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Abstract—FPGA-based processing has gained much attention
for accelerating graph analytics because of the demand in perfor-
mance and energy efficiency. However, while priority scheduling
has been shown to be an effective optimization for improving
performance for worklist-based graph computations, it is rarely
used in accelerator designs due to its implementation complexity
and memory-access overhead.

In this paper, we present a heterogeneous processing approach
for priority scheduling on a shared-memory CPU-FPGA plat-
form. By exploiting the closely-coupled integration of the host
processor and the FPGA accelerator, our system dynamically
offloads the task of scheduling to a software scheduler on the
processor for its programmability, high-capacity cache and low
memory latency, while the FPGA graph processing accelerator
enjoys the scheduling benefit and delivers higher performance
at excellent energy efficiency. To understand the effectiveness
of our solution, we compared it with FPGA-only solutions for
two scheduling schemes: the well-known Dijkstra scheduling for
Single Source Shortest Path and a new scheduling optimization
we developed for improving the data locality of Breadth First
Search. Whereas the FPGA-only solution requires an impractical
amount of on-chip storage to implement a priority queue, the
proposed processor-assisted scheduling that moves the task of
scheduling to the processor consumes a negligible load on the
processor and retains most of the performance benefit from
priority scheduling.

I. INTRODUCTION

Worklist-Based Graph Algorithms. Graph analytics are
tools for determining the relationships among connected com-
ponents in a graph. The wide variety of applications, in-
cluding item recommendation [1], social network analysis
[2], computer-vision [3], and so forth, mark their increasing
importance. While differing in function, many graph analytic
algorithms can be abstracted as worklists and iterative pro-
cessing routines[4]. The worklist is a data structure that stores
a set of pending tasks, often implemented as a queue; the
processing routine iteratively dequeues and completes those
tasks until the worklist is empty. With the freedom to define
the task and the processing routine, this worklist-based model
can be generally applied to represent different computations.
As a graph computation progresses, new tasks are generated
in an order determined by the topology of the input graph and
the execution phases, which tend to be highly irregular. While
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this irregularity imposes a great challenge for extracting paral-
lelism and exploiting data locality, it presents an opportunity
for worklist scheduling, as the naturally-occurring insertion
order of tasks is often not the ideal processing order.

Worklist Scheduling. For many graph algorithms, the tasks
stored in the worklist can be scheduled to be processed in any
order without affecting its functional correctness. Examples
include Breadth First Search (BFS) and Single Source Shortest
Path (SSSP). Even though FIFO is frequently used as a
worklist for in-order processing for its low implementation
complexity, there exist better processing schedules that can
improve performance by exploiting application-specific infor-
mation.

A classic example is the Dijkstra SSSP algorithm[5]. SSSP
determines the shortest paths from a source vertex to the
other vertices in a graph by iteratively expanding the frontier
of search. By prioritizing the task vertex with the shortest
path for frontier to skip the long paths that are less likely
to be parts of the final solution, the Dijkstra scheduling
drastically reduces the processing time. Another example uses
scheduling to improve cache performance [6]. In fact, this type
of priority scheduling is very common in software-based graph
computations. State-of-the-art graph processing frameworks,
such as Galois[4], GraphMat[7] and GunRock[8], all provide
built-in support for task prioritization.

Problems with Worklist Scheduling for FPGA-
Accelerated Graph Processing. Graph computations are fun-
damentally memory-bounded, which imposes a challenge to
fully utilize the large, fast-clocked cores in modern processors.
On the other hand, this provides an opportunity for FPGAs,
as they can be configured to target only the needed operations
for achieving great efficiency and performance. However,
FPGA-based accelerators rarely exploit the optimization of
worklist scheduling. To understand why, we conducted two
case studies for worklist-based graph computations, including:
1) the aforementioned Dijkstra scheduling for SSSP and 2) a
new scheduling optimization for BFS that we proposed for
improving on-chip data reuse by prioritizing the processing of
topologically close vertices. We first established competitive
non scheduling FPGA baselines for both algorithms and
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Fig. 1. A QPI-based shared-memory processor-FPGA platform.

discovered that, in addition to the implementation complexity,
adding hardware support for priority scheduling consumes a
large amount of on-chip BRAM. As the baseline accelerator
also needs BRAM for caching vertex data this results in a
serious conflict for the limited FPGA resources.

Our Processor-Assisted Solution. To tackle this problem,
we propose Processor Assisted Scheduling (PAS) on a
shared-memory FPGA platform. A shared-memory system,
such as Intel Heterogeneous Accelerator Research Platform
(HARP)[9] shown in Figure 1, offers coherence accesses to a
shared off-chip memory for the FPGA and the host processor
through a high-performance interconnect, like Intel's Quick-
Path Interconnect (QPI). This enables dynamic, fine-grain
data-sharing and communication between the CPU and the
FPGA. PAS harnesses the power of a shared-memory system
by using FPGA for the standard graph processing routine
and dynamically offloading the scheduling task to the host
processor. The software scheduler exploits the sophisticated
cache system and lower memory latency of the processor to
deliver fast scheduling service, which helps the accelerator to
obtain the benefit of worklist scheduling without consuming
precious BRAM resources.

In our evaluation, PAS allows SSSP and BFS to obtain
over 90% and 80% of the theoretical scheduling benefit on
an Intel HARP, respectively. Additionally, as the software
scheduler spends most of the processing cycles waiting for
new tasks to be produced by the accelerator or the priority-
queue accesses to complete, this lightweight routine places
a negligible load on the CPU and interferes minimally with
other concurrent applications, making PAS ideal for servers.
By allowing the processor and the accelerator to work on
what they are good at, the collaborative processing of PAS
achieves better performance and energy efficiency than each
can individually deliver.

Our Contributions.

o We developed, implemented and evaluated PAS on an In-
tel HARP. The evaluation results suggest that PAS allows
the accelerator to obtain the majority of the performance
benefit from worklist scheduling without consuming extra
FPGA resources. In addition, we observed that PAS in-
curs negligible interference to other applications running
in parallel on the CPU.

e As a use case of PAS, we developed a new worklist
scheduling for BFS, which combines graph-preprocessing
and dynamic scheduling to prioritize the processing of
vertices that are likely in near topological neighborhood
to improve the utilization of cache and overall perfor-
mance.

II. PRIORITY SCHEDULING FOR WORKLIST-BASED
GRAPH ALGORITHMS

In this section, we will present two examples showing how
priority scheduling can be applied to improve the performance
for graph algorithms. The first example is the previously
mentioned Dijkstra-based SSSP. The second example is a
new locality optimization that we developed for this work,
which combines graph pre-processing and priority scheduling
to improve the data locality for BFS.

A. Reducing Tasks for SSSP

The Inefficiency of In-Order Processing. A worklist-based
implementation of SSSP supporting graphs in Compressed
Sparse Row (CSR) format is shown in Algorithm 1, which
iteratively labels each vertex with its currently-known shortest
path. During initialization, the labels of all vertices are set to
infinity, and then the worklist enqueues the source. SSSP then
enters the main loop for processing the stored tasks, or vertices
with newly discovered shortest paths, from the worklist by
attempting to “relax” their neighbors (lines 4-16). Relaxation
is the process of exploring the path spanning form the source
to the task vertex and then to its neighbor. If this path is
shorter than the previous path assigned to the neighbor, the
relaxation succeeds, and a new shorter path is found. Finally,
successfully-relaxed vertices are inserted to the worklist to be
processed later.

Algorithm 1 Baseline SSSP algorithm
1: FIFO_worklist.enqueue(source);
2: for(int i=0;ijnum_vtx;++i)vtx_array[i].dist=INF;
3: while !FIFO_worklist.empty() do

4: vtx curr_task=FIFO_worklist.dequeue();

5: int task_idx=curr_task.idx;

6: int task_dist=curr_task.dist;

7: int curr_edge_offset=vtx_array[task_idx].edge_offset;
8: int num_edge=vtx_array[task_idx].num_edge;

9:  for num_edge to 0 do

10: int curr_nbr=edge_array[curr_edge_offset].dst;

11: int edge_length=edge_array[curr_edge_offset].length;
12: int curr_dist=edge_length+task_dist;

13: vtx nbr_vtx=vtx_array[curr_nbr];

14: if vtx_array[nbr_vtx].dist;curr_dist then

15: nbr_vtx.dist=curr_dist;

16: vtx_array[nbr_vtx.idx]=nbr_vtx;

17: FIFO_worklist.enqueue(nbr_vtx);

18: end if

19: end for

20: end while

There are two important observations to be made here. First,
while this implementation assumes an in-order FIFO for the
worklist, the stored task vertices can actually be processed in



(a) SSSP )
T=0, worklist={0}, vtx array: {0, (e=->10), (eo->1), oo, oo}

T=1, worklist={1, 2}, vtx array: {0, 10, 1, oo, (e=->20)}
T=2, worklist={2, 4}, vtx array: {0, 10, 1, (e ->2), 20}
T=3, worklist={4, 3}, vtx array: {0, 10, 1, 2, 20}

T=4, worklist={3}, vtx array: {0, 10, 1, 2, (20->3)}

(b) SSSP with

scheduling T=0, PQ={0}, vtx array: {0, (°°->10), (e°->1), oo, oo}
T=1,PQ=(2, 1}, vtx array: {0, 10, 1, (°=->2), oo}
T=2,PQ=(3, 1}, vtx array: {0, 10, 1, (e=->3)}
T=3, PQ={4, 1}, vtx array: {0, 10, 1, 2, 3}
T=4, PQ={1}, vtx array: {0, 10, 1, 2, 3}

T=5, worklist={4}, vtx array: {0, 10, 1, 2, 3}

Fig. 2. SSSP scheduling to reduce number of tasks/relaxations from 6 in (a) to 5 in (b). The dequeued task of each iteration is highlighted in red.

an arbitrary order without violating the algorithm's correctness.
Second, later relaxations, which hop over shorter edges, can
lead to a shorter paths compared to an earlier relaxation,
which hop over fewer long edges. The example in Figure 2.a
illustrates this scenario, in which the upper path with two hops
actually is actually longer than the lower path with three hops.
This phenomenon creates an inefficiency because all vertex
updates before the final relaxation are later overwritten and
should be avoided in the first place, as they incur unnecessary
but expensive writes to memory.

Dijkstra-Based Scheduling. To tackle this problem, the
worklist scheduler can prioritize the processing of the task
vertices with short path labels. As the paths to their neighbors
are likely also short, this helps short paths that are likely part
of the final solutions to be discovered early, and it reduces the
relaxations for longer paths and total numbers of tasks. This
technique is the core of the Dijkstra algorithm, which can be
implemented by simply replacing the queue-based worklist in
Algorithm 1 (FIFO_worklist in line 3 and 17) with an MIN
priority queue. Figure 2.b shows an example of how priority
scheduling reduces tasks.

B. Improving Cache Performance for BFS

Algorithm 2 Baseline BFS algorithm

1: FIFO_worklist.enqueue(source);

2: for(int i=0;ijnum_vtx;++i)vtx_array[i].predecessor=-1;
3: while !FIFO_worklist.empty() do

4:  int task_vtx=FIFO_worklist.dequeue();

5: int curr_edge_offset=vtx_array[task_vtx].edge_offset;
6: int num_edge=vtx_array[task_vtx].num_edge;

7: for num_edge to 0 do

8: int curr_nbr=edge_array[curr_edge_offset];

9: int nbr_vtx=vtx_array[curr_nbr];
10: if vtx_array[nbr_vtx].predecessor==-1 then
11: vtx_array[nbr_vtx].predecessor=task_vtx;
12: FIFO_worklist.enqueue(nbr_vtx);
13: end if
14: end for
15: end while

A worklist-based implementation of BFS is shown in Algo-
rithm 2. Like SSSP, BFS is another graph traversal algorithm
for finding the shortest paths. However, BFS operates on non-
weighted graphs with constant-length edges; every node is
updated exactly once regardless of the visiting order. Thus,
the task reduction scheduling from the Dijkstra SSSP cannot
be applied. Although the Dijkstra scheduling is not applicable,
worklist scheduling can be used to improve data locality and

(a) BFS example that causes 9 cache misses (b) Vertex reindexing
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FIFO Worklist: 0, 4, 3

T=1:task_vtx=0, cache: []->[1(0)]->[2(0)]->[3(0)]
T=2:task_vtx=4, cache: [(0)]->[5(1)]->[6(1)]->[7(1)]
T=3:task_vtx=3, cache: [(1)]->[0(0)]->[1(0)]->[2(0)]

Priority Queue Worklist: 0, 3, 4

T=1:task_vtx=0, cache: []->[1(0)]->[2(0)]->[3(0)]
T=2: task_vtx=3, cache: [(0)]->[0(0)]->[1(0)]->[2(0)]
T=3: task_vtx=4, cache: [(0)]->[5(1)]->[6(1)]->[7(1)]

Fig. 3. An example of locality-aware scheduling for BFS, assuming the cache
stores only one cacheline, and each cacheline stores four vertex labels. Cache
misses are highlighted in red.

cache performance by prioritizing the tasks that are likely to
reuse cached data during their relaxation.

Locality-Aware Scheduling. To introduce locality-
awareness to the worklist scheduler, we need an efficient
heuristic to identify tasks that are likely to reuse cache data.
One possible approach is to prioritize the task vertices with
the largest number of cached neighbors, which was proposed
in [6]. While this is an intuitive method, the scheduler requires
dynamic access to the content of the cache, which requires
significant hardware changes to the cache architecture and
introduces extra design and silicon area overhead.

To avoid the above-mentioned issue, an alternative approach
is to exploit the locality within a “community” by dispatching
the tasks from the same community in consecutive order. A
community is a sub-graph that is densely connected internally.
During the process of relaxation, due the clustering nature of
a community, processing task vertices of the same commu-
nity consecutively likely results in better temporal locality.
As many real world networks have been shown to contain
community structures [10], this community-based scheduling
can be generally applied.

Prior works[11], [12], [13] have explored static graph pre-
processing that reindexes vertices based on graph partitioning
results to improve the likelihood that adjacent vertices are from
the same communities, and this technique can be exploited
by our scheduler to dynamically prioritize the task vertices
with near indices to improve cache performance. Similar to
the SSSP scheduling, this can be done simply by replacing the
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Fig. 4. Proposed baseline accelerator.

FIFO-based worklist Algorithm 2 with a priority queue to sort
based on the indices of the stored tasks. Figure 3.d illustrates
how priority scheduling can be applied to further improve
performance of BFS with a reindexed graph. In this work,
we employed a modified version of the two-level hierarchical
reindexing proposed in [11].

C. Worklist Scheduling for Other Applications

The application of worklist scheduling is not limited to
the above-mentioned examples. Although explained in the
context of BFS, it has been shown that scheduling can be
applied to improve the locality for other applications, in-
cluding Page Rank and Collaborative Filtering [6]. Another
use case of priority scheduling is time-stamp sorting. Sim-
ulation applications, such as Discrete Event Simulation[14]
and Asynchronous Variational Integrators[15] from the Galois
benchmarks, use priority queues to efficiently find tasks with
the smallest time-stamp instead of manually managing the
ordering of task processing. Furthermore, the fact that major
graph-processing frameworks such as GraphLab[16] and Ga-
lois all feature native support for task prioritization explains
its importance and general applicability.

III. BASELINE FPGA-ONLY ACCELERATORS FOR GRAPH
ALGORITHMS

In this section, we will present a high-quality traditional
FPGA-only accelerator for SSSP and BFS that represents a
reasonable non scheduling baseline. We will first explain the
design in the context of SSSP. To tackle the irregular data
access, the main bottleneck for graph algorithms, our baseline
FPGA-only accelerator is designed with emphasis on two
principles: 1) exploiting available MLP, and 2) maximizing
on-chip data reuse. Figure 4 shows the architecture diagram
of our FPGA-only SSSP accelerator based on Algorithm 1.

MLP Extraction. This accelerator uses an elastic pipeline
architecture, in which the first four pipeline stages are re-
sponsible for issuing read requests for different types of data,
including: 1) task vertices and their distance labels from the
worklist, 2) the edge pointers of task vertices, 3) outgoing
edges from the task vertices, and 4) the neighbor vertices
pointed by the edges. The last two stages are responsible for
performing memory writes for vertex relaxation and worklist
updates, respectively. To address the emphasis on MLP, each
pipeline stage can independently issue memory requests, al-

lowing for four loads and two stores to be issued in parallel
at each clock period in the ideal case when there is no stall.

This approach is fundamentally different from most soft-
ware implementations, which rely mainly on multi-threading
to parallelize across the outer loop iteration (line 3 in Algo-
rithm 1) as it is difficult to extract MLP within the loop body.
In a multi-threaded software, locks or other synchronization
mechanism are often needed to guarantee atomicity when
different threads try to access the same vertex, which incurs
a large overhead. In comparison, this issue does not concern
this accelerator as MLP is extracted across pipeline stages for
different data type and requires no locking.

Improve On-Chip Data Reuse. To capture data reuse, we
provide isolated on-chip buffers for the worklist, edge, and
vertex data to minimize conflict misses. For the worklist item
and edge data, since there exists a good amount of spatial
locality, we allocated a small 64-byte register to buffer the
loaded cacheline, which often contains multiple useful words
and is repeatedly accessed. For the vertex data, we use a
dedicated 512KB two-way associative read-write cache to
capture the temporal locality among accesses. In addition, this
accelerator has a bandwidth reduction feature that coalesces
the stores to the same memory address. Overall, the design
closely resembles the accelerator proposed in [11].

Support BFS. This accelerator design can also support BFS
by changing how vertex labels are interpreted. Specifically,
the guarding condition for relaxation in stage S4 in Figure 4
changes from a path-length comparison to an equal check to
see if the vertex has been relaxed before, and the adder for
computing new path lengths for a new relaxation is removed
as BFS labels represent predecessors instead of distances.

IV. FPGA-ONLY PERFORMANCE BASELINE WITH AND
WITHOUT SCHEDULING

In this section, we will perform three sets of studies for our
FPGA-only baseline. After explaining the evaluation setups, in
section IV.B, we demonstrate that our baseline is a reasonable
reflection of standard FPGA-only based graph processing by
comparing it with existing works. In section IV.C, we assess
the theoretical benefit of worklist scheduling by assuming a
zero-overhead scheduler in simulation. In section IV.D, we
study the practicality of adding an FPGA-based scheduler next
to the accelerator.

A. Evaluation Setup

In this paper, the experiments are conducted on top of
a physical shared-memory FPGA platform and a hardware
simulator. Except for the studies in section IV.C and IV.D,
the evaluations were based on RTL implementations of the
proposed accelerator for an Intel HARP.

Intel HARP features a cache-coherent integration of a
Stratix V FPGA and a Xeon E5-2680 v2 processor at
2.8GHz. The FPGA has a maximum memory bandwidth of
7GB/second (bounded by QPI)[13] and SMB of on-chip dual-
ported BRAM. The Xeon has a peak memory bandwidth of
49 GB/second and 25 MB of three-level on-chip cache. We



name vertices  edges type description
Rand_cluster 512K 8M Directed, Synthetic graph with 16 communities. Each
unweighted | edge has a 25% probability of connecting to a
random vertex from a different community
and a 75% probability of connecting
internally.
RMAT sparse | 512K im Directed, Sparse RMAT graph [17] with default
unweighted | distribution parameters.
RMAT dense 512K 8M Directed, Dense RMAT graph [17] with default
unweighted | distribution parameters.
circuit_4 80k 307k Directed, Circuit simulation graph from UF Sparse
unweighted Matrix Collection [18].
us_roads 129k 165k Directed, Road network in USA from [18].
unweighted
rgg_n_2_19 524k 6M Undirected, | Synthetic RGG graph from [18].
unweighted
cond-mat 40k 351k Undirected, | Collaboration network on the condensed
weighted matter archive [18].
road_FLA im 2.7M Directed, Road network in FLA from [18]
weighted
Linux_call 324k 1.2M Directed, Call graph of the linux kernel from [18]
weighted
webbase-1M im 3.1M Directed, Web connectivity matrix from a Nvidia
weighted technical report [18]
Patent_main 240K 560K Directed, Citation network for NBER patents [18]
weighted

Fig. 5. Benchmark graphs.
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Fig. 6. Comparison of the baseline BFS accelerator with the Galois software
BFS on HARP

implemented the baseline accelerator on the Stratix FPGA. The
BRAM utilization is limited to 3 MB, and off-chip memory
utilization is limited translating 128 8-MB pages, as the timing
analysis fails when compiled with larger memory allocations.
We used a set of synthetic[17] and standard networks[18] as
the experiment inputs, which are summarized in Figure 5.

For the limit study presented in section IV.C and an analysis
for integrating FPGA-based scheduling with the accelerator
in section IV.D, which are difficult to realize on a physical
platform, we used an in-house C-simulator of the system. The
simulator features cycle-accurate modeling of the accelerator's
pipeline stages and off-chip memory system, including caches
and DRAM.

B. Performance of the Baseline FPGA-Only Accelerator

To ensure that our baseline FPGA-only accelerator delivers
competitive performance, we evaluated the proposed accelera-
tor using the FPGA of a physical Intel HARP. As we found it
more difficult to obtain published data of competitive software
baselines for SSSP, we will focus on the BFS accelerator in
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Fig. 7. Comparison of the baseline BFS accelerator with prior FPGA works.

this section. However, due to their algorithmic similarity, we
expect the outcome to be similar for SSSP. For a set of se-
lected graphs, we measured the computation throughput in the
metric of Traversed-Edges-per-Second (TEPS) and compared
the results with Galois multi-threaded BFS implementation on
the Xeon E5-2680 v2. The results are shown in Figure 6.a.
Overall, the accelerator delivers performance comparable to
Galois except for Cond-Mat, for which Galois outperforms
our baseline by roughly 40% as the accelerator experienced a
relatively large number of conflict misses in its vertex cache.

In terms of energy efficiency, the accelerator is much more
efficient across all inputs. The performance-per-watt measure-
ment is shown in Figure 6.b. While the CPU consumes, on
average, 108 watts, our accelerator delivers mostly comparable
performance but consumes merely 7 watts, allowing the accel-
erator to outperform Galois by roughly 10.2x for MTEPS-per-
watt. We compared our baseline accelerators with previously
published BFS implementations for FPGAs [12], [19] with
similar types of input graphs. Due to the platform differences,
there exist gaps in the raw performance. After normalizing the
performance measurements by the memory bandwidths of the
respective platforms, the results are roughly comparable, as
shown in Figure7.

Discussion. Despite the Xeon having a higher-bandwidth
system compared to the FPGA, the software BFS implemen-
tation achieves only roughly the same performance as the
accelerator, which implies memory resource under-utilization
for the processor. Upon closer examination, we discovered that
the processor fails to extract parallel memory reads from the
instructions, as it issued only one load every 7.8 clock cycle
on average. This implies severe underutilization of the CPU's
memory interface, which can theoretically accept two loads
per clocks cycle in each core.

The problem of memory interface underutilization is not
unique to Galois, as we also observed the same problem in
another BFS implementation [7]. One probable cause is the
CPU's inability to parallelize loads across neighbor relaxations
in the inner loop (lines 7 to 14 in Algorithm 2) due to the
dependent instructions within the loop body.

C. Potential Benefit of Worklist Scheduling

To understand the theoretical ceiling of performance
improvement from worklist scheduling, we conducted a
simulation-based limit study for the locality-aware scheduling
for BFS and work reduction scheduling for SSSP using our
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Fig. 8. Limit studies for the potential performance improvement of worklist
scheduling.

simulator that models our baseline accelerator. We swapped
the default FIFO-based worklist with a zero-overhead pri-
ority queue that supports instantaneous item insertion and
extraction. By ignoring priority scheduling overheads such as
the latency of insertion, the performance improvement brought
by scheduling represents its maximum limit.

BFS. We first evaluated locality-aware scheduling for BFS
with the non-scheduling accelerator as the baseline. We com-
pared their cache hit rate and computation throughput, and
the results are shown in Figure 8.a . We observed a peak
2.73x improvement in cache hit rate and 2.09x improvement in
performance. The minimum improvement was 4% with 2% for
cache hit rate and throughput, respectively. This wide differ-
ence is caused by the topological differences of the graphs. The
graphs with clearly-separable, densely-interconnected commu-
nity structures are more likely to benefit from the scheduling.
On average, the cache hit-rate is improved by 35%, and the
execution time is improved by 28.6%.

SSSP. For SSSP, the scheduler prioritizes task vertices with
smaller distance labels. The reduction for the number of active
vertices pushed to the worklist is shown in Figure 8.b. The
work reduction shows a wide variation from 13% to over
99%, depending on the distribution of edge lengths and graph
connectivity. In general, the graphs with wide variation in edge
lengths and high vertex degrees tend to have larger oppor-
tunities. As the lowering of worklist inserts implies shorter
processing time, the performance improvement is strongly
correlated to the number of reduced works.

D. Adding Hardware Priority Queue to the Baseline FPGA-
Only Accelerator

The limit study in section IV.B reveals promising poten-
tial in worklist scheduling for improving performance, if
the priority-queue worklist has no performance and resource
overhead. To understand this overhead for a hardware priority-
queue implementation, we modified our simulator to model the
BRAM tree, a binary-heap-based priority queue architecture
from [20].

The original BRAM tree requires the entire priority-queue
to be implemented using on-chip BRAM, which limits the
capacity and prevents it from supporting the processing of

Task redcution

16
1.4

14
115 118 1218
12

1
0.75

0.8
0.6

0.39
04 0.27

0.14

02 o0, B I I

1.2
1
0.8

1.09
0.6
0.15

13
0.77
0.65
0.27 I I
n :

4 16 64 256 1024 4096 peak 0 4 16 64 256 1024 4096 peak
capacity of priority-queue cache (KB) capacity of priority-queue cache (KB)

(a) SSSP with RMAT _sparse (b) SSSP with Linux_call

04

02 009
o m
0

Perf. relative to no scheduling
Perf. relative to no scheduling

Fig. 9. Effect of caching to priority-queue on performance for two graphs. For
BFS and SSSP, builds with cache smaller than 1MB results in performances
lower than the non-scheduling baselines (highlighted in red).

large graphs. To resolve this issue, we modified the design
to support the spilling of higher levels of the binary heap to
off-chip DRAM when the tree size exceeds BRAM's storage
capacity. This design essentially uses BRAM as a cache
to buffer the items at the lower levels of a tree; thus, its
performance would be dependent on the size of the BRAM
allocated for caching, as spilling to off-chip DRAM incurs
long latency.

We evaluated this design with different priority-queue cache
sizes using the RMAT _sparse dataset [17] for BFS. The result
is shown in Figure 9.a. The key observation is that a large
amount of BRAM (enough to buffer 50% of the vertices)
would be needed as the heap cache to offset the DRAM
spilling overhead and break even in performance with the
baseline BFS accelerator without scheduling. With less than
a 1 MB heap cache, the scheduling overhead of accessing
the priority-queue in memory actually lowers performance
compared to the baseline. Similar results were observed when
running SSSP with the Linux_call graph, as shown in Figure
9.b. This creates a problem in resource contention as the base-
line accelerator also needs large amounts of on-chip storage
to deliver competitive performance. More BRAM used for
heap buffering implies less on-chip storage for caching graph
vertices. This can impact the performance of the accelerator
negatively, as the vertex cache hit rate lowers due to smaller
capacity.

V. PROCESSOR-ASSISTED SCHEDULING ON
SHARED-MEMORY FPGA PLATFORMS

Recently, platforms like the Intel HARP which offer co-
herent memory access for its the host processor and FPGA
fabric have become available. The close integration of the two
devices enables the possibility of fine-grain, heterogeneous
collaboration. In this work, to get around the problem of
BRAM contention for integrating worklist scheduling, we ex-
ploit this opportunity of collaboration for worklist scheduling.
Specifically, our proposed processing paradigm, Processor-
Assisted Scheduling (PAS), dynamically offloads the task of
worklist scheduling to the host processor, which establishes a
new use case for the shared-memory platforms.

A. Motivations for PAS

There have been a few prior attempts to exploit the close
integration of the processor and the FPGA for collaborative
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graph processing, (e.g., [21], [19]). In both works, the main
graph processing routines remained on the processor. In con-
trast, our proposed PAS solution maps the main routine of
relaxation to an efficient FPGA accelerator, which delivers
performance comparable to the processor while consuming
much-lower power, as shown in the previous section, and
offloads priority scheduling to a lightweight software scheduler
that consumes a negligible load on the processor. By assigning
the processor and the FPGA the tasks at which they perform
best, PAS allows them to deliver better performance together
than each can achieve alone.

To summarize, the benefits of PAS are as follows:

1) No BRAM contention. PAS does not integrate the
priority-queue on the FPGA, which takes away large
amounts of on-chip buffering of BRAM. Thus, the
accelerator has full control over the utilization of BRAM
for graph-data caching.

2) Lower memory latency. Modern processors have large
caches with advanced features for minimizing misses. In
addition, in the case of an Intel HARP, the host processor
has significantly lower memory latency compared to its
FPGA, as the memory requests do not have to traverse
through the QPI interconnect like the FPGA does [13].
These features for low-latency accesses provide better
priority-queue performance when traversing the non
cached levels of the tree.

3) Negligible processor load. The worklist scheduling
routine often stays idle, as the insertion of new tasks
happens only once in a while. If we were to implement
the scheduler using software, this property implies min-
imal interference with the other applications. We will
demonstrate this property, which makes PAS an ideal
technique for servers, later in section VI.

4) Ease of implementation. Compared to adding a hard-
ware scheduler to the accelerator, the hardware changes
needed for PAS are minimal, and implementing the
scheduling routine as software is fundamentally simpler
in comparison to designing it in RTL. In addition to the
specific scheduling we implemented, it becomes possible
to efficiently adopt from software other equally light-
weight scheduling alternative [22].

Algorithm 3 Software priority scheduler in PAS

1: while accelerator is still running do

2 sleep(PROBE_PERIOD);

3 WL_header header=presch_WL[0];

4:  if header.valid then

5: insert(presch_WL[1], header.numTasks, PQ);
6: presch_WL=presch_ WL+CLINE_SIZE;
7 end if

8 if (header.acc_idle() or (sch_timer =
('"PQ.empty()) then

SCH_PERIOD)) and

9: insert(PQ, MIN(PQ.size(), CLINE_SIZE-1), sch_WL);
10: sch_WL=sch_WL+CLINE_SIZE;

11: sch_timer=0;

12: else

13: sch_timer=sch_timer+1;

14: end if

15: end while

B. Implementation of PAS

To offload the task of worklist scheduling to the processor,
we made several changes to the worklist writing (S5) and
reading (S0) stages of the base BFS and SSSP accelerators.
The new system architecture is shown in Figure 10. We split
the worklist into two data structures: a Pre-Scheduled Queue
and a Scheduled Queue; the software priority scheduler is
shown in Algorithm 3.

The Pre-Scheduled Queue is a circular FIFO, with the
accelerator being the producer and the software scheduler
being the consumer. When new works are generated due to
successful relaxation, they are inserted to the head position
of the Pre-Scheduled Queue sequentially, just like the original
worklist. The software scheduler periodically probes into the
tail position of the queue to ascertain whether new works have
arrived by checking a valid flag tagged to each cacheline in the
Pre-Scheduled Queue. This tag is labeled by the accelerator
when writing the new works to memory. When valid work
is received, the software scheduler inserts those new tasks to
a priority queue, which allows the efficient identification of
high-priority tasks.

The Scheduled Queue is another circular FIFO with the
software scheduler being the producer and the accelerator
being the consumer. When the scheduler predicts that the
accelerator needs new work to keep its pipeline busy, the high
priority works will be extracted from the priority queue and
then inserted into the Scheduled Queue, awaiting processing
by the accelerator.

The timing of writing to the Scheduled Queue is impor-
tant for performance. Writing too frequently causes constant
draining of the priority queue without letting high-priority
tasks to “bypass” to the front, which defeats the purpose of
scheduling. Writing too infrequently can potentially leave the
accelerator in starvation for tasks when the pipeline is idle. To
tackle this problem, we introduce awareness to the idleness
of the accelerator on top of a simple periodic scheduling
protocol. In this protocol, the software schedules new tasks
either periodically or when the accelerator signals its idleness.
In the case of Intel HARP, which writes to memory at 64-byte
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granularity, an idleness flag is tagged to every non-scheduled
work cacheline by the accelerator. The 1-bit idleness flag is set
when the edge pointer fetching stage (S2) for active vertices
remains idle for multiple cycles due to lack of work, implying
that it needs more scheduled tasks from the software scheduler.

VI. EVALUATION

Performance. We evaluated PAS on a physical Intel HARP
for both BFS and SSSP (not simulation). As PAS introduces
extra memory access overhead for heterogeneous communi-
cation between the processor and the accelerator, we decided
to first assess whether PAS remains practical on HARP by
comparing it with the result in the no-overhead ideal case
obtained using the simulation depicted in section IV.C. For
BFS, this comparison is shown in Figure 11.a. On average,
PAS improves the cache hit-rate by 29% and throughput
improvement by 20%. In comparison to the limit study without
scheduling overhead, the differences of the improvements are
only around 5%, implying that PAS is capable of retaining
most of the theoretical benefit of scheduling, even with the
overhead from a physical platform.

For SSSP, the result is similar to BFS, as shown in
Figure 11.b. We observed the overhead for SSSP to be
slightly higher; this is likely due to the slightly more complex
scheduling routine, which is based on the distance labels
of vertices instead of just the indices of vertices like BFS.
Overall, the difference between the limit study and the physical
implementation of PAS-based SSSP is around 15%.

While at a glance, the scheduling overhead might be surpris-
ingly small for the large amounts of memory probing, there
is a simple explanation. The QPI interconnect of Intel HARP
maintains coherency at the CPU's last-level cache (LLC). This
means that when the accelerator updates the Pre-Scheduled
Queue, the new tasks would be brought to the last-level cache
directly for the processor to retrieve. This eliminates the long-
latency off-chip memory accesses during task probing by
exploiting a special form of locality between the accelerator
and the scheduler.

Scheduler Load. To understand the software scheduler's
processor-resource consumption, we characterized it using
Intel PCM [23] and observed an extremely low 5% core uti-
lization and near-idle 15.7-watt power consumption. We then
assessed the scheduler's potential interference with other con-
current programs on the processor by dispatching PAS in par-

12
1.01 (965 0.9770.995 0.98 0.968 0991 0.964

0.8
0.6
0.4
0.2

0

[

performace relative to excuted alone

< <
& &
$¥ 3 & gt
(¥ Q ¥ 5 < &
& S s O K & & (@
B & & R F &
D) &\ (_ﬁc\,o

Fig. 12. Performance of CPU benchmarks running in parallel with PAS
relative to running alone.

allel with a set of selected SPEC2006 [24] and Sysbench[25]
benchmarks. All test cases are configured to 20 threads to fully
exploit HARP's 10-core hyper-threading-enabled Xeon. The
results, shown in Figure 12, indicate that the PAS scheduler
causes minimal interference with the benchmarks. This char-
acteristic implies that PAS can be a good processing paradigm
for servers, as the light-weight scheduler is unlikely to impact
the services to the other server clients.

VII. CONCLUSION

This paper presented our exploration of the worklist-
scheduling optimization for graph algorithms on a shared-
memory FPGA platform. We first developed an high-quality
non-scheduling accelerator for BFS and SSSP. With this as the
baseline, we analyzed the effectiveness of integrating priority
scheduling on FPGA and discovered, besides adding logic
complexity, its heavy consumption of BRAM and potential
resource contention with the baseline accelerator.

To solve this problem, we developed Processor-Assisted
Scheduling (PAS), which exploits the close integration of the
processor and the accelerator on a shared-memory platform by
offloading the task of worklist scheduling to the processor. In
our evaluation, we case-studied a locality optimization for BFS
and the task reduction scheduling of the Dijkstra-based SSSP.
Benefitting from the processor’s superior memory sub-system,
the software scheduler delivers timely scheduling service for
the accelerator, that is able to obtain over 90% and 80% of
the theoretical scheduling performance benefit for BFS and
SSSP, respectively. Additionally, the light-weight scheduler
consumes minimal processor resources and does not interfere
other concurrent applications. This approach allows the two
CPU and the FPGA to focus on the tasks at which they perform
best and collaboratively achieve better performance than each
can alone deliver.
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