
A Service-Oriented Memory Architecture
for FPGA Computing

Joseph Melber
Carnegie Mellon University

Pittsburgh, Pennsylvania
jmelber@cmu.edu

James C. Hoe
Carnegie Mellon University

Pittsburgh, Pennsylvania
jhoe@cmu.edu

Abstract—Memory access is an essential aspect of FPGA
compute accelerator design. Current development environments
pay much more attention to high-level compute abstraction
while holding on to the familiar basic load-store memory
paradigm. This paper proposes a service-oriented memory
architecture where, instead of operating in terms of loads,
stores and addresses, a compute accelerator design interacts with
abstracted memory services that present high-level, semantic-rich
operations—both compute and data transfers—on encapsulated
data objects. The support for a memory service, realized as a soft-
logic module or a composition of modules, is developed by domain
experts and available to the accelerator design in a reusable cat-
alog collection. This paper sets forth a service-oriented memory
architecture and provides a development framework to specify
and generate a customized service-oriented memory system.
We evaluate the proposed abstraction and design framework
through a case study of a breadth-first search accelerator. We
demonstrate that a service-oriented memory paradigm increases
development convenience while simplfiying an accelerator design
without negatively impacting performance or resource utilization.

I. INTRODUCTION

Field Programmable Gate Arrays (FPGAs) with abundant
concurrent processing elements promise a phenomenal level
of processing throughput. However, to deliver actual compute
performance, FPGA compute accelerator designers must man-
age to move data to/from the processing elements at a data rate
commensurate with the processing throughput. Current FPGA
programming environments give disproportional emphasis to
lowering the design effort on processing-centric kernels than
to the memory access side of the design task. Common design
methodologies today support a designer with middleware
interfaces (e.g., AXI and Avalon) for read and write operations
to insulate the designer from interfacing directly with DRAM
at the wire and cycle level [1], [2]. However, the designer
must still build all the datapaths for on-chip buffering and
data movements, as well as the state machines to coordinate
these datapath activities.

The cloud computing community developed service-
oriented architecture to enable flexibility and extensibility
within a distributed computing environment [3]. Additionally,
service-oriented architecture provides policies and practices
to compose software services into a larger application. This
reduces integration complexity and development time. Re-
cently, entire FPGA accelerators have been deployed as a

service

Abstraction Implementation
Reality

interface adapters

message network

service service service service

service service service

message network

Fig. 1. The service-oriented memory architecture in which processing kernels
interact with abstracted memory services that present high-level, semantic-
rich operations on encapsulated data objects. The abstraction hides the
implementation complexity of services and the required infrastructure.

service [4]–[6]. This work proposes a service-level view of
FPGA memory in which the designer does not think in
terms of load/store/address, rather their designs interact with
abstracted memory services that encapsulate high-level data
objects and memory operations behind equally high-level
messaging interfaces.

The service-oriented memory architecture introduces a high-
level abstraction for using memory (Fig. 1) and provides de-
signers with starting points higher than standard bus interfaces
and DMA IPs, or even explicit notions of memory as an
array of locations. Memory services are implemented as soft-
logic service modules that abstract platform interfaces and data
layout, and encapsulate high-level semantic-rich operations on
data in memory. Services themselves are portable function-
alities that are agnostic of the platform and memory device
where the data resides. Individual services are implemented
as separate components within a system—each service can
be shared and share resources such as memory devices.
This allows the system to enable multiple functions under
the abstraction implemented spatially. Furthermore, complex
memory services may be a composition of simpler services.

A system generation framework hides implementation com-
plexity by providing facilities to specify memory services
and construct a memory system through catalog and registry
files respectively. This enables FPGA accelerator designers to
build a customized memory system that presents high-level
operations through a collection of expertly crafted memory
service modules.

In the following sections, we motivate the service ab-
straction for FPGA memory. We present our framework to
support and enable service-oriented design for FPGA memory
systems. Finally, we evaluate this abstraction and framework
in a case study of a breath-first search graph accelerator.

We demonstrate that the service-oriented memory architecture
increases convenience while reducing development complexity
without resource or performance overheads.

II. BACKGROUND

Current standard RTL-level design methodologies provide
middleware layers with bus-like read/write interfaces [1], [2].
High-level synthesis design methodologies support a C-to-
hardware abstraction primarily in the design of the processing
kernels [7], [8]. RCMW and GAScore provide a standard set
of memory interfaces tailored to streaming and block copy
access patterns [9], [10]. LEAP provides load-store interfaces
to scratchpad memories and extends their capacity virtually
with the backing of off-chip DRAM [11], [12]. CoRAM
restricts a processing kernel’s data access to on-chip SRAM
scratchpads and provides a software-like control-thread API
to manage data transfer to/from off-chip DRAM [13]. In all
of these, the FPGA accelerator designer cannot avoid thinking
explicitly about how a data structure is laid out in a linearly
addressed space and how a complex operation expands into
discrete loads and stores. CoRAM++ extended the CoRAM
API to include data-structure specific data transfers [14].
CoRAM++ data structure specific support is an early precursor
to our current thinking to develop a complete memory as
a service abstraction. This work adopts a service-oriented
memory abstraction providing useful operations on data as
well as transferring data to/from memory.

III. MEMORY SERVICE ABSTRACTION

A. Motivating Example: Shared Counters

Consider an example accelerator with many processing
kernels distributed on an FPGA fabric. The kernels need
to increment the entries of a shared table of counters in
DRAM. Following today’s common approach (Fig. 2.top),
each processing kernel needs to understand the table explic-
itly as an array in DRAM and manipulate it through load
and store primitives via a middleware layer like an AXI or
Avalon bus [1], [2]. In addition to following a correct locking
discipline, for each increment operation, a processing kernel
needs to load the table entry from DRAM and then store the
updated value back to DRAM. While straightforward, this is
not the best way to think about hardware design given FPGAs’
programmability and hardware concurrency.

Service-oriented memory architecture insulates designers
from implementation complexity while maintaining FPGAs’
inherent ability to specialize. Consider an alternative scenario
(Fig. 2.bottom) where a centralized service module serves to
provide the abstraction and implementation of the counter
table. The processing-focused kernels only need to send sim-
ple, fire-and-forget requests to the proxy module to effect the
table increments. Only the service module needs to understand
the table layout and DRAM specifics (e.g., how to update
a single word when the granularity of DRAM accesses is
larger). As a centralized service, atomicity of the increment
is trivially observed without the need for locking or cross-
kernel communication. Performance is improved because the

FPGA

DRAM

cn
tr 0

cn
tr 1

cn
tr 2

cn
tr 3 ...

edge interface (ld/st/addr)

on-chip bus

ld
/s
t/
ad
dr

ld
/s
t/
ad
dr

ld
/s
t/
ad
dr

ld
/s
t/
ad
dr

ld
/s
t/
ad
dr

k1 k2 k3 k4 k5
while(!Test&Set(addrlck));
temp=Load(addrcntr-x)
temp = temp+1
Store(addrcntr-x, temp)
Store(addrlck, 0)

DRAM

cn
tr 0

cn
tr 1

cn
tr 2

cn
tr 3 ...

read-write memory service

message-passing network

tx
/r
x

tx
/r
x

tx
/r
x

tx
/r
x

tx
/r
x

k1 k2 k3 k4 k5
send-msg {

to: counters-service
action: increment
arg: cntr #3

}

counters service
cntr cache

req
buf

cntr
scoreboard

send-msg {
to: memory-service
action: load
arg: 0x1F0

}
FPGA

Fig. 2. Top: Processing kernels incrementing a shared table of counters in
DRAM. Each kernel must be aware of the interface and locking semantics, as
well as the table data structure details. Bottom: A service module acts on the
kernel’s behalf to manipulate counters in memory in response to a message
request.

read-increment-write sequence is contained within the service
module, and can be placed near to the physical DRAM inter-
face. The service could even introduce caching and merging
optimizations without affecting the design and operation of the
processing kernels.

B. A Case for Memory as a Service

Specialized memory operations available as convenient ser-
vices reduce the development burden on compute accelerator
designers. Good designers do practice modular design, but
as ad hoc efforts that are not generally reusable. Imposing
a service framework and interface can help force those efforts
into a reusable and portable form. The memory as a service
model balances abstraction and customization proficiently to
encapsulate in-memory data objects behind high-level, intelli-
gent access and compute operations. The lowest level services
enable the portability of processing kernels and other higher-
level services by virtualizing the differences across diverse
platforms and memory technologies. Extending convenience
and portability even further, services themselves can be com-
posed of simpler services hierarchically in the service-oriented
memory architecture.

Decoupling memory operations as services simplifies the
logic of processing-focused kernels. Services range from sim-
ple memory engines supporting atomic read-modify-writes,
to traversing and modifying large pointer-based data struc-
tures. Furthermore, abstraction overhead in hardware is low—
without services, the kernel modules would have to implement
these operations internally if not provided as a service. Mem-
ory service abstraction can actually improve design results if
high quality, expert-designed service modules are available.
Below this abstraction, designers can even selectively instan-
tiate performance improvements through parameters.

C. Curating Services

Service-oriented memory architecture enables services and
entire memory systems to be developed as loosely connected
components thus simplifying development without relinquish-
ing flexibility. A service comprises a logical operation and
its physical implementation. In our work, services are imple-
mented as service modules developed as soft-logic in Verilog
or Bluespec [15]. Domain experts craft efficient memory oper-
ations inside service modules abstracting data layout, interface
semantics, data modification, et cetera. Each service must
have a corresponding catalog entry in JSON that describes its
functionality, interface channels, operations ascribed to each
channel, parameters, and message structure. The catalog entry
is a binding contract between users and the service developer.
The listing below sketches the entry for the “counters” service:

1 { "service-type": "counters",
2 "channels": [{ "ifc-name": "count",
3 "ifc-name": "table_mem" }],
4 "provides": [{ "service-type": "counters",
5 "ifc-name": "count" }],
6 "requires": [{ "service-type": "read-write",
7 "ifc-name": "table_mem" }],
8 "message-structure": { ... } }

Service composition extends service module designers the
same ease in development that user-level designers are af-
forded through service-oriented architecture. Not only can
services make use of abstract portable operations through other
services, this freedom to build complex service hierarchies
enables rich customization without redevelopment cost or
knowledge of the implementation complexity. Returning to our
previous example, the counters service requires a read-write
service. The read-write service provides virtualized access to
the the table of counters in memory. The counters service does
not need to be aware of the location of the table in memory
nor the hardware details of the physical memory device.

D. Communicating with Services

The design of a standardized application programming
interface for memory services affects many of our objectives.
Abstracting communication decouples services and clients
simplifying development while maintaining implementation
flexibility for optimization. We support interactions between
client and service modules through request-response message
passing over logically point-to-point latency-insensitive [16]
channels. A message comprises of a defined number of argu-
ment words and optionally data. The service module designer
defines the semantics of a message to their service through its
catalog entry.

When a processing kernel of an FPGA compute accelerator
wants to operate on a service-abstracted data object, it invokes
the memory service as a client through its associated channel
interface. Using SystemVerilog’s interface construct [17], a
channel interface is defined as a pair of message queues—
for request and response, respectively—running in opposite
directions between the client module and the service module.
The point-to-point channel connection is a logical construc-
tion; our framework later elaborates each logical connection by

counters

read-write memory
DRAM interface

RTL plane
services plane

k1 k2 k3 k4 k5

accelerator

Fig. 3. A service-level sketch of the design from Fig. 2.bottom showing the
normal accelerator design module hierarchy and the out-of-band service chan-
nel connections. The registry file is used to express these logical connections.

name. During generation, depending on the mapping strategy,
a connection may be rewritten and multiplexed on to a shared
physical path transparent to the client and the service modules’
perspectives.

IV. SYSTEM DEVELOPMENT FRAMEWORK

A. Instantiating Services in a Design

A memory service module is not instantiated in the tra-
ditional sense. Designers express abstract connections to
services, through channel interfaces, in their kernels but
not the service’s physical implementation. This development
model enables convenient and flexible system design. In the
service-oriented memory architecture, service modules live
“extracorporeally”—outside of the normal compute acceler-
ator’s module hierarchy. A client module indicates the desire
to access a service module by declaring a channel interface in
its port list (e.g., “cntrs” below). This interface is left dangling
only to be completed later during post-processing rewriting.

1 module kernel(input clk, channel cntrs);
2 ...
3 always_ff @(posedge clk) begin
4 cntrs.txPush <= do_inc && !cntrs.txFull;
5 cntrs.txMsg.arg0 <= cntr_id;
6 cntrs.txMsg.arg1 <= how_much;
7 end
8 endmodule

Client and service module instantiations and connections are
expressed by the designer using a JSON registry file separate
from the Verilog design files. A registry file for a given service-
oriented memory system specifies the logical organization of
connections between modules. Fig. 3 shows a logical sketch
of the counters accelerator design from Fig. 2.bottom. These
connections are expressed by the designer in the registry file.
The listing below sketches one kernel and the counters service
captured in the registry file for the counters accelerator:

1 { "platform": { ... },
2 "connected-components": [...
3 { "type": "kernel", "name": "k5",
4 "connections":
5 [{ "channel-ifc-name": "cntrs",
6 "connection": "counters_svc" }]},
7 { "type": "counters", "name": "counters_svc",
8 "connections":
9 [{ "channel-ifc-name": "count",

10 "connection": "counters_svc" },
11 { "channel-ifc-name": "table_mem",
12 "connection": "localMem" }]}, ...]}

The registry file specifies the connection named “coun-
ters svc” to link the channel interfaces between the counters
and kernel modules. The post processing generator: 1) parses
the registry file to construct a memory system module with
appropriate external interfaces, 2) instantiates modules, and
3) implements logical connections as physical messaging
channels. Designers also have the option to specify control and
status registers, through the registry file, to be implemented.

B. Quality of Service

Quality of service (QoS) is an important principle in service-
oriented architecture. Our framework allows designers to
specify QoS constraints through the registry file to flexibly
optimize services without modifying their kernel RTL code.
For example, the number of requests a service can accept, or
the client request arbitration scheme for sharing a service can
be specified as parameters. Static priority and round-robin ar-
bitration are supported in the physical channel transport infras-
tructure. These provide a QoS knob for bandwidth allocation
to clients. Specifying the physical implementation of logical
channels through the registry file is another QoS optimization.
The current framework supports logical channels implemented
as point-to-point physical channels, as well channels via a
shared network-on-chip [18] to increase scalability.

C. Instrumentation and Introspection

As the number of services grow in a complex service-
oriented memory system, it becomes difficult to debug and
tune services. To ease this burden, our framework supports
instrumentation and introspection features through a statistics
interface [19]. We provide a set of simple statistics IP cores
to probe and instrument service logic. The current set of
statistics cores include counters, samplers, and a protocol
checker. These statistics allow designers to gain high-level
insights about system behavior and fine-tune their memory
systems. Statistics cores are fully synthesizable and therefore
can be used in simulation, prototyping, and the final design.

V. CASE STUDY IMPLEMENTATION

We selected a graph algorithm, breadth-first search (BFS),
as the application case study for the service-oriented mem-
ory architecture. We chose this algorithm as it is memory-
intensive, data-centric, and irregular; this provides an oppor-
tunity to examine memory services in a stressful and dynamic
application. Our baseline accelerator is designed as an elastic
pipeline with kernel stages decoupled by memory accesses—
this is similar to the baseline FPGA-only accelerator design
by Wang et al. [20]. The design aims to exploit available
memory-level parallelism, and maximize on-chip data reuse.
Our baseline accelerator accesses the input graph data at the
platform DRAM interface granularity stored in the compressed
sparse row format as shown in Fig. 4.

Our service-oriented accelerator design absorbs complexity
from kernel stages and simplifies their code to look much like
the algorithm pseudocode. The fully abstracted BFS pipeline
is shown in Fig. 5 with worklist and graph services. The

fetch
self idx

fetch
self node

fetch
edges

fetch
neighbor

update
neighbor

update
worklist

memory

worklistread work worklistread node worklistread edge worklistread dist worklistwrite dist worklistwrite work

Fig. 4. Baseline BFS elastic pipeline accelerator with read/write services.
Each service enables access to a part of the graph data structure in memory.

fetch
self node

update
neighbor

update
worklist

worklistworklist

worklistnode index
to

neighbors
worklistatomic
update

Fig. 5. Final BFS accelerator including graph services—that abstract the
graph traversal and atomic neighbor distance update—and a worklist service.

pipeline now has a reduced number of kernel logic stages
as the higher-level graph services absorb complexity, and
the stages themselves are much cleaner. The “node index
to neighbors” service streamlines the algorithm kernel by
providing a compound operation that, with one request, returns
not just one neighbor but a stream of neighbors and their
distances (so the kernel logic does not need to iteratively look-
up and query each neighbor). This encapsulation does not add
extra logic cost or logic delay.

Service-oriented memory architecture is also effective in
addressing hardware-induced difficulties. For example, DRAM
interfaces on FPGAs operate on a multi-word granularity as
large as 64 bytes. The baseline accelerator needs to account
for this inconvenient detail at every turn. When updating a
neighbor node’s new distance, the baseline accelerator must
read an entire 64-byte block, modify the affected sub-word,
and write back the entire block. Worse yet, the kernel module
must check if back-to-back updates are to the same block
to ensure the updates are correctly merged. This kind of
complexity arising from the operational and structural specifics
of the interface is dealt within the “atomic update” graph
service abstraction. Similarly, our service-oriented accelerator
abstracts the worklist as a service, and the kernel modules
interact with this service at the work-item granularity. As far
as the designer is concerned, the worklist is an “unlimited”
capacity circular buffer. These services support memory oper-
ations at the sub-word granularity regardless of the underlying
memory interface, resulting in both lower design effort and
increased portability. Furthermore, services can be specified
with performance enhancements like a cache. We demonstrate
this in the “atomic update” graph service, taking advantage of
temporal locality in the neighbor distance memory operations.

VI. EVALUATION

A. Evaluation Setup

For this study, we deploy our prototype framework on
the Intel FPGA Programmable Acceleration Card (PAC)
D5005 [21] and the Intel Open Programmable Acceleration
Engine (OPAE) SDK [22]. We evaluate our framework and
architecture through a case study of a BFS graph accelerator.
We use a set of synthetic and standard network graphs [23] as
inputs which are summarized in Tab. I for this evaluation.

0

25

50

75

100

rmat_1m rmat_256k USA_east USA_FLA cond-mat rome-99

M
TE
PS

Base WL Serv
WL+G raph Srv Base + Dist $
WL Serv + Dist $ WL+G raph Srv + Dist $

Fig. 6. Performance achieved in millions of traversed edges per second
(MTEPS) for the BFS accelerator for the base implementation, worklist ser-
vice, and graph services implementations showing that the service abstraction
does not negatively impact performance.

TABLE I
BFS BENCHMARK GRAPHS AND SIZES

Graph Nodes Edges

rome99 3.3k 8.8k
cond-mat 40k 351k
USA FLA 1.1M 2.7M
USA east 3.6M 8.7M
rmat 256k 256k 4.2M
rmat 1m 1M 16M

B. Service Abstraction Overhead

Our first scenario evaluates the overheads introduced by ab-
stracting portions of the BFS pipeline as services. Comparable
performance is achieved while greatly reducing the complexity
of the accelerator pipeline and kernel code—therefore reduc-
ing the overall effort to develop a BFS accelerator. Across
the set of benchmark graphs we measured the computation
throughput in traversed-edges-per-second (TEPS). Abstracting
the worklist and graph operations as services does not reduce
performance shown in Fig. 6 nor increase resource utilization
as shown in Tab. II. This is unsurprising as the logic required to
provide these functionalities has to be included in the baseline
user-level kernel logic without services.

C. Memory Device Portability

The second set of experiments evaluates the flexibility of
service-oriented memory architecture. Changing the memory
device behind services is a trivial adjustment with the support
of our framework, allowing designers to tune for performance
through modifying the registry file without modifying user-
level code. We evaluated the fully abstracted BFS accelerator
design across five memory device configurations as shown
in Fig. 7. As anticipated, performance improves with each
optimization conveniently enabled by making small changes
to a registry file rather than RTL redevelopment.

D. Service Instrumentation and Introspection

Throughout our accelerator development, specifically while
developing and optimizing the worklist functionality, we no-

TABLE II
RESOURCE UTILIZATION FOR SERVICE ABSTRACTIONS

Configuration ALM Registers BRAM

Base 141495 163643 10590080
Worklist Service 141598 164131 10590080
Worklist + Graph Services 138817 164895 10590080

0

25

50

75

100

rmat_1m rmat_256k USA_east USA_FLA cond-mat rome-99

M
TE
PS

PCIe (160MHz)
DDR (16 0MHz)
DDR + 256k Dist $ (140MHz)
DDR + 1M Dist $ (140MHz)
Dual DDR + 1M Dist $ (140MHz)

Fig. 7. Performance across memory devices available in the PAC system
and node distance caching for the BFS accelerator shown in MTEPS. These
results highlight the flexbility of services across diverse memory interfaces
and cache configurations.

TABLE III
WORK-ITEM BUNDLES SPILLED TO MEMORY

Benchmark Ave Max

rome99 0.02 1
cond-mat 699.12 1036
USA FLA 27.87 113
USA east 20.38 208
rmat 256k 85.19 11395
rmat 1m 50.63 44891

ticed a need for runtime introspection [19]. This requirement
arose as the worklist’s memory demands are runtime and
benchmark-dependent. We developed instrumentation features
as a core function of the service-oriented memory architec-
ture and monitored the memory requirements of the worklist
service. We tracked the average and maximum number of
work-item bundles spilled to memory shown in Tab. III. These
statistics led us to prefetch ahead of the accelerator to keep up
with work item demands, rather than cache or attempt to rely
on on-chip SRAM. This demonstrated introspection’s value
assisting in the development of services with runtime effects
on performance, and tuning for efficiency.

VII. CONCLUSION

FPGA’s inherently reconfigurable fabric provides immense
freedom to hardware accelerator designers to generate highly
optimized and efficient compute architectures. Furthermore,
modern FPGAs continue to grow in size and attach to rich
and varied memory devices. This same development freedom
complicates memory system design as interconnects and hi-
erarchies must be developed from raw memory interfaces to
support highly optimized compute modules. We have argued
that the familiar general-purpose load-store memory access
paradigm is not an efficient abstraction to ease FPGA devel-
opment. Rather, the advantages of FPGAs as a reconfigurable
fabric should be extended into a memory architecture design.
We demonstrated a service-oriented memory architecture for
FPGA computing, where services provide customized access
to data and absorb complexity from processing kernel mod-
ules. Through well defined interfaces and flexible composition,
services simplify application development without reducing
performance or adding resource overheads, and present a
successful abstraction for FPGA memory.

ACKNOWLEDGMENTS

This work was supported by the Intel Strategic Research
Alliance (FPGA Programming Optimization). The authors
thank Intel and Bluespec for tools, hardware, and support.

REFERENCES

[1] Xilinx, AXI Reference Guide, https : / / www . xilinx .
com/support/documentation/ip documentation/axi ref
guide/latest/ug1037-vivado-axi-reference-guide.pdf.

[2] Intel Corporation, Avalon Interface Specifications, https:
//www.altera.com/en US/pdfs/literature/manual/mnl
avalon spec.pdf.

[3] B. P. Rimal, E. Choi, and I. Lumb, “A taxonomy, survey,
and issues of cloud computing ecosystems,” in Cloud
Computing: Principles, Systems and Applications. Lon-
don: Springer London, 2010, pp. 21–46, ISBN: 978-1-
84996-241-4. DOI: 10 . 1007 / 978 - 1 - 84996 - 241 - 4 2.
[Online]. Available: https : / /doi .org /10 .1007 /978- 1-
84996-241-4 2.

[4] A. M. Caulfield, E. S. Chung, A. Putnam, H. Angepat,
J. Fowers, M. Haselman, S. Heil, M. Humphrey, P.
Kaur, J. Kim, D. Lo, T. Massengill, K. Ovtcharov,
M. Papamichael, L. Woods, S. Lanka, D. Chiou, and
D. Burger, “A cloud-scale acceleration architecture,” in
2016 49th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO), Oct. 2016, pp. 1–13.
DOI: 10.1109/MICRO.2016.7783710.

[5] M. Huang, D. Wu, C. H. Yu, Z. Fang, M. Interlandi,
T. Condie, and J. Cong, “Programming and Runtime
Support to Blaze FPGA Accelerator Deployment at
Datacenter Scale,” in Proceedings of the Seventh ACM
Symposium on Cloud Computing, ser. SoCC ’16, Santa
Clara, CA, USA: Association for Computing Machin-
ery, 2016, pp. 456–469, ISBN: 9781450345255. DOI:
10.1145/2987550.2987569. [Online]. Available: https:
//doi.org/10.1145/2987550.2987569.

[6] C. Wang, X. Li, Y. Chen, Y. Zhang, O. Diessel,
and X. Zhou, “Service-oriented architecture on FPGA-
based MPSoC,” IEEE Transactions on Parallel and
Distributed Systems, vol. 28, no. 10, pp. 2993–3006,
Oct. 2017, ISSN: 1045-9219. DOI: 10.1109/TPDS.2017.
2701828.

[7] Xilinx, Vivado HLx, https://www.xilinx.com/products/
design-tools/vivado.html.

[8] Intel Corporation, Intel HLS Compiler, https : / /www.
altera.com/products/design-software/high-level-design/
intel-hls-compiler/overview.html.

[9] R. Kirchgessner, A. D. George, and H. Lam, “Reconfig-
urable computing middleware for application portability
and productivity,” in 2013 IEEE 24th International Con-
ference on Application-Specific Systems, Architectures
and Processors, Jun. 2013, pp. 211–218. DOI: 10.1109/
ASAP.2013.6567577.

[10] R. Willenberg and P. Chow, “A Remote Memory Access
Infrastructure for Global Address Space Programming
Models in FPGAs,” in Proceedings of the ACM/SIGDA
International Symposium on Field Programmable Gate
Arrays, ser. FPGA ’13, Monterey, California, USA:
ACM, 2013, pp. 211–220, ISBN: 978-1-4503-1887-7.

DOI: 10.1145/2435264.2435301. [Online]. Available:
http://doi.acm.org/10.1145/2435264.2435301.

[11] M. Adler, K. E. Fleming, A. Parashar, M. Pellauer,
and J. Emer, “LEAP Scratchpads: Automatic Memory
and Cache Management for Reconfigurable Logic,”
in Proceedings of the 19th ACM/SIGDA International
Symposium on Field Programmable Gate Arrays, 2011,
pp. 25–28.

[12] K. Fleming, H. J. Yang, M. Adler, and J. Emer, “The
LEAP FPGA operating system,” in 2014 24th Interna-
tional Conference on Field Programmable Logic and
Applications (FPL), Sep. 2014, pp. 1–8. DOI: 10.1109/
FPL.2014.6927488.

[13] E. S. Chung, J. C. Hoe, and K. Mai, “CoRAM: An
in-fabric memory architecture for FPGA-based comput-
ing,” in Proceedings of the 19th ACM/SIGDA interna-
tional symposium on Field programmable gate arrays,
ACM, 2011, pp. 97–106.

[14] G. Weisz and J. C. Hoe, “CoRAM++: Supporting data-
structure-specific memory interfaces for FPGA comput-
ing,” in 2015 25th International Conference on Field
Programmable Logic and Applications (FPL), 2015,
pp. 1–8.

[15] Bluespec, Inc., Bluespec System Verilog, http://www.
bluespec.com/products/bsc.htm.

[16] L. P. Carloni, K. L. McMillan, and A. L. Sangiovanni-
Vincentelli, “Theory of latency-insensitive design,”
IEEE Transactions on Computer-Aided Design of In-
tegrated Circuits and Systems, vol. 20, no. 9, pp. 1059–
1076, Sep. 2001, ISSN: 1937-4151. DOI: 10.1109/43.
945302.

[17] “IEEE Standard for SystemVerilog–Unified Hardware
Design, Specification, and Verification Language,”
IEEE Std 1800-2017 (Revision of IEEE Std 1800-2012),
Feb. 2018. DOI: 10.1109/IEEESTD.2018.8299595.

[18] M. K. Papamichael and J. C. Hoe, “CONNECT: Re-
examining conventional wisdom for designing NoCs
in the context of FPGAs,” in Proceedings of the
ACM/SIGDA international symposium on Field Pro-
grammable Gate Arrays, ACM, 2012, pp. 37–46.

[19] M. K. Papamichael, “Pandora: Facilitating ip develop-
ment for hardware specialization,” PhD thesis, Carnegie
Mellon University, 2015.

[20] Y. Wang, J. C. Hoe, and E. Nurvitadhi, “Proces-
sor Assisted Worklist Scheduling for FPGA Acceler-
ated Graph Processing on a Shared-Memory Platform,”
in 2019 IEEE 27th Annual International Symposium
on Field-Programmable Custom Computing Machines
(FCCM), Apr. 2019, pp. 136–144. DOI: 10.1109/FCCM.
2019.00028.

[21] Intel Corporation, Intel FPGA Programmable Acceler-
ation Card D5005 Data Sheet, https://www.intel.com/
content/dam/www/programmable/us/en/pdfs/literature/
ds/ds-pac-d5005.pdf, DS-1058, Nov. 2019.

[22] ——, Open Programmable Acceleration Engine - Doc-
umentation, https : / / opae .github. io / latest / index .html,
version 1.4.0.

[23] T. A. Davis and Y. Hu, “The University of Florida
Sparse Matrix Collection,” ACM Trans. Math. Softw.,
vol. 38, no. 1, Dec. 2011, ISSN: 0098-3500. DOI: 10.
1145 / 2049662 . 2049663. [Online]. Available: https : / /
doi.org/10.1145/2049662.2049663.

