. As expected, we observe that (1) for a

given frame resolution and PR speed, the bigger the PR region, the larger treconfig, and therefore, the less

the number of tasks to time-share, (2) with faster PR speeds, treconfig decreases, and therefore, more tasks
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Figure 7.3: In the ASIC-style design, all modules are mapped and executed simultaneously. Compared to

the PR-style design, there is no data movement between external memory and the modules: data produced

by the camera is directly streamed to the modules for processing; module outputs are directly sent to the

display.

can be time-shared. At 5 GB/s, the number of tasks is within 72% of the maximum task number (when

treconfig = 0) for PR regions of size less than small. (3) For a given PR region size and PR speed, the greater

the frame resolution (i.e. larger tcompute), the less the number of time-shared tasks. Note that with current

PR speed (0.45 GB/s), it is possible to time-share up to 11 tasks accelerated by smaller modules in the time

scale of 33.3 ms. For example, vision computations such as stereo vision or optical flow can be accelerated

by hardware modules using less logic resources than available in a PR region of size small.

ASIC-Style Design. Next, we evaluate the area, device cost, power and energy of the PR-style and the

best-effort ASIC-style designs. Figure 7.3 shows the ASIC-style design used in this study. In the best-effort

ASIC-style design, each task is accelerated by a module variant that (1) uses the same amount of logic

resources as in the PR region and (2) runs at 30 fps. For a given number of real-time time-shared tasks

on the FPGA, all modules are mapped and execute concurrently on the FPGA in the ASIC-style design.

For example, if 10 small modules can be real-time time-shared in the PR-style design, the logic resource

utilization of the ASIC-style design is equal to 10× the size of a small module since all modules are mapped

simultaneously.

For a fair power/energy comparison, the ASIC-style design uses the minimum clock frequency for the

module to keep up with the camera’s rate (30 fps). Each module accepts and outputs one pixel per clock

cycle. Therefore, for a specific frame resolution, we can derive the clock frequency of the ASIC-style design

by multiplying the frame resolution by the camera frame rate. The minimum frequency for an ASIC-style

to run at 30 fps is 13.5 MHz, 37.5 MHz, and 74.3 MHz for 480p, 720p, and 1080p resolutions, respectively,

assuming an HDMI camera, i.e. we account for the blanking intervals.
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Figure 7.4: LUT utilization in ASIC-style (no PR) and PR-style designs for different PR region sizes, frame

resolutions and PR speeds.

Notice that (1) the ASIC-style design has slack since it does not need to be clocked at the maximum

possible frequency of 300 MHz to run at 30 fps and (2) there is no data movement between external memory

and the fabric in the ASIC-style design in contrast to the PR-style design. In the ASIC-style design, data

produced by the input camera is directly streamed to the module. The output from a module is directly

streamed to the display.
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Figure 7.5: Device cost when mapping ASIC-style (no PR) and PR-style designs for different PR region

sizes, frame resolutions and PR speeds.

7.3 Area and Device Cost Results

Figure 7.4 shows the number of LUTs used in the PR-style and ASIC-style designs for different PR region

sizes, frame resolutions, and PR speeds. In the PR-style design, we account for the LUT utilization of the

static I/O infrastructure and the PR region. In the ASIC-style design, the number of LUTs is equal to the

product of Nmodules (equal to the number of tasks that can be time-shared for a specific image resolution,
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PR region size, and PR speed) and the LUT utilization of a single module (equal to the number of LUTs

available in the PR region). The PR-style design uses roughly a factor Nmodules less LUTs than the ASIC-

style design (same saving factor for on-chip memory and DSP resources). Note that the LUT utilization of

the ASIC-style design follows the same trends observed in Figure 7.2: (1) for a given frame resolution and

PR speed, the bigger the PR region, the larger treconfig, and therefore, the less the number of tasks to time-

share, and therefore, the smaller the LUT utilization of the ASIC-style design, (2) with faster PR speeds,

treconfig decreases, and therefore, more tasks can be time-shared leading to an increase of the ASIC-style

design’s LUT utilization. (3) For a given PR region size and PR speed, the greater the frame resolution (i.e.

larger tcompute), the less the number of time-shared tasks, and therefore, the smaller LUT utilization of the

ASIC-style design.

The device cost is based on the amount of logic resources used by a design. Specifically, we find the

smallest FPGA part on which a design can be mapped based on its logic resource utilization (LUT, DSP and

on-chip memory). Figure 7.5 shows the device cost for the PR-style and ASIC-style designs when mapped

on FPGAs from the same FPGA device family (Zynq Ultrascale+ 20-nm FPGAs) whenever possible for

different PR region sizes, frame resolutions and PR speeds. For future FPGAs, we assume that device cost

scales with area by the same factor as with current FPGAs. We observe that (1) on current FPGAs, a

PR-style design can provide up to 4.5× device cost savings compared to an ASIC-style design, and (2) the

greater the PR speed, the greater the device cost savings (up to 38× at 5 GB/s).

The area and device cost reduction reported in this study corroborate the findings reported in Chapter 6.

Next, we discuss the power/energy overhead of real-time time-sharing including the power/energy overhead

for external memory accesses.

7.4 Power and Energy Results

Energy Model. We derive a first-order energy model that breakdowns a design’s energy consumption

into its different components (similar to the model presented in Chapter 6). The main difference is that we

consider the energy overhead to access external memory in the PR-style design for (1) fetching PR bitstreams

and (2) loading/storing intermediate data. The model considers the energy consumed by the ASIC-style and

PR-style designs during the time interval Tcamera, frame (repeated for every video frame). In this time interval,

the ASIC-style and PR-style designs perform the same amount of work, that is, each module processes the

same frame.
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During Tcamera, frame, the total energy consumed by the ASIC-style design Eno PR is proportional to

Tcamera, frame and to the average power consumed by the ASIC-style design, which is a function of its frequency

and logic resource utilization.

The total energy consumed by the PR-style design EPR, total has three contributions: (1) the total energy

spent for compute Ecompute, (2) the total energy spent when the design is idle Eidle, and (3) the total energy

spent for external memory accesses Ememory to fetch the PR bitstreams and to load/store intermediate data.

We leave the evaluation of the total energy spent by the configuration network and by the PR controller

during reconfiguration to future work.

EPR, total = Ecompute + Eidle + Ememory

Ecompute is proportional to the total time spent for compute and the average power spent for compute

by the PR-style design Pcompute, which is a function of its frequency and its logic resources. The total time

spent for compute is equal to Nmodules × tcompute.

Ecompute = Nmodules × tcompute × Pcompute

Eidle is equal to the product of the total idle time and the average power consumed by PR-style design

when a module is idle Pidle. The total idle time is equal to tcamera, frame −Nmodules × tcompute.

Eidle = (tcamera, frame −Nmodules × tcompute)× Pidle

To estimate Ememory, we assume that data can be read/written from on-board external memory (DDR4

32-bit). Ememory is the sum of the energy spent for (1) reading the PR bitstreams Ebitstream and (2) for

loading/storing intermediate data from/to external memory Edata. Ebitstream is equal to the product of

the average energy to read/write a 32-bit word from DDR4 and the PR bitstream size. Edata is equal to

the product of the average energy to read/write a 32-bit word from DDR4 (640 pJ) and the size of the

input/output data.

Ememory = Ebitstream + Edata
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Figure 7.6: Average power of ASIC-style (no PR) and PR-style designs for different PR region sizes, frame

resolutions and PR speeds.

No External Memory Overhead. We first discuss the power/energy of PR-style and ASIC-style designs

assuming no power/energy overhead for external memory accesses in a PR-style design. Figure 7.6 shows the

average power of the ASIC-style (no PR) and PR-style designs for different PR region sizes, frame resolutions

and PR speeds over a fixed time interval Tcamera,frame. We estimate a design’s power using the Xilinx power

estimation tool based on the frequency and logic resource utilization of the design. When not accounting for

the power/energy overhead for external memory accesses, the average power of the PR-style design is less

than the average power of the ASIC-style design in most cases. Also, the greater the PR speed, the greater

the projected power savings. A PR-style design is projected to save up to 7.4% and up to 50% power when

PR speed=0.45 GB/s and PR speed=5 GB/s, respectively, compared to an ASIC-style design. This is due

to the PR-style design being mapped on a smaller FPGA which dissipates less leakage power than a larger

FPGA. If the PR-style design was mapped on the same FPGA as the ASIC-style design, the power consumed
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by the PR-style design would be higher than the power consumed by the ASIC-style design. Even though

the PR-style design uses less logic resources than the ASIC-style design, it runs at a much higher frequency

(300 MHz) than the ASIC-style design (between 13.5 MHz and 74.5 MHz). When mapped on the same

FPGA, a smaller design clocked at a higher frequency consumes more power than a larger design clocked at

a lower clock frequency due to the greater power consumed by the clock circuit in a design operating at a

higher frequency.

At 1080p, the average power of a PR-style design is generally greater than the average power of the

ASIC-style design except in some cases (e.g., when PR speed=5 GB/s and when PR regions are of size

greater than small). At 1080p, the overhead of real-time time-sharing outweighs its benefits. In this case,

the overhead is due to clocking the PR-style design at 300 MHz, which is about 4× the clock frequency of

the ASIC-style design (74.5 MHz), while the number of time-shared tasks is less than 3 in all cases.
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Figure 7.7: Energy breakdown for PR-style designs.
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Figure 7.8: Average energy of ASIC-style (no PR) and PR-style designs for different PR region sizes, frame

resolutions and PR speeds.

Including External Memory Overhead. We next discuss the energy results when accounting for the

energy overhead for external memory accesses in PR-style designs. Figure 7.7 shows the energy breakdown

for EPR, total in terms of (1) compute, (2) a module being idle and (3) external memory accesses for different

frame resolutions and PR speeds. The energy for external memory transfers (to fetch PR bitstreams and

load/store input output data) accounts for between about 10% and 17% of EPR, total for PR speed=0.45

GB/s and PR speed=5 GB/s, respectively. At higher PR speeds, more tasks are time-shared, and more

external memory accesses occur resulting in a greater energy overhead for external memory access transfers.

Note also that a PR-style design may be more power/energy efficient than an ASIC-style design even if the

PR-style design spends more time for reconfiguration than for compute.

Figure 7.8 shows the energy consumed by the ASIC-style (Eno PR) and the PR-style designs for different

94



PR region sizes, frame resolutions and PR speeds during tcamera, frame. The bars with the label ‘PR no

memory’ correspond to the energy consumed by the PR-style design assuming that the energy overhead for

external memory accesses is zero i.e. Ememory = 0. The bars with the label ‘PR total’ correspond to the

total energy consumed by the PR-style design (EPR, total).

When accounting for the energy overhead for external memory accesses (i.e. Ememory not equal to 0),

EPR, total is generally greater than Eno PR when the PR region’s size is less than vsmall for all PR speeds and

all resolutions. Therefore, when modules are small (less than 12k LUTs), it is generally more power/energy

efficient to map all modules statically than to do real-time time-sharing. When the PR region’s size is

greater than vsmall, EPR, total is less than Eno PR in most cases (for all PR speeds, and for 480p and 720p

resolutions). Having faster PR is beneficial for power/energy efficiency since the greater the number of large

time-shared modules, the larger the FPGA used to map the ASIC-style design. The larger the FPGA, the

greater the leakage power dissipated. When PR speed=2 GB/s, up to 47% energy savings can be realized

with a PR-style design. In this study, we did not account for the energy for reconfiguration (consumed by the

PR controller and by the configuration network). Taking this reconfiguration energy overhead into account

is an important step towards a better understanding of the cost/benefits of having higher PR speed.

7.5 Summary

Corroborating the findings in Chapter 6, we show that on current FPGAs with PR speed of approximately

0.5 GB/s, PR-style designs allow to reduce logic resource utilization, device cost, and power/energy by up

to 11×, up to 4.5× and by 1.3%, respectively, compared to an ASIC-style design when doing real-time

time-sharing. The greater the PR speed, the greater the projected savings in logic resource, device cost,

power and energy (up to 22×, 42.7×, and 50% for logic resource, device cost, power and energy savings,

respectively, when PR speed is equal to 5 GB/s). We also demonstrate that, in some cases, a PR-style design

can be less power/energy efficient than an ASIC-style design even with faster PR speed due to the additional

power/energy overheads incurred in a PR-style design. For instance, the power/energy overhead to access

external memory for additional data movement can account for between 10 and 18% of the total energy of a

PR-style design. This finding emphasizes the importance of developing analytical models and of performing

preliminary analyses to gain a better understanding of the costs and benefits of a PR-style design prior to

implementing a physical solution.

95



Chapter 8

Related Work

Architectural Improvements to Reduce PR Time. PR technology has been supported for over a

decade but remains an under-appreciated capability (e.g., [6,8,21,22,24,29,31,39,51,66,76,80,81]). One of the

mainly cited reasons to prevent a more widespread use of PR is the significant reconfiguration time on today’s

FPGAs. The time to reprogram a PR region (PR time) is mainly a function of the PR bitstream size, the

PR interface speed, and the storage medium where the PR bitstream is loaded from (e.g., external DDR).

When loading bitstreams from on-board DRAM, the PR speed on Xilinx FPGAs can range between 128

MB/s and 453 MB/s through the PCAP on Zynq 7000 Series and Zynq Ultrascale+ devices, respectively.

Therefore, PR time can range between few to tens of milliseconds on current FPGAs. FPGA vendors have

introduced architectural features and enhancements to reduce PR time. For instance, Xilinx and Intel have

included bitstream compression support in their tool chain to reduce bitstream size, and therefore, PR time.

On Xilinx FPGAs, PR speed has been improving from 128 MB/s (Zynq 700 Series FPGAs) to almost 0.5

GB/s (Zynq Ultrascale+ FPGAs), and is announced to be faster in next generation Xilinx FPGAs [28].

Another example includes the Intel Stratix 10 FPGA which is logically divided into multiple regions, called

sectors, that can be reconfigured in parallel to reduce reconfiguration time. Compared to a full FPGA

reconfiguration, PR allows to reduce reconfiguration time since only a subset of the FPGA resources is

reprogrammed. However, the time to reprogram a PR region is three orders of magnitude higher than a

context switch on a general-purpose processor (tens of microseconds) due to the difference between software

and hardware programmability as explained in Chapter 2.
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Role-and-Shell Approach. Commercially, PR has been mainly used in a “role-and-shell” approach ([9,42])

where the FPGA is reconfigured very infrequently (minutes, hours or days between reconfigurations). Most

FPGA resources are contained in a single PR region that is enclosed by a static shell region that provides

I/O and isolation. Independent designs with different functionalities, or roles, can be loaded as required in

the PR region over time (e.g.,[9,42]). Each role design is an ASIC-style design created to use the entire PR

region alone, with no consideration for sharing resources or interacting with other role designs. Using PR in

the “roll-and-shell-approach” provides multiple benefits over a full FPGA reconfiguration. First, the shell

part of the design can remain active while the role part of the design is reconfigured. This is important for

use-cases where the shell region contains components that have to remain active all the time (e.g., network,

I/O). Second, PR allows to reduce the area needed potentially resulting in device cost savings if the number

of role designs is very large and/or each role design uses a significant amount of resources.

FPGA OSes and Virtualization. With the growing interest of deploying FPGAs in the cloud or in the

data centers, the amount of work on FPGA OSes ([2,26,47,67,73]) and FPGA virtualization ([7,23,82]) has

been increasing quite rapidly. Past works on FPGA OSes have focused primarily on execution models for

statically mapped FPGAs and have not focused on PR-based FPGA systems. Example of FPGA OSes

that aim to provide analogous OS/runtime services (such as process control and I/O) include BORPH

[73], ReconOS [2] and LEAP [26]. They provide high-level management and virtualization of the FPGA

environment and resources. LEAP OS provides a set of convenient high-level system services analogous to

system services enjoyed by software processes (for example, STDIO library). BORPH carries the analogy

further by presenting the FPGA to OS management as a process with analogous process control and I/O

interfaces.

Recent works on virtualization leveraging PR mostly target multi-tenancy. In a multi-tenant use-case,

the FPGA can be shared by multiple tenants or groups of users. Over time, each tenant can request sets of

tasks with different resource and performance requirements. Since the sequence of tasks to be accelerated

at runtime is not known at design time, it is challenging to determine (1) a good partitioning of the FPGA,

i.e., decide on the optimal number and size of PR regions, and (2) an efficient module-to-PR region dynamic

allocation strategy to optimize metrics such as quality-of-service (QoS), resource utilization or serviceability

defined as the rate of successful allocation requests. Most works either tackle the partitioning or the allocation

problem assuming some fixed allocation or some fixed partitioning strategy, respectively.

Effort tackling the partitioning problem proposed search-based strategies to find the optimal number
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and size of PR regions for a given use-case [63]. To support the dynamic requirements of multi-tenancy,

[82] proposed an elastic partitioning strategy that can enable either multiple smaller and slower tasks to

execute concurrently, or one single fast and larger task to occupy most FPGA resources. Note that the same

partitioning and allocation challenges arise in the embedded systems domain and have also been thoroughly

investigated [34,53,67].

Allocation and Defragmentation Strategies. A vast body of work focused on the allocation problem

in dynamically managed FPGAs (e.g., [32,40,72,75,85]). They mainly discussed the theory of spatial and

temporal sharing, mechanisms for preemption [4], or hardware/software co-scheduling based on some fixed

partitioning of the FPGA [20,59,75,85]. Allocation heuristics have also been explored to reduce resource

fragmentation in dynamically-managed FPGAs [15,25,52]. Internal and external resource fragmentation can

arise due to the division of the FPGA fabric into a fixed number of reconfigurable partitions with static

boundaries at design time (i.e. fixed amount of resources in each PR region). External fragmentation occurs

if the fabric is divided into many small partitions that can not host large modules. Internal fragmentation

occurs if we try to make the PR partitions large enough. This reduces the number of modules that can run

concurrently; the resources in the large partitions would frequently be wasted on small modules. Examples

like [20,25,52] proactively defragment the fabric by relocating modules at runtime. These past work predom-

inantly focused on algorithmic solutions to a formalization of the problem where modules are dealt with as

geometrical shapes to be packed into a two-dimensional area that represents the fabric. There is comparably

much less work on addressing PR allocation and fragmentation problems under working technology and

implementation assumptions (e.g., [50]). Dessouky et al. developed an orthogonal approach to efficiently

share BRAM without fragmentation [19]. Their hardware runtime system manages BRAMs centrally as a

pooled resource and supports modules with managed virtualized access.

PR to Ease Design Development. We start to see PR being leveraged by domain-specific frameworks

to ease the development of FPGA designs for non-FPGA experts. In such frameworks, the FPGA has been

divided in multiple PR regions surrounded by a static I/O infrastructure that provides connectivity between

the PR regions and the rest of the system (I/O). A module library is built by FPGA experts and contains

off-the-self functional and optimized modules that accelerate computation stages. Typically, a non-FPGA

expert can specify his/her task to accelerate by using a domain-specific language and provided APIs. The user

code gets parsed, and a runtime system is in charge of mapping the computation on the FPGA. The runtime

manager is responsible for sequencing the computation and for choosing the appropriate module variants
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to be reprogrammed in the PR regions. For instance, [70] proposed a framework to ease the development

of FPGA accelerators for data analytics applications. A data analyst or data scientist can specify his/her

computation graph using a Big Data Environment (e.g., Apache Spark). The required task is then mapped

and accelerated on the FPGA.

Fine-Grain PR Usages. Few academic projects have attempted to use PR at a fine-grain, i.e. the time

interval between reconfigurations is within the sub-second range, due to the non-trivial PR time on today’s

FPGAs. When using PR at a fine-grain, the entity to schedule is typically a processing stage of a task,

resulting in smaller PR regions, and therefore reduced PR time. For many of these works, the sequence of

modules to execute is known ahead of time and therefore, the schedule can be determined offline. The work

in [83] leverages PR to implement streaming pipelines for convolutional neural network (CNN) acceleration.

If the pipeline was mapped entirely, all resources occupied by the design would not be active all the time

due to, for instance, the lack of off-chip memory bandwidth (presence of slack). Instead of mapping the

entire pipeline on the FPGA, pipeline stages are reconfigured over time, one or multiple at a time. The

authors show that a PR-style design can achieve greater throughput than an ASIC-style design given the

same area budget for CNN acceleration. In other words, they show improved performance density, defined

as throughput per LUT in their case, due to a better utilization of available resources when using PR. To

amortize PR time, they used techniques such as batching, that is, multiple inputs are processed by each

pipeline stage before the stage is reconfigured.

Benefits of PR. PR has been used to dynamically reuse, adapt or customize the datapath over the same

fabric resources to improve performance without incurring additional cost in fabric area. Along the line

of our vision framework introduced in Chapter 5, past systems that divided the fabric and managed its

use as PR regions include [18,55,58]. For domain-specific applications that can tolerate current PR time,

prior works demonstrated the potential benefits of a PR-style design in terms of area/device cost [3,13,51,

76,83], power/energy efficiency [62,64]. Rather than maximizing performance, the design objective for these

applications is to achieve greater area (power/energy) efficiency, that is, (1) for a given area (power/energy)

budget, the PR-style design achieves higher performance than the ASIC-style design, or that (2) for a given

performance target, the PR-style design consumes less area (power/energy) than the ASIC-style design. In

our work, we analyze in great details the benefits and overheads incurred when using PR at a fine-grain

under different assumptions and use-cases (Chapters 6 and 7).

Techniques and Tools for Better PR Support. While FPGA vendors have steadily improved PR sup-
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port in their tool chain (e.g., from script-based PR flow to GUI-based PR flow, APIs to send reconfiguration

command to PR controllers), implementing a PR-style design is still cumbersome. Notably, since PR region-

specific bitstreams need to be compiled for each module, a potentially very high number of PR bitstreams

needs to be managed at runtime for larger systems. Creating partition-specific bitstreams also increases the

placement & routing time. Prior works [5,41,53,77] investigated bitstream relocation, a technique that can

effectively reduce both the compile time and the number of bitstreams to manage. Bitstream relocation

allows a partition-specific bitstream to be modified at runtime so that it can be relocated into different RPs.

Enabling bitstream relocation in future tools and FPGAs could help reduce compilation time and runtime

management complexity.
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Chapter 9

Conclusion

9.1 Summary

To re-iterate, this thesis explores the question of when, how, and why FPGA designers should consider

using PR over a traditional ASIC-style approach. This work identifies slack as the main opportunity that

can exploited by PR-style designs to improve upon ASIC-style designs. The first part of the thesis defines

the concept of slack in ASIC-style designs and how PR can reduce this inefficiency with better area-time

scheduling (Chapter 3). In ASIC-style designs, FPGA designers commit to a fixed allocation of resources at

design time. At runtime, some of the occupied resources can be left idle or under-utilized. An ASIC-style

design has slack when resources occupied by the design are not active all the time. Slack can result in (1) the

design not running at the desired performance given an area budget, or (2) the design running at the desired

performance but being too big to fit in the given area. We discuss different sources of slack such as tasks

not needed all the time, operation dependencies or pipeline imbalancing. More subtle forms of slack exist

for applications that need to meet a performance target given an area, power or energy budget (e.g., video

analytics, image processing applications). For such applications, the ASIC-style design may not be clocked

at the maximum possible frequency to achieve the desired performance. A PR-style design can leverage this

slack to compensate for PR time and meet required performance.

Using PR, a designer can attempt to reduce slack by changing the allocation of resources over time. We

present our PR execution strategies to build area-efficient PR-style designs to (1) maximize performance

(latency or throughput) given an area budget or (2) minimize area given a performance bound (Chapter

4). When optimizing for throughput given an area budget, the best strategy is to serialize the execution of
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modules on one PR region using the largest module variants possible. Whenever possible, batching allows to

amortize PR time given enough intermediate memory capacity. When optimizing for latency given an area

budget, two possible execution strategies exist: (1) serializing execution on one PR region and (2) interleaved

execution on two PR regions. When attempting to minimize area and meet a performance target, a strategy

is to serialize the execution of modules on one PR region using the smallest variants possible. There should

be enough slack in the ASIC-style design in the form of sufficient clock frequency to compensate for PR

time. Using the proposed methodology and analytical model, a designer can quickly evaluate the best PR

execution strategy for a given problem and whether a PR-style design improves upon an ASIC-style design.

The model considers the trade-offs between PR region size, PR time and module performance. We also

account for the impact of memory bandwidth requirements on module performance. The model can be used

in the early stage of design space exploration given a module library that has been characterized in terms

of area, latency, throughput, memory bandwidth requirement, etc. The more accurate the characterization,

the more accurate the model’s predictions. In our evaluation, we validate the accuracy of the model on case

studies of implemented designs.

Leveraging the findings from our theoretical analysis, the second part of the thesis presents our practical

investigation on using PR to accelerate computer vision applications (Chapter 5). Computer vision appli-

cations are good candidates for a PR approach since (1) many vision applications can be accelerated by

streaming pipelines proven to greatly benefit from FPGA acceleration, (2) they have slack and can tolerate

current PR time (30+ fps performance requirements), and (3) are deployed on systems with area/device

cost, power or energy constraints. When an ASIC-style solution falls short due to its resource limitation

or inflexibility, PR presents a viable alternative. We design and implement a framework leveraging PR for

spatial and temporal sharing of multiple vision tasks. In the framework, multiple tasks can be mapped and

executed simultaneously on the FPGA (spatial sharing). Tasks can also be temporally shared at a coarse

or fine grain, that is, when the time interval between reconfigurations is within hours or milliseconds, re-

spectively. Unlike most works that mainly leverage PR at a coarse-grain (e.g.,“role-and-shell” approach), we

investigate a very aggressive, fine-grain usage of PR referred to as real-time time-sharing where the FPGA

fabric is time-multiplexed by multiple pipelines within the time scale of a camera frame. Challenges such

as asynchronous module execution, rate mismatch and wasteful reconfigurations arise in this new mode of

operation. We present the theory and the techniques for solving these challenges and implement them in the

framework. These architectural and runtime strategies mitigate the impact of PR time on performance. For
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instance, to reduce the number of reconfigurations needed, we design a software programmable crossbar and

leverage the commonality of modules in vision applications. We overlap compute and reconfiguration to hide

PR time, and batch to amortize PR time. Note that most of these optimizations are not specific to computer

vision and can be used for other application domains. In our evaluation, we first leverage our framework to

implement PR-style designs for repurposing (the scheduling entity is a task). We demonstrate that tasks

executed individually within our framework (1) achieve comparable performance to tasks mapped statically

on the FPGA, and (2) are up to two orders of magnitude faster than a CPU implementation. When up

to six vision tasks are executed simultaneously within our framework deployed on a Zynq FPGA, we show

that they can achieve the same performance as when executed individually (up to 169 MPixels/s). Second,

we use our framework to implement PR-style designs for real-time time-sharing (the scheduling entity is a

pipeline stage). We demonstrate the feasibility of realizing real-time time-sharing on current FPGAs (up to

three time-shared vision pipelines can run at 30+ fps on a Zynq 7000 Series FPGA).

Using the framework, we also design and implement application examples to demonstrate that a PR-style

design can be more area/device cost, power or energy efficient than an ASIC-style design with slack (Chapter

6). We first demonstrate the benefits of a PR-style design on two application studies used as proxies for a

rapidly emerging class of AI-driven applications with limited area, power or energy budget. Notably, we show

that a PR-style design can be more power and energy efficient than an ASIC-style even when reconfigurations

are very frequent (i.e. most of the total execution time is spent for reconfiguration) as long as the application

has tolerance for frame drops. Note that in these specific studies, the clock frequency of the ASIC-style and

PR-style designs are identical. Also, the data source and sink of the ASIC-style and PR-style designs is the

on-board external memory. Therefore, there is no extra power/energy overhead incurred in the PR-style

design due to a higher clock frequency and to additional data movement.

We conduct a limit study and make projections on the impact of having higher PR speed on the costs

and benefits of a PR-style design when doing real-time time-sharing (Chapter 7). Real-time time-sharing

serves as a proxy for very aggressive PR usage that incurs the most overheads in terms of PR time, power

and energy due to (1) the very frequent reconfigurations, (2) the additional data movement for fetching PR

bitstreams and for loading/storing intermediate module data, and (3) the higher clock frequency of the PR-

style design to compensate for PR time. Therefore, in this study, we ask whether PR benefits grow infinitely

with greater PR speed or whether the overheads incurred in real-time time-sharing outweigh the benefits of a

PR-style design. The main findings of this study are that, with faster PR, more tasks can be time-shared on
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a given FPGA, or alternatively, a smaller FPGA can be used for time-multiplexing a fixed number of tasks.

In other words, the greater the PR speed, the greater the area and device cost savings. The power/energy

overheads for (1) additional data movement to fetch PR bitstreams and to load/store intermediate data

from/to off-chip memory, and (2) clocking the design at the maximum achievable frequency can have a

significant impact on the design’s power/energy. Notably, we show that a PR-style design can be less

power/energy efficient than an ASIC-style design. For instance, in a PR-style design with many small PR

regions, the energy overhead for additional data movement can account for up to almost 20% of the design’s

total energy resulting in the PR-style design consuming more energy than the ASIC-style design mapped

on a larger FPGA. Another example is with a PR-style design spending most of its total execution time

computing while operating at the maximum achievable frequency to compensate for PR time. Compared to

an ASIC-style design mapped on a larger FPGA but clocked at a lower frequency, the PR-style design may

consume more power/energy. Overall, this study highlights the importance of considering all power/energy

overheads incurred in a PR-style design for a fair comparison with ASIC-style designs.

In summary, PR mostly benefits applications with slack that are concerned with efficiency. An ASIC-

style design is the best approach when the goal is to solely maximize performance. When using PR at a

coarse-grain (e.g., for repurposing), the time and power/energy overhead has negligible impact on the de-

sign’s performance and power/energy, respectively. A PR approach allows to save area/device cost, power

and energy compared to a traditional static approach. When using PR at a fine-grain, a PR-style design is

generally more area/device cost efficient than an ASIC-style design, that is, (1) a PR-style design uses less

resources while achieving the same performance as an ASIC-style design. A PR-style design can be mapped

on a smaller FPGA resulting in device cost reduction. or (2) a PR-style design can achieve better perfor-

mance using the same amount of resources as an ASIC-style design. When considering power/energy, the

power/energy overheads of a PR-style (due to the frequent reconfigurations, the additional data movement,

and the higher clock frequency) can outweigh the benefits of using a smaller FPGA. This latter observation

on power/energy overheads is also true at higher PR speeds.

9.2 Limitations and Future Work

We discuss some of the limitations of the current work and present possible solutions.

Exploring Different PR execution Strategies for Dynamic Load Scenario. This thesis focuses on

offline scheduling strategies assuming that the sets of modules to be accelerated on the FPGA are known at
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design time. In a design scenario where this information is not available, the problem of allocating modules

to PR regions may involve more complex decisions. For instance, in the data centers or in the cloud, different

combinations of tasks with different resource and performance requirements are needed over time and are

not known at design time (i.e. dynamic load requirements). Dynamic PR execution strategies can attempt

to find the best allocation to optimize quality-of-service and/or maximize utilization. These strategies can

involve module preemption, module relocation or even defragmentation of the fabric. When modules are

preempted or relocated, additional mechanisms are required for saving/restoring a module’s context. Fabric

defragmentation is an attempt to improve utilization when resources are internally or externally fragmented.

Investigating Different PR Region Division Strategies. This work assumes, for the most part, that

the PR-style design is divided into homogeneously-sized PR regions, (i.e. PR regions roughly contain the

same amount of resources) which may not be the optimal division, for instance, if the module library consists

of a mix of small and large modules. If the fabric was divided into many small PR regions of the same size,

large modules would not fit. If the fabric was divided into fewer large PR regions of similar size, less modules

could execute concurrently. In this case, dividing the fabric into multiple heterogeneously-sized PR regions

might be the best option. One attempt at finding the optimal layout (i.e. the number and size of PR regions)

appeared in [63] leading to improved resource utilization and quality-of-service. We explore the amorphous

technique, a non-conventional method that removes the fixed PR region boundary constraint enforced by

current design tools and that allows to change the size of PR regions at runtime (Appendix A). Using this

technique, the FPGA designer does not need to commit to a fixed layout at design time; the size of PR

regions can be changed at runtime. Though the amorphous technique can improve resource utilization and

reduce fragmentation in PR-style designs, it incurs additional complexity at design time and at runtime due

to an increased number of bitstreams to generate and manage.

Analytical Model Limitations. The analytical model presented in Chapter 4 has several limitations.

First, the model does not provide efficient PR execution strategies (1) to minimize a design’s power/energy

and (2) for mixed design objectives, for instance, maximize throughput while keeping latency smaller than

a given threshold. One possible solution for mixed problems is to leverage the proposed PR execution

strategies and search the design space for the best design. Second, the estimations’ accuracy is based on the

ability to place and route modules at the required clock frequency, which can be challenging depending on

the problem. The model could include different confidence levels based on a design’s complexity. Third, the

methodology presented to find an efficient PR-style design currently relies on manual search of the design
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space. If the number of module variants is very large, searching exhaustively the design space considering

the multiple dimensions of PR time, area, performance, and memory bandwidth requirements would quickly

become tedious. A solver could automate this search process, and selects the appropriate modules for a

given problem.

Improving the Framework’s Usability for Non-FPGA Experts. The framework presented in Chapter

5 was used to facilitate the implementation of PR-style designs for evaluating their benefits. This work has

fully not explored the potential of using PR to ease FPGA design development for non-FPGA experts, e.g.,

computer vision application developers. The main components of the framework could be the foundations of

a “design by module composition” approach. A non-FPGA expert can build his/her application to accelerate

on the FPGA by specifying the different processing stages and their connectivity. The application code is

parsed by a runtime system which reprograms the plug-and-play architecture with the needed modules from

a module library. Frameworks using PR to ease FPGA design development have started to emerge, for

instance, for data analytics acceleration [70]. A data scientist expert can express the task to accelerate on

the FPGA using a Big Data environment such as Apache Spark. The task is modeled as a computation graph

accelerated by, for instance, a streaming pipeline on the FPGA. The FPGA fabric is divided into a shell

region that provides I/O connectivity between the PR region and external components such as PCIe, DRAM

or Ethernet. A dataflow compiler parses the user-level code and generates the intermediate representation

passed to a hypervisor which is responsible for mapping the computation on the FPGA. Specifically, the

hypervisor picks the appropriate module from a module library to accelerate the required task.

The main benefits of such approach would be to (1) provide functional and optimized off-the-shelf pro-

cessing modules that can be easily composed to design an application. Similar to software development where

optimized APIs are provided for executing common vision processing tasks (e.g., stereo, corner detection),

the module library should consist of a rich enough set of vision modules to accelerate standard processing

tasks. The module library should consist of parameterizable modules with different variants allowing for

different trade-offs (e.g., performance, area, accuracy, power) (2) hide the complexity of I/O connectivity

between the FPGA and external I/O components (e.g., external memory, cameras, display) from the user

with the plug-and-play architecture.

Among the challenges to be addressed, one is to provide the right abstraction for a non-FPGA expert to

interface with the FPGA (e.g., user application code written in domain-specific language), and the interme-

diate layers needed to move from this user-level application representation to a lower-level representation.
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The adoption of a domain-specific language such as Halide could make the framework more vision experts

friendly. A compiler could translate the Halide user-level code to an intermediate representation leverag-

ing the proposed APIs and constructs for module-to-PR-region mapping and for establishing the desired

connectivity between modules. Also, the complexity of the PR flow should be completely hidden from the

user. For instance, the processes of allocating modules to PR regions, establishing the connectivity between

PR regions, and adding new modules in the library should be automatically handled by the framework

without needing the user’s intervention. An elaborate runtime could be designed to automatically handle

these allocations and to manage fabric resource, external memory bandwidth, and time (e.g., scheduling and

mapping of stages to PR regions). After the plug-and-play architecture is implemented and PR bitstreams

are generated for a set of modules, a problem occurs if the user wants to add a module in the library that

is too large to fit into any of the PR regions already floorplanned. If it is the case, a new fabric layout

needs to be determined with different PR region number and size to accommodate for the new module.

PR bitstreams for the entire module library need to be regenerated for this new layout, that is, PR region-

specific bitstreams for all modules in the library need to be recompiled for this new layout, which may result

in very long compilation time if the module library is large. The amorphous technique (Appendix A) can

potentially help with this problem since (1) the size of PR regions can be changed at runtime and (2) only

PR region-specific bitstreams for the new module need to be generated. This technique could be relevant

for systems that need frequent upgrades, for instance, in use-cases where the functionalities to accelerate on

the FPGA keep changing or add up over time.

Efficient Mapping of Neural Networks in the Framework. The framework could also be extended

to support the execution of neural network accelerators mapped as streaming pipelines on the FPGA. Some

layers in large neural networks have high external memory bandwidth requirements and are typically I/O

bound on FPGA platforms with less than 10 GB/s of external memory bandwidth. For neural networks, a

strategy where multiple stages are reprogrammed and executed in a pipelined fashion might be better suited

than serializing execution on one PR region (this strategy mostly benefits compute-bound stages).

Increasing PR Speed with Multiple PR Controllers. This work discusses the costs and benefits when

increasing PR speed through one PR controller. Another way to increase overall PR bandwidth is by having

multiple PR controllers. While not supported on current FPGAs, multiple PR controllers, each with a lower

PR speed, allow multiple reconfigurations to happen in parallel, and might be more power/energy efficient

than having a single very fast PR controller.
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Appendix A

The Amorphous Technique

This appendix presents the amorphous technique, a non-conventional method to overcome the fixed boundary

constraint imposed by current FPGA tools. Section A.1 first discusses the motivations behind using this

technique vs standard PR. Section A.2 presents the amorphous DPR technique. Section A.3 introduces our

evaluation setup. Lastly, Section A.4 presents our results.

A.1 Overview

Use-Cases. In the framework presented in Chapter 5, the FPGA fabric is divided into multiple recon-

figurable partitions with fixed boundaries at build time. Each PR partition is provided with a standard

interface connection (e.g., AXI4 or AXI4 streaming). The PR partitions are enclosed by an static I/O

infrastructure that provides datapath to connect the reconfigurable partitions, through the standard inter-

face, with each other and with off-fabric resources (e.g., on-chip embedded processor, off-chip DRAM and

I/O). At runtime, the reconfigurable partitions can be dynamically reconfigured for use by independent or

loosely-coupled modules to flexibly share the fabric spatially and temporally. Example systems of this kind

of dynamically managed fabric use-case include [7,30,58].

Problem: Fragmentation. Dividing a fabric into reconfigurable partitions with fixed boundaries causes

the available fabric resources to become fragmented. We risk creating external fragmentation if we divide

the fabric into many small reconfigurable partitions. An over-sized module cannot be loaded onto the fabric

unless a sufficiently large reconfigurable partition had been allocated when the reconfigurable partitions were

floorplanned. We risk creating internal fragmentation if we try to make the reconfigurable partitions large
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Figure A.1: An FPGA fabric organized into a top-level static region enclosing a runtime reconfigurable

region subdivided as two reconfigurable partitions. The partition pins in (a) have been arbitrarily placed;

the partition pins in (b) have been placed deliberately.

enough. This reduces the number of modules that can run concurrently; the large reconfigurable partitions

would frequently be wasted on under-sized modules. In our vision processing use-case (Chapter 5), the effect

is especially pernicious for SRAM and DSP resources that are in very high demand.

Solution: “Amorphous” PR. We devise a technique that does away with the need to commit upfront

to a layout of fixed reconfigurable partition boundaries. This technique relies on the assumption that

reconfigurable partitions only physically connect with the static I/O infrastructure and never directly with

each other. Only the boundary of the static region and the locations of the AXI4 interface nets have to

be fixed at build time. Instead of mapping a module to fit in a reconfigurable partition’s fixed boundary,

we map a module to a custom floorplan that only encloses the minimum consumed fabric region around

an interface. In fact, for each module, we compile multiple bitstream versions corresponding to differently

shaped footprints; each footprint option is chosen to minimize the potential for conflict with other modules’

footprints. At runtime, a desired combination of modules can occupy the fabric at the same time if a

non-overlapping packing of footprints can be found from the available versions.

Contributions. We verify the feasibility of the amorphous technique on Xilinx Zynq SoC FPGAs using

Vivado. We further integrate amorphous PR into our vision processing pipeline framework. Doing away

with the impositions of fixed reconfigurable partition boundaries removes resource fragmentation and thus,

greatly expands the allowed module combinations that can co-exist on the fabric simultaneously.

We evaluate the improvement in placement rate (fraction of a given set of module combinations that can

be placed successfully) when using the amorphous technique vs. standard PR in our vision framework. We

also evaluate the savings in PR time because amorphous PR reconfigures only the footprint area actually

used for a module (instead of a complete reconfigurable partition regardless of the degree of utilization within

when using standard PR). The results show that amorphous PR offers significant improvement in flexibility
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Figure A.2: The elements actually locked down as the result of building the floorplan in Figure A.1(a). The

dashed outlines indicate examples of valid and invalid footprint options for building modules to attach to

the left interface.

and efficiency over standard PR in our vision processing pipeline framework.

A.2 Amorphous PR

For the dynamically managed fabric use-case (e.g., framework in Chapter 5, allocating too-large reconfig-

urable partitions creates internal fragmentation; allocating too-small reconfigurable partitions creates exter-

nal fragmentation. Either way, the effect is that some un-utilized resources become off-limits—due to some

boundary line—to a module that needs them. This inefficiency and inflexibility is a significant obstacle to

the dynamically managed fabric use-case.

Flexible Boundaries. We realize we could avoid fragmentation by doing away completely with the require-

ment of fixing the reconfigurable partition boundaries at build time. This is because in our use-case, the

modules to be configured at runtime only connect physically with the static region and never directly with

each other. At build time, we only have to fix (1) the boundary of the static region and (2) the resources

reserved for the AXI4 interface nets and the partition pins. Figure A.2 depicts the elements actually locked

down as the result of building the floorplan in Figure A.1(a).

Instead of confining a module to a predetermined reconfigurable partition boundary, we could build a

module to attach to the left interface using any of the several possible valid footprints (examples shown in

dashed lines in Figure A.2). For a given module, the footprint only needs to be large enough to contain

the required fabric resources. The same flexibility is available when building modules for the right interface.

Please note that all resources (including routing) needed by a given module must be entirely contained within

its footprint.

At runtime, two PR bitstreams—one for the left and one for the right interface—can be simultaneously

loaded provided their footprints do not overlap. Figure A.3 shows the example where the large footprint
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Figure A.3: A valid packing of two non-overlapping footprints of modules for the left and right interfaces.

The left module would have been too large to fit within the fixed boundaries of the left reconfigurable

partition in Figure A.1(a).

of a resource-demanding module, attached to the left interface, co-exists with the small footprint of a less

resource-demanding module, attached to the right interface. Some resources are left over, not needed by

either footprint. This combination of modules would have been prevented by resource fragmentation had we

followed the fixed, equally resourced reconfigurable partitions in Figure A.1(a) or Figure A.1(b).

Interface Placement. Using amorphous PR, we no longer have to make hard decisions on how to divide up

the runtime reconfigurable region upfront. The decision is reduced to how many AXI4 interfaces to support

and the placement of the AXI4 interfaces’ partition pins. The placement of partition pins should not be

arbitrary as they can interfere with the packing of module footprints. For example, the largest footprint in

Figure A.2 is not valid for attaching a module to the left interface because it also encloses the partition pins

for the right interface. Thus, we can see that the deliberate placement of partition pins in Figure A.1(b) is

preferable to Figure A.1(a) because the deliberate placement is less restrictive. Please note that the resources

withheld for the interface nets do not pose similar restrictions.

When extrapolating to a realistic implementation supporting many more interfaces, the placement of the

partition pins becomes of strategic importance. The goal is to allow one module’s footprint—which must

include its own interface’s partition pins—to grow, as necessary, unimpeded by other interfaces’ partition

pins. For the sizes of contemporary available FPGAs, one heuristic is to place the interfaces evenly along

the periphery of the runtime reconfigurable region. This heuristic allows interfaces to access more freely the

resources in the runtime reconfigurable region, by allowing the module footprints to grow toward the interior

of the region.

To place the large number of signals associated with the AXI4 and AXI4-Lite interfaces, we use the

floorplanner to tightly constrain the outline of a placeholder reconfigurable partition so the interface signals

will be automatically placed into an intended area. Later, when building a module to attach to a particular
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interface, we use the floorplanner to expand the associated placeholder reconfigurable partition’s original

boundary to the desired rectilinear footprint. This final footprint outline, as well as any of the partition

pins and nets reserved within, is then used to constrain the place-and-route to produce a footprint- and

interface-specific version of the PR bitstream.

Footprint/Bitstream Management. Under standard DPR, a module needs to have different bitstream

versions to be instantiated in different reconfigurable partitions. Under amorphous PR, one module can

have still more versions of PR bitstreams, each corresponding to a particular interface attachment and a

particular footprint. This extra degree of freedom in footprint choice expands the set of valid combination

of modules that can be loaded on the fabric simultaneously. The downsides to this degree of freedom are

(1) increased storage for additional bitstream versions and (2) algorithmic complexity in optimizing the

compile-time decisions of footprint choices, and the runtime decisions of bitstream version selection.

A.3 Evaluation Methodology

In this section, we explain the metrics and methodology used to evaluate the effectiveness of amorphous

PR over standard PR in our vision framework. We use synthetic benchmarks to focus the evaluation on

the fragmentation of BRAM and DSP blocks, which have been the resource bottleneck in our usage. We

consider 3 synthetic module workloads (WorkloadBRAM, WorkloadDSP and Workloadmixed) that focus on

BRAM-only, DSP-only, and mixed BRAM/DSP, respectively.

A.3.1 Metrics

Placement Rate. The primary metric is the placement rate. For this measurement, we assume there

exists a library of modules where each module has a number of bitstream versions available corresponding to

different interface attachments and, in the case of amorphous PR, also different footprint shapes. An user can

demand a combination of up to Ninterfaces modules to be in-use at a time (Ninterfaces is the number of AXI4

interfaces available). Some combinations may not be feasible due to FPGA resource bounds. In standard

PR, a combination is not feasible when some of the demanded modules cannot fit into the fixed reconfigurable

partitions available. In amorphous PR, a demanded combination is not feasible due to footprint conflicts,

that is, a valid non-overlapping packing of the available footprints cannot be found. Placement rate is the

fraction of feasible combinations for a given set of demanded combinations.
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PR Time Overhead. During PR, the affected fabric region is not contributing to computation for a time,

resulting in a loss of performance. Amorphous PR can be faster than standard PR because amorphous PR

reconfigures only a required footprint size. Standard PR reconfigures the entire PR partition regardless of

the actual resource utilization within.

To quantify the difference in reconfiguration overhead, we consider an interactive scenario where the user

demands a sequence of module combinations. Consecutive module combinations in the sequence differ by

Nmodule-delta modules, where Nmodule-delta is an experimental parameter that specifies how many modules

change between consecutive combinations in a sequence. We measure PR time overhead as the total time

lost to PR over the demanded sequence. The reconfiguration process is handled through the processor

configuration access port (PCAP), with an empirically observed bandwidth of 128 MB/s.

Keep in mind, this is a direct measurement of overhead. In practice, the overhead’s significance must

be weighed against the execution interval between PR events. Also, in measuring overheads, we assume

execution interval is synchronized such that modules are only changed together in between intervals. In

general, the lifetime of different modules needs not be coupled.

A.3.2 Evaluation Platform

FPGA and tool. We use the Xilinx ZC702 development board with an XC7Z020 SoC FPGA for our

evaluation. The XC7Z020 SoC FPGA has 53,200 logic cells, 140 BRAMs and 220 DSP blocks. We use

Xilinx Vivado version 2014.4 for all the builds. All designs are placed-and-routed at 100 MHz.

static region. We built three instances of our parameterized vision framework (Chapter 5) to support

the three workloads. All three static region instances support six modules (Ninterfaces = 6), but the AXI4

interfaces provided are specialized to the workload. StaticBRAM provides AXI4 interfaces to DMA; StaticDSP

provides AXI4-Stream interfaces; and Staticmixed provides both. When building the static region, we man-

ually positioned the AXI4 interfaces’ partition pins.

On the small XC7Z020 SoC FPGA, the static region can consume as much as 45% of the available logic

cells and 25% of the available BRAMs. Although the static region does not make use of DSP blocks, it can

still prevent some of the DSP blocks from being used by modules loaded into the runtime reconfigurable

region region. Table A.1 summarizes the resources available in the runtime reconfigurable region regions for

the three workloads.

The real deployment of our vision framework is on a custom embedded board with an XC7Z045 SoC
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Table A.1: Resources in runtime reconfigurable region region by workload

Workload Logic Cell BRAM DSP AXI4

BRAM36Kb 27816 80 90 memory

DSP 23968 38 120 streaming

mixed 22712 40 80 memory+streaming

FPGA. There, the static region supports up to 12 AXI4 interfaces for modules, consuming about 5% of

the available logic cells and 1% of the available BRAMs. The runtime reconfigurable region region has over

200,000 logic cells, 500 BRAM blocks and 900 DSP blocks to be flexibly shared by the 12 modules. In our

experience, we can reliably use up to around 70% of the available resources in the runtime reconfigurable

region region before the tool experiences difficulty in routing and timing-closure.

A sample screenshot of the static region floorplan on the XC7Z045 SoC FPGA is shown in Figure A.4.

The screenshot gives an indication of the relative sizes of the static region and the runtime reconfigurable

region. Within the runtime reconfigurable region region, the areas enclosing the individual AXI4 interfaces

are highlighted as well.

PR Regions and Amorphous Footprints. When evaluating standard PR, the naive baseline case

divides the runtime reconfigurable region into six roughly equally resourced PR regions. In addition, for

each experiment conducted, we tested 1000 randomized layouts of six PR regions that enclose different

fractions of the total resources (nonsensical layouts are pruned from consideration). For each experiment,

the best result from among the 1000 layouts is reported as best-effort. This is to approximate the results of

a tuned layout when the workload mix is known ahead of time.

In order to conduct the best-effort study, a large number of bitstream versions has to be generated for

each module, corresponding to different interface attachments and differently shaped PR regions. We directly

adopted this collection of bitstreams as the bitstream database for amorphous PR. As such, in our evaluations,

amorphous PR can always match the results of best-effort standard PR by using the corresponding selection

of module bitstreams. Amorphous PR can exceed the best-effort standard PR because it can also combine

bitstreams arising from different layouts, whereas standard PR is limited to one fixed layout at a time.

In a real scenario, instead of generating a large number of random footprint bitstream versions, one would

strategically maintain a much smaller number of well-chosen footprints following heuristics such as to pack
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Figure A.4: A sample screenshot of the static region floorplan on the XC7Z045 SoC FPGA. This instance

of the vision framework supports 12 AXI4 interfaces.

tightly around the reserved interface region and to obey handedness when consuming a fraction of a column

(i.e., consume from the bottom if reaching from the right and vice versa).

A.3.3 Synthetic Workloads

Below we describe the three synthetic module workloads (WorkloadBRAM, WorkloadDSP and Workloadmixed)

that focus on BRAM-only, DSP-only, and mixed BRAM/DSP, respectively. Each workload has three variants

of different degrees of difficulty.

WorkloadBRAM. We use Vivado HLS to develop a simple module design to read a large number of values

from DRAM into BRAM and to compute the sum of those values. The module design is parameterizable

to use different numbers of BRAMs. We constructed a library comprising different module instances uti-

lizing between 0 and 40 BRAMs in increments of 5 BRAMs. (The runtime reconfigurable region region in

StaticBRAM has 80 available BRAMs total. Modules with more than 40 BRAMs almost always result in

failed synthesis even for the largest PR region/footprint considered.) From this library, we randomly select

modules to form the demanded module combinations to measure placement rate and overhead. Selecting a
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0-BRAM module corresponds to a combination where less than six modules are demanded. As in our real

usage experience, the modules use relatively little logic cell resources so their fragmentation and conflicts are

not considered in this evaluation; this applies to all three workloads studied.

The advantage of amorphous PR over standard PR depends on resource utilization pressure. Therefore,

for each workload, we consider three variants with different degrees of difficulty, Easy, Hard, Harder. For

Easy, we restricted module selection to come from modules utilizing 0 up to 20 BRAMs. The selected

modules on average utilize 10 = (0 + 5 + 10 + 15 + 20)/5 BRAMs, less than the average number of BRAMs,

13.3 = 80/6, available to each interface. For Hard and Harder, we raise the BRAM ceiling to 30 and 40,

respectively.

WorkloadDSP. We use the FFT IP with AXI4-Stream interface from Vivado’s IP Library. The FFT IP is

parameterizable to use different numbers of DSP blocks. Similar to WorkloadBRAM, we construct a library

comprising different module instances utilizing between 0 and 50 DSP blocks in increments of 5 DSP blocks.

For Easy, Hard and Harder, we restrict module selections to come from modules utilizing a maximum of

30, 40, and 50 DSP blocks, respectively. The runtime reconfigurable region in StaticDSP has 120 available

DSP blocks total.

Workloadmixed. This last workload mixes modules from the two previous workloads. For Easy, Hard

and Harder, we restrict module selection to come from modules utilizing either a maximum of 20, 30 or 40

BRAMs; or a maximum of 20, 30, or 40 DSP blocks. The runtime reconfigurable region region in Staticmixed

has 40 available BRAMs and 80 available DSP blocks total.

A.4 Results

This section presents the outcomes of the evaluations outlined in the last section.

A.4.1 Placement Rates

Following the procedures described in the last section, for each placement rate measurement, we generated

1000 module combinations, each with up to six modules randomly selected according to workload and degree

of difficulty.

Figure A.5 reports the placement rates (y-axis) for naive standard PR vs. best-effort standard PR vs.

amorphous PR in experiments corresponding to different workloads (separated by plots) and degrees of
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Figure A.5: Comparing the placement rates achieved by naive standard PR vs. best-effort standard PR vs.

amorphous PR.

difficulty (x-axis). The placement rate for naive standard PR is poor even for the Easy variant of the

workloads. The Easy workload variants are setup such that the module average resource requirement is just

less than the resource available in a naive standard PR region. However, a combination fails if any of the

six modules is above average. By tuning the PR region sizes according to workload at build time, best-effort

standard PR does well on the Easy variant of the workloads (up to 80% placement rate) but is unable to

cope with the utilization pressure as the degree of difficulty increases to Hard and Harder.

Amorphous PR achieves over 80% placement rate on all workload variants, except for the Hard and

Harder variants of WorkloadBRAM at over 70%. More telling than the absolute values are the improvements

from standard PR to amorphous PR. As expected, we observe that amorphous PR yields greater improvement

going from Easy to Hard to Harder workloads. The significant differences on the Harder variants translate

tangibly to a much greater effective usable capacity in a dynamically managed fabric use-case like our vision

framework.

A.4.2 Reconfiguration Overhead

To evaluate reconfiguration overhead, we randomly constructed 1000-combination long sequences. The se-

quences include only combinations that are valid in both best-effort standard PR and amorphous PR. Figure

A.6 reports for WorkloadBRAM the average reconfiguration time (y-axis), in milliseconds, spent in transition-

ing between consecutive combinations. We report results when using best-effort standard PR vs. amorphous

PR in experiments corresponding to different degrees of difficulty (x-axis). We do not report results for naive

standard PR because it accepts too few combinations to be included for comparison. The separate plots

in Figure A.6 correspond to results using sequences with Nmodule-delta=1, 2, 3, and 4, respectively. (Recall,

Nmodule-delta is a parameter that specifies how many modules change between consecutive combinations in a
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Figure A.6: Comparing the average reconfiguration times per transition for WorkloadBRAM when using

best-effort standard PR vs. amorphous PR.

Figure A.7: Comparing the average reconfiguration times per transition for WorkloadDSP when using best-

effort standard PR vs. amorphous PR.

sequence.) Figures A.7 and A.8 report the results for WorkloadDSP and Workloadmixed, respectively. Plots

for some values of Nmodule-delta are missing because not enough combinations are acceptable under standard

PR to make meaningful comparisons.

The average reconfiguration time spent in transitioning between consecutive combinations correlates

most strongly with the bitstream size of loaded modules. We observe that the average reconfiguration time

increases directly with the number of modules changed, Nmodule-delta. The average reconfiguration time is

also sensitive to the degrees of difficulty, which affects the range of module sizes involved. The ratios of

average reconfiguration time of best-effort standard PR over amorphous PR are between 1.1× and 1.5×.

This ratio corresponds well with the ratios of their respective bitstream sizes. Though not reported, naive

standard PR would do much worse than both best-effort standard PR and amorphous PR because its six

equally resourced PR regions would quite often be larger than necessary for the modules, due to variations

in module resource requirements.
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Figure A.8: Comparing the average reconfiguration times per transition for Workloadmixed when using best-

effort standard PR vs. amorphous PR.
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