
Nautilus: Fast Automated IP Design Space Search Using
Guided Genetic Algorithms

Michael K. Papamichael
Carnegie Mellon University

Peter Milder
Stony Brook University

James C. Hoe
Carnegie Mellon University

ABSTRACT
Today’s offerings of parameterized hardware IP generators
permit very high degrees of performance and implementa-
tion customization. Nevertheless, it is ultimately still left to
the IP users to set IP parameters to achieve the desired tun-
ing effects. For the average IP user, the knowledge and effort
required to navigate a complex IP’s design space can signif-
icantly offset the productivity gain from using the IP. This
paper presents an approach that builds into an IP generator
an extended genetic algorithm (GA) to perform automatic
IP parameter tuning. In particular, we propose extensions
that allow IP authors to embed pertinent designer knowl-
edge to improve GA performance. In the context of several
IP generators, our evaluations show that (1) GA is an effec-
tive solution to this problem and (2) our modified IP author
guided GA can reach the same quality of results up to an
order of magnitude faster compared to the basic GA.

1. INTRODUCTION
The use of IPs has become an indispensable part of mod-

ern hardware design flows. Instead of designing every com-
ponent in a chip from scratch, designers can build entire
chips or portions thereof by leveraging existing IP blocks,
often developed by third parties. This practice greatly re-
duces the development time and cost of individual submod-
ules within a larger chip. Over the years, IP blocks, which
started as basic primitives (adders and multipliers), have
now grown to complex IP blocks and even sophisticated on-
demand design generators (e.g., [16, 14, 11]). A single IP
block could be responsible for multiple millions of transis-
tors in a chip.

To maintain performance and energy efficiency, today’s IP
blocks have to be highly parameterized to allow tailoring an
instantiation to match specific application and user require-
ments. The flexibility of user customization however leads
to the formation of a vast complex design space that has to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.

DAC’15, June 07 - 11, 2015, San Francisco, CA, USA
Copyright 2015 ACM 978-1-4503-3520-1/15/06 ...$15.00.
http://dx.doi.org/10.1145/2744769.2744875

60

80

100

120

140

160

180

200

0 10000 20000
Fr

e
q

u
e

n
cy

 (
M

H
z)

Area (LUTs)

Frequency vs. Area for Virtual-Channel Router Variants

Figure 1: LUT usage and maximum frequency for
approximately 30,000 router design points based on
FPGA synthesis results.

be navigated by the IP user. The sheer number and details
of the parameters are burdens to handle and a source for
error. Moreover, many low-level module-specific parameters
are cryptic and incomprehensible to an average IP user who
is not already deeply familiar with the specific domain per-
taining to the IP (e.g., signal processing, arithmetic units,
on-chip interconnects). All of the above result in suboptimal
outcomes from an otherwise more-than-capable IP genera-
tor.

The Scale of the Problem. Consider the top-level
router module of the Stanford Open Source Network-on-
Chip Router project [4], a highly-parameterized state-of-
the-art router IP block, which exposes 42 parameters (not
including any additional sub-module parameters). The de-
sign space of a single router already spans multiple billions
of possible design points; this does not even consider the
countless ways these routers can be arranged and connected
to form a network. To give a sense of what this design space
can look like, Figure 1 plots FPGA LUT usage and maxi-
mum frequency across approximately 30,000 design points—
all interchangeable at a functional-level from an IP user’s
perspective—that belong to a subset of the full design space
formed by only 12 out of the 48 parameters.

As another example, we used the publicly available CON-
NECT NoC IP generator [13] to generate a large collection
of different network configurations (router design + network
topology) targeting a commercial 65nm technology. Figure 2
plots how power and area relate to peak network bisection
bandwidth (a network performance metric), across a variety
of different 64-endpoint NoC configurations (different colors
represent different topology families). Note that, once again,
all of these design instances are only a small subset out of
the myriad of potential NoC configurations, which are all

10

100

1000

10000

100000

1 10 100 1000

P
e

ak
 B

is
e

ct
io

n
 B

an
d

w
id

th
 (

in
 G

b
p

s)

Area (in mm2)

NoC Area vs. Performance

10

100

1000

10000

100000

1000 10000 100000

P
e

ak
 B

is
e

ct
io

n
 B

an
d

w
id

th
 (

in
 G

b
p

s)

Power (in mW)

NoC Power vs. Performance

Concentrated Ring Concentrated Double Ring
Ring Double Ring Mesh

Torus
Fat Tree
Butterfly

Figure 2: Area, power and performance for various
64-endpoint CONNECT NoCs targeting a commer-
cial 65nm ASIC technology node.

interchangeable from an IP application perspective; an IP
user could pick any of these to satisfy the functional-level
connectivity requirements of his or her application. The
fact that these design points exhibit 2–3 orders of magni-
tude of variation across all presented metrics (power, area,
performance), highlights the need to be able to efficiently
and quickly navigate the design space and the criticality of
picking a design point that makes the right trade off and fits
the constraints of the project.

Our Solution: Nautilus. The sheer scale and vast-
ness of design spaces of parameterized IPs, such as the ones
presented above, and the fact that evaluating each design
point can be very costly (requiring long runs of CAD and/or
simulation tools, each of which can take several minutes to
hours) makes exhaustive search prohibitive and motivates
the need for automated fast and efficient navigation of the
design space. To this end, we present Nautilus, an IP au-
thor guided design space exploration engine. This automatic
design tuning approach is especially fitting in the context
of parameterized IP generators which are already software-
driven active objects.

At the core of Nautilus is a modified genetic algorithm
(GA) that allows embedding of IP author knowledge per-
taining to the IP design space. This knowledge, coming in
the form of “hints,” captures the IP author’s intuition about
how IP parameters relate to the various metrics of inter-
est; the goal is to help steer the optimization search process
more quickly toward profitable directions. In this paper, we
offer a taxonomy of key classes of IP author knowledge and
discuss how to incorporate them into GAs. A particularly
important issue in embedding IP author guidance into a GA
is to balance the strength of the author’s guidance (which
will be imperfect) and the stochastic nature of the underly-
ing GA, which is critical for overcoming local optima and for
handling design regions that may defy the author’s intuition.

We present an evaluation of the Nautilus approach in the
context of two hardware IP generators, targeting Networks-
on-Chip and fast Fourier transforms (FFTs). The results
show that GAs are effective in the automatic tuning of IP
parameters when optimizing for a number of key design met-
rics (e.g., resource usage, efficiency), reducing the number of
design points that have to be evaluated by orders of magni-
tude compared to a naive brute force approach. The results
further show that the Nautilus guided GA, with the help of
IP author knowledge, can further accelerate the GA search
process, reaching the same quality of results as a baseline
GA with up to an order of magnitude fewer design points

evaluated. This is significant in light of the fact that each
evaluation typically corresponds to minutes to hours of EDA
execution time depending on the complexity of the IP.

Paper outline. The rest of this paper is organized
as follows. Section 2 provides background on genetic algo-
rithms (GAs) and describes how a baseline GA can be used
to perform IP optimization. Section 3 introduces Nautilus
and describes our extensions to GA that incorporates au-
thor hints. Section 4 reports our evaluation methodology
and experimental results. Finally, we discuss related work
in Section 5 and provide a discussion and conclusions in Sec-
tion 6.

2. BACKGROUND: GENETIC
ALGORITHMS

Genetic algorithms (GAs) are a class of stochastic adap-
tive optimization algorithms based on the ideas of evolution,
natural selection and genetics (e.g., [3]). An initial “popu-
lation,” which consists of randomly selected points in the
solution space, is allowed to evolve over a number of gener-
ations. During each generation, samples of the population
can mutate or combine with each other (crossover) and at
the end of each generation, the samples are evaluated and
assigned a fitness score. The most “fit” samples resulting
from this process form the next generation.

Applying GA to solve a new optimization problem consists
of three main steps. The first step is defining the genetic
representation, i.e., expressing each possible solution in the
solution space as series of genes, called a genome. Once this
mapping has been established, the second step is to define
and implement the genetic operators, such as mutation and
crossover, that can be applied to the population. Mutation
operations modify genes of individual members of the pop-
ulation, while crossover operations combine subsets of the
genes of two existing members of the population to produce
a new member (i.e., “breeding”). Finally, the third step is
defining a fitness (a.k.a. objective) function that assigns a
fitness score to each sample in the population. This fitness
score is used during the ranking and selection process of the
GA that determines which members of the population will
survive to form the next generation, where they will have a
chance to further mutate and breed.

The quality of results and runtime of a GA algorithm de-
pends on several factors, including:

• Population size. A large initial population increases
the solution space coverage, but also increases the
amount of work that the algorithm performs during each
generation. Since successive generations depend on each
other, the population size effectively caps the available
parallelism during the evaluation phase of the algorithm
that calculates the fitness scores.

• Mutation rate. The mutation rate controls the prob-
ability of mutations. A low mutation rate restricts the
algorithm to localized search around existing solutions
(exploitation), while a high mutation rate allows the al-
gorithm to make larger leaps and potentially overcome
local optima to reach unexplored portions of the de-
sign space (exploration). As is also the case with other
stochastic optimization algorithms, striking a good bal-
ance between exploration and exploitation is an impor-
tant aspect of tuning a GA to a particular problem.

• Fitness function. The fitness function is used to as-
sign a score to each sample in the population which is
used at the end of each generation for ranking the avail-
able samples and selecting the ones that will make it on
to the next generation. The fitness function is used to
guide the evolution process and is one of the most central
elements of a GA. Not only is it used to pick different
optimization goals, but it can also be adapted to con-
strain the algorithm to only explore specific portions of
the solution space (e.g., by assigning very low scores to
solutions lying in regions of the design space that are not
of interest or should be avoided).

GAs for IP optimization. In this work we use ge-
netic algorithms to automatically tune IP parameters for a
given optimization goal. In the context of IP optimization,
the initial population consists of potential design instances
with different low-level parameter configurations, each corre-
sponding to a distinct point in the design space. Mutations
correspond to changing a parameter value, and crossovers
combine parameter settings of different samples in the design
space. Depending on the type of IP and the metric being
optimized, “fitness” can take many different forms and even
incorporate multiple metrics, which allows for great flexibil-
ity. For instance, in the case of a Network-on-Chip router,
fitness can correspond to FPGA resource usage, through-
put, energy efficiency or even a custom-defined composite
function that can combine these metrics in arbitrary ways.

Evaluating GAs. We are mainly interested in two met-
rics when evaluating a GA: 1) runtime, i.e., how long it
takes for the GA algorithm to run, and 2) quality of re-
sults, i.e., how good of a solution the GA finds. In the
context of IP parameter optimization, runtime is directly
tied to the number of fitness function evaluations, since each
evaluation requires running computationally expensive CAD
tools (e.g., FPGA/ASIC synthesis or place-and-route tools)
and/or simulations. The quality of results can be either ex-
pressed as the fitness score of the best solution in the pop-
ulation or as a percentage with respect to the best scoring
sample for the specific optimization (if that is known). It is
important to understand the goal of Nautilus is not to find
the absolute best design point. In real usage scenarios, we
want to help an average IP user find a good design point
that is within some threshold of what the IP generator can
offer. The goal is to do much better than what an average
IP user could do by trial-and-error or, worse yet, by taking
the default. Thus for evaluation, we examine how many dis-
tinct design points have to be evaluated (at the cost of up
to hours each) in order to reach a desired quality of results.

3. INCORPORATING AUTHOR
KNOWLEDGE

Overview. Traditional GAs, such as the baseline GA de-
scribed above, explore the design space in a random fashion,
assuming no knowledge of how individual genes or parame-
ters relate to optimization goals or affect the fitness of the
samples in the population; each point in the design space is
equally likely to be visited. This oblivious nature of the base-
line GA makes it ideal for exploring unknown or highly un-
predictable non-convex solution spaces. Compared to naive
brute force design space exploration approaches, such as ex-
haustive search or random sampling, using a GA already
marks a significant improvement in terms of the number of

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

D
e

si
gn

 S
o

lu
ti

o
n

 S
co

re
 (

in
 %

)

Generation #

Baseline GA vs. Nautilus with “bias” hints

Baseline GA
Nautilus w/ 1 "Bias" Hint
Nautilus w/ 2 "Bias" Hints

Baseline GA converges to
solution within top 1%

Nautilus only using bias
hints converges to

solutions within top 1%

Figure 3: Baseline GA vs. Nautilus only using 1 or
2 “bias” hints.

design points that have to be evaluated until a desirable one
is found.

The baseline GA might be a good approach when an IP
user is dealing with an IP he or she is unfamiliar with. How-
ever, it is wasteful to forgo the wealth of knowledge the
author of the IP possesses about the design space. In Nau-
tilus, we want the IP authors to embed knowledge about
the design space as an integral act of creating an IP. This
IP author knowledge can drastically improve the GA search
and optimization process, even if this knowledge is limited
and comes in the form of partial or approximate hints.

To implement Nautilus we modified an existing open-
source GA implementation, called PyEvolve [1], and ex-
tended it to support various forms of IP author or domain-
expert hints pertaining to all or a subset of IP parameters.
The idea behind these hints is to skew the search process
towards specific regions of the design space.1

To illustrate the effect of hints, Figure 3 compares how
the “fitness” (average of 20 runs) of a set of FFT hardware
designs evolves over time using a baseline GA and Nautilus
using a varying number of hints. In this example the baseline
GA takes 56 generations to find a solution within the top
1%, while Nautilus can reach the same quality of results
within 15 to 23 generations, depending on how many hints
are provided.

Supported Classes of Hints. Below we describe some
of the supported classes of Nautilus hints and explain their
effect with respect to the baseline GA behavior and how they
are used to guide the search process. It is important to keep
in mind that the goal of Nautilus is to provide infrastructural
support for different classes of hints; the exact instances are
specific to the given IP generator and metric. The IP au-
thor’s specialized knowledge allows him/her to provide hints
as a part of creating an IP. The IP author is free to supply
as many or few hints as desired; if it lacks sufficient hint
information, Nautilus will fall back to using default values
or employ the baseline GA. Unless specified otherwise, each
hint needs to be supplied per metric of interest and per IP
parameter, i.e., the IP author’s knowledge about how IP pa-
rameters relate to high-level metrics is captured by a vector
of hints, such as the ones described here.

1Note that these hints are incorporated in a probabilistic
manner, maintaining the stochastic nature of GA, which is
still free to explore the full design space and overcome local
optima.

• Importance: The importance hint assigns values from
1 to 100 to each parameter that captures how drastically
the parameter is expected to affect the metric being opti-
mized. In Nautilus, the parameters’ relative importance
skews which genes are more likely to be picked for muta-
tion during a genetic operation. This accelerates the al-
gorithm, because it can directly focus on the parameters
most likely to matter, wasting less time experimenting
with others.

• Importance Decay: The “importance decay” hint
takes a value from 0 to 1 and allows Nautilus to gradu-
ally adjust the relative importance differences of param-
eters. The idea is to allow for the importance of some
parameters to “decay” over time (at the rate defined by
the “importance decay” hint) as the algorithm progresses
through generations.

This hint can be used to introduce a temporal aspect
to Nautilus, allowing it to initially focus on parameters
believed to be “important” to coarsely navigate towards
promising regions of the design space and then gradu-
ally shift focus to experimenting with less “important”
parameters to perform more localized fine-tuning within
those promising regions.

• Bias and Target: While the two previous hints affect
which genes get selected to mutate, the bias and target
hints affect the values that these genes will be assigned
during each genetic operation. Each parameter can ei-
ther be assigned a bias hint or a target hint (but not
both). Bias takes values from −1 to 1 for each parame-
ter and captures the correlation between the parameter
and the metric being optimized. A positive or negative
bias means that increasing the parameter will increase or
decrease the metric being optimized, respectively. The
target is a more direct hint that allows the IP author to
specify that good (or balanced) solutions are known to
cluster around a particular value. Bias and target can
be used to guide Nautilus in a coarse manner, e.g., to-
wards a specific direction, or in a more fine grained man-
ner, i.e., towards a specific region in the design space.
The bias and target hints cause Nautilus to behave in
a much more “directed” fashion compared to a baseline
GA; when correctly set by an expert who understands
the design space, they can allow the algorithm to find
efficient regions of the design space quickly.

• Confidence: The confidence hint can be viewed as a
high-level knob that controls how much trust Nautilus
should place in the author hints. In other words, this de-
termines how“guided” the algorithm will be. Setting low
confidence values will make the algorithm behave more
similarly to the baseline GA, while setting high confi-
dence values along with strongly-guided hints (e.g., set-
ting target values of high bias values) will cause the algo-
rithm to perform very directed optimization that starts
to resemble convex optimization methods such as gradi-
ent descent. Confidence allows Nautilus to more easily
incorporate heuristics or even low-confidence experimen-
tal hints that might be purely based on “gut feeling”
without breaking the search or optimization process.

Finally, in addition to the hints described above, Nautilus
includes some additional low-level auxiliary settings that,

e.g., determine the “stepping” of the algorithm or define or-
dering relationships among values that a specific parameter
can take (e.g., order different allocator options with respect
to clock frequency or area). These settings control sub-
tle aspects of the algorithm or are used to ensure smooth
operation of the algorithm under non-trivial design spaces
(e.g., sparsely populated design spaces that included infea-
sible points or regions).

In our targeted usage scenario, these hints are calibrated
by the IP author during the IP development phase and are
packaged and provided along with Nautilus as part of the
IP (preferably in the form of an IP generator). However,
in the absence of an IP “expert” these hints can also be set
directly by a knowledgeable IP user. Additionally, an IP
user could try sweeping each IP parameter independently
and then observe how the various metrics of interest respond
to estimate approximate hint values.

4. EVALUATION
We evaluate Nautilus with varying degrees of guidance

against a baseline GA using a publicly available [4] highly-
parameterized state-of-the-art Virtual-Channel Network-on-
Chip (NoC) router IP, as well as the Spiral FFT IP design
generator; for the remainder of this section we will refer to
these IP as “NoC” and “FFT”.

4.1 Methodology
As a preparatory step, we map a large portion of each

IP’s design space consisting of comparable—from an IP user
perspective—design instances. The resulting datasets con-
sist of approximately 12,000 design instances for the FFT
IP (varying 6 parameters) and 30,000 design instances for
the router IP (varying 9 parameters). For each design we
run FPGA synthesis and/or simulations for each design in-
stance to characterize it with respect to hardware imple-
mentation metrics (e.g., area, frequency), metrics specific
to the IP domain (e.g., SNR values for the FFT IP), and
composite metrics (e.g., throughput-per-LUT). FPGA syn-
thesis results were obtained using Xilinx XST 14.7 targeting
a Xilinx Virtex-6 LX760T FPGA (part xc6vlx760). This
characterization step was done “offline” (using a dedicated
cluster with 200+ cores running non-stop for about 2 weeks)
to produce the datasets that we used to evaluate Nautilus.

Both Nautilus and our baseline GA implementation are
based on modified versions of the PyEvolve genetic algo-
rithm framework [1]. For each IP we define queries (e.g.,
optimize for throughput/area) and then compare the base-
line GA with Nautilus in terms of the computational cost
to run the query and quality of results (with respect to the
given query). Unless otherwise noted, for both the baseline
GA and for Nautilus, we use an initial population of 10 sam-
ples, a mutation rate of 0.1 (this means that each gene that
belongs to a sample has a 10% chance of mutating during
each generation), and run for 80 generations. Results are
averaged over 40 runs for each experiment to compensate
for the “noisy” nature of the stochastic process.

In the case of FFT, the Nautilus engine is expert-guided
as the hints are provided from a member of the Spiral de-
velopment team. For the NoC IP we estimated hints by
synthesizing 80 designs (less than 0.3% of the design space)
and observing trends; this is equivalent to an IP user (or
some other non-expert) supplying the hints using limited
empirical knowledge or gut intuition about the IP.

125

150

175

200

225

250

0 50 100 150 200 250 300 350 400

Fr
e

q
u

e
n

cy
 (

M
H

z)

Designs Evaluated

NoC: Maximize Frequency

Baseline

Nautilus (weakly guided)

Nautilus (strongly guided)

Figure 4: Maximizing frequency in the NoC design
space.

4.2 Results
NoC. We first look at the NoC results, where Nautilus

is guided by non-expert hints. We compare two Nautilus
variants (“strongly guided” and “weakly guided”2) against
the baseline GA. Figure 4 shows the result of a query aimed
at finding designs in the NoC design space that can achieve
the highest frequency. The y-axis shows the maximum fre-
quency for the best sample in each algorithm’s population
and essentially captures how the quality of results changes
as the algorithms progress. The x-axis shows the cumulative
number of synthesis jobs needed for each of the three tech-
niques, reflecting the computational cost of the query. All
three techniques are run for 80 generations of the GA. Note
however that the Nautilus lines require fewer designs to be
synthesized (because the GA revisits previously-synthesized
results as it converges), allowing their lines to stop after
fewer designs. Both the strongly-guided and weakly-guided
configurations of Nautilus approach good solutions much
faster than the baseline GA. The baseline GA requires about
2.8x and 1.8x the number of synthesis jobs to converge to a
solution within 1% of the best solution.

Figure 5 shows the results for our second NoC query,
which aims at minimizing the area-delay product of a de-
sign. Here, results are shown only for the first 20 gener-
ations, because both techniques converged to the optimal
solution within this time. While our previous query only
used hints related to frequency, this query also incorporates
hints related to the importance and bias of IP parameters
that affect area, such as virtual-channel buffer depth. In this
case, Nautilus achieves similar quality of results with about
half the number of synthesis runs required by the baseline. It
is interesting to note that even the non-expert guided Nau-
tilus performs significantly better than the baseline, offering
much better quality of results for the same computational
cost or the same quality of results after significantly fewer
synthesis jobs.

FFT. We next turn to the FFT results. As mentioned
earlier, in this case Nautilus is “expert-guided”, i.e., a devel-
oper of the FFT IP generator set the hints. Figure 6 shows
the result of a query aimed at minimizing the number of
LUTs used by an implementation from the FFT dataset.

Here we see that all three methods eventually converge on
a same result (about 540 LUTs), but the Nautilus designs
converge much more quickly and require far fewer designs

2The strongly and weakly guided lines differ only in the
“confidence” hint.

2500

2550

2600

2650

2700

2750

2800

2850

2900

2950

3000

0 20 40 60 80 100

A
re

a-
D

e
la

y
P

ro
d

u
ct

 (
cl

o
ck

 p
e

ri
o

d
 ×

LU
Ts

)

Designs Evaluated

NoC: Minimize Area-Delay Product

Baseline

Nautilus

Figure 5: Minimizing the Area-Delay product in the
NoC design space.

500

1000

1500

2000

2500

3000

3500

0 100 200 300 400 500

LU
Ts

Designs Evaluated

FFT: Minimize # LUTs

Baseline

Nautilus (weakly guided)

Nautilus (strongly guided)

Figure 6: Minimizing the number of LUTs in the
FFT design space.

to be synthesized: the strongly guided Nautilus strategy
converges on the optimal design using an average of 101
synthesis runs, while the baseline GA requires 463 designs
to be synthesized (on average) to reach an equivalent result.
If we relax the goal to 1,071 LUTs (twice the minimum), we
see that the strongly guided Nautilus technique is able to
meet the goal synthesizing 23.6 designs (on average), while
the baseline GA requires synthesizing an average of 78.9
designs to reach the same quality result.3

Figure 7 aims to search the FFT design space for a de-
sign that uses a composite metric to maximize the ratio of
throughput to logic area consumed: throughput in million
samples per second (MSPS) divided by the number of LUTs.
In this case, once again the strongly and weakly guided
Nautilus variants find significantly better solutions in less
time; for example, the strongly guided Nautilus strategy is
able to reach 1.45 MSPS per LUT using 61.6 synthesis runs
(on average), while the baseline GA requires more than 8x
synthesis runs (501.4 on average) to reach the same value.
Moreover, Nautilus is able to reach high-quality solutions
exhibiting more than 1.5 MSPS per LUT, which the base-
line is never able to approach even after having explored a
much larger portion (>5x) of the design space.

Overall, Nautilus outperformed the baseline GA, both
when guided by a non-expert (NoC), and especially when
given IP-expert guidance (FFT). Nautilus consistently pro-
duces higher quality of results at much lower computational

3For comparison, if random sampling was used, it would take
on average 11,921 synthesis runs to find a design meeting this
goal.

0.5

0.7

0.9

1.1

1.3

1.5

1.7

0 100 200 300 400 500

Th
ro

u
gh

p
u

t
p

e
r

LU
T

(M
SP

S/
LU

Ts
)

Designs Evaluated

FFT: Maximize Throughput per LUT

Baseline
Nautilus (weakly guided)
Nautilus (strongly guided)

Figure 7: Maximizing throughput per LUT in the
FFT design space.

cost across multiple optimization queries in two separate IP
domain spaces.

5. RELATED WORK
GA in EDA. Stochastic methods such as genetic algo-

rithms have been used for a variety of aspects of hardware
exploration, from the circuit level (e.g., low-level VLSI lay-
out optimization [8] and yield-aware circuit sizing [17]), to
the system level (such as [15] and [7], in which genetic al-
gorithms are used to optimize aspects of hardware-software
codesign). [12] uses GAs to perform exploration across a
space of closely-related processor systems, which can be eval-
uated in only a few seconds per design. Other approaches
focus on high-level synthesis, such as [10, 5], which use ge-
netic algorithms and Monte Carlo methods (respectively)
for HLS optimization. Lastly, simulated annealing has long
been used in physical design automation problems (e.g., [2]).

Active Learning. Another important class of related
work is research on active learning, a family of learning
techniques that iteratively evaluate potentially useful points
within a set. Several recent works [18, 19, 6, 9] use ac-
tive learning techniques to model the entire Pareto-optimal
set of design points across a multi-objective space; specifi-
cally, [18, 19] consider costs and performance of generated
IPs. These approaches differ from our work in that they aim
to understand all design points that give a Pareto-optimal
trade-off among any of the design characteristics. As we are
considering design spaces with tens of thousands of possi-
ble designs and on the order of ten cost and performance
metrics, this generalized approach would become extremely
difficult; instead we aim to provide a system that can answer
a given query about this complicated design space using as
few synthesis steps as possible.

6. CONCLUSION
IP-based design can improve hardware designer produc-

tivity. However, to avoid inefficiency, one must not only
select IPs of the correct functionality but also fine-tune the
IPs to match the overall project’s design tradeoffs across
a myriad of implementation- and application-level goals.
While a highly parameterized IP can provide the needed
customization flexibility, we have observed in today’s most
complicated IPs and IP generators, that just to understand
and correctly set an IP’s parameters can become unmanage-
able to the average IP user (who may lack both the highly

domain-specific knowledge surrounding the IP and a detailed
understanding of the IP’s inner workings). This paper offers
a genetic algorithm-based approach to automatically tune
IP parameters on behalf of the IP user to meet the IP user’s
optimization goals. The central novelty lies in our exten-
sions to GA to allow the IP authors to embedded different
classes of hints about the design space to improve the qual-
ity and speed of design space exploration. For two example
IP generators, our evaluations show that GA is indeed an
effective way to automatically tune IP parameters and that
embedding IP author knowledge can reduce the number of
designs points that need to be evaluated by as much as a
factor of eight. This is a significant improvement in real us-
age scenarios where evaluating a design point requires costly
synthesis and characterization by EDA tools.

Acknowledgments. Funding for this work was provided
in part by NSF CCF-1012851.

7. REFERENCES
[1] Pyevolve. http://pyevolve.sourceforge.net.

[2] C. J. Alpert, D. P. Mehta, and S. S. Sapatnekar. Handbook of
algorithms for physical design automation. CRC Press, 2008.

[3] T. Back. An overview of evolutionary algorithms for parameter
optimization. Evolutionary Computation, 1(1):1–23, 1993.

[4] D. U. Becker. Efficient Microarchitecture for Network-on-Chip
Routers. PhD thesis, 2012.

[5] D. Bruni, A. Bogliolo, and L. Benini. Statistical design space
exploration for application-specific unit synthesis. In Design
Automation Conference (DAC), pages 641–646, 2001.

[6] P. Campigotto, A. Passerini, and R. Battiti. Active learning of
Pareto fronts. IEEE Transactions on Neural Networks and
Learning Systems, 25(3):506–519, Mar. 2014.

[7] R. Dick and N. Jha. MOGAC: a multiobjective genetic
algorithm for hardware-software cosynthesis of distributed
embedded systems. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 17(10), 1998.

[8] H. Esbensen and E. Kuh. Design space exploration using the
genetic algorithm. In IEEE International Symposium on
Circuits and Systems, volume 4, pages 500–503, 1996.

[9] J. Knowles. ParEGO: a hybrid algorithm with on-line
landscape approximation for expensive multiobjective
optimization problems. IEEE Transactions on Evolutionary
Computation, 10(1):50–66, Feb. 2006.

[10] V. Krishnan and S. Katkoori. A genetic algorithm for the
design space exploration of datapaths during high-level
synthesis. IEEE Transactions on Evolutionary Computation,
10(3):213–229, 2006.

[11] P. Milder, F. Franchetti, J. C. Hoe, and M. Püschel. Computer
generation of hardware for linear digital signal processing
transforms. ACM Transactions on Design Automation of
Electronic Systems (TODAES), 17(2):15, 2012.

[12] M. Palesi and T. Givargis. Multi-objective design space
exploration using genetic algorithms. In CODES, 2002.

[13] M. K. Papamichael. CONNECT NoC Generation Framework.
http://users.ece.cmu.edu/~mpapamic/connect/.

[14] M. K. Papamichael and J. C. Hoe. CONNECT: Re-Examining
Conventional Wisdom for Designing NoCs in the Context of
FPGAs. In FPGA, 2012.

[15] D. Saha, R. S. Mitra, and A. Basu. Hardware software
partitioning using genetic algorithm. In International
Conference on VLSI Design, pages 155–160, 1997.

[16] O. Shacham. Chip multiprocessor generator: automatic
generation of custom and heterogeneous compute platforms.
PhD thesis, 2011.

[17] S. K. Tiwary, P. K. Tiwary, and R. A. Rutenbar. Generation of
Yield-Aware Pareto Surfaces for Hierarchical. In Design
Automation Conference (DAC), pages 31–36, 2006.

[18] M. Zuluaga, A. Krause, P. Milder, and M. Püschel. “Smart”
design space sampling to predict Pareto-optimal solutions. In
Proceedings of International Conference on Languages,
Compilers, Tools and Theory for Embedded Systems, 2012.

[19] M. Zuluaga, A. Krause, G. Sergent, and M. Püschel. Active
learning for multi-objective optimization. In International
Conference on Machine Learning, volume 28, 2013.

