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ABSTRACT
The advent of FPGA acceleration platforms with direct co-
herent access to processor memory creates an opportunity
for accelerating applications with irregular parallelism gov-
erned by large in-memory pointer-based data structures.
This paper uses the simple reference behavior of a linked-
list traversal as a proxy to study the performance poten-
tials of accelerating these applications on shared-memory
processor-FPGA systems. The linked-list traversal is pa-
rameterized by node layout in memory, per-node data pay-
load size, payload dependence, and traversal concurrency to
capture the main performance effects of different pointer-
based data structures and algorithms. The paper explores
the trade-offs over a wide range of implementation options
available on shared-memory processor-FPGA architectures,
including using tightly-coupled processor assistance. We
make observations of the key effects on currently available
systems including the Xilinx Zynq, the Intel QuickAssist
QPI FPGA Platform, and the Convey HC-2. The key results
show: (1) the FPGA fabric is least efficient when travers-
ing a single list with non-sequential node layout and a small
payload size; (2) processor assistance can help alleviate this
shortcoming; and (3) when appropriate, a fabric-only ap-
proach that interleaves multiple linked list traversals is an
effective way to maximize traversal performance.

1. INTRODUCTION
Motivations. There are now a growing number of FPGA-
accelerated computing systems that support coherent shared
memory between processors and FPGAs, including the abil-
ity for the FPGAs to directly read from and write to the pro-
cessor’s cache. Both Xilinx and Altera have this capability
in their SoC products, which integrate processor cores and
a reconfigurable fabric on the same die [1, 18]. The Convey
HC-1 was an early commercial FPGA acceleration system
that supported shared memory with the host processor [4].
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More recently, Intel and IBM have respectively announced
initial server products that integrate cache-coherent shared-
memory processors and FPGAs at the system level [13, 2].
These new platforms promise to enable FPGA acceleration
for a new class of applications with irregular parallelism.

Irregular parallel applications, including many data an-
alytic and machine learning kernels in data center work-
loads, operate on very large, memory-resident, pointer-based
data structures (i.e., lists, trees and graphs). For example,
databases use tree-like structures to store the indices for fast
searches and combining information from different database
tables. Similarly, many machine learning algorithms within
big data applications rely on graphs, which use pointers to
represent the relationships between data items.

The parallelism and memory access patterns of these ap-
plications are dictated by the point-to relationships in the
data structure, which can be irregular, and sometimes time-
varying. This reliance on pointer-chasing imposes stringent
requirements on memory latency (in addition to bandwidth)
over a large main-memory footprint. As such, these appli-
cations are poorly matched for traditional add-on FPGA
accelerator cards attached to the I/O bus, which can only
operate on a limited window of locally buffered data at a
time.

Pointer-Chasing. While the class of irregular parallel ap-
plications is broad and varied, a fundamental behavior is
pointer-chasing. In pointer chasing, the computation is re-
quired to dereference a pointer to retrieve each node from
memory, which contains both a data payload to be processed
and a pointer (or pointers) to subsequent nodes. The exact
computation on the payload and the determination of the
next pointer to follow depend on the specific data structure
and algorithm in use. In this paper, we ignore these differ-
ences and focus on only the basic effects of memory access
latency and bandwidth on pointer chasing. It is our con-
tention that the optimization of basic pointer-chasing per-
formance ultimately determines the opportunities for FPGA
acceleration of irregular parallel applications.

For this purpose, we fixed a simple reference behavior,
namely a linked-list traversal. This reference behavior is pa-
rameterized by (1) node layout in memory (best- vs. worst-
case in our experiments); (2) per node data payload size;
(3) payload dependence (an artificial constraint that payload
must be retrieved before following the next pointer); and (4)
concurrent traversals (availability of multiple independent
traversals). Taken together, these parameters abstractly
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capture the execution differences of different pointer-based
algorithms and data-structures. The two execution require-
ments are that (1) the linked-list is initialized in DRAM
and (2) the data payload must be delivered into the fabric
in order.1 All other details are open to interpretation and
optimization by the implementation.

Implementation Considerations. The shared-memory
FPGA computing systems under consideration may have
multiple pathways between the fabric and main memory,
and between the fabric and the processor. Because of this,
the best approach for implementing even simple behaviors,
such as linked-list traversals, is not obvious, even before
taking into account the data-structure-specific parameters
discussed above. In Section 4, we will discuss the range
of implementation options and their considerations in the
context of an abstract shared-memory processor-FPGA ar-
chitecture. In Section 5, we will demonstrate concretely
the manifestations of these effects on real shared-memory
processor-FPGA systems available today including the Xil-
inx Zynq, the Intel QuickAssist QPI FPGA Platform, and
the Convey HC-2. Our key results demonstrate that:

1. A fabric-only approach is least efficient when travers-
ing a single list with non-sequential placement and
small payload size.

2. Processor assistance can help alleviate this shortcom-
ing.

3. When appropriate, interleaving multiple list traversals
can be very effective in optimizing traversal perfor-
mance by allowing pipelined memory operations.

A particular point of interest is our incorporation of a tightly-
coupled processor in the solution space. Implementing the
FPGA’s memory subsystem in soft logic can dramatically
lower its performance (due to lower frequency and a re-
duced cache capacity) relative to what can be achieved in
hard logic. The processor-FPGA link technology in use and
the placement of the FPGA in the system can also have
a major impact on its memory access latency. The effects
of these design choices are most prominent when using an
in-fabric engine to traverse a linked list with non-sequential
placement and small payload size. In this paper, we study a
range of hybrid approaches that use processors (with an or-
der of magnitude higher clock frequency and cache capacity)
to assist in delivering the data payload to the fabric. Proces-
sor assistance also has the added benefit of greatly simpli-
fying the implementation of complicated pointer-based data
structures and algorithms found in realistic applications by
expressing these behaviors in software. Our study points
to this hybrid approach as a promising avenue for support-
ing irregular parallelism on future shared-memory processor-
FPGA systems.

Paper Outline. Following this introduction, Section 2
reviews background material on shared-memory processor-
FPGA systems and irregular parallel applications. Section 3
defines the reference linked-list traversal behavior. Section 4

1For the purposes of this study, we are not concerned with
justifying why the data need to be processed in the fabric.
Other works have shown FPGAs offer raw performance and
power efficiency that make them attractive for these types
of applications [3, 10, 7, 16, 14, 9].

discusses general design considerations. Section 5 demon-
strates the key effects observed on select shared-memory
processor-FPGA systems currently available. Section 6 of-
fers recommendations on the design of future systems with
the goal of accelerating irregular parallel applications. Fi-
nally, Section 7 concludes.

2. BACKGROUND
Shared-Memory Processor-FPGA Systems. As early
as 2010, FPGA vendors have created “System-on-Chip” de-
vices that integrate hard-logic processor cores, a reconfig-
urable fabric, and shared memory into the same chip [1, 18].
While this approach allows tight integration between the
processor cores and reconfigurable fabric, the existing prod-
uct lines have targeted the embedded market in terms of the
included cores, fabric capacity, and DRAM interfaces. The
Convey HC-1 was an early server-class FPGA acceleration
system that supported shared memory with the host proces-
sor [4]. Intel and IBM have recently announced server-class
products that integrate FPGAs and processors at the board
level using proprietary cache-coherent interconnects [13, 2].
These later systems support best-of-breed processors and
FPGAs, but incur latency and bandwidth overheads by us-
ing inter-package board-level links and relying on soft logic
to implement the memory interfaces on the FPGAs. Be-
cause of these overheads, the design choices and performance
level of today’s commercially available products should not
be taken as representative of what future shared-memory
processor-FPGA architectures could or should be. Opti-
mistically, these products are indicative of a growing inter-
est in FPGAs as first-class computing substrates, which will
hopefully lead to still significant evolution in step with the
emergence of “killer” apps.

Irregular Parallel Applications. A major premise of
this paper is that shared-memory processor-FPGA systems
can be effective for accelerating irregular parallel applica-
tion kernels common to data center workloads. Machine
learning algorithms are at the heart of search and many
image- and speech-recognition tasks that make up big data
applications. Graphs are the core data structure used by
these algorithms [6, 8], and use pointers to represent rela-
tionships between information. Databases store information
in a number of tables. They use indexing structures to allow
fast retrieval of information across these tables. These oper-
ations commonly require chasing pointers within a tree-like
structure (e.g., for efficient range-based searches [5]).

A common theme in the execution of irregular parallel
applications is pointer-chasing over a large in-memory data
structure [15]. Traditional add-on FPGA accelerator cards
are attached to the I/O bus, and can only efficiently ac-
cess small amounts of data that has been bulk-copied to the
DRAM installed on the card. These cards are thus limited to
working on a limited window of locally buffered data. Prior
work that accelerated irregular parallel application kernels
on add-on FPGA accelerator cards first “regularized” the
task into contiguous chunks of data, which were then handed
off to the FPGA accelerator one by one for processing. This
was achieved either by exploiting next-level batch-processing
parallelism between tasks (e.g., [16, 14]) or by pre-processing
to create parallelizable task partitions through scheduling
and data reorganization (e.g., [12]).
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Figure 1: Two possible implementations of the linked-list struct
with an inlined data payload and an indirect data payload.

On a shared-memory processor-FPGA system, the fab-
ric can directly access the full data set, in some cases with
the benefit of virtual address translation. In prior work,
Umuroglu, et al., studied a breadth-first graph traversal us-
ing a Xilinx Zynq SoC FPGA that shares memory between
the ARM cores and fabric [17]. Their work assigned differ-
ent phases of the breadth-first traversal processing to the
ARM core and the fabric respectively. Hurkat, et al. stud-
ied FPGA acceleration of a machine learning algorithm that
took advantage of Convey’s special high-throughput inter-
face to a large pool of memory [9].

3. LINKED-LIST TRAVERSAL
Regardless of the exact data structure and algorithm, ir-

regular parallel algorithms repeatedly follow a pointer to
the next node in order to find the associated data payload,
and then perform the associated computation. In this pa-
per, we ignore the computation, and instead focus on the
pointer-chasing backbone of a dynamic execution instance
and the fetching of the data payload along the way. This is
what we attempt to capture in the simple reference behav-
ior of a linked-list traversal. Establishing a simple reference
behavior enables an exploration of the many possible op-
timizations of pointer-chasing mechansims on real systems.
Despite its simplicity, the parameterizations defined by this
reference behavior allow us to capture the most salient ex-
ecution characteristics of many different pointer-based data
structures and algorithms.

Linked Lists. A generic singly linked list is a sequence of
nodes. Logically, each node contains a “next” pointer and a
data payload; the next pointer points to the next node in
the sequence. In this study, a linked-list traversal is param-
eterized in four dimensions: (1) node layout in memory; (2)
per node data payload size; (3) payload dependence; and (4)
concurrent traversals.

• Layout: In practice, the placement of the nodes in
memory depends on the data structure, the algorithm,
and the memory allocator. In our study, we consider
only the best case and worst case data layouts. For the
best case data layouts, the linked-list nodes are laid
out sequentially in memory to make optimal use of the
spatial locality optimizations in standard memory sub-
systems. In the best-case studies, sequential prefetch-
ing is allowed as an optimization. For the worst case
data layouts, the linked-list nodes are laid out in large
strides (16 KBytes) to defeat cache block and DRAM
row buffer reuse. In the worst-case studies, we explic-
itly disallow prefetching based on this known stride

as an optimization. Real world linked lists would fall
somewhere between these two extremes.

• Payload Size: We considered data payload size as a
parameter (varying from 4 to 1K bytes in our studies).
The payload size should correspond to how much of
the payload needs to be examined in the traversal of
a real-world pointer-based data structure or algorithm
(and not their full declared payload size).

• Payload Dependence: This third parameter is an
artificial constraint that the payload must be retrieved
before the next pointer in the linked list can be fol-
lowed. This is to model the effect of payload data de-
pendence when traversing a real-world pointer-based
data structure. For example, the behavior of travers-
ing a sorted binary tree to produce a sorted sequence
would be captured by a linked-list traversal without
payload dependence; the behavior of searching a sorted
binary tree (requiring examining the value at a node
before descending to the next node) would have to be
captured by a linked-list traversal with payload depen-
dence.

• Concurrent Traversals: The final parameter allows
for the possibility of benefiting from concurrency when
performing multiple independent traversals. For ex-
ample, two branches of a sorted binary tree could be
traversed concurrently to have their sorted sequences
concatenated afterwards. This degree of freedom is ex-
tremely helpful in overcoming the effects of high mem-
ory access latency.

Design Freedom. We impose no other restrictions on the
application developer in order to maximize flexibility in op-
timizing the reference behavior for the platform. For exam-
ple, we do not stipulate the pointer size, which presumably
should be chosen to be natural to the platform. Further-
more, we do not stipulate that the node struct contains the
actual payload field—instead each node struct may contain
a pointer to a payload held separately from the node (see
inlined vs. indirect payload in Figure 1). For indirect pay-
loads, the nodes and the data payloads are separately laid
out sequentially or strided, corresponding to best and worst-
case data layout. As will be discussed in the next sections,
the implementation for a given platform has full freedom to
make use of the available mechanisms to optimize the linked-
list traversal performance under different parameterization
settings.

Performance Metric. For our study, we require that a
sufficiently large linked list (16K nodes in our experiments)
is initialized in main memory. We require the data payload
to be delivered into the FPGA fabric in order. We are inter-
ested in the steady-state rate of traversing this linked list by
pointer chasing. In the design of this study, we do not focus
on the start-up cost, which could be significant for pointer-
based data structures and algorithms that involve only short
pointer-chasing sequences. In cases where short sequences
need to be serialized, their behavior over repeated traver-
sals effectively matches that of traversing long sequences. In
cases where short sequences are independent and can be tra-
versed concurrently, efficient implementations are addressed
by the hardware interleaved concurrent traversals that we
present later in the paper.
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Figure 2: Model of the datapath in a shared-memory processor-
FPGA system

Linked Lists as a Proxy for More Complex Data
Structures. Although singly-linked lists are simpler than
other pointer-based data structures such as trees and graphs,
the linked-list traversals demonstated in this paper can be
used as a proxy for algorithms that traverse trees and graphs.
For example, searching for an item in a sorted tree reduces
to a payload-dependent traversal, as discussed above. Simi-
larly, a graph traversal can be reduced to following the first
edge of the current vertex that connects to an unvisited ver-
tex, and intiating a new (possibly parallel) traversal for each
additional edge of the current vertex that connects to an un-
visited vertex.

4. SYSTEM-LEVEL CONSIDERATIONS
In this section, we discuss at a high-level the range of op-

tions and their implications when supporting pointer-chasing
on shared-memory processor-FPGA systems. The discus-
sion in this section is not tied to the reference linked-list
traversal, but is generalized to a broad range of pointer-
based data structures and algorithms. The next section will
offer observations from concrete implementations of the pa-
rameterized reference linked-list traversal on real platforms.

4.1 Platform Options
Figure 2 shows a generic shared-memory processor-FPGA

system architecture, highlighting the major interface options
connecting the processor cores, the memory, and the recon-
figurable fabric. This figure does not differentiate between
die-level and system-level integration of the fabric and pro-
cessor cores.

The processor cores will typically be connected to the
shared main memory through a coherent cache hierarchy.2

The processor cores can directly interact as masters with the
soft-logic blocks on the fabric through a memory-mapped
Programmed I/O (PIO) style interface. Not shown in the
figures is the option for a programmable DMA copy engine
(master) to push or pull data from the fabric (slave) through
this interface.

The main feature of a shared-memory processor-FPGA
system is of course the ability for the fabric itself to act
as the master in reading and writing the shared memory,
with some systems even supporting virtual address transla-
tion. Through shared memory, it becomes possible for the
processor and fabric to interact through unbounded, diverse
means. The processor cores and fabric may not have sym-
metric access to the shared memory, resulting in possibly
large differences in their experienced bandwidth and latency.

2At this level of discussion, the precise organization of L1
vs. L2 and private vs. shared processor core caches is not
important. We also omit details such as the possibility of
mapping SRAM scratchpads or other memory-mapped de-
vices into the shared address space.

The fabric’s access to shared memory may be cache-coherent
or non-cache-coherent:

1. The fabric’s memory interface feature a cache-coherent
link, allowing the processor cores and fabric to auto-
matically see a coherent view of memory. Furthermore,
in some systems, cache-coherent accesses from the fab-
ric may be serviced from the processor cache instead
of main memory. Data requests that hit in the proces-
sor cache will incur lower latency and achieve higher
bandwidth. A cache-coherent shared memory allows
the processor cores and fabric to interfere construc-
tively when accessing shared memory. This feature is
available on the Xilinx Zynq and the Intel QuickAssist
QPI FPGA Platform. On some systems, it is further
possible for the fabric to construct its own private co-
herent cache in soft-logic. This is the case for the Intel
QuickAssist QPI FPGA Platform but not for the Xil-
inx Zynq.

2. The fabric may also have a non-cache-coherent inter-
face to the shared memory in addition to the coherent
interface. A possible motivation for offering a non-
coherent interface, beside implementation simplicity,
is higher bandwidth and lower latency for accessing
data residing in main memory. A major downside,
especially if the processor cores and the fabric are in-
teracting in a fine-grained fashion, is the cost for the
processor core to explicitly ensure coherence through
costly cache flushes or through precise discipline in is-
suing memory address sequences.

In a given system, some variations of all or a subset of
the interface options in Figure 2 may be found. The avail-
able interface options will offer different tradeoffs in latency,
bandwidth, and invocation overhead. Some interface op-
tions might be replicated for higher aggregate bandwidth or
to allow multiple outstanding transactions. All in all, there
are significant complexities in considering all of the inter-
face options and their exact designs to optimize something
as simple as linked-list traversal on a real system.

4.2 Performance Model
We offer a simple performance model to assist in rea-

soning about the pointer-chasing behavior that we are try-
ing to optimize. In general, for a pointer-chasing traversal
that touches n nodes of a pointer-based data structure and
spayload bytes of data payload per node, ignoring the com-
putation time, the average traversal time per node can be
stated as:

Tper−node = Tmanagement/n + (Lnode+

BW−1
node × snode+

Lpayload+

BW−1
payload × spayload)

(1)

In the equation, Tmanagement includes all of the time in-
volved in setting up and tearing down a traversal. This
time is of lesser concern as it is amortized by n which we as-
sume to be large in the reference behavior (Section 3). Lnode

and Lpayload represent the latencies in passing data across
the interface providing nodes and payload data, respectively.
BW−1

node and BW−1
payload represent the corresponding incre-

mental per-byte times for passing data. Equation 1 sep-
arates the time to read the node struct (for the pointer



mainly) from the time to read the data payload using dif-
ferent L and BW−1 values. This allows for cases where an
optimized implementation takes different paths for fetching
the node struct vs. the payload. For the case of small inlined
data payload fetched together with the pointer, Lpayload and
BW−1

payload become 0.
Equation 1 assumes that the path traversed in a data

structure depends on the data payload values (e.g., search-
ing a sorted binary tree). In the cases where the traversed
path is independent of the data payload values (e.g., depth-
first-visit of a binary tree), it becomes possible to decouple
the pointer-chasing sequence from the data payload fetch se-
quence (e.g., where one agent is performing pointer chasing
to generate a stream of data payload pointers to be fetched
by a second agent). Taking advantage of this decoupling
by overlapping the two fetch sequences results in a traversal
time is determined by the slower of the two sequences. The
average traversal time per node when there is no payload
dependence can be approximated as:

Tper−node = Tmanagement/n + MAX
(

(Lnode+

BW−1
node × snode),

(Lpayload+

BW−1
payload × spayload)

) (2)

The appropriateness of Equation 1 vs. 2 is captured by the
payload dependence parameter in the reference linked-list
traversal behavior.

Lastly, if the data structure or algorithm permits inter-
leaved traversals of multiple data structures or independent
parts of the same data structure, the effective latencies are
reduced through latency hiding effects. The degree of the
performance improvement will depend on the degree of inter-
leaving and their indirect effects (e.g., increased row buffer
conflicts or cache thrashing).

As a final note, the latency and bandwidth in the above
first-order models are to be taken as averages. The instanta-
neous latency and bandwidth of an interface will in general
not be constant and will be context specific. For example,
both DRAM and caches will exhibit much shorter effective
latency during sequential memory references than random
or strided references. This effect is exercised by the best-
case vs. worst-case node layout parameter of the reference
linked-list traversal behavior.

4.3 Implementation Approaches
Software-Only Traversal. Although this work is predi-
cated on delivering the linked-list payload to the fabric, we
begin by discussing pointer-chasing in software using proces-
sor cores. The most obvious benefit of pointer-chasing from
the processor cores is the ease of implementation afforded by
software. This is particularly important for complicated al-
gorithms and data structures. Furthermore, hard-logic pro-
cessor cores benefit from a much higher clock frequency and
a more sophisticated and higher capacity memory hierarchy.
For example, in the current Intel QuickAssist QPI FPGA
Platform, the Xeon processor enjoys a much more power-
ful and higher-performing memory subsystem than what is
achievable from the FPGA. The Xeon processor presents a
hard-to-beat design point if we focus only on the pointer
chasing aspect of the traversal (ignoring the FPGA’s po-
tential advantages in payload memory accesses and pay-
load processing). On the other hand, the disadvantage of

a software-only traversal is its inability to customize at the
datapath level for performance or efficiency.

Fabric-Only Traversal. The starting points in this study
are hardware traversal engines built as soft-logic in the fab-
ric. The optimal design of such traversal engines would in-
clude the logic to traverse the pointer-based data structure,
and would also include an accompanying co-designed mem-
ory interface and subsystem, subjected to an extreme degree
of customization. We summarize below the most profitable
opportunities we encountered in our study:

1. For data structures with an indirect payload, a hard-
ware traversal engine may separately issue the pointer
and the payload memory fetches to the coherent and
non-coherent interfaces, respectively, if both are avail-
able. This approach reserves the cache capacity for any
available (cache-block granularity) spatial and tem-
poral localities in the traversal of the nodes. The
non-cache-coherent interface keeps the payload fetches
(without temporal locality) from polluting the cache
and may even be able to offer higher payload fetch
bandwidth.

2. If it is known that the pointer and payload memory
fetches exhibit good spatial locality (such as modeled
by the best-case sequential layout in the reference be-
havior), a hardware traversal engine could sequentially
prefetch ahead of the current node’s memory location
in case the following locations are needed soon. If the
memory interface operates at a cache block granularity,
some degree of spatial prefetching happens unavoid-
ably; the hardware traversal engine need only add logic
to recognize when subsequent nodes to be visited fall
within the current cache block. In general, a hardware
engine should take advantage of specific knowledge of
the pointer-based data-structure and the traversal al-
gorithm in speculative run-ahead-type optimizations.

3. When the path traversed through the pointer-based
data structure is independent of the data payload val-
ues, a hardware traversal engine should decouple and
overlap the pointer chasing and the data payload mem-
ory access sequences. This concurrency leads to im-
proved behavior modeled by Equation 2 rather than
Equation 1.

4. When multiple concurrent traversals are allowed, a
hardware traversal engine should be much more able
than software to achieve the high degree of interleav-
ing necessary to fully hide the memory latency and
saturate the memory bandwidth. When allowed, inter-
leaving multiple traversals is a very powerful optimiza-
tion technique for overcoming the effects of memory
latency, and works well in general over the remaining
parameters (layout, payload size, and dependence).

Hybrid Traversal. The most challenging scenario for a
fabric-only traversal is traversing a single data structure
with a small data payload size and prefetch-unfriendly node
layout in memory. This challenge singularly accentuates the
impact of memory read latency. Our pointer chasing study
on shared-memory FPGAs was in fact motivated by this
scenario and by the prospect of incorporating the processor
cores in a hybrid solution. A basic approach would be for
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Figure 3: Datapaths between memory, the ARM cores, and the
fabric in the Zynq

the processor core to traverse the pointer-based data struc-
ture, fetch and prepare the data payload to be streamed into
the fabric using any one of the interface options. Though
simple, this approach (which we call hybrid-push) is very
effective for traversals with small payload sizes. But the in-
efficiency of multiple movements of the data payload grows
with payload size.

When the data structure can be traversed independently
of the data payload values (or can be traversed using only
a very small portion of the payload and minimal process-
ing), a better approach is for the processor core to traverse
the pointer-based data structure and stream pointers to the
data payload into the fabric. The fabric in turn fetches the
data payload directly from shared memory. This approach
(we call hybrid-pull) not only benefits from more efficient
use of memory bandwidth but it also benefits from over-
lapping the pointer-chasing and the data payload memory
accesses (Equation 2). An important benefit of both hybrid
approaches is the ease of development coming from handling
complicated data structures and algorithms in software.

5. REAL SYSTEM EFFECTS
In this section we offer a detailed look at how the high-

level considerations discussed in the preceding section play
out in real systems that include the Xilinx Zynq, the Intel
QuickAssist QPI FPGA Platform, and the Convey HC-2EX.
By focusing exclusively on the reference linked-list traversal
behavior, we are able to make a very thorough examination
of the implementation space. It is important to note that we
are not evaluating the suitability of these current systems for
supporting pointer chasing; we certainly make no attempt
to compare them. Our goal with these studies is to convey
to the readers the real effects and complexity that comes
from the different mechanisms and implementation options.
We devote most of this section to our extensive design study
on Xilinx Zynq because it provides the most diverse range
of implementation options.

5.1 Xilinx Zynq

5.1.1 Platform Description
For the Xilinx Zynq study, we worked with the ZC706

evaluation board (containing a XC7Z045 SoC FPGA). Fig-
ure 3 provides a high-level view of the Zynq datapath, show-
ing 2 ARM cores and a reconfigurable fabric. The Zynq
architecture provides the full selection of interface options
discussed in Section 4.1.

Table 1: Experimental parameters.

Reference Behavior
Parameters

Values

Node Layout best case (sequential),
worst case (16-KByte strided)

Payload Size 2, 4, 8, 16, 32, 64, 128, 256,
512, or 1024 bytes

Payload Dependence Yes, No
Traversal Concurrency 1, 2, 4, 8, 16, 32, 64, 128 ways

Implementation
Options

Values

Payload Location inlined, indirect
Traversal Approach software-only, fabric-only,

hybrid-push, hybrid-pull
Fabric Memory Path HP, ACP
Fabric Memory Fetch
Size

8, 16, 32 Bytes

Core-to-Fabric Path PIO, DMA
Core-to-Fabric DMA
Staging

in DRAM, in OCM

The reconfigurable fabric on the Zynq supports high band-
width DRAM accesses through (a) four 64-bit non-cache-
coherent“High Performance”(HP) ports, and (b) one 64-bit
cache coherent “Accelerator Coherency Port” (ACP) port.
The Zynq fabric can also access on-chip SRAM (referred to
as OCM) that is shared with the ARM cores through these
ports. The ARM cores interact with the fabric using pro-
grammed I/O (PIO) through two 32-bit memory-mapped
AXI master ports. Included in the ARM system is a built-
in 8-channel DMA engine that can copy data between any
source and destination regions in the global addresss space.

5.1.2 Implementations
We conducted a nearly exhaustive design study of the pa-

rameterized reference linked-list traversal behavior over the
full combination of implementation options available on the
Zynq. Table 1 summarizes the behavior parameters (pre-
sented in Section 3) and the Zynq implementation options
discussed below.

The in-fabric portion of the traversal engines are devel-
oped in Bluespec System Verilog [11]. We tested shared
memory accesses from the fabric using both the coherent
ACP port and the non-coherent HP ports. The traversal
engine supports a compile-time configurable data block size
(tested at at 8, 16 and 32 bytes) for fetching linked-list node
structs. This is to enable sequential prefetching (allowed
by the best-case node layout scenario). The traversal en-
gine supports issuing a new memory request one cycle after
a data block is delivered to it, and can interleave multiple
traversals at run time, allowing a single engine to support
the parallel traversals described below. We used ISE 14.7
to compile the Verilog emitted by Bluespec. The synthe-
sized traversal engines ran at 200 MHz. None of our engines
utilized more than 10% of the XC7Z045.

We utilized a single 667 MHz ARM core in “bare-metal”
mode for the software components of the implementations.
The ARM core sends payload (in hybrid-push) or payload
pointers (in hybrid-pull) to the fabric through the AXI mas-
ter port by either PIO or DMA. When using DMA, we stage
data by copying one or more payloads (or pointers) into one
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Figure 4: Performance achieved traversing linked-lists with 4 byte
payload inlined within the linked-list nodes.

of several contiguous buffers in DRAM or OCM. Staging
data achieves much higher bandwidth than PIO, and amor-
tizes the cost of initiating DMA transfers.3 We built the
software component with Xilinx SDK 14.7 with gcc -O3.

5.1.3 Observations
Below we present the most illustrative results from our

comprehensive design study cases.

Single Linked-List with a 4-Byte Payload. Travers-
ing a single linked-list with small payload (4-Bytes, inlined)
presents the most difficult scenario. Figure 4 reports the per-
node traversal time achieved under several implementation
options. Results for both best-case and worst-case node lay-
outs are reported. The fabric-only traversals reach a steady
state for linked list with under 10 nodes. The hybrid-push
traversals that use DMA require linked lists with 20 to 30
nodes in order to reach a steady state.

The first 6 bars in the series correspond to the fabric-only
traversal engines using the HP or ACP interface to issue 8,
16 and 32 byte transfers. We see that using the ACP inter-
face results in a slightly faster traversal time. For the best-
case sequential layout, we see an improvement in traversal
time as we increase the transfer size. This is due to spatial
prefetching effects; the same is not observed for the worst-
case strided layouts. In cases where prefetching is ineffec-
tive, the performance of traversing a single linked list with
a small payload is entirely dictated by the platform’s mem-
ory latency performance. What may be counterintuitive is
that the Zynq, which does not have the DRAM bandwidth
or capacity of the server systems, has the best memory la-
tency performance due to its tight integration and hardwired
memory path.

The next 3 bars in the series in Figure 4 correspond to
hybrid-push using PIO, DMA with DRAM staging, and
DMA with OCM staging. These bars are stacked to show
how much time is spent by pointer chasing in the ARM core
and how much time is spent in pushing data payload to the
fabric. Hybrid-pull is not reported, as it does not make sense
in this context since the ARM core would have to send the
same size data (4-byte pointer or 4-byte payload per node).

We are encouraged to find a real-life example of the hy-
brid approach improving over the fabric-only approach on

3DMA initiation costs are high enough that performing a
DMA transfer for each linked list node is slower than PIO.
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Figure 5: Performance achieved traversing linked-lists containing
pointers to a larger data payload.

small payload scenarios. DMA from DRAM or OCM per-
formed roughly equally;4 and hybrid-push PIO performance
is much worse because the ARM core actually stalls on each
write (for approximately 100ns in our measurements) until it
receives the bus response. As should be expected, software
pointer-chasing is also much slower for the worst-case node
layout, but hybrid-push still did better than the fabric-only
implementations.

Single Linked-List with Varying Payload. Figure 5
reports the per-node traversal time of a single linked-list
with payload sizes ranging from 8 Bytes to 1 KBytes. Again,
the results for both best-case and worst-case layouts are re-
ported. For this set of results, the linked-list nodes contain
pointers to the payload (indirect payload). Five bars are
shown for each payload size. The first bar, provided as a
reference only, is the time of a software-only traversal. This
software-only traversal touches all payload data but does not
send payload data to the fabric (as required by the reference
behavior). In many cases, especially for large payload sizes,
the software-only traversal is in fact slower than sending the
payload data to the fabric. This serves to provide another
justification for delivering the payload into the fabric besides
the assumed FPGA acceleration of processing.

The next 4 bars correspond to hybrid-push, hybrid-pull
using HP for payload fetch, hybrid-pull using ACP for pay-
load fetch, and a highly optimized fabric-only implementa-
tion that uses ACP for fetching the node structs as 32-byte
blocks and HP for fetching the indirect payload.

We can see the advantage of hybrid-pull over fabric-only
on the smaller payload sizes. Keep in mind that hybrid-
pull is only valid for traversals that are independent of the
payload values. As the payload size increases, hybrid-pull’s
advantage over fabric-only diminishes as the traversal time
become dominated by the payload fetch time through the
HP ports. Both hybrid-pull and fabric-only are able to reach
98% of the peak bandwidth of a 64-bit wide HP interface at
200 MHz.

When payload sizes exceed 4 bytes, hybrid-push is always
slower than fabric-only. But for smaller payload sizes and
payload dependent traversals, hybrid-push may still be a
valid option due to its ease of development.

4The DMA engine transferred data from the processor cache
rather than memory, masking the performance difference be-
tween OCM and DRAM.
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Figure 6: Performance achieved through interleaved linked-list
traversal, including the best “Hybrid-Push” results from Figure 4
for reference.

Interleaved Concurrent Traversals. For this final set
of Zynq results, we return to linked lists with small 4-byte
inlined payloads, but achieve better performance through
parallel memory accesses. We break the 16,384 element
linked list into shorter linked list segments. These linked
list segments are traversed in a multi-threaded fashion us-
ing a single traversal engine, which interleaves the memory
requests by the different threads. Figure 6 reports the per-
node traversal time when interleaving 1 to 128 concurrent
traversals. Results are presented for the best-case and worst
case node layouts, retrieving data using HP and ACP in-
terfaces. The per-node traversal time of DMA hybrid-push
from OCM is included as the first bar as a reference.

In all cases, the traversal time improves predictably as the
number of concurrent traversals is increased up to 8 (reach-
ing 93% of the HP interface’s peak bandwidth). The effect is
most dramatic in the worst-case data layout scenarios where
all the references have to pay the full latency to DRAM. Is-
suing multiple outstanding reads from different traversals
effectively keeps the traversal engine busy. For more than
16 traversals, the traversal time improves slowly because the
HP bandwidth begins to saturate.

5.2 Intel QuickAssist QPI FPGA Platform
The Intel Heterogeneous Architecture Research Platform

program has made the Intel QuickAssist QPI FPGA Plat-
form [13] available for academic research use. The cur-
rently available Intel QuickAssist QPI FPGA Platform is
a pre-production system that pairs a server-class multicore
Xeon processor with an Altera Stratix V FPGA using Intel’s
cache-coherent QPI interconnect. The QPI interface extends
shared memory to the FPGA, providing coherent access to
DRAM attached to the processor as well as the processor’s
last-level cache. The Intel-provided soft-logic infrastructural
IPs include the QPI interface, a 64-kilobyte cache, and the
support for address translation. In our own benchmarking,
we have seen the FPGA achieve approximately 6 GByte/sec
of read bandwidth and about 350ns read latency over QPI
to DRAM. Experimental results on this hardware platform
reflect experiments performed at CMU. Results in this pub-
lication were generated using pre-production hardware and
software, and may not reflect the performance of production
or future systems.

Figure 7 reports the per-node traversal time for linked-list
traversals with indirect payload of 8-1K bytes. As before,
we report the traversal time under both best and worst case
node layouts. There are four bars for each payload size in
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Figure 7: Traversal results on the Intel QuickAssist QPI FPGA
Platform with indirect payload.

each layout case. The first bar, is a software-only reference
traversal by the Xeon processor. This software-only traver-
sal touches all payload data, but does not send payload data
to the fabric.

The next two bars are hybrid-push and hybrid-pull re-
sults, where the processor and fabric share the traversal
effort to provide data to the fabric. Over increasing pay-
load sizes, the traversal times stay about the same until the
traversals switch from latency bound to bandwidth bound.
As these cases are primarily latency bound, the processor’s
comparatively low-latency access to DRAM supports a hy-
brid traversal approach. However, without other interface
options between the processor and the FPGA, all processor-
FPGA interactions are implemented through shared mem-
ory using loads and stores. Thus, for hybrid-push, the pro-
cessor copies the payload into a circular buffer in shared
memory to be read by the FPGA. The hybrid-pull approach
copies pointers to the payload into the buffer, and the FPGA
fetches the data itself. The hybrid-push approach generally
is slower than hybrid-pull, but can perform well with very
small sequential payloads, where it can take advantage of
the Xeon’s superior cache, higher clock speed, and lower
memory access latency.

The fourth bar shows fabric-only traversals. Fabric-only
traversals were faster for sequential traversals due to spatial
prefetching effects (the same observed in Figure 4). Each
64-byte cache line packs 8 sequential linked list nodes into
each cache line. Furthermore, minimal latency between the
hardware components fetching the linked list nodes and the
hardware components fetching the payloads contributed to
the speedup in sequential lists, as compared to the hybrid-
pull approach. Overall performance in sequential traversals
was still latency limited (by the latency of fetching payload
data) until the payload size reaches 256 bytes. As before,
fabric-only traversals of strided linked lists were the slowest.
However, we achieved similar performance improvements to
those in Section 5.1 by parallelizing the traversal: break-
ing up the strided linked lists into up to 8 segments and
traversing these segments in parallel yielded linear perfor-
mance improvements, and surpassed the performance of the
hybrid traversals. We believe that future systems could im-
prove the performance of hybrid approaches by providing
low-overhead messaging and data transfer channels that re-
duce the synchronization overheads that applications incur
when performing fine-grained communication.

5.3 Convey HC-2EX
Convey’s HC-1 FPGA computing system featured shared

memory with Intel host processors. The current genera-
tion HC-2 system replaces hardware shared memory with
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Figure 8: Parallel traversal results on the Convey HC-2EX with
indirect payload.

an FPGA system on a PCI-E bus containing a large ca-
pacity DRAM memory system, emulating a shared memory
abstraction in software. Due to this hardware implementa-
tion, our design study on the HC-2 focuses on the fabric-only
approach. Even without shared memory, the HC-2, with its
high-performing, high capacity DRAM subsystem, is still
relevant to the acceleration of pointer-based irregular paral-
lel applications.

We worked with a Convey HC-2EX [4] that includes pro-
prietary “scatter-gather” memory modules. These unique
memory modules allow the Convey machine to achieve peak
memory bandwidth even on non-sequential accesses, up to
20GB/sec for each of its 4 user-logic FPGAs. Convey’s mem-
ory subsystem is implemented in soft-logic using additional
dedicated FPGAs. At first glance, Convey’s emphasis on
supporting irregular memory access patterns should be ben-
eficial to pointer-chasing irregular parallel applications. For
parallel traversal experiments on the Convey, we attached
a separate Convey-optimized traversal engine to each of the
user-visible memory ports. We do not show software or hy-
brid traversal results on Convey because the processor must
go through the PCI-E interconnect to accesses the FPGA-
attached DRAM.

Figure 8 reports the per-node traversal time for linked-lists
with indirect payloads of 8 to 1K bytes. The left two clus-
ters are for traversing a single linked-list under best-case and
worst-case node layout, respectively. In this case, a single
traversal engine utilizes 2 of the 16 memory crossbar ports
available to one user-logic FPGA, one for fetching the node
structs and one for fetching the payload data. The right two
clusters are for traversing eight linked-lists concurrently us-
ing 8 different traversal engines and all 16 memory crossbar
ports, still from one user-logic FPGA.

The Convey’s performance is barely sensitive to node lay-
out in memory, due to its unique support for non-sequential
memory accesses. The Convey’s per node traversal time is
also not very sensitive to payload size. This is in part ex-
plained by Convey’s very high memory bandwidth, but it
also points to memory latency as the dominant effect in the
single linked list traversal results. It may be surprising that
the Convey’s traversal time on a single linked-list is rather
unexceptional, only on par with the Zynq. Recall that the
Convey’s memory subsystem stands out for its DRAM band-
width. Even if Convey did not trade longer latency for better
bandwidth optimizations, they would incur an unavoidable
latency penalty by implementing their memory subsystem
in soft logic. In the latency dominated traversals of a sin-
gle linked list, the Convey can have no advantage over the
hardwired memory subsystem in the Zynq. However, the
Convey has plenty of bandwidth to sustain multiple current
traversals without interference, as seen in the improvements
in the 8-way traversal results. Even the 8-way traversal re-

sults do not even come close to saturating the bandwidth
available on the Convey platform.

6. DISCUSSIONS
In this section we attempt to extrapolate from our study

of pointer chasing.

Irregular Parallel Applications. Irregular parallel appli-
cations present an ideal target for shared-memory processor-
FPGA acceleration. The demands of more regular applica-
tions could largely be satisfied by simpler solutions of mem-
ory bandwidth and capacity improvements. It is an irregu-
lar parallel application—with the requirement for irregular
access over a large memory footprint and the opportunity
for tightly coupled processor-FPGA collaboration—that re-
ally calls for the full potential of shared-memory processor-
FPGA architectures.

Hardwired Memory Subsystem. With the growing use
of FPGAs for compute acceleration, it is not inconceivable
that an FPGA designed with computing in mind should
come with a hardwired memory subsystem. We saw in
the Zynq example that a modest commitment of die area
to hardwiring the memory subsystem can yield large gains
in performance and power efficiency over soft logic. To
go one step further, there should be an entire compute-
oriented FPGA memory architecture that addresses com-
puting needs, ranging from memory hierarchy and cache-
coherence nuts-and-bolts, to memory virtualization and pro-
tection, to what is the best presentation of memory to the
fabric for use by spatial computing kernels.

Memory Performance. With hardwiring of the memory
subsystem, there also needs to be a decision on the level
of memory performance desired for FPGAs. With the ex-
ception of Convey, FPGAs and FPGA acceleration systems
have generally been under-powered in their DRAM bytes-
per-second relative to their potential for ops-per-second. Ad-
ditional memory performance can go toward both unleash-
ing computing performance and increasing application gen-
erality. Our study pointed especially to the importance of
latency performance for irregular parallel applications. This
can be achieved by both direct (faster, shorter links) and
indirect (caches and prefetchers) means.

Memory Parallelism. Our study also repeatedly pointed
to memory parallelism as a powerful technique to overcome
memory latency. Memory parallelism should play an impor-
tant role in shared-memory processor-FPGA system design.
This can manifest at all levels, ranging from memory sys-
tem design, to accelerator development tools, to algorithms.
For our study, a tool that automated the process of creating
parallelized traversal engines (possibly with annotations by
the application developer indicating valid parallelization op-
portunities) would have made it much easier to achieve the
best possible performance on data structure traversals.

Processor-FPGA Interactions. One motivation of the
current work was to show that tightly-coupled processor-
FPGA interactions in shared memory architectures can be
used to improve performance (hybrid-push, hybrid-pull). Al-
though not demonstrated by this study, there clearly are
large dividends in eliciting software assistance to handle
complex or non-critical tasks. Both hardware and software
infrastructural support to simplify and speed up processor-



FPGA interactions warrant increased attention in future
shared-memory processor-FPGA systems. Although shared
memory is elegant in its generality, there is room for special
interfaces such as fast, short messaging FIFOs. The need for
performance and efficiency when accellerating in hardware
can tilt the balance toward efficiency rather than elegance.

7. CONCLUSION
The conceptual simplicity of linked lists can belie their

significance and its complexity. In this paper, we used a
reference linked list traversal behavior as a proxy to study
the potential of shared-memory processor-FPGA systems
in accelerating irregular parallel applications that rely on
pointer-based data structures and algorithms. We examined
a broad range of implementation considerations and options
both at a high level and through concrete implementations
on real systems. We point to memory latency as the domi-
nant performance factor when traversing a single linked list,
and observe that interleaving multiple concurrent traversals
can overcome stalls caused by memory latency. We find that
incorporating tightly-coupled processor assistance can also
be an effective approach.
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