
Efficient Hypervisor Based Malware Detection

Submitted in partial fulfillment of the requirements for

the degree of

Doctor of Philosophy

in
Electrical and Computer Engineering

Peter Friedrich Klemperer

B.S., Computer Engineering, University of Illinois at Urbana-Champaign
M.S., Electrical and Computer Engineering, University of Illinois at Urbana-Champaign

Carnegie Mellon University
Pittsburgh, PA

May 2015



Copyright c© 2014 Peter Friedrich Klemperer



i

Abstract

Recent years have seen an uptick in master boot record (MBR) based rootkits that load before the

Windows operating system and subvert the operating system’s own procedures. As such, MBR

rootkits are difficult to counter with operating system-based antivirus software that runs at the same

privilege-level as the rookits. Hypervisors operate at a higher privilege level than the guests they

manage, creating a high-ground position in the host. This high-ground position can be exploited to

perform security checks on the virtual machine guests where the checking software is isolated from

guest-based viruses. The efficient introspection system described in this thesis targets existing vir-

tualized systems to improve security with real-time, concurrent memory introspection capabilities.

Efficient introspection decouples memory introspection from virtual machine guest execution,

establishes coherent and consistent memory views between the host and running guest, while main-

taining normal guest operation. Existing introspection systems have provided one or two of these

properties but not all three at once.

This thesis presents a new concurrent-computing approach – high-performance memory snap-

shotting – to accelerating hypervisor based introspection of virtual machine guest memory that

combines all three elements to improve performance and security. Memory snapshots create a co-

herent and consistent memory view of the guest that can be shared with the independently running

introspection application. Three memory snapshotting mechanisms are presented and evaluated for

their impact on normal guest operation.

Existing introspection systems and security protection techniques that were previously dis-

missed as too slow are now be enabled by efficient introspection. This thesis explains why ex-

isting introspection systems are inadequate, describes how existing system performance can be im-

proved, evaluates an efficient introspection prototype on both applications and microbenchmarks,

and discusses two potential security applications that are enabled by efficient introspection. These

applications point to efficient introspection’s utility for supporting useful security applications.



Acknowledgments

My sincerest thanks to the members of my committee. Bryan D. Payne, Mahadev Satyanarayanan,

Greg Ganger, and especially my adviser James C. Hoe. Thank you for the conference calls, markups,

difficult questions, letters of reference, and countless feedback. James, thank you for your support

in completeing this task we undertook together. You stood by me while I found my way through

this process.

Thank you to the CUPS lab for taking me in and teaching me the ways of usability, especially

Professors Lorrie Cranor and Lujo Bauer. I look forward to applying that knowledge throughout my

career and for that I will be forever grateful.

Thank you to the members and staff of the Parallel Data Lab, but specifically to Joan Digney

and Karen Lindenfelser, who always work so hard to make it all happen. The retreat provided a

wonderful audience receptive to crazy new ideas and unparalleled networking opportunities.

I thank my fellow Hamerschlag Hall A-level labmates: Berkin Akin, Matthew Beckler (hon-

orary), Adam Hartman (honorary), Eric Chung, Aaron Kane, Yoongu Kim, Brett Meyer (honorary),

Peter Milder, John Porche (honarary), Eriko Nurvitadhi Marie Nguyen, Michael Papamichael, Mal-

colm Taylor, Yu Wang, Gabe Weisz, Guanglin Xu, and Milda Zizyte. The countless hours spent

discussing projects over coffee were invaluable. Also thanks to my labmates in the CUPS lab,

particulary Rebecca Hunt Balebako, Michelle Mazurek, Manya Sleeper, Rich Shay, Blase Ur, and

Kami Vaniea. You all were my second home at CMU. Patrick, Brett, and Peter demonstrated how

to be an excellent graduate student to me, even if I have not always lived up to their examples.

To my friends Casey Canfield and Michael Taylor, I will always remember our times together in

Pittsburgh fondly. To the members of the Gigahurtz softball and hockey teams, we did not always

win, but we definitely competed. To Brent Povis, Ryan Pocratsky, Jason Fox, and Shane Rice, thank

ii



iii

you for teaching me golf, the sport of Andrew Carnegie. All of you fine folks kept me relaxed and

sane in the midst of the stress and trials these past six years.

To my parents Walter and Diane Klemperer who have supported me in so many ways. Thank

you for the encouragement to undertake my Ph.D., for all the phone calls (please forgive me for all

the phone calls I did not make also), the visits, and the wonderful holidays. I know I can always

count on your love and support.

Finally, to my wonderful wife, Kristen, who began this journey with me and has given me so

much love and support to follow it though. We make a really great team.

The research described in this thesis was made possible by the National Science Foundation via

grant #DGE-0903659 and the Bertucci Graduate Fellowship.



Contents

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Memory Introspection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Achieving Efficient Introspection . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.4 Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.5 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Background 6

2.1 Hypervisor Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 Memory Translation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.2 KVM Hypervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Hypervisor Based Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 Hypervisor Based Introspection for Security . . . . . . . . . . . . . . . . . 9

2.2.2 Introspection Software: VMware VProbes . . . . . . . . . . . . . . . . . . 10

2.2.3 Introspection Software: LibVMI . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Detecting the Mebroot Rookit with Introspection . . . . . . . . . . . . . . . . . . 11

2.3.1 Mebroot Threats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.2 Mebroot Virus Family . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.3 Differential Mebroot Network Traffic Analysis . . . . . . . . . . . . . . . 13

2.4 Background Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Key Ingredients for Efficient Introspection 17

3.1 Memory Introspection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

iv



v CONTENTS

3.2 Developing Requirements for Efficient Introspection . . . . . . . . . . . . . . . . 18

3.2.1 Pausing is too slow so we need coherency . . . . . . . . . . . . . . . . . . 18

3.2.2 Parallelism without coherency is insufficient . . . . . . . . . . . . . . . . 19

3.2.3 Efficient Introspection: Parallelism with Coherency . . . . . . . . . . . . . 19

3.3 Requirements for Efficient Introspection . . . . . . . . . . . . . . . . . . . . . . . 20

3.3.1 Requirement 1: Native Memory Introspection Performance . . . . . . . . . 20

3.3.2 Requirement 2: Coherent Memory Views . . . . . . . . . . . . . . . . . . 20

3.3.3 Requirement 3: Normal Guest Performance . . . . . . . . . . . . . . . . . 21

3.4 Existing Introspection Platforms Inadequate . . . . . . . . . . . . . . . . . . . . . 21

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4 Implementing Efficient Introspection by Snapshotting 24

4.1 High Performance Snapshotting . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.1.1 Stop-and-Copy Snapshot . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.1.2 Delta-Copy Snapshot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.1.3 Pre-Copy Snapshot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.1.4 Snapshotting Mechanism Guidance . . . . . . . . . . . . . . . . . . . . . 29

4.2 KVM/QEMU Hypervisor Modifications . . . . . . . . . . . . . . . . . . . . . . . 29

4.2.1 KVM Host Linux Kernel Module . . . . . . . . . . . . . . . . . . . . . . 30

4.2.2 QEMU Modification Details . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.3 The LibVMI Project Modifications . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.3.1 LibVMI API Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.4 Example Minimal LibVMI Application . . . . . . . . . . . . . . . . . . . . . . . 35

5 Application Benchmark Evaluation 37

5.1 Benchmark Testing Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.2 Application Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.2.1 Kernel Build . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.2.2 ClamAV Antivirus Scan . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.2.3 Apache Web Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.2.4 Netperf Network Performance . . . . . . . . . . . . . . . . . . . . . . . . 44



CONTENTS vi

5.2.5 Weka Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.3 Application Benchmarking: Winners & Losers . . . . . . . . . . . . . . . . . . . 52

6 Microbenchmark Evaluation 53

6.1 Why Microbenchmarking? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.2 Microbenchmark Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.2.1 Application Runtime Microbenchmark . . . . . . . . . . . . . . . . . . . 55

6.2.2 Memory Load Microbenchmark . . . . . . . . . . . . . . . . . . . . . . . 56

6.3 Microbenchmark Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.3.1 Stop-Copy Snapshot Evaluation . . . . . . . . . . . . . . . . . . . . . . . 58

6.3.2 Delta-Copy Snapshot Evaluation . . . . . . . . . . . . . . . . . . . . . . . 69

6.3.3 Drifting Load Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.3.4 Pre-Copy Snapshot Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 83

6.4 Microbenchmark Evaluation: Key Results . . . . . . . . . . . . . . . . . . . . . . 92

6.4.1 Snapshot Frequency Most Significant Influence on Guest Performance . . . 92

6.4.2 Delta-Copy Snapshot Offers Superior Performance . . . . . . . . . . . . . 92

6.4.3 Unaccounted Snapshot Stop-Time . . . . . . . . . . . . . . . . . . . . . . 92

6.4.4 Dirty Page Tracking is Cheap . . . . . . . . . . . . . . . . . . . . . . . . 93

6.4.5 Introspection Impact on Guest . . . . . . . . . . . . . . . . . . . . . . . . 93

6.4.6 Stop-Copy Snapshotting Impacts Only Guest Runtime . . . . . . . . . . . 94

6.4.7 Dirty Page List Synchronization is Expensive . . . . . . . . . . . . . . . . 94

6.5 Efficient Introspection Performance Guidance . . . . . . . . . . . . . . . . . . . . 95

7 Potential Applications 97

7.1 Introspection Application Performance Goals . . . . . . . . . . . . . . . . . . . . 97

7.2 Potential Application: Antivirus Signature Memory Scan . . . . . . . . . . . . . . 98

7.2.1 Previous Antivirus Capability . . . . . . . . . . . . . . . . . . . . . . . . 98

7.2.2 Antivirus with Efficient Introspection . . . . . . . . . . . . . . . . . . . . 99

7.2.3 Performance Evaluation of Antivirus with Efficient Introspection . . . . . . 100

7.3 Potential Application: Network Integrity Manager . . . . . . . . . . . . . . . . . . 101

7.3.1 Previous Network Scanning Capability. . . . . . . . . . . . . . . . . . . . 101



vii CONTENTS

7.3.2 NetIM with Efficient Introspection . . . . . . . . . . . . . . . . . . . . . . 103

7.3.3 Performance Evaluation of NetIM with Efficient Introspection . . . . . . . 104

7.4 Application Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

8 Related Work 108

9 Conclusions 112

9.1 The Need for Efficient Snapshotting . . . . . . . . . . . . . . . . . . . . . . . . . 112

9.2 Summary of Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

9.3 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

9.4 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114



List of Tables

2.1 The available mebroot threats from the 2011 Symantec report with NetIM and

DiskIM results and observation notes. . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Network packet capture from both the uninfected host and Mebroot infected guest.

Bold IP addresses indicate traffic only captured by the host. Further analysis indi-

cated that the packets sent to the bolded IP addresses were DNS name resolution

related. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

6.1 Memory access pattern summary for the Kernel Build, ClamAV Antivirus Scan,

Apache Web Server, Netperf Network Performance, Bonnie++ Disk Performance,

and Weka Machine Learning Application Benchmarks. The approximate dirty page

working set size for each application is listed for the complete run of the Application

Benchmark and the dirty page working set size for the Application Benchmark when

it is sampled at 1 Hz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.2 Memory Bandwidth Microbenchmark performance with dirty page tracking enabled

and disabled for a range of configurations. . . . . . . . . . . . . . . . . . . . . . 93

6.3 Memory Bandwidth Microbenchmark (lmbench) performance with dirty page syn-

chronization performed with various frequencies. Only dirty page synchronization

was performed, no memory was copied. The highlighted figures indicate an ob-

served performance impact at 4 Hz for the 512 MB lmbench write and 2/4 Hz for

the 1024 MB lmbench write. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

viii



List of Figures

2.1 Depiction of two-level page mapping for two virtual machine guests, their pro-

cesses on the same host, and shadow page table mappings. Figure borrowed with

modification from VMware Performance Evaluation of Intel EPT Hardware As-

sist. http\protect\kern+.2222em\relax//www.vmware.com/pdf/

Perf_ESX_Intel-EPT-eval.pdf . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Network Integrity NDIS Block Diagram . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Offline packet capture traces of (2.3(a)) an infected virtual machine guest and (2.3(b))

an uninfected virtual machine guest. For each virtual machine guest, a view from

within the guest OS and from outside the guest OS, at the host, are presented. A

large number of extra packets can be observed in the infected host PCAP trace, that

are not observed in the infected guest PCAP trace or either of the uninfected traces. 14

3.1 High Performance Memory Introspection Requirements . . . . . . . . . . . . . . . 21

4.1 Shared Memory Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.2 Snapshot performance timelines for Stop-and-Copy 4.2(a), Delta-Copy 4.2(b), Pre-

Copy 4.2(c). Worse performance is indicated as darker red and no-impact is indi-

cated in green. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.3 VMI Tools operation block diagram showing Introspection VM, guest being intro-

spected upon, hypervisor, and hardware. Figure borrowed with modification from

VMI Tools website. http://code.google.com/p/vmitools/ . . . . . . 32

ix

http\protect \kern +.2222em\relax //www.vmware.com/pdf/Perf_ESX_Intel-EPT-eval.pdf
http\protect \kern +.2222em\relax //www.vmware.com/pdf/Perf_ESX_Intel-EPT-eval.pdf
http://code.google.com/p/vmitools/


LIST OF FIGURES x

5.1 Block diagram describing the application benchmark testing procedure. In Tests #1

and #2 introspection completes successfully before the next snapshot period begins.

Test #3 fails because introspection could not complete before the scheduled start of

the next snapshot period. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.2 Chart illustrating the Kernel Build Application Benchmark under (a) Stop-Copy and

(b) Delta-Copy snapshotting regimes. (Continued on next page.) . . . . . . . . . . 40

5.2 (Continued from previous page.) Chart illustrating the Kernel Build Application

Benchmark under (a) Stop-Copy and (b) Delta-Copy snapshotting regimes. . . . . 41

5.3 Chart illustrating the ClamAV Scan Application Benchmark under (a) Stop-Copy

and (b) Delta-Copy snapshotting regimes. (Continued on next page.) . . . . . . . 42

5.3 (Continued from previous page.) Chart illustrating the ClamAV Scan Application

Benchmark under (a) Stop-Copy and (b) Delta-Copy snapshotting regimes. . . . . 43

5.4 Chart illustrating the Apache Web Server Application Benchmark under (a) Stop-

Copy and (b) Delta-Copy snapshotting regimes. (Continued on next page.) . . . . 45

5.4 (Continued from previous page.) Chart illustrating the Apache Web Server Appli-

cation Benchmark under (a) Stop-Copy and (b) Delta-Copy snapshotting regimes.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.5 Chart illustrating the Netperf Network Performance Application Benchmark under

(a) Stop-Copy and (b) Delta-Copy snapshotting regimes. (Continued on next page.) 47

5.5 (Continued from previous page.) Chart illustrating the Netperf Network Perfor-

mance Application Benchmark under (a) Stop-Copy and (b) Delta-Copy snapshot-

ting regimes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.7 (Continued from previous page.) Chart illustrating the Weka Machine Learning Ap-

plication Benchmark under (a) Stop-Copy and (a) Delta-Copy snapshotting regimes. 51

6.1 Microbenchmark Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.2 Microbenchmark Parameter Rundown . . . . . . . . . . . . . . . . . . . . . . . . 57

6.3 Microbenchmark Parameter Rundown . . . . . . . . . . . . . . . . . . . . . . . . 59

6.4 Microbenchmark Stop-Copy No-Load Accounting . . . . . . . . . . . . . . . . . 60

6.5 Microbenchmark Stop-Copy No-Load Varying Frequency . . . . . . . . . . . . . . 61



xi LIST OF FIGURES

6.6 Microbenchmark Stop-Copy Guest-Load Varying WSS . . . . . . . . . . . . . . . 62

6.6 Microbenchmark Stop-Copy Guest-Load Varying WSS . . . . . . . . . . . . . . . 63

6.7 Microbenchmark Stop-Copy Guest-Load Varying WSS . . . . . . . . . . . . . . . 64

6.7 Microbenchmark Stop-Copy Guest-Load Varying WSS . . . . . . . . . . . . . . . 65

6.7 Microbenchmark Stop-Copy Guest-Load Varying WSS . . . . . . . . . . . . . . . 66

6.7 Microbenchmark Stop-Copy Guest-Load Varying WSS . . . . . . . . . . . . . . . 67

6.8 Microbenchmark Parameter Rundown . . . . . . . . . . . . . . . . . . . . . . . . 69

6.9 Microbenchmark Delta-Copy No-Load Accounting . . . . . . . . . . . . . . . . . 70

6.10 Microbenchmark Delta-Copy No-Load Varying Frequency . . . . . . . . . . . . . 71

6.11 Microbenchmark Delta-Copy Guest-Load Varying WSS . . . . . . . . . . . . . . 72

6.11 Microbenchmark Delta-Copy Guest-Load Varying WSS . . . . . . . . . . . . . . 73

6.12 Microbenchmark Delta-Copy Guest-Load Varying WSS . . . . . . . . . . . . . . 75

6.12 Microbenchmark Delta-Copy Guest-Load Varying WSS . . . . . . . . . . . . . . 76

6.12 Microbenchmark Delta-Copy Guest-Load Varying WSS . . . . . . . . . . . . . . 77

6.12 Microbenchmark Delta-Copy Guest-Load Varying WSS . . . . . . . . . . . . . . 78

6.13 Memory access pattern comparison and the effect of various write patterns on dirty

page creation. All three patterns write 1024 MB into the buffer but in different

ways: pattern (a) writes 1024 MB into a static 1024 MB window, pattern (b) writes

1024 MB into two overlapping 512 MB drifting windows, pattern (c) writes 1024

MB total into sixteen overlapping 64 MB drifting windows. Each of these patterns

results in different dirty page list sizes with corresponding effects on Delta-Copy

snapshot memory copy overhead. . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.14 Drifting Write Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.14 Drifting Write Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.15 Microbenchmark Pre-Copy Guest-Load Varying WSS . . . . . . . . . . . . . . . . 85

6.15 Microbenchmark Pre-Copy Guest-Load Varying WSS . . . . . . . . . . . . . . . . 86

6.16 Microbenchmark Pre-Copy Guest-Load Varying WSS . . . . . . . . . . . . . . . . 88

6.16 Microbenchmark Pre-Copy Guest-Load Varying WSS . . . . . . . . . . . . . . . . 89

6.16 Microbenchmark Pre-Copy Guest-Load Varying WSS . . . . . . . . . . . . . . . . 90

6.16 Microbenchmark Pre-Copy Guest-Load Varying WSS . . . . . . . . . . . . . . . . 91



LIST OF FIGURES xii

6.17 Impact of introspection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.18 Efficient introspection delta-copy snapshot performance heat map for all tests pre-

sented in this thesis. *Note: no tests were observed with snapshot period 128.0 and

less than 64 MB of dirty pages but performance in this regime will be 100%. . . . . 96

7.1 LibVMI benchmarks (kernel symbol translation, virtual address translation, read

memory chunks, and read memory byte-by-byte) comparing performance between

three interfaces: Xen Zero-Copy, KVM/QEMU One-Copy Socket, and KVM/QEMU

Serial Socket. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

7.2 Block diagram showing the host-based Antivirus software performing memory hash-

ing on the introspected guest. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

7.3 Efficient introspection microbenchmark performance heat map overlayed with An-

tivirus specific limitations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

7.4 Network Integrity Module Block Diagram . . . . . . . . . . . . . . . . . . . . . . 102

7.5 Block diagram showing the host-based NetIM software performing differential anal-

ysis comparing the outgoing packets passed by the guest firewall with the packets

observed leaving the guest. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

7.6 Chart illustrating the memory requirements to buffer outgoing network packets for

analysis by the NetIM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

7.7 efficient introspection performance heat map overlayed with NetIM specific limita-

tions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106





Chapter 1

Introduction

This thesis presents efficient introspection, a technique that supports the development of security

applications in virtualized environments. Memory introspection is the process of examining virtual

machine guest memory from the high-ground of the virtual machine host. The security application

executes in a seperate environment, isolated by virtualization from the potentially infected guest.

Previously existing memory introspection techniques provided some, but not all, of the follow-

ing three essential properties for efficient virtual machine introspection: coherent memory access,

native introspection performance, and normal guest operation. Efficient introspection combines all

three of these properties through high-performance memory snapshotting.

1.1 Motivation

In 2011 four new master boot record (MBR) based rootkits were released: TIDSERV.M, Fispboot,

Alworo, and SMITNYL. Each of these rootkits infects the master boot record so that they will be

loaded, with kernel privileges, before the Windows operating system (OS). Loading before the OS

allows the virus to hide itself by subverting the kernel’s own procedures. The TIDSERV.M-based

Auleron botnet also uses its kernel level privileges to steal login, password and credit card data

from the network traffic of infected systems. The threat posed by the Auleron botnet to banking

data is difficult to counter with OS-based antivirus software. OS-based antivirus runs with the same

privilege-level as the rootkits. The antivirus is vulnerable to tainting and spoofing by the rootkits,

rendering detection much more difficult. Virtual machine (VM) based antivirus protects OSes from

1



1.2. Memory Introspection 2

a high-ground position with a higher privilege than the viruses.

1.2 Memory Introspection

Memory introspection is a technique for hypervisor based security detection where the VM guest

is inspected (or introspected) by the hypervisor. Existing introspection implementations typically

mask memory access performance deficiencies with limited checking or long detection latencies.

Slow memory access performance limits an introspection application’s ability to check the entire

memory state of a VM guest. To counter memory access performance limits, introspection appli-

cation designers may try to seek out opportunities to investigate only smaller, more critical parts

of the guest state so that the overall impact of slow memory access is minimized. Other works

may periodically sample the guest memory, minimizing the memory access at any given sample,

but over time build up a statistical knowledge of the overall guest state. While these contributions

are certainly valuable, accelerating memory access capability directly enables new classes of in-

trospection applications that were previously dismissed as too slow or resource intensive. Newly

developed introspection applications will utilize the increased memory access support to provide

real-time security protections against VM resident malware.

Inefficient introspection mechanisms not only limit introspection applications, but they can ad-

versely effect guest performance. Guests that are taken off-line for checking or that have to compete

for resources with inefficient introspection platforms may display poor performance. End-users may

not tolerate poor performance and disable the introspection-based mitigation entirely, no matter the

threats posed by rootkits.

1.3 Achieving Efficient Introspection

Increasing introspection performance requires answering two important research questions. First,

how fast are the memory access performance requirements for a useful, real-time virtualization-

based detection tool? Native memory performance is certainly a reasonable baseline but invites the

second research question: can native speed be reached? How can the performance bottlenecks be

understood, explained, and removed? This thesis answers these questions.



3 Chapter 1. Introduction

This thesis presents a concurrent-computing approach to accelerating hypervisor introspection

of virtual machine guest memory. Existing virtual machine introspection tools are extended to pro-

vide parallelism by snapshotting guest memory. Snapshotting guest memory will allow the efficient

introspection system to:

• decouple memory introspection from virtual machine guest execution,

• establish coherent and consistent memory views between the host-based introspection appli-

cations and the running guest,

• provide intelligent memory translation for native speed access to introspected memory spaces.

Existing introspection systems have provided one or two of these properties but not all three at

once. This thesis will present a new real-time, concurrent-computing approach to accelerate hyper-

visor based introspection of virtual machine guest memory, which I call efficient introspection, that

combines all three elements to improve performance and security.

The resulting system will add efficient introspection memory access capability while maintain-

ing native guest performance. These efficiency increases will provide security system designers with

greater flexibility to maintain guest performance and interactivity while increasing security check-

ing capability. Efficiency is demonstrated through application and microbenchmark evaluation as

well as through several potential introspection application investigations. Application benchmarks

show that normal guest performance can be maintained under a variety of introspection scenarios.

Microbenchmarking provides a systematic exploration of the introspection scenarios and helps ex-

plain why the application benchmarks perform well. The potential application discussion compares

the efficient introspection to previously available introspection platforms and provides guidance for

introspection application developers who are concerned with performance.

Detection techniques that had been formerly dismissed as too slow have been reevaluated in the

context of efficient introspection and shown to be viable. This thesis explores two such techniques:

memory-signature antivirus detection and network packet differential analysis. Specific limitations

in introspection platforms had limited the utility of these application but they are now made possible

with efficient introspection. These new techniques enabled by high performance memory introspec-

tion will increase protection for securing critical computing applications.



1.4. Thesis Contributions 4

1.4 Thesis Contributions

The main contributions in this thesis are summarized as follows:

• Developing three requirements critical to the implementation of efficient introspection: co-

herent memory access, native memory introspection performance, and normal guest perfor-

mance.

• Open-Source release of the efficient introspection prototype as an element of the LibVMI [1]

introspection project.

• Evaluation of the performance impact of efficient introspection on application benchmarks

reveals normal guest operation.

• Systematic exploration of introspection scenarios through microbenchmarking explains the

behavior of the application benchmarks.

• Identification of key factors in efficient introspection application performance impact pro-

vide guidance for potential introspection application developers in the form of performance

estimation techniques.

• Examination of potential applications of efficient introspection: memory-signature antivirus

scanning and network packet differential analysis.

These steps towards defining and realizing efficient memory introspection leave several inter-

esting research directions unaddressed. These open issues are summarized in Section 9.4.

1.5 Thesis Organization

Outline The rest of this prospectus is arranged as follows: Chapter 2 presents background on hyper-

visors, malware, and hypervisor based malware detection; Chapter 3 expands the concept of efficient

introspection and how it will improve detection performance; Chapter 4 presents high-performance

snapshotting mechanisms and describes their extension to LibVMI introspection platform; Chap-

ter 5 discusses the evaluation of the efficient introspection prototype with application benchmarks;



5 Chapter 1. Introduction

Chapter 6 discusses the systematic microbenchmark evaluation of the efficient introspection proto-

type; Chapter 7 discusses potential security applications enabled by efficient introspection; Chap-

ter 8 is related work; and Chapter 9 concludes the dissertation.



Chapter 2

Background

In this chapter I will provide background on hypervisors, discuss some previously existing platforms

for guest memory introspection, and motivate the need for guest memory introspection through the

discussion of a specific rootkit security threat called Mebroot.

2.1 Hypervisor Background

A hypervisor is a type of computer software that manages computing resources to allow multiple

operating system instances, also known as guest virtual machines (VMs), to coexist on the same host

physical computer. This thesis targets situations with existing hypervisor installations, regardless of

whether those installations were chosen for reasons of consolidating hardware resources, expanding

OS availability, or security. In this section I will provide some background on the implementation

of hypervisors, mainly focusing on memory translation and isolation.

2.1.1 Memory Translation

Traditional memory translation supports multiple application running on the same computer by

mapping each process into a unique contiguous virtual address space that references the more lim-

ited pool of physical memory present in the system. Pages from the virtual memory address space

are translated into the physical memory address space in a manner specificied by the operating

system. With virtual memory translation, the operating system can allocate resources between pro-

cesses, prevent processes from interfering with one-another, and provide processes with predictable

6



7 Chapter 2. Background

Guest Virtual 
Pages 

Guest Physical 
Pages 

Host Physical 
Pages 

Process 1 Process 2 

Virtual Machine 1 

Process 1 Process 2 

Virtual Machine 2 

Shadow 
Page Table 

Entry 

Figure 2.1: Depiction of two-level page mapping for two virtual machine guests, their processes on
the same host, and shadow page table mappings. Figure borrowed with modification from VMware
Performance Evaluation of Intel EPT Hardware Assist. http\protect\kern+.2222em\
relax//www.vmware.com/pdf/Perf_ESX_Intel-EPT-eval.pdf

memory address spaces.

Hypervisors provide a similar service as the operating system, but at a higher level of abstrac-

tion. Whereas the operating system facilitates the sharing of resources between multiple processes,

the hypervisor facilitates the sharing of resources between multiple operating systems running on

so-called virtual machine guests.

Memory translation is a key function of a hypervisor, allowing multiple guest instances to co-

exist on the same physical computer. Virtualization adds another level of abstraction, the physical

memory of the host (host physical memory) is addressed into the virtual machine guest physical

memory (guest physical memory) address map which the guest uses to implement virtual memory

(guest virtual memory). Each guest will behave as if it has control of the entire memory space and

distribute that memory to it’s processes, but the hypervisor must actively isolate each guest from

one another so that the host resources can be shared between many guests.

Figure 2.1 illustrates several types of memory mapping. The normal virtual-to-physical memory

mapping is demonstrated within each virtual machine in green. Host-physical-to-guest-physical

http\protect \kern +.2222em\relax //www.vmware.com/pdf/Perf_ESX_Intel-EPT-eval.pdf
http\protect \kern +.2222em\relax //www.vmware.com/pdf/Perf_ESX_Intel-EPT-eval.pdf


2.1. Hypervisor Background 8

memory mapping is demonstrated between the host and the virtual machines in red.

Shadow Page Tables

Shadow page tables are a specific implementation of the host physical memory, guest physical

memory, and guest virtual memory address tranlsation hierarchy that can be implemented wihtout

virtualization-specific X86 extensions. The guest operating system cannot be given direct control

of the actual host physical memory to guest virtual memory address mapping. Instead, the host

records a ”shadow page table” containing the guests intended physical-to-virtual memory mapping,

as illustrated in Figure 2.1 with orange arrows. Whenever the guest attempts to modify it’s virtual

memory mappings, the hypervisor intercedes and the shadow page table is then used to remap the

host-physical-to-guest-virtual memory mappings as the guest operating system and it’s processes

require. In this way, the shadow page table is hidden from the guest but maintains proper memory

resource allocation ”from the shadows.”

X86 Virtualization

Just as the processor memory management unit (MMU) supports virtual memory translation for the

operating system, new X86 virtualization extensions to the MMU support memory translation for

the hypervisor. Intel VT-x and AMD-V are variations on the same theme: improving virtual machine

performance through hardware supported memory address translation. These X86 virtualization

replace the shadow page tables with a second level of address translation managed by the processor

MMU, as illustrated by the red arrows in Figure 2.1.

Rather than having to trap to the hypervisor every time a virtual memory remapping occurs in

the guest, the processor can use MMU and the second-level memory map to assure that the proper

host-physical to guest virtual memory mapping is created. Hypervisor traps to handle guest page

mappings had been a significant source of performance losses in virtualized systems before the

implementation of the X86 Memory Virtualization extensions. Further, the need for shadow page

tables has been eliminated, along with their corresponding memory storage overhead.

X86 Virtualization has not only improved memory access performance, but enabled several new

technologies within the hypervisor like SamePage Merging [2]. SamePage Merging creates the

capability to identify when identical host have been created on the host and merge them together



9 Chapter 2. Background

through virtual memory mapping within or between guests. De-duplication of identical memory

pages can lead to increased memory utilization efficiency.

2.1.2 KVM Hypervisor

The Kernel-based Virtual Machine (KVM) [3] is a leading open-source full virtualization platform

that was originally authored by Kivity, Kamary, Laor, Lublin, and Liguori. The KVM project is in

active development currently lead by Red Hat Software.

KVM requires a processor with X86 Virtualization capabilities. The KVM hypervisor is a

kernel-space module that attempts to handle as many guest events as possible using the native vir-

tualization capabilities of the CPU. Whenever the CPU cannot handle an event, the guest control is

passed into an userspace emulator, typically the QEMU X86 processor emulator. QEMU handles

events like initial set up of guest memory space, emulate I/O components like networking, and some

video operations.

KVM is a capable hypervisor platform that can handle operations like guest pause-and-resume,

guest migration between hosts, and automated guest storage management. Unlike the Commercial

offerings from VMware, the source-code of KVM is freely available making KVM an attractive

choice for research projects. Xen, another open-source virtualization platform, uses a custom mi-

crokernel for the host operating system, whereas KVM is hosted by a stock-linux kernel. The hosted

nature of KVM and re-use of existing Linux kernel development knowledge were significant factors

in the decision to develop the prototype presented this thesis as an extension to KVM.

2.2 Hypervisor Based Security

In this section I will first discuss some background on increasing security with hypervisor-based se-

curity and also how introspection performance limits can restrict security application development.

2.2.1 Hypervisor Based Introspection for Security

The memory protection of Hypervisors discussed in the previous section make them an attractive

position for implementing security monitoring. The hypervisor runs at a high privilege level and has

complete control of guest operation. The interface between a hypervisor and its guest is simpler and



2.2. Hypervisor Based Security 10

more slowly evolving than the interface between a program and an operating system and therefore

creates a smaller attack surface. This smaller attack surfaces reduces the threat that the virus will

escape the guest and directly subvert or disable the security monitoring system in the hypervisor.

Three common hypervisors were examined as a platform for this work: VMware ESX Server [4]

is a bare-metal hypervisor sold by VMware, Xen by Barham et al [5] is a bare-metal hypervisor that

runs the guests under its own custom host kernel, and KVM by Kivity et al. [3] is a hosted hypervisor

that runs guests as Linux programs. I have chosen to implement my prototype using KVM because

KVM is open-source, runs as a program within a standard Linux host so it can take advantage of

standard Linux OS support, and is supported by an open source introspection library known as

LibVMI [1].

2.2.2 Introspection Software: VMware VProbes

VMware VProbes is a debugging and introspection platform for the VMware hypervisor. VProbes

scripts can instrument a running guest and have no cost when disabled. The intrumentation can

provide many details about guest state such as memory contents, register state, and also insight into

certain guest events like page-faults, interrupts, network-accesses and disk-accesses.

VProbes scripts are call-backs that are triggered whenever certain guest events occur. When

the VMware hypervisor detects the event trigger, a handler calls the VProbes instrumentation, the

instrumentation carries out it’s task and saves it’s results to a logging mechanism, the normal hyper-

visor event handler begins, and the guest continues.

More complex applications like top can be built by aggregating the results of samples. For

example, the pid of the currently running guest process could be checked every time an interrupt is

detected. The process that is observed to be running most often over a certain period of time could

be inferred to be the top running process.

One primary goal of VProbes is to be safe, meaning not impacting a running guest performance.

To enforce that safety, VProbe callback handlers cannot contain loops and have very limited stack

size to prevent long running tasks. These callbacks execute in a short, finite period of time to avoid

affecting guest performance. Some introspection mechanisms which require longer-term processing

or more resources than are available to the VProbes intrumentation. In this case the introspection

mechanisms must run in a seperate process from the VProbes and receive the results of the VProbes



11 Chapter 2. Background

intrumentation through the VProbes logging mechanism. This process of passing guest state through

the VProbes logging mechanism limits the scope of introspection capability.

2.2.3 Introspection Software: LibVMI

After encountering the disappointing performance related restrictions imposed by VMware VProbes,

I sought out a more robust introspection platform. LibVMI is an expanded version of XenAccess,

which was originally written by Payne, Carbone, and Lee [6]. The APIs provided by LibVMI sup-

port interacting with the virtual machine guest (pause/resume), inspecting guest memory, inspecting

guest registers, and monitoring guest state. Various demonstrations are included with the software

such as reading process lists from the guest memory, mapping symbol tables, and translating guest

addresses. In addition, performance benchmarks are provided by LibVMI that measure various in-

trospection behaviors such as translating virtual addresses, translating kernel symbols, and various

memory access performance. These benchmarks will prove useful in demonstrating the efficiency

and utility of the efficient introspection prototype. LibVMI is compatible with the Xen and KVM

hypervisors. Since KVM is already supported by LibVMI, I can leverage the existing introspection

technology and demonstrate efficiency improvements. While I have chosen KVM as the platform

for this work, I do not foresee any limitations that would prevent applicability to other hypervisors

like Xen or VMware ESX.

2.3 Detecting the Mebroot Rookit with Introspection

Rootkits are a class of malicious software that exists to provide priviledged access to a computer

system while hiding that presence from detection by users or antivirus software. The Mebroot

rootkit modifies the Windows operating system to hide it’s presence on the disk and network traffic.

This section will describe the modifications that Mebroot makes to the Network subsystems of the

Windows operating system to hide itself from OS-based detection mechanisms and how the high-

ground position of the hypervisor can be leveraged to detect Mebroot through introspection.



2.3. Detecting the Mebroot Rookit with Introspection 12

N
DI
S	
  
In
te
rf
ac
e	
  

Protocol	
  
Driver	
  

Intermediate	
  
Driver	
  

Miniport	
  
Driver	
  

NIC	
  

OS	
  Firewall	
  
hooks	
  here	
  	
  

Mebroot	
  
hooks	
  here	
  

Windows	
  Network	
  Stack	
  

NIC	
  

Figure 2.2: This block diagram describes the NDIS Network Stack found in Microsoft Windows
operating system and where the network stack is hooked by the firewall and the mebroot virus.

2.3.1 Mebroot Threats

The Mebroot rootkit must send and receive network packets in order to receive control commands

from it’s operators and exfiltrate data found on the targets computer. Sending and receiving net-

work packets without divulging it’s presence to OS-based firewalls or packet monitoring software

is accomplised by modifiying the Windows network stack.

Figure 2.2 illustrates the Windows NDIS network stack. The NDIS stack is an application pro-

gramming interface designed to allow the development of hardware independent network drivers.

At the top of the stack are protocol drivers that implement protocols like TCP/IP but also allows

a convenient place for tools like firewalls and packet capture to examine the network traffic. Pro-

tocol drivers are also unique in the NDIS driver stack for their ability to communicate with user-

applications directly. At the bottom of the stack, right above the actual hardware specific network

interface card (NIC) drivers, are the miniport drivers. Miniport drivers control the packets accepted

by a specific NIC and can be associated with any number of protocol drivers.

Typical Windows Firewalls hook the TCP/IP protocol driver in order to control incoming and

outgoing traffic from various applications, as shown in Figure 2.2. User-applications are only able

to communicate directly with the protocol drivers so this is an effective place to control application

access to the network.

The GMER [7] rootkit detector team performed a reverse engineering analysis of the Mebroot

rootkit and demonstrated that Mebroot creates it’s own miniport driver in the NDIS network stack.

The Mebroot miniport driver allows the rootkit to access the network directly while remaining



13 Chapter 2. Background

hidden from the protocol level firewalls and packet capturing software.

2.3.2 Mebroot Virus Family

The Mebroot rootkit is part of a larger family of rootkits that are characterized by changing the mas-

ter boot record of the target computer systems hard disk to gain control of the computer at the same

privilege level as the operating system. A 2011 report by Hon Lau of Symantec Corporation [8]

details past and emerging threats targetting the MBR.

I have collected these threats in order to evaluate the effectiveness of the Network Integrity

Manager against a broader classes of threats than just the Mebroot rootkit. Table 2.1 lists a subset

of these threats that we were able to collect and evaluate, however, stone, mebratrix and bootlock

were excluded. The Stone rootkit was deemed irrelevant as it is more of a rootkit development

toolflow than a specific virus example. Samples of the Mebratrix virus have been obtained but

could not be activated; confirming past experience with VMWare incompatability documented by

Peter Kleissner [9]. The Bootlock virus was also excluded because it simply prevents boot of the

infected system until a password is obtained.

2.3.3 Differential Mebroot Network Traffic Analysis

The Mebroot virus illustrates that phantom packets appear on the network but not on the guest

operating system. Figure 2.3 illustrates this effect by showing four views of the packet traces over

a period of approximately one day: 1) the guest packet trace of an infected guest, 2) the host packet

trace of an infected guest, 3) the guest packet trace of an uninfected guest, and 4) the host packet

Threat NetIM Network Notes

No Infection 0 No traffic
Mebroot 180 Foreign DNS
TDSS4 0 Foreign DNS
Smitnyl 0 Foreign DNS
Fispboot 0 Foreign DNS
Alworo 0 Foreign DNS
Cidox 0 No traffic

Table 2.1: The available mebroot threats from the 2011 Symantec report with NetIM and DiskIM
results and observation notes.



2.3. Detecting the Mebroot Rookit with Introspection 14

Packets Size vs Time

 0

 128

 256

 384

 512

 0  2e+07  4e+07  6e+07  8e+07  1e+08  1.2e+08  1.4e+08

Pa
ck

et
 S

iz
e 

(B
)

Guest PCAP

'../logs/malware-mebroot-b6c7011eefaedd4560128a3c1394f655.exe.NetIM-sandbox-WinXPSP2.guest.dmp.dat' using 1:2

 0

 128

 256

 384

 512

 0  2e+07  4e+07  6e+07  8e+07  1e+08  1.2e+08  1.4e+08

Pa
ck

et
 S

iz
e 

(B
)

Host PCAP

'../logs/malware-mebroot-b6c7011eefaedd4560128a3c1394f655.exe.NetIM-sandbox-WinXPSP2.host.dmp.dat' using 1:2

(a) Mebroot Infected OS
Packets Size vs Time

 0

 128

 256

 384

 512

 0  1e+07  2e+07  3e+07  4e+07  5e+07  6e+07  7e+07  8e+07

Pa
ck

et
 S

iz
e 

(B
)

Guest PCAP

'../logs/noinfection.NetIM-sandbox-WinXPSP2.guest.dmp.dat' using 1:2

 0

 128

 256

 384

 512

 0  1e+07  2e+07  3e+07  4e+07  5e+07  6e+07  7e+07  8e+07

Pa
ck

et
 S

iz
e 

(B
)

Host PCAP

'../logs/noinfection.NetIM-sandbox-WinXPSP2.host.dmp.dat' using 1:2

(b) Uninfected OS

Figure 2.3: Offline packet capture traces of (2.3(a)) an infected virtual machine guest and (2.3(b))
an uninfected virtual machine guest. For each virtual machine guest, a view from within the guest
OS and from outside the guest OS, at the host, are presented. A large number of extra packets can
be observed in the infected host PCAP trace, that are not observed in the infected guest PCAP trace
or either of the uninfected traces.



15 Chapter 2. Background

trace of an uninfected guest. Each trace was the result of identical runs except for the infection of

the guest OS with the mebroot virus. All network traffic observed in the traces was the result of

the operating system as no applications were running at the time of the test except for the Network

Integrity Manager guest probe and the virus, in the case of the infected trace.

The infected system showed interesting behavior approximately one hour hour after installation

of the virus. The guest was observed to reboot itself and the suspicious behavior begins shortly

upon startup. Comparing the guest packet traces of the infected and uninfected guests shows no

significant differences. Two lines of traces at approximately 256 bytes and 350 bytes. These two

lines also appear in the host-based trace observations of the infected and uninfected traces. The

infected host-trace shows a third line of 50 byte packets that are not observed in the infected guest

trace or either of the uninfected traces. These extra packets are observed by the host but not reported

by the guest operating system, satisfying our condition for suspicious behavior.

Differential analysis comparing the network packets captured by the guest and host were com-

pared to reveal more information about malicious communications. Table 2.2 presents a summary

of both the host and guest communication with the target IP addresses and how many packets were

sent or received. IP addresses associated with malicious behavior, wherein packets were observed

by the host but not the guest, are highlighted in bold. Further analysis of the specific malicious IP

addresses showed that the connections were attempting to connect with malicious DNS servers that

had already been taken offline.

Host Guest
Address Total Tx Rx Total Tx Rx

192.168.165.129 396 156 240 106 82 24
8.5.1.33 272 208 64

192.168.165.255 58 0 58 58 0 58
192.168.165.254 48 24 24 48 24 24

98.124.193.1 6 3 3
98.124.196.1 6 2 4

74.125.113.147 4 2 2
192.35.51.30 2 1 1

Table 2.2: Network packet capture from both the uninfected host and Mebroot infected guest. Bold
IP addresses indicate traffic only captured by the host. Further analysis indicated that the packets
sent to the bolded IP addresses were DNS name resolution related.



2.4. Background Summary 16

Initial implementation involved maintaining a simple running count of host and guest events.

An error is flagged if the difference between the host event count and guest event count is non-zero

for longer than a certain time. This is troublesome for sustained events where there is a lag because

the difference does not go to zero even when no hidden events occur.

The level of detail to make a match at is also important. Currently, events are simply matched

on the basis of an event occurring. This has the advantage of being extremely cheap to compare

and extremely cheap to gather traces from the host and guest. The imprecision of matching limits

it’s usefulness in identifying hidden packets. Increasing the precision of matching requires in-

creased data collection. For the network, one could match, with increasing complexity, packet types

(TCP,UDP,etc...), packet source/destination/port, or full packet matches. These decisions must be

made carefully with regard to the impact of the performance on the data collection mechanisms in

the host and guest, the bandwidth required to transmit the collected information from the host to the

guest, and the overhead of performing the comparisons.

2.4 Background Summary

Hypervisor technology creates a high-ground position from which to observe the running VM

guests. Hypervisor-based security exploits these unique properties of the hypervisor to detect se-

cruity threats on the guest using the hypervisors position of privilege over the guest while isolated

from a potentially malicious guest software. Rootkits, like Mebroot, evade detection from oper-

ating system-based virus mitigations by running with OS-level privileges and then subverting the

OS-level mitigations. Hypervisor-based security restores privilege to the mitigation and creates ad-

vantage for rootkit detection. In the past poor performance has limited the application of security

introspection but this thesis explores how increased efficiency can be found.



Chapter 3

Key Ingredients for Efficient

Introspection

This chapter reintroduces memory introspection, develops three requirements for the realization

of efficient introspection, clearly defines the requirements of efficient introspection, and, finally,

compares existing platforms against the three requirements and finds them unsuitable.

3.1 Memory Introspection

Introspection is measuring virtual machine guest state from the hypervisor. Memory introspection

has been an active security topic for many years but inefficient implementations have limited its util-

ity for real-time applications. Work by Carbone et al. [10] has demonstrated large-scale kernel data

verification but at the cost of requiring long analysis time due to limited memory access bandwidth

and guest sequential access slowdown. Increasing the efficiency of memory introspection would

enable kernel data verification and other similar memory bandwidth intensive techniques.

A second example of a high-memory use security technique is traditional signature-based an-

tivirus. Signature-based antivirus involves calculating a checksum of each memory page on a com-

puter and then comparing those checksums, or signatures, against a list of the checksums of memory

pages containing known viruses. Signature-checking makes a better example for demonstrating the

utility of efficient memory introspection than kernel verification because signature checking scales

linearly with the size of the memory being checked whereas kernel verification depends on the state

17



3.2. Developing Requirements for Efficient Introspection 18

of the specific running kernel. Currently, signature-based antivirus checking can be implemented

from the hypervisor but performance inefficiencies require tradeoffs in guest performance impact

against the amount of time taken to completely scan memory: either, (1) scan memory quickly but

impact guest performance, or, (2) maintain guest performance but take a long time to scan. In the

next two sections I will discuss why neither of these outcomes are acceptable.

3.2 Developing Requirements for Efficient Introspection

The two motivating examples discussed in the previous section, show how inefficient introspection

systems of the past limited the scope of introspection application development. In this section I

will develop requirements for efficient introspection that will enable the developement of introspec-

tion applications that were previously dismissed for implementation with inefficient introspection

platforms.

3.2.1 Pausing is too slow so we need coherency

One simple method for efficiently implementing coherent memory introspection is to pause the

guest, quickly perform a check, then allow the guest to continue. If the check is performed quickly

enough then the performance penalty to the guest may be acceptable. As checks require more time

to complete or need to be performed more frequently, then the performance impact will increase,

possibly reaching unacceptable levels.

Small checks, like rebuilding a process list, will have a relatively small runtime and can be

performed with variable frequency. The Lycosid system by Jones et al. [11] provides an important

example. Lycosid reveals hidden processes using a statistical method to compare the reported pro-

cess list with a list of observed processor states. Increasing the frequency that the processor states

are observed has a cost in guest performance but increases the statistical likelihood that a hidden

process will be discovered.

As long as guest execution and checking are linked, larger checks like signature-checking the

entire memory space will require long pauses with unavoidable performance impact. Decoupling

guest execution from checking can be achieved by exploiting parallelism through multi-threaded

execution but will require careful implementation to maintain secure and predictable behavior.



19 Chapter 3. Key Ingredients for Efficient Introspection

3.2.2 Parallelism without coherency is insufficient

A simplistic method of decoupling guest execution from checking is to simply perform the checks as

needed on the running guest. This method allows long checks to be carried out over a longer period

of time with less impact on the guest running time but creates several problems. Primarily, reading

memory state from a running process can produce inconsistent and incoherent results. In the case

of validating kernel memory state, as in the work by Carbone et al. [10] discussed previously, if we

don’t guarantee memory state is unchanging while rebuilding a process list then we may get a broken

list if we were to scan the list as a process is being removed. Further, polymorphic viruses, like those

described by Ször and Ferrie [12], encrypt themselves using self-modifying code techniques to hide

from signature based antivirus mechanisms and only decrypt themselves while performing critical

(malicious) operations that might be missed if coherency were not maintained. Finally, precisely

timing the checks to coincide with system events becomes very difficult on a running system. For

these reasons, parallelizing guest execution and checking without regard for coherence will increase

performance but at the cost of increased checking complexity and probable security vulnerabilities;

parallelism without coherency is insufficient for improving memory introspection performance for

security applications.

3.2.3 Efficient Introspection: Parallelism with Coherency

This thesis decouples guest execution from checking in a coherent manner through an approach that

I call efficient introspection. In efficient introspection the introspection application programmer

specifies a moment in time for the check to begin and the underlying platform creates a lightweight

snapshot of the guest state at that moment for the introspection application to access. The guest

then continues operation in parallel with the introspection application. Upon completion of the

check, the snapshot is no longer required so it is destroyed. The scope of the snapshot can also be

specified by the introspection application programmer according to each application’s needs. As

shown later in this chapter, existing hypervisor introspection technology is insufficient to support

efficient introspection.



3.3. Requirements for Efficient Introspection 20

3.3 Requirements for Efficient Introspection

Three requirements were developed for efficient introspection: first, native memory performance

for introspection; second, coherent memory views for introspection. and, third, normal guest per-

formance. This section will further define these requirements.

3.3.1 Requirement 1: Native Memory Introspection Performance

Native memory performance is defined as the capability to introspect guest memory with the same

performance as the host can introspect it’s own memory. Evaluating whether native memory perfor-

mance is achieved in a specific introspection implementation is relatively straight-forward. Mem-

ory performance microbenchmarks, like lmbench [13], will be discussed later in the thesis and can

provide access performance for the host that can be compared with the performance of the guest

introspection interface.

Slow memory introspection interfaces or memory translation bottlenecks will limit the scope of

introspection applications possible with the platform. Large tasks like kernel data structure verifi-

cation that require traversing large swaths of memory would take long periods of time with slow

memory introspection interfaces. Native memory performance ensures that the broadest possible

classes of introspection applications can be supported by efficient introspection.

3.3.2 Requirement 2: Coherent Memory Views

In this thesis coherence is defined as the guest-view of the virtual machine state matching the host-

view of the virtual machine state at the same moment in time. Requirement 2 — coherent memory

views — specifically refers to the guest memory view matching the introspected memory state at a

single moment in time.

As discussed earlier, if the introspection mechanism is looking at old or stale guest state, crit-

ical detection information could be lost. In the absence of coherent memory views, introspection

applications would have to maintain coherence themselves or else suffer without it. Implementing

a coherence mechanism is a high-bar for introspection application developers and is more appropri-

ately implemented in the hypervisor. Building coherent memory views into efficient introspection

reduces the overhead on introspection application developers and the possibility for errors.



21 Chapter 3. Key Ingredients for Efficient Introspection

Normal Guest 
Performance 

Coherent 
Memory 
Views 

Native 
Memory 

Performance Pa
us

e-
an

d-
 

Re
su

m
e 

High Performance  
Memory Introspection 

1.  Decouple execution 
2.  Shared memory 
3.  Coherent snapshots 

Figure 3.1: Three capabilities are required to support efficient introspection: normal guest perfor-
mance, memory introspection at native access speeds, and coherent views of the guest memory from
the host. Existing introspection platforms like xen-foreign-access, VMware VProbes, and Pause-
and-Resume LibVMI, only support two requirements of the three. Only efficient introspection
supports all three requirements.

3.3.3 Requirement 3: Normal Guest Performance

Normal guest performance must be defined on a per-case basis, but generally means that, to an

external observed, the guest behaves the same with efficient introspection as without. Performance

can be measured using whatever metrics are relevant for that specific application or situation. A web

server might be measured in terms of http connections supported per minute. A machine learning

application might be measured in terms of runtime. The key element here is that end-users will not

reject the efficient introspection platform entirely for having an adverse impact on the task that they

actually want to complete.

3.4 Existing Introspection Platforms Inadequate

The introspection mechanisms provided by the current major virtualization platforms – VMware

VProbes and the LibVMI interfaces to Xen and KVM – are insufficient for the requirements of

efficient efficient introspection.

• VMware VProbes is an introspection mechanism supported by VMware Workstation and

ESX. VProbes offers low-overhead introspection primarily targeted at counting system events.



3.4. Existing Introspection Platforms Inadequate 22

Even page-scale memory introspection capabilities are not offered, which limits VMware

VProbes utility for larger memory introspection techniques like signature checking. Coher-

ence is maintained but VMware controls the run length of a given probe to prevent perfor-

mance degradation which limits VProbes’ utility as a general purpose tool.

• Xen offers native performance zero-copy memory sharing through it’s XenControl API. While

memory access is very fast, pausing the VM is the only way to ensure consistent and coherent

introspection. As discussed earlier, pausing the guest incurs significant overhead under many

useful introspection applications.

• KVM exposes guest memory through either a virtual serial interface or full memory dumps to

disk. A set of experimental patches have been produced by the authors of LibVMI to expose

page level access, but the memory is copied out page-by-page, limiting performance [14].

An efficient implementation of efficient introspection will require fast zero-copy memory sharing

like that found in Xen combined with a memory management scheme to ensure consistent and

coherent memory views. Figure 3.1 illustrates the three requirements for efficient introspection,

the limitations of existing platforms in meeting those requirements, and how efficient introspection

satisfies all three.

Increased introspection performance over previous techniques will be accomplished in two

ways: first, through decoupling guest execution from the introspection execution and, second,

through creating high-performance, coherent memory sharing. Current memory sharing approaches

are insufficient for implementing efficient efficient introspection. In order to move forward and in-

crease efficiency, new mechanisms will have to be developed which combine the fast zero-copy

sharing approach offered by XenControl with smart memory management to ensure efficient intro-

spection through an efficient snapshotting mechanism. Looking at other common techniques–like

migration of a VM between hosts over a network–will inform the development of new snapshotting

mechanisms.



23 Chapter 3. Key Ingredients for Efficient Introspection

3.5 Summary

This section develops and then clearly defines three requirements for efficient introspection: native

memory performance, coherent memory views, and normal guest performance. These three require-

ments were not met by existing introspection platforms from VMware and the LibVMI project. The

next chapter will introduce high-performance snapshotting as the key detail for satisfying all three

requirements of Efficient Introspection.



Chapter 4

Implementing Efficient Introspection by

Snapshotting

The previous chapter developed three requirements for efficient introspection and put forward high

performance memory snapshotting as a practical solution that satisfies all three requirements.

This chapter presents three specific memory snapshotting mechanisms, provides guidance ap-

plying the snapshotting mechanisms to different computing scenarios, presents the specific imple-

mentation details of the efficient introspection high-performance snapshotting in the KVM hypervi-

sor, and describes integration of the snapshotting with the LibVMI introspection platform.

4.1 High Performance Snapshotting

The efficient introspection prototype supports the creation and management of memory snapshots

that are made available to introspection applications through a shared memory interface. The actual

implementation of the prototype consists of modifications to the KVM virtualization platform and

the LibVMI introspection platform. The block diagram in Figure 4.1 illustrates how the shared

memory interface promotes efficient introspection between the Introspection Application and the

VM Guest. In this section I will discuss the details of these modifications.

Snapshotting guest memory is key to providing coherent memory views to introspection appli-

cations. In order to assure that the snapshot faithfully represents the state of the guest memory at

a single point in time, the guest is paused at that point in time, the guest memory is copied into

24



25 Chapter 4. Implementing Efficient Introspection by Snapshotting

LibVMI 

LibVMI KVM 
Interface 

Introspection 
Application 

Guest 

VProbes 

Host (KVM Hypervisor) 

VM 

Windows XP 

Rootkit 

Shared 
Snapshot 

Figure 4.1: This block diagram illustrates how the shared snapshot interface is provides the Intro-
spection Application with a view into the memory of the VM Guest.

the snapshot using KVM built-in memory access mechanisms, and then the guest is restarted. Dur-

ing the time where the guest is snapshotting (pausing, copying, and restarting) the guest cannot

make forward progress. In order to minimize snapshot overhead and meet the first criteria for ef-

ficient introspection, normal guest operation, several mechanisms were developed for snapshotting

memory. The snapshotting mechanisms have been named stop-and-copy, delta-copy, and pre-copy.

Figure 4.2 shows the performance impact of various snapshot implementation mechanisms, which

are discussed below.

4.1.1 Stop-and-Copy Snapshot

The Stop-and-Copy snapshot is the simplest of the three mechanisms. In Stop-and-Copy, the guest

is simply stopped (paused), the guest memory is copied out page-by-page into the snapshot, and then

the guest is restarted. The snapshot memory must be the same size as the guest memory. Standard

POSIX SHM shared memory objects manage shared access to the snapshot memory for both the

hypervisor and introspection application processes. The hypervisor must have write access to the

snapshot memory but the introspection application is only provided read access. The relative sim-

plicity of the Stop-and-Copy snapshotting mechanism lead its choice for the initial implementation

of high-performance snapshotting.

Stop-and-Copy snapshotting has several benefits and drawbacks. Snapshot stop-time is inde-

pendent of guest load since every byte of guest memory must be copied for every snapshot. This



4.1. High Performance Snapshotting 26

Snapshot Performance Impact Timeline 

Snapshot (Stop-and-Copy) 

Pre-Snapshot Stop Post-Snapshot 

(a) Stop-and-Copy Snapshot Performance Impact Timeline

Snapshot Performance Impact Timeline 

Snapshot (Delta-Copy) 

Pre-Snapshot Stop Post-Snapshot 

(b) Delta-Copy Snapshot Performance Impact Timeline

Snapshot Performance Impact Timeline 

Snapshot (Pre-Copy) 

Pre-Snapshot Stop Post-Snapshot 

(c) Pre-Copy Snapshot Performance Impact Timeline

Figure 4.2: Snapshot performance timelines for Stop-and-Copy 4.2(a), Delta-Copy 4.2(b), Pre-
Copy 4.2(c). Worse performance is indicated as darker red and no-impact is indicated in green.

property is particularly important in security contexts where malicious guests might attempt to in-

fluence security mechanism behavior. Another advantage of the Stop-and-Copy snapshotting mech-

anism is that it has no active mechanisms during the run-time of the guest. As a result, unlike other

mechanisms, Stop-and-Copy snapshotting will not influence guest performance when not actively

snapshotting. Simplicity of implementation is a major advantage for Stop-and-Copy snapshotting.

The significant drawback is that stop-and-copy is very slow as each byte of guest memory must be

copied to complete each snapshot. Figure 4.2(a) illustrates the performance impact of stop-and-copy

snapshotting and highlights how stop-and-copy only impacts guest performance during a snapshot.

4.1.2 Delta-Copy Snapshot

The delta-copy mechanism tracks write to memory in the guest and only copies pages that have

changed since the previous snapshot. The implementation of delta-copy snapshotting in the KVM

prototype leverages the existing dirty-page tracking mechanisms built into KVM for other virtual

machine management functionality. The guest-snapshot is performed as a stop-and-copy snapshot



27 Chapter 4. Implementing Efficient Introspection by Snapshotting

except that before the the guest is restarted, all the guest memory page state is marked as “clean.”

After the guest has restarted, as the guest writes to memory, the KVM dirty-page tracking mecha-

nism maintains a list of those written “dirty” pages. When the next, and all subsequent, snapshots

are taken, only the “dirty” pages will have changed from the previous snapshot, so only those pages

will have to be copied into the snapshot and then the list of dirty pages is cleared. The snapshot

memory must be the same size as the guest memory. Standard POSIX SHM shared memory objects

manage shared access to the snapshot memory for both the hypervisor and introspection application

processes. The hypervisor must have write access to the snapshot memory but the introspection

application is only provided read access. Figure 4.2(b) illustrates the performance impact of delta-

copy snapshotting and highlights how delta-copy impacts guest performance during a snapshot and

only minimally impacts the guest before the snapshot.

The delta-copy snapshotting mechanism has several advantages and disadvantages. A major

benefit of delta-copy snapshotting is that snapshotting stop times are reduced significantly for guest-

loads that do not write many guest pages. Only newly written pages are copied into the snapshot,

saving the cost of overwriting pages that had not changed and were already stored in the snapshot.

This benefit is multiplied when snapshot frequencies increase because the guest has less time to

write pages between snapshots. As we will see in the Application Benchmarking chapter, many

interesting guest loads write a relatively small subset of the available memory, or write to memory

infrequently, allowing significant performance increases over stop-copy to be realized. Delta-copy

snapshotting has several drawbacks. Foremost, especially for security applications, is that the snap-

shotting time is dependent on the specific guest load memory writing pattern. A malicious guest

could attempt to overload the snapshotting mechanism by creating artificially large dirty page sets.

A malicious guest application could accomplish this by writing one byte to each page in a large

memory allocation. Fortunately, the copying overhead is capped at the size of the guest snapshot,

essentially the same overhead as stop-and-copy. A second drawback is that the dirty page tracking

mechanism must be enabled during guest operation, potentially creating interactions and side effects

on guest behavior. In the case of the KVM specific implementation, efficient dirty-page tracking

is an established mechanism already present in the hypervisor, so the impact is barely measurable.

Other implementations of delta-copy snapshotting in other hypervisors will have to evaluate the

performance overhead of dirty page tracking on the guest performance, but dirty-page tracking is



4.1. High Performance Snapshotting 28

very common in all hypervisors as it is used to support page table management and guest migration.

4.1.3 Pre-Copy Snapshot

The pre-copy mechanism starts with the delta-copy mechanism but adds a provision for eagerly

pre-copying pages into the snapshot ahead of snapshot stop time, thereby reducing the number of

pages copied during the snapshot stop time. Just as with delta-copy, after the guest memory has

been copied into the snapshot the guest dirty page list is cleared before restarting the guest. The

introspection application can then use snapshot, but unlike the previous two mechanisms, the in-

trospection application can release the snapshot back to the hypervisor. After the introspection

application has released the snapshot it should not read from the snapshot as the snapshot memory

state is undefined. After the hypervisor receives word that the introspection application has released

the snapshot, the hypervisor can spawn a Pre-Copy thread, that periodically scans the dirty page

list, marks the page as clean, and then pre-copies the dirty memory page from the guest into the

snapshot. In this way infrequently written pages can be written into the snapshot while the guest

is still running, reducing the number of dirty pages that have to be copied during the snapshot, and

reducing snapshot stop time. Figure 4.2(c) illustrates the performance impact of pre-copy snap-

shotting and highlights how pre-copy impacts guest performance during a snapshot and but may

substantially impact the guest before the snapshot while the pre-copy mechanism competes with the

guest for bandwidth.

The Pre-Copy snapshotting mechanism has several advantages and disadvantages but they are

less clear-cut and will have to be evaluated on a case-by-case basis. The major benefit of pre-

copy is that dirty pages that have been successfully pre-copied before the snapshot will not have

to be copied during snapshot stop time, reducing snapshot stop time and improving guest load

performance. The drawbacks of pre-copy snapshotting is that the pre-copy mechanism competes

with the guest for memory access. Each pre-copied page reduces bandwidth available for the guest.

Introspection applications must release the snapshot back to the pre-copy mechanism, potentailly

reducing time available for completeing introspection. The process of synchronizing the dirty page

list can be expensive, specifically KVM’s implementation of the dirty-page tracking, which is not a

problem when done once at snapshot time, like in delta-copy snapshotting, but can adversly impact

normal guest performance if done repeatedly by the pre-copy thread. Finally, the advantages of



29 Chapter 4. Implementing Efficient Introspection by Snapshotting

pre-copy, shorter snapshot stop times, are ameliorated by increasing the time between snapshots.

The pre-copy mechanisms require time between snapshots to perform their task, so while longer

time available for pre-copying pages yields shorter snapshot stop times, those longer times between

snapshots prevent the performance gains from being realized. Tuning the time between snapshots

and the rate of pre-copy to the needs of each introspection scenario may be tricky.

4.1.4 Snapshotting Mechanism Guidance

Each of the snapshotting mechanisms – stop-and-copy, delta-copy, pre-copy – will affect guest

performance in different ways. Particularly interesting are delta-copy and pre-copy mechanisms

performance impacts that are dependent upon the guest load.

Stop-and-copy snapshotting performs well in scenarios that combine a large working set and

large memory bandwidth requirements where delta-copy or especially pre-copy bookkeeping over-

heads would reduce performance but not reduce stop-time overheads.

Delta-copy snapshotting performs well in scenarios combine small working sets that can be

quickly copies with frequent memory use that reduces the effectiveness of the pre-copy mechanism

to further reduce the working set.

Pre-copy snapshotting combines large working sets with infrequent uses. Typically large work-

ing sets are not optimal for delta-copy mechanisms but infrequent use makes pre-copy effective.

Further, the time between snapshots must be significantly long to allow for the introspection appli-

cation to release the snapshot and then for the pre-copy mechanism has eagerly copy a significant

number of dirty pages. Further, the introspection application must be amenable to releasing the

snapshot. These requirements conspire to reduce the benefit of pre-copy through amortization of

more expensive snapshotting mechanisms over time with infrequent snapshotting.

4.2 KVM/QEMU Hypervisor Modifications

The KVM/QEMU hypervisor that was modified to implement the each of the three snapshotting

mechanisms outlined in the previous section as well as share the snapshots over a POSIX shared

memory interface. Both parts of the KVM/QEMU hypervisor, a kernel module known as KVM and

user-space emulator known as QEMU, were used to implement the efficient introspection prototype.



4.2. KVM/QEMU Hypervisor Modifications 30

4.2.1 KVM Host Linux Kernel Module

KVM is the open-source, host-based full virtualization solution was modified to support efficient

introspection. Currently, the KVM kernel module provides support to the hypervisor for live guest

migration between hosts over a network. The live migration facilities rely on dirty-page marking

features provided by the kernel module to manage memory coherency between the source and target

hosts. These page marking facilities form the basis of the efficient introspection delta-copy and pre-

copy snapshotting mechanisms.

4.2.2 QEMU Modification Details

QEMU is a generic and open source machine emulator and virtualizer [15]. The KVM Linux ker-

nel module requires QEMU to provide userspace virtualization support. Extensions to the QEMU

Monitor Protocol (QMP) will support snapshotting operations between the introspection library and

the hypervisor are listed in Listing 4.1 and described below.

KVM Snapshot Create

The snapshot-create command causes the hypervisor to initiate a snapshot of specified size.

Two versions of this function were written, one that implements the stop-and-copy snapshot mech-

anism and a second version that implements delta-copy and pre-copy.

KVM Snapshot Destroy

The snapshot-destroy command allows the introspection application to release control of the

shared memroy snapshot for the purposes of freeing the shared memory snapshot. Ordinarily, this

function is only invoked at the completion of the introspection appplication.

KVM Snapshot Release

The snapshot-release command allows the introspection application to release control of

shared memory snapshot back to the hypervisor for the purpose of initiating pre-copy. The hy-

pervisor can then spawn the memory pre-copy thread that will copy pages into the snapshot at the

appropriate rate. The introspection application must release the snapshot before each snapshot for



31 Chapter 4. Implementing Efficient Introspection by Snapshotting

Listing 4.1: KVM QMP Command Extensions for efficient introspection
1 ##
2 # @snapshot−create
3 #
4 # Create a memory snapshot with POSIX shared memory.
5 #
6 # @filename: store at /dev/shm/filename
7 #
8 # Returns: json−int the size of the memory snapshot in bytes.
9 #

10 # Since: 1.6
11 ##
12 {’command’: ’snapshot−create’, ’data’: { ’filename’: ’str’ },
13 ’returns’: ’int’ }
14

15 ##
16 # @snapshot−destroy
17 #
18 # Destroy the memory snapshot with POSIX shared memory.
19 #
20 # @filename: Destroy snapshot stored at /dev/shm/filename
21 #
22 # Returns: none.
23 #
24 # Since: 1.6
25 ##
26 {’command’: ’snapshot−destroy’, ’data’: { ’filename’: ’str’ } }
27

28 ##
29 # @snapshot−release
30 #
31 # Release the memory snapshot (does not destroy the snapshot)
32 # Note:
33 # Releasing the snapshot allows the pre−copy mechanism to
34 # update the POSIX shared memory in an attempt to reduce
35 # snapshot stop time. The POSIX shared memory will be
36 # in an undefined state until the snapshot−create command
37 # is run again.
38 #
39 # Parameters: none
40 #
41 # Returns: none
42 #
43 # Since: 1.6
44 ##
45 {’command’: ’snapshot−release’ }



4.3. The LibVMI Project Modifications 32

Hardware	
  

Hypervisor	
  

Opera/ng	
  System	
  	
  
and	
  User	
  

Applica/ons	
  

Introspec/ng	
  VM	
  	
  
(or	
  Hypervisor)	
  

Virtual	
  Machine	
  
Guest	
  

VMI	
  Tools	
  

Introspec/on	
  
Applica/ons	
  

Figure 4.3: VMI Tools operation block diagram showing Introspection VM, guest being intro-
spected upon, hypervisor, and hardware. Figure borrowed with modification from VMI Tools web-
site. http://code.google.com/p/vmitools/

it to gain the benefit of the pre-copy snapshot mechanism. If the snapshot is not released, then a

normal delta-copy snapshot is performed.

Other KVM Commands

Several more utility QMP commands were added. The Pre-Copy-Xfer-Limit command sets

the maximum pre-copy transfer rate or allow it to be unlimited. The Dirty-Page-Count com-

mand returns the current dirty page count without snapshotting the guest and was used for testing

purposes.

4.3 The LibVMI Project Modifications

As discussed earlier in Section 2.2.1, LibVMI is a set of tools that enable virtual machine introspec-

tion that have been developed by Bryan D. Payne. It should be noted however that LibVMI was not

used to implement the testing frameworks used in the evaluation chapters of this thesis because I

wanted to isolate the effects of the snapshotting mechanism from those of the LibVMI Library or

the introspection applications.

LibVMI is implemented as a set of tools, operating in the hypervisor or introspection virtual

machine guest, that interacts with the hypervisor to monitor the guest being introspected upon; as

http://code.google.com/p/vmitools/


33 Chapter 4. Implementing Efficient Introspection by Snapshotting

shown in the block diagram in Figure 4.3. The LibVMI introspection library is designed to use

a pause/resume coherency model but can be modified to suit more efficient efficient introspection

implementations. In fact, in efficient introspection supported platforms, the LibVMI pause and

resume functions built into existing introspection applications can be remapped to create a snapshot

(pause) and destroy the snapshot (resume) with minimal introspection application modification.

LibVMI is a modular introspection system supporting multiple virtualization platforms like KVM

and Xen.

The modifications required for LibVMI to support efficient introspection have been made as an

additional module alongside the KVM and Xen platforms. I would like to recognize the contribution

of summer intern Guanglin Xu performed the hard work of implementing my proposed API changes

and releasing them to the open-source community.

4.3.1 LibVMI API Changes

The LibVMI modifications support managing snapshots, but also efficient memory access and guest

address translation. The LibVMI API modifications required for efficient introspection are in List-

ing 4.2. and are summarized below.

LibVMI Initialize

The vmi init function had to be modified accept a flag indicating that a shared-memory KVM

snapshot module should be used instead of the previously existing Xen and KVM modules. A

snapshot is taken at initialization to confirm the type of guest and perform other housekeeping tasks

that require identification of the guest.

LibVMI SHM Snapshot

The vmi shm snapshot create function sends a QMP snapshot-create command to the

hypervisor, opens the newly created snapshot, and prepares LibVMI to serve requests for pointers

into the guest snapshot before returning control to the introspected application.



4.3. The LibVMI Project Modifications 34

Listing 4.2: LibVMI Project API Extensions for efficient introspection.
1

2 // vmi init creates a new vmi instance
3 // added new flag VMI INIT SHM SNAPSHOT
4 // to indicate that a snapshot should be taken.
5 status t vmi init(
6 vmi instance t &vmi,
7 uint32 t flags,
8 char ∗name);
9

10 // vmi shm snapshot create snapshots the
11 // virtual machine under introspection.
12 status t vmi shm snapshot create(vmi instance t vmi);
13

14 // vmi shm snapshot destroy destroys the
15 // snapshot of the virtual machine under
16 // introspection.
17 status t vmi shm snapshot destroy(vmi instance t vmi);
18

19 // vmi get dgpma returns a pointer to a buffer
20 // containing the snapshot of the physical memory
21 // for the virtual machine under introspection
22 // of count bytes at the specified address.
23 size t vmi get dgpma(
24 vmi instance t vmi,
25 addr t physical address,
26 void ∗∗buf ptr,
27 size t count);
28

29 // vmi get dgpma returns a pointer to a buffer
30 // containing the snapshot of the virtual memory
31 // for the virtual machine under introspection
32 // of count bytes at the speicifed address
33 // in pid process.
34 size t vmi get dgvma(
35 vmi instance t vmi,
36 addr t virtual address,
37 pid t pid,
38 void ∗∗buf ptr,
39 size t count);
40

41 // vmi shm snapshot release releases the snapshot
42 // of the virtual machine under introspection.
43 // The snapshot contents is undefined until
44 // until vmi shm snapshot create is called again.
45 status t vmi shm snapshot release(vmi instance t vmi);



35 Chapter 4. Implementing Efficient Introspection by Snapshotting

LibVMI SHM Destroy Snapshot

The vmi shm snapshot destroy function closes the shared memory snapshot and sends a

QMP snapshot-destroy command to the hypervisor. This function is typically only called at

the completion of an introspection application.

LibVMI Get Physical Address

The vmi get dgpma function returns a pointer to a buffer containing the guest physical memory

of the guest at the specified address. This function is not available without snapshotting support.

LibVMI Get Virtual Address

The vmi get dgpma function returns a pointer to a buffer containing the guest virtual memory of

the guest for the specified address and process. This function is not available without snapshotting

support.

LibVMI SHM Release Snapshot

The vmi shm snapshot release function sends a QMP snapshot-release command to

the hypervisor, allowing the pre-copy snapshot mechanism to precopy memory until

vmi shm snapshot create is called again.

4.4 Example Minimal LibVMI Application

Now that I have outlined the proposed prototype, I would like to describe a simple introspection

program that utilizes efficient introspection.

The code example in Listing 4.3 demonstrates how introspection snapshots the guest, finds the

address of the main system process, reads the memory of the main system process, and destroys the

snapshot. This simple example illustrates the basic features of introspection. Efficient introspection

enabled the application to use a more efficient memcpy function to directly copy the memory using

the pointer into guest memory. Previously, without efficient introspection, guest memory was read

iteratively through port style read functions.



4.4. Example Minimal LibVMI Application 36

Listing 4.3: VMI Tools program example source code with modifications for improving introspec-
tion performance with efficient introspection.

1 #include ”libvmi/libvmi.h”
2 #include ”common.h”
3

4 int main() {
5 vmi instance t vmi;
6 addr t start address;
7

8 int buf size = 256;
9 unsigned char ∗buf = malloc(buf size);

10

11 /∗ initialize the xen access library ∗/
12 vmi init(&vmi, VMI AUTO | VMI INIT COMPLETE, ”GuestVMName”);
13

14 /∗ snapshot replaces pause call (vmi pause vm) ∗/
15 guest snapshot ptr = vmi snapshot create(vmi);
16

17 /∗ find address to work from ∗/
18 /∗ get virtual address from kernel symbol table for symbol PsInitialSystemProcess ∗/
19 start address = vmi translate ksym2v(vmi, ”PsInitialSystemProcess”);
20 /∗ translate virtual address to physical address for introspection ∗/
21 start address = vmi translate kv2p(vmi, start address);
22 /∗ address translations are cached to improve performance ∗/
23

24 /∗ read location of PSInitialSystemProcess physical address in guest memory ∗/
25 /∗ previously vmi read pa functions were required but now kernel driver
26 enables direct shared memory access ∗/
27 memcpy( guest snapshot ptr[start,address], buf, len(buf) );
28

29 /∗ throw away snapshot instead of resume (vmi resume vm) ∗/
30 vmi snapshot destroy( guest snapshot ptr );
31 vmi destroy(vmi);
32 return 0;
33 }



Chapter 5

Application Benchmark Evaluation

This chapter demonstrates that high-performance snapshotting can provide normal guest operation

for a battery of introspection scenarios with application benchmarks as guest loads. The next chapter

will use microbenchmarks to systematically explore the introspection scenarios, explain why and

how high-performance snapshotting is successful.

5.1 Benchmark Testing Procedure

Before discussing the application benchmarks, I will describe the procedure that was developed

for testing the performance of the application benchmarks. Figure 5.1 illustrates the application

benchmark testing procedure. The test begins when the application benchmark is started in the VM

guest, then the guest memory is snapshotted periodically. The application benchmarks are run to

completion and the result of the benchmark (runtime, bandwidth, requests/second, etc.) is recorded.

The test fails if the snapshotting cannot be completed in the period specified between snapshots.

The host-guest shared memory is read between snapshots to mimic the behavior of introspection.

The test fails if the specified introspection read cannot complete before the next scheduled snapshot.

Each of the Application Benchmarks was tested in several introspection scenario configurations

to present a range of results. The snapshot periods – the time between snapshots – were varied

between one and three-hundred seconds. This range was chosen because most stop-copy snapshots

could not complete more frequently than once second even on an unloaded guest. Three-hundred

seconds was long enough that the Application Benchmarks could complete between snapshots (ex-

37



5.2. Application Benchmarks 38

Time	
  

Snapshot	
   Snapshot+1	
  

All Tests : Guest runs application	



Test (n-d)  : Introspection Read (n-d)	



Test (n+d) : Introspection Read (n+d) Bytes	



Test (n)     : Introspection Read (n) Bytes	



Success	



Success	



FAIL!	



Test	
  #1	
  

Test	
  #2	
  

Test	
  #3	
  

Figure 5.1: Block diagram describing the application benchmark testing procedure. In Tests #1
and #2 introspection completes successfully before the next snapshot period begins. Test #3 fails
because introspection could not complete before the scheduled start of the next snapshot period.

cept for the Kernel Build, described later). The guest VM was configured with two virtual CPUs and

2048 GB of memory. The snapshots were configured for 2048 GB (the full guest memory space)

in both the stop-copy and delta-copy configurations. Introspection varied between 0 and 5000 MB

read from the shared memory between each snapshot event.

5.2 Application Benchmarks

Five benchmarks were chosen as representative applications for evaluating the impact of efficient

introspection on normal guest operation. These benchmarks are as follows: Kernel Build, that

consists of building the linux kernel; ClamAV Antivirus Scan, an antivirus scanner; Apache Web

Server, a webserver; Netperf Network Performance, a network performance benchmark; and, Weka

Machine Learning, a machine learning application.

Each of these Application Benchmark’s were tested and are presented in a chart containing

the absolute benchmark results, the benchmark result normalized against a non-snapshotted & non-

introspected baseline, the average memory copy time, and the average dirty page count per snapshot.

Each of the next subsections will describe the Application Benchmarks in more detail, describe the



39 Chapter 5. Application Benchmark Evaluation

performance of the benchmark under snapshotting, and, finally, the performance of the benchmark

under simulated introspection.

5.2.1 Kernel Build

The Kernel Build Application Benchmark consists of building the Linux 3.14 kernel using gcc

4.6.3 in the default configuration (make defconfig). The result of the Kernel Build Application

Benchmark is the elapsed build time in seconds. Figure 5.2 illustrates Kernel Build Application

Benchmark behavior observed for each of the introspection configurations.

The Kernel Build Application Benchmark completes in approximately 10 minutes absent snap-

shotting and introspection. The stop-copy snapshot mechanism introduced an normalized overhead

of approximately 2-3x at the one second snapshot period but was noisy. The delta-copy snapshot

mechanism introduced an overhead of approximately 1.2x. The low average dirty-page count for the

snapshots allowed the delta-copy snapshot to be very efficient at reducing snapshot stop times. The

effect of the introspection application competeing for memory bandwidth through simulated intro-

spection of the snapshot was minimal, due to the disk- and compute-bound nature of the benchmark.

5.2.2 ClamAV Antivirus Scan

The ClamAV Antivirus Scan Application Benchmark consists the ClamAV Antivirus Scan checking

the linux 3.14 source codebase for viruses. The result of the ClamAV Antivirus Scan Application

Benchmark is the elapsed scan time in seconds. Figure 5.3 illustrates ClamAV Antivirus Scan

Application Benchmark behavior observed for each of the introspection configurations.

The ClamAV Antivirus Scan Application Benchmark completes in approximately 200 seconds

absent snapshotting and introspection. The stop-copy snapshot mechanism introduced a normalized

overhead of approximately 2.5-4x at the one second snapshot period. The delta-copy snapshot

mechanism introduced an overhead of approximately 1.2x. The low average dirty-page count for

the snapshots allowed the delta-copy snapshot to be very efficient at reducing snapshot stop times.

The ClamAV Antivirus Scan Application Benchmark displays an interesting memory use pattern

where the average dirty-page count for short snapshot periods is very low but the dirty-page count

for the lifetime of the load is approximately 1.5 GB. The larger snapshot copy times are amortized



5.2. Application Benchmarks 40

Kernel Build Workload (Stop-and-Copy)

 0

 10

 20

 30

 40

 50

 1  2  4  8  16  32  300

R
un

tim
e 

(m
in

ut
es

)

Snapshot Period (secs)

Snapshot Period vs. Average Build Runtime

0 MB/snap
2048 MB/snap
4000 MB/snap
5000 MB/snap

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  2  4  8  16  32  300

N
or

m
al

iz
ed

 R
un

tim
e 

(u
ni

tle
ss

)

Snapshot Period (secs)

Snapshot Period vs. Normalized Average Build Runtime

0 MB/snap
2048 MB/snap
4000 MB/snap
5000 MB/snap

 0

 200

 400

 600

 800

 1000

 1  2  4  8  16  32  300Av
er

ag
e 

M
em

or
y 

C
op

y 
Ti

m
e 

(m
se

c)

Snapshot Period (secs)

Snapshot Period vs. Average Snapshot Memory Copy Time

0 MB/snap
2048 MB/snap
4000 MB/snap
5000 MB/snap

 0

 512

 1024

 1536

 2048

 1  2  4  8  16  32  300

Av
er

ag
e 

D
irt

y 
Pa

ge
 C

ou
nt

 (M
B)

Snapshot Period (secs)

Snapshot Period vs Average Snapshot Dirty Page Count

0 MB/snap
2048 MB/snap
4000 MB/snap
5000 MB/snap

(a) Stop-Copy Snapshot

Figure 5.2: Chart illustrating the Kernel Build Application Benchmark under (a) Stop-Copy and
(b) Delta-Copy snapshotting regimes. (Continued on next page.)



41 Chapter 5. Application Benchmark Evaluation

Kernel Build Workload (Delta-Copy)

 0

 10

 20

 30

 40

 50

 1  2  4  8  16  32  300

R
un

tim
e 

(m
in

ut
es

)

Snapshot Period (secs)

Snapshot Period vs. Average Build Runtime

0 MB/snap
2048 MB/snap
4000 MB/snap
5000 MB/snap

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  2  4  8  16  32  300

N
or

m
al

iz
ed

 R
un

tim
e 

(u
ni

tle
ss

)

Snapshot Period (secs)

Snapshot Period vs. Normalized Average Build Runtime

0 MB/snap
2048 MB/snap
4000 MB/snap
5000 MB/snap

 0

 200

 400

 600

 800

 1000

 1  2  4  8  16  32  300Av
er

ag
e 

M
em

or
y 

C
op

y 
Ti

m
e 

(m
se

c)

Snapshot Period (secs)

Snapshot Period vs. Average Snapshot Memory Copy Time

0 MB/snap
2048 MB/snap
4000 MB/snap
5000 MB/snap

 0

 512

 1024

 1536

 2048

 1  2  4  8  16  32  300

Av
er

ag
e 

D
irt

y 
Pa

ge
 C

ou
nt

 (M
B)

Snapshot Period (secs)

Snapshot Period vs Maximum Snapshot Dirty Page Count

0 MB/snap
2048 MB/snap
4000 MB/snap
5000 MB/snap

(b) Delta-Copy Snapshot

Figure 5.2: (Continued from previous page.) Chart illustrating the Kernel Build Application Bench-
mark under (a) Stop-Copy and (b) Delta-Copy snapshotting regimes.



5.2. Application Benchmarks 42

Clamscan Workload (Stop-and-Copy)

 0
 100
 200
 300
 400
 500
 600
 700
 800

 1  2  4  8  16  32  300

Sc
an

 T
im

e 
(s

ec
s)

Snapshot Period (secs)

Snapshot Period vs. Average Scan Time

0 MB/snap
2048 MB/snap
4000 MB/snap
5000 MB/snap

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  2  4  8  16  32  300

N
or

m
al

iz
ed

 S
ca

n 
Ti

m
e 

(u
ni

tle
ss

)

Snapshot Period (secs)

Snapshot Period vs. Normalized Average Scan Time

0 MB/snap
2048 MB/snap
4000 MB/snap
5000 MB/snap

 0

 200

 400

 600

 800

 1000

 1  2  4  8  16  32  300Av
er

ag
e 

M
em

or
y 

C
op

y 
Ti

m
e 

(m
se

c)

Snapshot Period (secs)

Snapshot Period vs. Average Snapshot Memory Copy Time

0 MB/snap
2048 MB/snap
4000 MB/snap
5000 MB/snap

 0

 512

 1024

 1536

 2048

 1  2  4  8  16  32  300

Av
er

ag
e 

D
irt

y 
Pa

ge
 C

ou
nt

 (M
B)

Snapshot Period (secs)

Snapshot Period vs Average Snapshot Dirty Page Count

0 MB/snap
2048 MB/snap
4000 MB/snap
5000 MB/snap

(a) Stop-Copy Snapshot

Figure 5.3: Chart illustrating the ClamAV Scan Application Benchmark under (a) Stop-Copy and
(b) Delta-Copy snapshotting regimes. (Continued on next page.)



43 Chapter 5. Application Benchmark Evaluation

Clamscan Workload (Delta-Copy)

 0
 100
 200
 300
 400
 500
 600
 700
 800

 1  2  4  8  16  32  300

Sc
an

 T
im

e 
(s

ec
s)

Snapshot Period (secs)

Snapshot Period vs. Average Scan Time

0 MB/snap
2048 MB/snap
4000 MB/snap
5000 MB/snap

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  2  4  8  16  32  300

N
or

m
al

iz
ed

 S
ca

n 
Ti

m
e 

(u
ni

tle
ss

)

Snapshot Period (secs)

Snapshot Period vs. Normalized Average Scan Time

0 MB/snap
2048 MB/snap
4000 MB/snap
5000 MB/snap

 0

 200

 400

 600

 800

 1000

 1  2  4  8  16  32  300Av
er

ag
e 

M
em

or
y 

C
op

y 
Ti

m
e 

(m
se

c)

Snapshot Period (secs)

Snapshot Period vs. Average Snapshot Memory Copy Time

0 MB/snap
2048 MB/snap
4000 MB/snap
5000 MB/snap

 0

 512

 1024

 1536

 2048

 1  2  4  8  16  32  300

Av
er

ag
e 

D
irt

y 
Pa

ge
 (M

B)

Snapshot Period (secs)

Snapshot Period vs Maximum Snapshot Dirty Page Count

0 MB/snap
2048 MB/snap
4000 MB/snap
5000 MB/snap

(b) Delta-Copy Snapshot

Figure 5.3: (Continued from previous page.) Chart illustrating the ClamAV Scan Application
Benchmark under (a) Stop-Copy and (b) Delta-Copy snapshotting regimes.



5.2. Application Benchmarks 44

against the longer periods and normalized performance is not affected. The performance of ClamAV

Antivirus Scan was only minimally impacted by the simulated introspection.

5.2.3 Apache Web Server

The Apache Web Server Application Benchmark consists of the Apache Web Server running on the

introspected guest with a second guest benchmarking it using the Apachebench Apache Benchmark.

The result of the Apache Web Server Application Benchmark is the pages served per second by the

introspected guest running the Apache Web Server. Figure 5.4 illustrates Apache Web Server

Application Benchmark behavior observed for each of the introspection configurations.

The Apache Web Server Application Benchmark is able to handle approximately 5500 connec-

tions per second absent snapshotting and introspection. The stop-copy snapshot mechanism causes

performance to drop to one quarter of that rate at the one second snapshot period. The delta-copy

snapshot mechanism causes performance to drop to eighty percent of that rate at the one second

snapshot period. This result agrees well with the observation that the Apache Web Server Applica-

tion Benchmark dirties less than 64 megabytes of memory under all snapshot periods allowing the

delta-copy snapshotting to reduce snapshot stop times. The effect of the simulated introspection of

the snapshot on the Apache Web Server Application Benchmark was binary, with a slight jump from

no-introspection to any-introspection with no real gradation between the amounts of introspection.

5.2.4 Netperf Network Performance

The Netperf Network Performance Application Benchmark consists of the netperf 2.6.0 running on

the introspected guest measuring the send packet test speed to a second guest running on the same

host. The result of the Netperf Network Performance Application Benchmark is the megabytes

per second sent by the introspected guest. Figure 5.5 illustrates Netperf Network Performance

Application Benchmark behavior observed for each of the introspection configurations.

The Netperf Network Performance Application Benchmark transfers approximately 6000 megabytes

per second absent snapshotting and introspection. The stop-copy snapshot mechanism reduced net-

work transfer performance by fifty percent at the two second snapshot period and the tests failed at

the one second period. These failures were due to the snapshotting mechanism not returning from



45 Chapter 5. Application Benchmark Evaluation

ApacheBench Workload (Stop-and-Copy)

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 1  2  4  8  16  32  300

Ap
ac

he
Be

nc
h 

(c
on

ne
ct

io
ns

/s
ec

)

Snapshot Period (secs)

Snapshot Period vs. Average Apache Connection Rate

0 MB/snap
2048 MB/snap
4000 MB/snap
5000 MB/snap

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  2  4  8  16  32  300N
or

m
al

iz
ed

 A
ba

ch
eB

en
ch

 (u
ni

tle
ss

)

Snapshot Period (secs)

Snapshot Period vs. Normalized Average Connection Rate

0 MB/snap
2048 MB/snap
4000 MB/snap
5000 MB/snap

 0

 200

 400

 600

 800

 1000

 1  2  4  8  16  32  300Av
er

ag
e 

M
em

or
y 

C
op

y 
Ti

m
e 

(m
se

cs
)

Snapshot Period (secs)

Snapshot Period vs. Average Snapshot Memory Copy Time

0 MB/snap
2048 MB/snap
4000 MB/snap
5000 MB/snap

 0

 512

 1024

 1536

 2048

 1  2  4  8  16  32  300

Av
er

ag
e 

D
irt

y 
Pa

ge
s 

(M
B)

Snapshot Period (secs)

Snapshot Period vs Average Snapshot Dirty Page Count

0 MB/snap
2048 MB/snap
4000 MB/snap
5000 MB/snap

(a) Stop-Copy Snapshot

Figure 5.4: Chart illustrating the Apache Web Server Application Benchmark under (a) Stop-Copy
and (b) Delta-Copy snapshotting regimes. (Continued on next page.)



5.2. Application Benchmarks 46

Apachebench Workload (Delta-Copy)

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 1  2  4  8  16  32  300

Ap
ac

he
Be

nc
h 

(c
on

ne
ct

io
ns

/s
ec

)

Snapshot Period (secs)

Snapshot Period vs. Average Apache Connection Rate

0 MB/snap
2048 MB/snap
4000 MB/snap
5000 MB/snap

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  2  4  8  16  32  300N
or

m
al

iz
ed

 A
pa

ch
eB

en
ch

 (u
ni

tle
ss

)

Snapshot Period (secs)

Snapshot Period vs. Normalized Average Connection Rate

0 MB/snap
2048 MB/snap
4000 MB/snap
5000 MB/snap

 0

 200

 400

 600

 800

 1000

 1  2  4  8  16  32  300Av
er

ag
e 

M
em

or
y 

C
op

y 
Ti

m
e 

(m
se

cs
)

Snapshot Period (secs)

Snapshot Period vs. Average Snapshot Memory Copy Time

0 MB/snap
2048 MB/snap
4000 MB/snap
5000 MB/snap

 0

 512

 1024

 1536

 2048

 1  2  4  8  16  32  300

Av
er

ag
e 

D
irt

y 
Pa

ge
s 

(M
B)

Snapshot Period (secs)

Snapshot Period vs Average Snapshot Dirty Page Count

0 MB/snap
2048 MB/snap
4000 MB/snap
5000 MB/snap

(b) Delta-Copy Snapshot

Figure 5.4: (Continued from previous page.) Chart illustrating the Apache Web Server Application
Benchmark under (a) Stop-Copy and (b) Delta-Copy snapshotting regimes.



47 Chapter 5. Application Benchmark Evaluation

Netperf Workload (Stop-and-Copy)

 0

 1000

 2000

 3000

 4000

 5000

 6000

 1  2  4  8  16  32  300

N
et

pe
rf 

Ba
nd

w
id

th
 (M

B/
s)

Snapshot Period (secs)

Snapshot Period vs. Netperf Outbound Transfer Rate

0 MB/snap
2048 MB/snap
4000 MB/snap
5000 MB/snap

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  2  4  8  16  32  300N
or

m
al

iz
ed

 T
ra

ns
fe

r R
at

e 
(u

ni
tle

ss
)

Snapshot Period (secs)

Snapshot Period vs. Normalized Netperf Outbound Transfer Rate

0 MB/snap
2048 MB/snap
4000 MB/snap
5000 MB/snap

 0

 200

 400

 600

 800

 1000

 1  2  4  8  16  32  300Av
er

ag
e 

M
em

or
y 

C
op

y 
Ti

m
e 

(m
se

cs
)

Snapshot Period (secs)

Snapshot Period vs. Average Snapshot Memory Copy Time

0 MB/snap
2048 MB/snap
4000 MB/snap
5000 MB/snap

 0

 512

 1024

 1536

 2048

 1  2  4  8  16  32  300

Av
er

ag
e 

D
irt

y 
Pa

ge
s 

(M
B)

Snapshot Period (secs)

Snapshot Period vs Average Snapshot Dirty Page Count

0 MB/snap
2048 MB/snap
4000 MB/snap
5000 MB/snap

(a) Stop-Copy Snapshot

Figure 5.5: Chart illustrating the Netperf Network Performance Application Benchmark under
(a) Stop-Copy and (b) Delta-Copy snapshotting regimes. (Continued on next page.)



5.2. Application Benchmarks 48

Netperf Workload (Delta-Copy)

 0

 1000

 2000

 3000

 4000

 5000

 6000

 1  2  4  8  16  32  300

N
et

pe
rf 

Ba
nd

w
id

th
 (M

B/
s)

Snapshot Period (secs)

Snapshot Period vs. Netperf Outbound Transfer Rate

0 MB/snap
2048 MB/snap
4000 MB/snap
5000 MB/snap

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  2  4  8  16  32  300N
or

m
al

iz
ed

 T
ra

ns
fe

r R
at

e 
(u

ni
tle

ss
)

Snapshot Period (secs)

Snapshot Period vs. Normalized Netperf Outbound Transfer Rate

0 MB/snap
2048 MB/snap
4000 MB/snap
5000 MB/snap

 0

 200

 400

 600

 800

 1000

 1  2  4  8  16  32  300Av
er

ag
e 

M
em

or
y 

C
op

y 
Ti

m
e 

(m
se

cs
)

Snapshot Period (secs)

Snapshot Period vs. Average Snapshot Memory Copy Time

0 MB/snap
2048 MB/snap
4000 MB/snap
5000 MB/snap

 0

 512

 1024

 1536

 2048

 1  2  4  8  16  32  300

Av
er

ag
e 

D
irt

y 
Pa

ge
s 

(M
B)

Snapshot Period (secs)

Snapshot Period vs Average Snapshot Dirty Pages (MB)

0 MB/snap
2048 MB/snap
4000 MB/snap
5000 MB/snap

(b) Delta-Copy Snapshot

Figure 5.5: (Continued from previous page.) Chart illustrating the Netperf Network Performance
Application Benchmark under (a) Stop-Copy and (b) Delta-Copy snapshotting regimes.



49 Chapter 5. Application Benchmark Evaluation

the snapshot in time for the next snapshot (i.e. snapshots were taking longer than one second to

return). The delta-copy snapshot mechanism reduced performance to approximately 85 percent at

the one second snapshot period. The Netperf Network Performance Application Benchmark writes

less than 64 megabytes of memory over the benchmarks runtime. The effect of the simulated in-

trospection of the snapshot on the Apache Web Server Application Benchmark was binary, with a

slight jump from no-introspection to any-introspection with no real gradation between the amounts

of introspection.

5.2.5 Weka Machine Learning

The Weka Machine Learning Application Benchmark consists of the Weka version 3.6.6 Simple-

NaiveBayes training and testing on a 300 MB optical character recognition dataset running in the

introspected guest. Weka is a Java based tool and the Java VM has been configured with a one

gigabyte heap. The result of the Weka Machine Learning Application Benchmark is the time in

seconds needed to train the SimpleNaiveBayes model on the training set and then evaluate the test

set. Figure 5.7 illustrates Weka Machine Learning Application Benchmark behavior observed for

each of the introspection configurations.

The Weka Machine Learning Application Benchmark completes in approximately 100 seconds

absent snapshotting and introspection. The stop-copy snapshot mechanism introduced a normalized

overhead of approximately 2.5x at the four second snapshot period. The stop-copy snapshot mecha-

nism tests were unable to complete at the one and two second snapshot periods due to failure of the

snapshotting mechanism to complete snapshots before the beginning of the next snapshot period.

It has been observed that disk-access heavy tests perform very poorly under the current implemen-

tation of the prototype and the Weka Machine Learning Application Benchmark contains a period

where it loads the 300 MB dataset from the disk into the heap. This behavior may also explain why

the delta-copy snapshot mechanism introduced a comparatively large overhead of just over 1.5x at

the one second snapshot period. Another explanation for the comparatively slow performance of

the Weka Machine Learning benchmark is the relatively large observed average snapshot dirty-page

counts that ranged from approximately 256 MB at one second snapshot periods to approximately

1400 MB for 300 second periods. The effect of the simulated introspection application on the Weka

Machine Learning was small for all datapoints except for the one second delta-copy period, where



5.2. Application Benchmarks 50

Weka Workload (Stop-and-Copy)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 1  2  4  8  16  32  300

R
un

tim
e 

(m
in

ut
es

)

Snapshot Period (secs)

Snapshot Period vs. Average Runtime

0 MB/snap
2048 MB/snap
4000 MB/snap
5000 MB/snap

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  2  4  8  16  32  300

N
or

m
al

iz
ed

 R
un

tim
e 

(u
ni

tle
ss

)

Snapshot Period (secs)

Snapshot Period vs. Normalized Average Runtime

0 MB/snap
2048 MB/snap
4000 MB/snap
5000 MB/snap

 0

 200

 400

 600

 800

 1000

 1  2  4  8  16  32  300Av
er

ag
e 

M
em

or
y 

C
op

y 
Ti

m
e 

(m
se

cs
)

Snapshot Period (secs)

Snapshot Period vs. Average Snapshot Memory Copy Time

0 MB/snap
2048 MB/snap
4000 MB/snap
5000 MB/snap

 0

 512

 1024

 1536

 2048

 1  2  4  8  16  32  300

Av
er

ag
e 

D
irt

y 
Pa

ge
 C

ou
nt

 (M
B)

Snapshot Period (secs)

Snapshot Period vs Average Snapshot Dirty Page Count

0 MB/snap
2048 MB/snap
4000 MB/snap
5000 MB/snap

(a) Stop-Copy Snapshot

(b) Chart illustrating the Weka Machine Learning Application Benchmark under (a) Stop-Copy and (a) Delta-
Copy snapshotting regimes. (Continued on next page.)



51 Chapter 5. Application Benchmark Evaluation

Weka Workload (Delta-Copy)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 1  2  4  8  16  32  300

R
un

tim
e 

(m
in

ut
es

)

Snapshot Period (secs)

Snapshot Period vs. Average Runtime

0 MB/snap
2048 MB/snap
4000 MB/snap
5000 MB/snap

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  2  4  8  16  32  300

N
or

m
al

iz
ed

 R
un

tim
e 

(u
ni

tle
ss

)

Snapshot Period (secs)

Snapshot Period vs. Normalized Average Runtime

0 MB/snap
2048 MB/snap
4000 MB/snap
5000 MB/snap

 0

 200

 400

 600

 800

 1000

 1  2  4  8  16  32  300Av
er

ag
e 

M
em

or
y 

C
op

y 
Ti

m
e 

(m
se

cs
)

Snapshot Period (secs)

Snapshot Period vs. Average Snapshot Memory Copy Time

0 MB/snap
2048 MB/snap
4000 MB/snap
5000 MB/snap

 0

 512

 1024

 1536

 2048

 1  2  4  8  16  32  300

Av
er

ag
e 

D
irt

y 
Pa

ge
 C

ou
nt

 (M
B)

Snapshot Period (secs)

Snapshot Period vs Average Snapshot Dirty Page Count

0 MB/snap
2048 MB/snap
4000 MB/snap
5000 MB/snap

(a) Delta-Copy Snapshot

Figure 5.7: (Continued from previous page.) Chart illustrating the Weka Machine Learning Appli-
cation Benchmark under (a) Stop-Copy and (a) Delta-Copy snapshotting regimes.



5.3. Application Benchmarking: Winners & Losers 52

an 15% slowdown is observed when compared to the one second period snapshot-only datapoint.

5.3 Application Benchmarking: Winners & Losers

Delta-copy snapshotting impacted normal guest operation less than stop-and-copy snapshotting.

Within delta-copy snapshotting, the applications which performed best under snapshotting and in-

trospection created the fewest dirty pages, like Netperf Network Performance, Apache Web Server,

and ClamAV Antivirus Scan, and Kernel Build, when compared to the application that used the

most memory, Weka Machine Learning Application Benchmark. Because these applications cre-

ated fewer dirty-pages, less pages had to be copied at snapshot time, reducing the snapshot stop

times and resulting in higher application benchmark performance compared to Weka. These dif-

ferences are most emphasized at the more frequent snapshot periods then at the longer snapshot

periods where the longer stop times are more easily amortized.

Overall the application benchmark evaluation shows that the third requirement for efficient in-

trospection are satisfied for certain applications and introspection configurations. For some appli-

cations and introspection configurations, normal guest performance was achieved, but for others

performance dropped to a quarter of baseline performance. The next chapter will use microbench-

marking to explore a wider range application properties and introspection configurations to explain

Application Benchmark behavior and provide guidance on expected guest load performance.



Chapter 6

Microbenchmark Evaluation

Application Benchmarking provided evidence that normal guest operation could be attained with

efficient introspection but only provides insight into the specific guest loads and introspection sce-

narios tested.

In this chapter, I will expand the range of guest loads and introspection scenarios tested by using

two microbenchmarks that mimic critical behavior of the application benchmarks. After systemati-

cally evaluating the microbenchmarks under numerous introspection scenarios, some key results are

identified that explain how and why efficient snapshotting performs well. Finally, two main factors

effecting guest performance are identified and performance guidance is developed for predicting the

behavior of guests under introspection scenarios.

6.1 Why Microbenchmarking?

Studying the effect of efficient introspection on the performance of the application benchmark guest

loads suggests that the ratio of guest running time to snapshot stop time is the most significant

factor influencing guest performance. Snapshot stop time over a period of time is increased by the

frequency snapshots are taken and also by the length of time each individual snapshot stops the

guest. Microbenchmarking isolates and quantifies the effects various guest load properties have on

snapshot stop times.

Specifically, two properties that will be explored are the number of pages that are written by the

guest load and the frequency the pages are written (e.g. memory bandwidth utilization). Applica-

53



6.2. Microbenchmark Procedure 54

tion benchmarking allowed a limited exploration of these properties, the Weka Machine Learning

Application Benchmark exhibited significantly more dirty pages per snapshot than the other ap-

plication benchmarks. Table 6.1 summarizes the memory write access patterns of the application

benchmarks. Microbenchmarking will allow a systematic exploration of the effect of guest load

memory access pattern on the performance impact of efficient introspection.

The microbenchmarks complete more quickly, on the order of thirty seconds, than many of the

application benchmarks which required many minutes to complete. The faster elapsed execution

times allow more microbenchmark evaluations to be performed in limited timeframes.

6.2 Microbenchmark Procedure

Two microbenchmarks were developed to isolate different properties of guest loads. The first mi-

crobenchmark, Application Runtime Microbenchmark, measures whether the guest is actively run-

ning or not over a period of time. The second microbenchmark is a memory load benchmark that

allows various properties of memory access to be exercised on the guest. The block diagram in Fig-

ure 6.1 illustrates microbenchmark execution in the guest while the snapshotting and introspection

take place on the host.

The same procedure was followed for testing the microbenchmarks as for the application bench-

marks. Figure 5.1 illustrates the application benchmark testing procedure. The test begins when the

microbenchmark is started in the VM guest, then the guest memory is snapshotted periodically. The

application benchmarks are run to completion and the result of the benchmark (runtime, bandwidth,

Application Benchmark Total Dirty Memory 1 Hz Dirty Memory

Kernel Build approx. 256 MB <64 MB
ClamAV Antivirus Scan approx. 1400 MB <64 MB
Apache Web Server <64 MB <64 MB
Netperf Network Performance <64 MB <64 MB
Bonnie++ Disk Performance <64 MB <64 MB
Weka Machine Learning approx. 1400 MB approx. 256 MB

Table 6.1: Memory access pattern summary for the Kernel Build, ClamAV Antivirus Scan, Apache
Web Server, Netperf Network Performance, Bonnie++ Disk Performance, and Weka Machine
Learning Application Benchmarks. The approximate dirty page working set size for each appli-
cation is listed for the complete run of the Application Benchmark and the dirty page working set
size for the Application Benchmark when it is sampled at 1 Hz.



55 Chapter 6. Microbenchmark Evaluation

VM 
Micro-

benchmark 

Snapshotting Introspection 

Guest 

Host 

Runtime 

Figure 6.1: Microbenchmarks are used to quickly evaluate the effect of snapshotting over various
snapshotting regimes, guest loads, and introspection loads.

Listing 6.1: Application Runtime Microbenchmark validates the snapshot stop times using
1 int main(int argc, char∗∗ argv)
2 {
3 parse args(argc, argv);
4 int i;
5

6 int64 t start time ms = get clock realtime();
7

8 register uint64 t spin count = 0;
9 register uint64 t spin target = SPIN COUNT TARGET;

10 for( spin count = 0; spin count < spin target; spin count++ ) {
11 }
12

13 int64 t current time ms = get clock realtime();
14

15 print result( current time ms − start time ms, spin count );
16

17 return 0;
18 }

requests/second, etc.) is recorded. The test fails if the snapshotting cannot be completed in the

period specified between snapshots. The host-guest shared memory is read between snapshots to

mimic the behavior of introspection. The test fails if the specified introspection read task cannot

complete before the next scheduled snapshot.

6.2.1 Application Runtime Microbenchmark

The Application Runtime Microbenchmark was designed to measure the stop time of the guest

independently of the memory bandwidth. To this end, the Application Runtime Microbenchmark

attempts to minimize memory utilization by merely incrementing a register to a set limit and then

exiting. Pseudo-code for Application Runtime Microbenchmark is in Listing 6.1.



6.2. Microbenchmark Procedure 56

The Application Runtime Microbenchmark microbenchmark can be applied to answering sev-

eral key questions about the efficient introspection guest. Is the guest clock trustworthy? Virtual-

ization systems are notorious for poorly supporting accurate guest time record keeping. By forcing

the guest to complete a task of that requires a pre-measured time rather than simply asking the guest

to sleep for that time, we can compare the time to complete that task with the host system time

and even wall-clock time to verify the guest clock. What is the overhead of stopping to copy the

snapshot? Because of the complex implementation of the KVM hypervisor, it is not really possible

to simply measure the overhead of stopping the guest to copy snapshots. The Application Run-

time Microbenchmark measures the time for the guest to complete the spinning task and calculate

the overhead imposed by efficient introspection. Answering these questions using the Application

Runtime Microbenchmark for each of the introspection scenarios will be a key feature of the mi-

crobenchmark evaluation section.

6.2.2 Memory Load Microbenchmark

The Memory Load Microbenchmark measures the effect of varying guest load memory access pat-

terns on efficient introspection. This microbenchmark testing explores a wide range of memory

access patterns – including reads and writes, access ranges, and access bandwidth – expanding the

understanding of efficient introspection impact on normal guest operation, while isolated from other

potential impacts.

Several questions will be answered using the Memory Load Microbenchmark. How does mem-

ory access type affect guest load performance? Some of the mechanisms involved in snapshotting,

specifically delta-copy and pre-copy, may be affected by guest load. Guest loads with more writes

will create more dirty pages, dirty pages which must be copied into the snapshot at snapshot stop

time. Snapshot stop time is known to impact guest performance. How does memory bandwidth

load affect application runtime? Copying snapshot memory requires access to the limited memory

bandwidth of the virtualization platform and may compete with the guest resources. The Memory

Load Microbenchmark will help us answer these questions among others.

The Memory Load Microbenchmark is a modified version of the lmbench bw memmicrobench-

mark version 3.0-a9 by Staelin [13]. In unmodified state, the bw mem parameterizes the working

set size of the bandwidth test and measures the maximum bandwidth of reads or writes that can be



57 Chapter 6. Microbenchmark Evaluation

Guest-Load only 

No/Spin Load 

Introspection Load 

Snapshot Frequency 

Guest Read Rate Guest Write Rate 

Guest Read Buffer Guest Write Buffer 

Introspection 
Baseline 

Introspection  
with Read Load 

Introspection  
with Write Load 

Snapshot Size 

Snapshot Type 

Figure 6.2: The Microbenchmarks are evaluated against the varying snapshot and introspection
regimes according to the above strategy. First, the snapshot-related parameters are tested against
the Application Runtime Microbenchmark in the “No/Spin Load” tests. Next, the “Guest-Load
Only” tests evaluate the effect of snapshotting on the Memory Load Microbenchmark for various
configurations. Finally, the “Introspection Load” tests measure the effect of simulated introspection
on the performance of the Memory Load Microbenchmark.

written into a buffer of that size. The Memory Load Microbenchmark was developed by creating

a further parameter, memory access bandwidth, that allows various bandwidths to be generated by

inserting point operations between the memory accesses. These floating point operations have the

effect of slowing the rate at which memory can be accessed. Various bandwidth setting were created

that slowed the memory access to roughly various amounts. These bandwidth settings could then

be used to mimic the behavior of various guest applications.

6.3 Microbenchmark Evaluation

Microbenchmark evaluation provides an opportunity to demonstrate the performance impact of ef-

ficient introspection on normal guest operation over a variety of guest loads and introspection sce-

narios. Figure 6.2 summarizes the strategy I will employ for systematically exploring the parameter

space of the snapshotting regimes, guest loads, and introspection in order to isolate the performance

effects. To this end, evaluation is broken into three phases: first, “No/Spin” load where the snap-

shotting parameters are evaluated without any guest load or introspection; second, the “Guest-Load

Only” phase, where the Memory Load Microbenchmark-loaded guest is evaluated under various

snapshotting configurations; and, finally, the “Introspection Load” phase, where the Memory Load



6.3. Microbenchmark Evaluation 58

Microbenchmark-loaded guest is evaluated under snapshotting and simulated introspection loads.

The snapshot regimes include the snapshot type (stop-copy, delta-copy, and pre-copy, the snapshot

size (sometimes varied, but usually set at 2 GB), and snapshot period (as low as 1/4 s). The guest

loads explored will include read and loads with varying buffer sizes and access rates. The intro-

spection loads mimic the effect of introspection application by reading from the guest snapshot at

various rates between 1 and 8 GB/s. The rest of this section will explore guest load performance

under these configurations.

6.3.1 Stop-Copy Snapshot Evaluation

The stop-and-copy snapshot mechanism is mechanically the simplest and a good place to begin

evaluation. Further, stop-copy will be used as a basis of comparison with other snapshotting regimes

in later evaluation. The performance of stop-copy is evaluated in the absence of a guest load,

then various guest loads will be evaluated with snapshotting, and finally the effect of simulated

introspection is introduced.

Stop-Copy: No Load/Spin Load

Snapshotting consists of pausing the guest, copying out the snapshot memory, and then restarting

the guest. First I will measure the time to copy memory for a stop-copy snapshot and then examine

the full impact of snapshotting on guest performance. Figure 6.3 illustrates the snapshot memory

copy time for an unloaded and Application Runtime Microbenchmark-loaded guest. A variety of

snapshot sizes between 0 and 2048 MB are shown and the snapshot memory copy times range

from nearly zero milliseconds for the zero MB snapshot to approximately 700 milliseconds for

the 2048 MB snapshot. Both the ”No Load” and Application Runtime Microbenchmark ”Spin

Load” can be observed to follow nearly identical behavior, suggesting that the Application Runtime

Microbenchmark load does not affect the stop-and-copy snapshot memory copying mechanism. The

memory copy rate observed in this test is approximately 3000 MB/s which is substantially lower

than the best rate for memory copy observed on this guest (approximately 7000 MB/s). This is

due the limitations of using the built-in KVM memory copying capabilities that ensure a coherent

memory snapshot.



59 Chapter 6. Microbenchmark Evaluation

 0

 200

 400

 600

 800

 1000

 0  64  256  512  1024  2048

Sn
ap

sh
ot

 M
em

or
y 

C
op

y 
Ti

m
e 

(m
illi

se
co

nd
s)

Snapshot Size (MB)

No-Load and Spin-Load Stop-Copy Snapshot Memory Copy Time Comparison

No Load
Spin Load

Figure 6.3: Stop-copy snapshot memory copy time for various size snapshots of an unloaded guest
and of an Application Runtime Microbenchmark-loaded guest.

Now that it has been established that stop-and-copy snapshot copy time is not affected by

the Application Runtime Microbenchmark, the total overhead of the snapshots can be measured.

Figure 6.4 illustrates the run time overhead of stop-copy snapshots on a Application Runtime

Microbenchmark-loaded guest that is being stop-copy snapshotted at one Herz. The accounting

is broken down into three parts: the base spin runtime, the baseline runtime of the Application

Runtime Microbenchmark load; the memory copy time, the snapshot memory copy time directly

measured by the guest; and, finally, the unaccounted stop time, which is the time leftover from the

total guest load runtime less the base time and the memory copy time.

In addition to snapshot size, the effect snapshot frequency on the stop-and-copy mechanism was

investigated. Figure 6.5 illustrates the effect of snapshot frequency on the snapshot memory copy

time on an unloaded guest. Two snapshot sizes were investigated (600 MB and 2048 MB) and no

change in snapshot memory copy times was observed across a range of snapshot periods (0.5 s to

32.0 s).



6.3. Microbenchmark Evaluation 60

1 

2 

3 

4 

5 

6 

7 

0 200 400 600 800 1000 1200 1400 1600 1800 2000 

N
or

m
al

iz
ed

 R
un

tim
e 

O
ve

rh
ea

d 

Snapshot Size (MB) 

Stop-and-Copy Runtime Overhead Accounting 

Unaccounted Overhead Memory Copy 

Figure 6.4: Accounting for Stop-Copy run time overhead in varying sized guests.

Stop-Copy: Guest Load

After evaluating the stop-copy snapshot mechanism on an essentially unloaded guest, the stop-copy

snapshotting is now studied in the context of a Memory Load Microbenchmark-loaded guest. Fig-

ure 6.6 illustrates runtime overhead of stop-copy snapshotting in a wide variety of circumstances.

Figure 6.6(a) contains six charts, each presenting the normalized runtime of the Memory Load Mi-

crobenchmark reading from three working-set-size configurations (64, 512, and 512 MB). The first

five charts present the normalized access performance of the benchmark while being snapshotted at

varying periods (1, 2, 4, 8, and 16 seconds) compared to the access speed of that benchmark config-

uration in baseline (no-snapshotted) configuration. The 128.0 second snapshot period chart differs

differs from the others because it presents the absolute performance of the benchmark against the

baseline performance.

The baseline chart is changed in this way to illustrate that at 128.0 second snapshot period, the

benchmark performs at baseline level. As the frequency of snapshotting increases, or the period

decreases, the performance of the efficient introspection can be observed to decrease. The decrease

is flat across the configured benchmark access speeds, suggesting that stop-copy snapshot stop time

is the cause of the slowdown rather than memory bandwidth bottlenecks. This is borne out by the

intuition that snapshot stop times are relatively long (tenths of seconds) events and that the snapshot

only copies memory while the guest is halted, meaning that guest and snapshot memory requests are

seperated temporally and that they are not in competition. Finally, the working-set-size and access



61 Chapter 6. Microbenchmark Evaluation

 0

 100

 200

 300

 400

 500

 600

 700

 0  1  2  4  8  16  32

Sn
ap

sh
ot

 M
em

or
y 

C
op

y 
Ti

m
e 

(m
illi

se
co

nd
s)

Snapshot Period (seconds)

Stop-Copy Snapshot Size vs. Memory Copy Time

No Load 600 MB
No Load 2048 MB

Figure 6.5: Effect of snapshot period on snapshot memory copy time for variously-sized unloaded
guests.

rate had no observable effect on the read-performance of the benchmark. Stop-copy snapshotting

copies all memory regardless of whether it had been read previously.

The performance of the read benchmarks is very similiar to the performance of the write bench-

marks. Figure 6.6(b) contains a similiar six charts, but with the write-load instead. Again, baseline

write performance is observed at the 128.0 second snapshot period. Snapshot period is related to

performance with one second snapshot period correlating to performance drops of over ninety per-

cent. The performance impact of stop-copy snapshotting is flat across memory access speeds for

specific snapshot periods, suggesting that only stop-time is impacting benchmark performance. Fi-

nally, working-set-size and access rate had no observable effect on write benchmark performance,

only snapshot frequency.

Stop-Copy: Introspection Load

After examining the effect of the guest-load on snapshotting, we now add simulated-introspection

loads to the snapshotted-guest load scenario. Figure 6.7 illustrates the runtime overhead of stop-

copy snapshotting and introspection on a Memory Load Microbenchmark-loaded guest. The figure



6.3. Microbenchmark Evaluation 62

Driftbench Read Guest Load vs Normal-Runtime for Several Guest Working Set Sizes (Stop-Copy)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  2000  4000  6000  8000  10000  12000  14000N
or

m
al

iz
ed

 S
na

ps
ho

tte
d 

G
ue

st
 R

un
tim

e 
(u

ni
tle

ss
)

No Snapshot Guest Test Bandwidth (MB/s)

Snapshot Period 1.0 sec

  WSS 64
  WSS 512

  WSS 1024
baseline(x)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  2000  4000  6000  8000  10000  12000  14000N
or

m
al

iz
ed

 S
na

ps
ho

tte
d 

G
ue

st
 R

un
tim

e 
(u

ni
tle

ss
)

No Snapshot Guest Test Bandwidth (MB/s)

Snapshot Period 2.0 sec

  WSS 64
  WSS 512

  WSS 1024
baseline(x)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  2000  4000  6000  8000  10000  12000  14000N
or

m
al

iz
ed

 S
na

ps
ho

tte
d 

G
ue

st
 R

un
tim

e 
(u

ni
tle

ss
)

No Snapshot Guest Test Bandwidth (MB/s)

Snapshot Period 4.0 sec

  WSS 64
  WSS 512

  WSS 1024
baseline(x)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  2000  4000  6000  8000  10000  12000  14000N
or

m
al

iz
ed

 S
na

ps
ho

tte
d 

G
ue

st
 R

un
tim

e 
(u

ni
tle

ss
)

No Snapshot Guest Test Bandwidth (MB/s)

Snapshot Period 8.0 sec

  WSS 64
  WSS 512

  WSS 1024
baseline(x)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  2000  4000  6000  8000  10000  12000  14000N
or

m
al

iz
ed

 S
na

ps
ho

tte
d 

G
ue

st
 R

un
tim

e 
(u

ni
tle

ss
)

No Snapshot Guest Test Bandwidth (MB/s)

Snapshot Period 16.0 sec

  WSS 64
  WSS 512

  WSS 1024
baseline(x)

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0  2000  4000  6000  8000  10000  12000  14000N
or

m
al

iz
ed

 S
na

ps
ho

tte
d 

G
ue

st
 R

un
tim

e 
(u

ni
tle

ss
)

No Snapshot Guest Test Bandwidth (MB/s)

Snapshot Period 128.0 sec

  WSS 64
  WSS 512

  WSS 1024
baseline(x)

(a) Read Load

Figure 6.6: Runtime overhead of Stop-Copy Snapshotting on (a) read and (b) write guest loads with
varying working set sizes and access rates. (Figure continues on next page.)



63 Chapter 6. Microbenchmark Evaluation

Driftbench Write Guest Load vs Normal-Runtime for Several Guest Working Set Sizes (Stop-Copy)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1000  2000  3000  4000  5000  6000  7000  8000N
or

m
al

iz
ed

 S
na

ps
ho

tte
d 

G
ue

st
 R

un
tim

e 
(u

ni
tle

ss
)

No Snapshot Guest Test Bandwidth (MB/s)

Snapshot Period 1.0 sec

  WSS 64
  WSS 512

  WSS 1024
baseline(x)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1000  2000  3000  4000  5000  6000  7000  8000N
or

m
al

iz
ed

 S
na

ps
ho

tte
d 

G
ue

st
 R

un
tim

e 
(u

ni
tle

ss
)

No Snapshot Guest Test Bandwidth (MB/s)

Snapshot Period 2.0 sec

  WSS 64
  WSS 512

  WSS 1024
baseline(x)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1000  2000  3000  4000  5000  6000  7000  8000N
or

m
al

iz
ed

 S
na

ps
ho

tte
d 

G
ue

st
 R

un
tim

e 
(u

ni
tle

ss
)

No Snapshot Guest Test Bandwidth (MB/s)

Snapshot Period 4.0 sec

  WSS 64
  WSS 512

  WSS 1024
baseline(x)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1000  2000  3000  4000  5000  6000  7000  8000N
or

m
al

iz
ed

 S
na

ps
ho

tte
d 

G
ue

st
 R

un
tim

e 
(u

ni
tle

ss
)

No Snapshot Guest Test Bandwidth (MB/s)

Snapshot Period 8.0 sec

  WSS 64
  WSS 512

  WSS 1024
baseline(x)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1000  2000  3000  4000  5000  6000  7000  8000N
or

m
al

iz
ed

 S
na

ps
ho

tte
d 

G
ue

st
 R

un
tim

e 
(u

ni
tle

ss
)

No Snapshot Guest Test Bandwidth (MB/s)

Snapshot Period 16.0 sec

  WSS 64
  WSS 512

  WSS 1024
baseline(x)

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0  1000  2000  3000  4000  5000  6000  7000  8000N
or

m
al

iz
ed

 S
na

ps
ho

tte
d 

G
ue

st
 R

un
tim

e 
(u

ni
tle

ss
)

No Snapshot Guest Test Bandwidth (MB/s)

Snapshot Period 128.0 sec

  WSS 64
  WSS 512

  WSS 1024
baseline(x)

(b) Write Load

Figure 6.6: Runtime overhead of Stop-Copy Snapshotting on (a) read and (b) write guest loads with
varying working set sizes and access rates. (Figure continued from previous page.)



6.3. Microbenchmark Evaluation 64

Static Window Workload (Stop-Copy) (read Speed 10%, Buffer 1024)

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 1  2  4  8  16  32  128

Ba
nd

w
id

th
 (M

B/
se

c)

Snapshot Period (secs)

Snapshot Period vs. Average Memory Bandwidth

0 MB/sec
2000 MB/sec
4000 MB/sec
6000 MB/sec
8000 MB/sec

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  2  4  8  16  32  128

N
or

m
al

iz
ed

 B
an

dw
id

th
 (u

ni
tle

ss
)

Snapshot Period (secs)

Snapshot Period vs. Normalized Average Memory Bandwidth

0 MB/sec
2000 MB/sec
4000 MB/sec
6000 MB/sec
8000 MB/sec

 0

 200

 400

 600

 800

 1000

 1  2  4  8  16  32  128

Av
er

ag
e 

Sn
ap

sh
ot

 M
em

or
y 

C
op

y 
Ti

m
e 

(m
se

c)

Snapshot Period (secs)

Snapshot Period vs. Average Snapshot Memory Copy Time

0 MB/sec
2000 MB/sec
4000 MB/sec
6000 MB/sec
8000 MB/sec

 0

 512

 1024

 1536

 2048

 1  2  4  8  16  32  128Av
er

ag
e 

Sn
ap

sh
ot

 D
irt

y 
Pa

ge
s 

(M
B)

Snapshot Period (secs)

Snapshot Period vs Maximum Snapshot Dirty Page Count

0 MB/sec
2000 MB/sec
4000 MB/sec
6000 MB/sec
8000 MB/sec

(a) Slow-Read Load

Figure 6.7: Runtime overhead of Stop-Copy Snapshotting on (a) slow-read, (b) fast-read, (c) slow-
write, and (d) fast-write guest loads with snapshot period. Fast accesses at maximum rate possible
and slow accesses rate limited to ten percent of maximum. (Figure continued on next page.)



65 Chapter 6. Microbenchmark Evaluation

Static Window Workload (Stop-Copy) (read Speed 100%, Buffer 1024)

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 1  2  4  8  16  32  128

Ba
nd

w
id

th
 (M

B/
se

c)

Snapshot Period (secs)

Snapshot Period vs. Average Memory Bandwidth

0 MB/sec
2000 MB/sec
4000 MB/sec
6000 MB/sec
8000 MB/sec

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  2  4  8  16  32  128

N
or

m
al

iz
ed

 B
an

dw
id

th
 (u

ni
tle

ss
)

Snapshot Period (secs)

Snapshot Period vs. Normalized Average Memory Bandwidth

0 MB/sec
2000 MB/sec
4000 MB/sec
6000 MB/sec
8000 MB/sec

 0

 200

 400

 600

 800

 1000

 1  2  4  8  16  32  128

Av
er

ag
e 

Sn
ap

sh
ot

 M
em

or
y 

C
op

y 
Ti

m
e 

(m
se

c)

Snapshot Period (secs)

Snapshot Period vs. Average Snapshot Memory Copy Time

0 MB/sec
2000 MB/sec
4000 MB/sec
6000 MB/sec
8000 MB/sec

 0

 512

 1024

 1536

 2048

 1  2  4  8  16  32  128Av
er

ag
e 

Sn
ap

sh
ot

 D
irt

y 
Pa

ge
s 

(M
B)

Snapshot Period (secs)

Snapshot Period vs Maximum Snapshot Dirty Page Count

0 MB/sec
2000 MB/sec
4000 MB/sec
6000 MB/sec
8000 MB/sec

(b) Fast-Read Load

Figure 6.7: Runtime overhead of Stop-Copy Snapshotting on (a) slow-read, (b) fast-read, (c) slow-
write, and (d) fast-write guest loads with snapshot period. Fast accesses at maximum rate possible
and slow accesses rate limited to ten percent of maximum. (Figure continued on next page.)



6.3. Microbenchmark Evaluation 66

Static Window Workload (Stop-Copy) (write Speed 10%, Buffer 1024)

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000

 1  2  4  8  16  32  128

Ba
nd

w
id

th
 (M

B/
se

c)

Snapshot Period (secs)

Snapshot Period vs. Average Memory Bandwidth

0 MB/sec
2000 MB/sec
4000 MB/sec
6000 MB/sec
8000 MB/sec

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  2  4  8  16  32  128

N
or

m
al

iz
ed

 B
an

dw
id

th
 (u

ni
tle

ss
)

Snapshot Period (secs)

Snapshot Period vs. Normalized Average Memory Bandwidth

0 MB/sec
2000 MB/sec
4000 MB/sec
6000 MB/sec
8000 MB/sec

 0

 200

 400

 600

 800

 1000

 1  2  4  8  16  32  128

Av
er

ag
e 

Sn
ap

sh
ot

 M
em

or
y 

C
op

y 
Ti

m
e 

(m
se

c)

Snapshot Period (secs)

Snapshot Period vs. Average Snapshot Memory Copy Time

0 MB/sec
2000 MB/sec
4000 MB/sec
6000 MB/sec
8000 MB/sec

 0

 512

 1024

 1536

 2048

 1  2  4  8  16  32  128Av
er

ag
e 

Sn
ap

sh
ot

 D
irt

y 
Pa

ge
s 

(M
B)

Snapshot Period (secs)

Snapshot Period vs Maximum Snapshot Dirty Page Count

0 MB/sec
2000 MB/sec
4000 MB/sec
6000 MB/sec
8000 MB/sec

(c) Slow-Write Load

Figure 6.7: Runtime overhead of Stop-Copy Snapshotting on (a) slow-read, (b) fast-read, (c) slow-
write, and (d) fast-write guest loads with snapshot period. Fast accesses at maximum rate possible
and slow accesses rate limited to ten percent of maximum. (Figure continued on next page.)



67 Chapter 6. Microbenchmark Evaluation

Static Window Workload (Stop-Copy) (write Speed 100%, Buffer 1024)

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000

 1  2  4  8  16  32  128

Ba
nd

w
id

th
 (M

B/
se

c)

Snapshot Period (secs)

Snapshot Period vs. Average Memory Bandwidth

0 MB/sec
2000 MB/sec
4000 MB/sec
6000 MB/sec
8000 MB/sec

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  2  4  8  16  32  128

N
or

m
al

iz
ed

 B
an

dw
id

th
 (u

ni
tle

ss
)

Snapshot Period (secs)

Snapshot Period vs. Normalized Average Memory Bandwidth

0 MB/sec
2000 MB/sec
4000 MB/sec
6000 MB/sec
8000 MB/sec

 0

 200

 400

 600

 800

 1000

 1  2  4  8  16  32  128

Av
er

ag
e 

Sn
ap

sh
ot

 M
em

or
y 

C
op

y 
Ti

m
e 

(m
se

c)

Snapshot Period (secs)

Snapshot Period vs. Average Snapshot Memory Copy Time

0 MB/sec
2000 MB/sec
4000 MB/sec
6000 MB/sec
8000 MB/sec

 0

 512

 1024

 1536

 2048

 1  2  4  8  16  32  128Av
er

ag
e 

Sn
ap

sh
ot

 D
irt

y 
Pa

ge
s 

(M
B)

Snapshot Period (secs)

Snapshot Period vs Maximum Snapshot Dirty Page Count

0 MB/sec
2000 MB/sec
4000 MB/sec
6000 MB/sec
8000 MB/sec

(d) Fast-Write Load

Figure 6.7: Runtime overhead of Stop-Copy Snapshotting on (a) slow-read, (b) fast-read, (c) slow-
write, and (d) fast-write guest loads with varying access rates. The fast accesses were performed at
the maximum rate possible and the slow accesses were rate limited to ten percent of the maximum.
(Figure continued from previous page.)



6.3. Microbenchmark Evaluation 68

contains four subfigures that represent the four test series that were undertaken, Figure 6.7(a) shows

a 10% baseline performance slow-read load, Figure 6.7(b) shows a 100% baseline performance

fast-read load, Figure 6.7(c) shows a 10% baseline performance slow-write load, and Figure 6.7(d)

shows a 100% baseline performance fast-write load. Each of these subfigures contains four graphs:

the top graph shows the absolute benchmark performance versus snapshot period, the second graph

shows the normalized benchmark performance versus snapshot period, the third graph shows aver-

age snapshot memory copy time versus snapshot period, and the bottom graph shows the average

dirty pages copied each snapshot versus snapshot period.

The test series measure the impact of introspection by reading from the snapshot at varying rates

(baseline 0 MB/s, 2000 MB/s, 4000 MB/s, 6000 MB/s, and 8000 MB/s). The introspection rates are

not dynamically tailored like with the Memory Load Microbenchmark. Instead the introspection

mechanism is tasked with reading a certain number of megabytes per snapshot period. For example,

in the case of the two second snapshot period and 6000 MB/s introspection load, the introspection

mechanism would attempt to read 12000 MB (6000 MB/s for 2 seconds) between each snapshot.

If the introspection mechanism cannot complete this assigned read task, the test is abandoned and

no result is recorded. This effect can be observed in all four test-series, as the test periods became

shorter, the ability to perform introspection reduced. At shorter snapshot periods, the time spent

actually snapshotting, wherein the introspection cannot take place, becomes a significant barrier to

completing the simulated-introspection task.

Several interesting results can be observed from the four introspection test series that were un-

dertaken. First, introspection has little impact on the read efficient introspection. The performance

of the microbenchmark is very similiar no matter whether the read access rate was 10% or 100%.

Second, guest fast write performance is negatively impacted by introspection competition. The slow

(10%) write rates were not impacted by the introspection at any rate, but the fast (100%) write mi-

crobenchmark results with any level of introspection can be seen to slow to 80% of the baseline.

This slowdown is observed to different degrees across all snapshot periods for the fast write mi-

crobenchmark. This result suggests that the guest-load is competeing for memory bandwidth with

the introspection load that is running simulataneously.



69 Chapter 6. Microbenchmark Evaluation

 0

 2

 4

 6

 8

 10

 12

 0  64  256  512  1024  2048

Sn
ap

sh
ot

 M
em

or
y 

C
op

y 
Ti

m
e 

(m
illi

se
co

nd
s)

Snapshot Size (MB)

No-Load and Spin-Load Delta-Copy Snapshot Memory Copy Time Comparison

No Load
Spin Load

Figure 6.8: Delta-Copy snapshot size versus snapshot memory copy time for an unloaded guest and
an Application Runtime Microbenchmark (spin)-loaded guest.

6.3.2 Delta-Copy Snapshot Evaluation

The Delta-Copy snapshot mechanism offers increased efficiency over the Stop-Copy snapshot mech-

anism by only copying memory pages that have been changed by the guest since the previous snap-

shot. This increased efficiency brings a dependency between the guest load behavior and the snap-

shotting overhead. Evaluation will begin with the Delta-Copy mechanism in the absence of a guest

load, then various guest loads will be evaluated with snapshotting, and finally the effect of intro-

spection will be introduced.

Delta-Copy: No Load/Spin Load

The delta-copy snapshot mechanism only copies pages that have changed since the previous snap-

shot. Figure 6.8 illustrates the snapshot memory copy time for an unloaded and Application Runtime

Microbenchmark-loaded guest. The no-load and Application Runtime Microbenchmark guest-loads

both perform similiarly across the range of snapshot sizes. The memory footprint of the no-load and

spin-load tests is very small. As a result, the memory copy time for delta-copy snapshot of vari-

ous snapshot sizes is very small because only a limited number of pages will be dirtied. This test



6.3. Microbenchmark Evaluation 70

298 

299 

300 

301 

302 

303 

304 

305 

1 64 256 512 1024 2048 

Sn
ap

sh
ot

 S
to

p 
Ti

m
e 

(m
ill

ise
co

nd
s)

 

Snapshot Size (MB) 

Spin Load Runtime Overhead Accounting 

Base Spin Runtime Memory Copy Time Unaccounted 

Figure 6.9: Accounting for Delta-Copy run time overhead in varying sized guests.

confirms the minimal memory impact of the Application Runtime Microbenchmark.

Now that the delta-copy snapshot mechanism under the Application Runtime Microbenchmark-

load has been confirmed to perform similiary to when there is no guest load, the Application Run-

time Microbenchmark can be used to create an accounting of the overhead of running the delta-copy

snapshot. Figure 6.9 illustrates the run time overhead of delta-copy snapshots on a Application Run-

time Microbenchmark-loaded guest being snapshotted at one Herz. The accounting is broken down

into three parts: the base spin runtime, the baseline runtime of the Application Runtime Microbench-

mark load; the memory copy time, the snapshot memory copy time directly measured by the guest;

and, finally, the unaccounted stop time, which is the time leftover from the total guest load runtime

less the base time and the memory copy time. As is expected, total overhead (memory-copy &

unaccounted time) is reduced from the stop-copy accounting and especially the memory copy time

has dropped to nearly zero. With delta-copy, the unaccounted time is now the vast majority of the

performance impact. While not visible on this chart, the unaccounted time scales with the frequency

of the snapshots, suggesting that much of the unaccounted overhead is contributed during the pause

and restart phases of the stop-and-copy snapshotting while the guest is stopped and starting.

In addition to snapshot size, the effect of snapshot frequency on the delta-copy snapshot mech-

anism was investigated. Figure 6.10 illustrates the effect of snapshot frequency on the snapshot



71 Chapter 6. Microbenchmark Evaluation

 0

 2

 4

 6

 8

 10

 12

 14

 1  2  4  8  16  32  128

Sn
ap

sh
ot

 M
em

or
y 

C
op

y 
Ti

m
e 

(m
illi

se
co

nd
s)

Snapshot Period (seconds)

Delta-Copy Snapshot Size vs. Memory Copy Time

Snapshot Size 64 MB
Snapshot Size 256 MB
Snapshot Size 512 MB

Snapshot Size 2048 MB

Figure 6.10: Effect of snapshot period on snapshot memory copy time for variously-sized unloaded
guests.

memory copy time on an unloaded guest. Four snapshot sizes were investigated (64 MB, 256 MB,

512 MB, and 2048 MB) across a range of snapshot periods (1 s to 128.0 s). The average delta-copy

snapshot copy times increased with the size of the snapshot but were very small. The delta-copy

snapshot times averaged less than eleven milliseconds for all snapshot sizes (compared to hun-

dreds of milliseconds for the stop-copy snapshots) with the larger snapshots taking longer than the

smaller snapshots. Unlike with stop-copy snapshots, some frequency dependency was observed,

with the 2048 MB snapshot averaging slightly longer copy times and higher variability at 128 sec-

onds between snapshots than with one second between snapshots. This matches intuition because

dirty pages due to operating system behaviors will increase with more time, causing increased dirty

pages to be copied at snapshot time.

Delta-Copy: Guest Load

After evaluating the delta-copy on an unloaded guest, the delta-copy snapshotting mechanism is now

examined in the context of a Memory Load Microbenchmark-loaded guest. Figure 6.11 illustrates

runtime overhead of delta-copy snapshotting on a Memory Load Microbenchmark-loaded guest.



6.3. Microbenchmark Evaluation 72

Driftbench Read Guest Load vs Normal Bandwidth for Several Guest Working Set Sizes (Delta-Copy)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  2000  4000  6000  8000  10000  12000  14000N
or

m
al

iz
ed

 S
na

ps
ho

tte
d 

G
ue

st
 B

an
dw

id
th

 (u
ni

tle
ss

)

No Snapshot Guest Test Bandwidth (MB/s)

Snapshot Period 1.0 seconds

  WSS 64
  WSS 512

  WSS 1024
baseline(x)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  2000  4000  6000  8000  10000  12000  14000N
or

m
al

iz
ed

 S
na

ps
ho

tte
d 

G
ue

st
 B

an
dw

id
th

 (u
ni

tle
ss

)

No Snapshot Guest Test Bandwidth (MB/s)

Snapshot Period 2.0 seconds

  WSS 64
  WSS 512

  WSS 1024
baseline(x)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  2000  4000  6000  8000  10000  12000  14000N
or

m
al

iz
ed

 S
na

ps
ho

tte
d 

G
ue

st
 B

an
dw

id
th

 (u
ni

tle
ss

)

No Snapshot Guest Test Bandwidth (MB/s)

Snapshot Period 4.0 seconds

  WSS 64
  WSS 512

  WSS 1024
baseline(x)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  2000  4000  6000  8000  10000  12000  14000N
or

m
al

iz
ed

 S
na

ps
ho

tte
d 

G
ue

st
 B

an
dw

id
th

 (u
ni

tle
ss

)

No Snapshot Guest Test Bandwidth (MB/s)

Snapshot Period 8.0 seconds

  WSS 64
  WSS 512

  WSS 1024
baseline(x)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  2000  4000  6000  8000  10000  12000  14000N
or

m
al

iz
ed

 S
na

ps
ho

tte
d 

G
ue

st
 B

an
dw

id
th

 (u
ni

tle
ss

)

No Snapshot Guest Test Bandwidth (MB/s)

Snapshot Period 16.0 seconds

  WSS 64
  WSS 512

  WSS 1024
baseline(x)

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0  2000  4000  6000  8000  10000  12000  14000

Sn
ap

sh
ot

te
d 

G
ue

st
 B

an
dw

id
th

 (M
B/

s)

No Snapshot Guest Test Bandwidth (MB/s)

Snapshot Period 128.0 seconds

  WSS 64
  WSS 512

  WSS 1024
baseline(x)

(a) Read Load

Figure 6.11: Runtime overhead of Delta-Copy Snapshotting on (a) read and (b) write guest loads
with varying working set sizes and access rates. (Figure continues on next page.)



73 Chapter 6. Microbenchmark Evaluation

Driftbench Write Guest Load vs Normal Bandwidth for Several Guest Working Set Sizes (Delta-Copy)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1000  2000  3000  4000  5000  6000  7000  8000N
or

m
al

iz
ed

 S
na

ps
ho

tte
d 

G
ue

st
 B

an
dw

id
th

 (u
ni

tle
ss

)

No Snapshot Guest Test Bandwidth (MB/s)

Snapshot Period 1.0 seconds

  WSS 64
  WSS 512

  WSS 1024
baseline(x)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1000  2000  3000  4000  5000  6000  7000  8000N
or

m
al

iz
ed

 S
na

ps
ho

tte
d 

G
ue

st
 B

an
dw

id
th

 (u
ni

tle
ss

)

No Snapshot Guest Test Bandwidth (MB/s)

Snapshot Period 2.0 seconds

  WSS 64
  WSS 512

  WSS 1024
baseline(x)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1000  2000  3000  4000  5000  6000  7000  8000N
or

m
al

iz
ed

 S
na

ps
ho

tte
d 

G
ue

st
 B

an
dw

id
th

 (u
ni

tle
ss

)

No Snapshot Guest Test Bandwidth (MB/s)

Snapshot Period 4.0 seconds

  WSS 64
  WSS 512

  WSS 1024
baseline(x)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1000  2000  3000  4000  5000  6000  7000  8000N
or

m
al

iz
ed

 S
na

ps
ho

tte
d 

G
ue

st
 B

an
dw

id
th

 (u
ni

tle
ss

)

No Snapshot Guest Test Bandwidth (MB/s)

Snapshot Period 8.0 seconds

  WSS 64
  WSS 512

  WSS 1024
baseline(x)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1000  2000  3000  4000  5000  6000  7000  8000N
or

m
al

iz
ed

 S
na

ps
ho

tte
d 

G
ue

st
 B

an
dw

id
th

 (u
ni

tle
ss

)

No Snapshot Guest Test Bandwidth (MB/s)

Snapshot Period 16.0 seconds

  WSS 64
  WSS 512

  WSS 1024
baseline(x)

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0  1000  2000  3000  4000  5000  6000  7000  8000

Sn
ap

sh
ot

te
d 

G
ue

st
 B

an
dw

id
th

 (M
B/

s)

No Snapshot Guest Test Bandwidth (MB/s)

Snapshot Period 128.0 seconds

  WSS 64
  WSS 512

  WSS 1024
baseline(x)

(b) Write Load

Figure 6.11: Runtime overhead of Delta-Copy Snapshotting on (a) read and (b) write guest loads
with varying working set sizes and access rates.



6.3. Microbenchmark Evaluation 74

Subfigure 6.11(a) shows the results of testing a read load and subfigure 6.11(b) show the results

of write load testing. Each subfigure contains six charts, each presenting the normalized access

performance of Memory Load Microbenchmark in three working-set-size configurations (64, 512,

and 1024 MB) across a range of access speeds. The 128.0 second snapshot period chart differs

from the others because it presents the absolute performance of the benchmark against the baseline

performance.

The baseline chart is changed in this way to illustrate that at 128.0 second snapshot period, the

benchmark performs at baseline level. As the frequncy of delta-copy snapshotting increases, or the

period decreases, the performance of the efficient introspection can be observed to decreate. For the

read load, the normalized performance decrease is less than 20 percent at the one second snapshot

period, and is flat across all access performance ranges tested. Further, the working-set-size of the

guest read load does not effect the performance of the load under snapshotting.

In contrast to the read load, the normalized performance of the write loads does vary with

working-set-size. At the two second snapshot period, the 64 MB WSS load slows to approximately

95% of the baseline, the 512 MB WSS to just less than 80%, and the 1024 MB WSS to nearly 60%.

For the two second period these slowdowns are flat across access speed for all working-set-sizes,

but for the one second period tests the slowdowns are write-speed dependent, with the slower write

access rates showing better performance than the faster rates. At the shorter periods and slower

access rates, their may not be time for the guest load to write the entire working-set buffer between

snapshots, reducing the size of the dirty-page set to be copied, and reducing the performance impact

of snapshotting. Both of these examples of a dependence between guest-load and the snapshotting

performance reflect the underlying nature of the delta-copy snapshotting mechanism only copying

dirty pages.

Delta-Copy: Introspection Load

After examining the effect of guest-loads on delta-copy snapshotting, introspection loads are now

added to the snapshotted-guest load scenario. Figure 6.12 illustrates the runtime overhead

of delta-copy snapshotting and introspection on a Memory Load Microbenchmark-loaded guest.

The figure contains four subfigures that represent the four test series that were undertaken, Fig-

ure 6.7(a) shows a 10% baseline performance slow-read load, Figure 6.7(b) shows a 100% baseline



75 Chapter 6. Microbenchmark Evaluation

Static Window Workload (Delta-Copy) (read Speed 10%, Buffer 1024)

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 1  2  4  8  16  32  128

Ba
nd

w
id

th
 (M

B/
se

c)

Snapshot Period (secs)

Snapshot Period vs. Average Memory Bandwidth

0 MB/sec
2000 MB/sec
4000 MB/sec
6000 MB/sec
8000 MB/sec

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  2  4  8  16  32  128N
or

m
al

iz
ed

 B
an

dw
id

th
 (d

im
en

si
on

le
ss

)

Snapshot Period (secs)

Snapshot Period vs. Normalized Average Memory Bandwidth

0 MB/sec
2000 MB/sec
4000 MB/sec
6000 MB/sec
8000 MB/sec

 0

 200

 400

 600

 800

 1000

 1  2  4  8  16  32  128

M
em

or
y 

C
op

y 
Ti

m
e 

(m
se

c)

Snapshot Period (secs)

Snapshot Period vs. Average Snapshot Memory Copy Time

0 MB/sec
2000 MB/sec
4000 MB/sec
6000 MB/sec
8000 MB/sec

 0

 512

 1024

 1536

 2048

 1  2  4  8  16  32  128

Av
er

ag
e 

D
irt

y 
Pa

ge
s 

(M
B)

Snapshot Period (secs)

Snapshot Period vs Maximum Snapshot Dirty Page Count

0 MB/sec
2000 MB/sec
4000 MB/sec
6000 MB/sec
8000 MB/sec

(a) Slow-Read Load

Figure 6.12: Runtime overhead of Delta-Copy Snapshotting on (a) slow-read, (b) fast-read, (c)
slow-write, and (d) fast-write guest loads with periods. Fast accesses performed at maximum rate
and slow accesses rate limited to ten percent of maximum. (Figure continues on next page.)



6.3. Microbenchmark Evaluation 76

Static Window Workload (Delta-Copy) (read Speed 100%, Buffer 1024)

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 1  2  4  8  16  32  128

Ba
nd

w
id

th
 (M

B/
se

c)

Snapshot Period (secs)

Snapshot Period vs. Average Memory Bandwidth

0 MB/sec
2000 MB/sec
4000 MB/sec
6000 MB/sec
8000 MB/sec

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  2  4  8  16  32  128N
or

m
al

iz
ed

 B
an

dw
id

th
 (d

im
en

si
on

le
ss

)

Snapshot Period (secs)

Snapshot Period vs. Normalized Average Memory Bandwidth

0 MB/sec
2000 MB/sec
4000 MB/sec
6000 MB/sec
8000 MB/sec

 0

 200

 400

 600

 800

 1000

 1  2  4  8  16  32  128

M
em

or
y 

C
op

y 
Ti

m
e 

(m
se

c)

Snapshot Period (secs)

Snapshot Period vs. Average Snapshot Memory Copy Time

0 MB/sec
2000 MB/sec
4000 MB/sec
6000 MB/sec
8000 MB/sec

 0

 512

 1024

 1536

 2048

 1  2  4  8  16  32  128

Av
er

ag
e 

D
irt

y 
Pa

ge
s 

(M
B)

Snapshot Period (secs)

Snapshot Period vs Maximum Snapshot Dirty Page Count

0 MB/sec
2000 MB/sec
4000 MB/sec
6000 MB/sec
8000 MB/sec

(b) Fast-Read Load

Figure 6.12: Runtime overhead of Delta-Copy Snapshotting on (a) slow-read, (b) fast-read, (c)
slow-write, and (d) fast-write guest loads with periods. Fast accesses performed at maximum rate
and slow accesses rate limited to ten percent of maximum. (Figure continues on next page.)



77 Chapter 6. Microbenchmark Evaluation

Static Window Workload (Delta-Copy) (write Speed 10%, Buffer 1024)

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000

 1  2  4  8  16  32  128

Ba
nd

w
id

th
 (M

B/
se

c)

Snapshot Period (secs)

Snapshot Period vs. Average Memory Bandwidth

0 MB/sec
2000 MB/sec
4000 MB/sec
6000 MB/sec
8000 MB/sec

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  2  4  8  16  32  128N
or

m
al

iz
ed

 B
an

dw
id

th
 (d

im
en

si
on

le
ss

)

Snapshot Period (secs)

Snapshot Period vs. Normalized Average Memory Bandwidth

0 MB/sec
2000 MB/sec
4000 MB/sec
6000 MB/sec
8000 MB/sec

 0

 200

 400

 600

 800

 1000

 1  2  4  8  16  32  128

M
em

or
y 

C
op

y 
Ti

m
e 

(m
se

c)

Snapshot Period (secs)

Snapshot Period vs. Average Snapshot Memory Copy Time

0 MB/sec
2000 MB/sec
4000 MB/sec
6000 MB/sec
8000 MB/sec

 0

 512

 1024

 1536

 2048

 1  2  4  8  16  32  128

Av
er

ag
e 

D
irt

y 
Pa

ge
s 

(M
B)

Snapshot Period (secs)

Snapshot Period vs Maximum Snapshot Dirty Page Count

0 MB/sec
2000 MB/sec
4000 MB/sec
6000 MB/sec
8000 MB/sec

(c) Slow-Write Load

Figure 6.12: Runtime overhead of Delta-Copy Snapshotting on (a) slow-read, (b) fast-read, (c)
slow-write, and (d) fast-write guest loads with periods. Fast accesses performed at maximum rate
and slow accesses rate limited to ten percent of maximum. (Figure continues on next page.)



6.3. Microbenchmark Evaluation 78

Static Window Workload (Delta-Copy) (write Speed 100%, Buffer 1024)

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000

 1  2  4  8  16  32  128

Ba
nd

w
id

th
 (M

B/
se

c)

Snapshot Period (secs)

Snapshot Period vs. Average Memory Bandwidth

0 MB/sec
2000 MB/sec
4000 MB/sec
6000 MB/sec
8000 MB/sec

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  2  4  8  16  32  128N
or

m
al

iz
ed

 B
an

dw
id

th
 (d

im
en

si
on

le
ss

)

Snapshot Period (secs)

Snapshot Period vs. Normalized Average Memory Bandwidth

0 MB/sec
2000 MB/sec
4000 MB/sec
6000 MB/sec
8000 MB/sec

 0

 200

 400

 600

 800

 1000

 1  2  4  8  16  32  128

M
em

or
y 

C
op

y 
Ti

m
e 

(m
se

c)

Snapshot Period (secs)

Snapshot Period vs. Average Snapshot Memory Copy Time

0 MB/sec
2000 MB/sec
4000 MB/sec
6000 MB/sec
8000 MB/sec

 0

 512

 1024

 1536

 2048

 1  2  4  8  16  32  128

Av
er

ag
e 

D
irt

y 
Pa

ge
s 

(M
B)

Snapshot Period (secs)

Snapshot Period vs Maximum Snapshot Dirty Page Count

0 MB/sec
2000 MB/sec
4000 MB/sec
6000 MB/sec
8000 MB/sec

(d) Fast-Write Load

Figure 6.12: Runtime overhead of Delta-Copy Snapshotting on (a) slow-read, (b) fast-read, (c)
slow-write, and (d) fast-write guest loads with periods. Fast accesses performed at maximum rate
and slow accesses rate limited to ten percent of maximum. (Figure continued from previous page.)



79 Chapter 6. Microbenchmark Evaluation

performance fast-read load, Figure 6.7(c) shows a 10% baseline performance slow-write load, and

Figure 6.7(d) shows a 100% baseline performance fast-write load. Each of these subfigures contains

four graphs: the top graph shows the absolute benchmark performance versus snapshot period, the

second graph shows the normalized benchmark performance versus snapshot period, the third graph

shows average snapshot memory copy time versus snapshot period, and the bottom graph shows the

average dirty pages copied each snapshot versus snapshot period.

The test series measure the impact of simulated introspection by reading from the snapshot at

varying rates (baseline 0 MB/s, 2000 MB/s, 4000 MB/s, 6000 MB/s, and 8000 MB/s) and were

performed in the same manner as the stop-copy tests. Similar to stop-copy, the maximum observed

delta-copy introspection rates decrease with snapshot period for all four test series. Different from

stop-copy, the observed performance decrease is stronger with the fast-write load than was observed

for slow-write or both read loads.

6.3.3 Drifting Load Evaluation

Three memory-intensive guest load applications, specifically Kernel Build, ClamAV Antivirus Scan,

and Weka Machine Learning, were observed to incrementally operate on smaller sections of a larger

dataset over time. This memory access pattern is referred to in this thesis as a “drifting memory

window” access pattern. Delta-copy snapshotting displays an interesting behavior in the context

of these types of loads that was hinted at in the delta-copy snapshot guest-load only evaluation

for scenarios with short snapshot periods, slow-write access speeds, and large working-set-sizes.

Tests performed under these conditions behaved in a manner similiar to a guest-load scenario with a

smaller working-set-size because the load could not completely fill the working-set with new writes

between snapshots.

Rather than a static window, as in the previous two subsections, the drifting window memory

access pattern is now employed with the benchmark that allows the drifting window behavior to

be observed over a larger range of guest load conditions. Figure 6.13 illustrates how varying ac-

cess patterns can generate variously sized dirty page lists: pattern (a) writes into a 1024 MB static

window, pattern (b) writes into two overlapping 512 MB drifting windows, pattern (c) writes into

sixteen overlapping 64 MB drifting windows. Each of these patterns results in a unique Delta-Copy

snapshot memory copy overhead. The sixteen 64 MB drifting window memory access pattern dirt-



6.3. Microbenchmark Evaluation 80

1024 MB Window	



Buffer	
  1024	
  MB	
  

512 MB Window	



64	



512 MB Window	



64	

64	

64	

64	

64	

64	

64	

64	

64	



Memory Access Pattern (a) 

Memory Access Pattern (b) 

Memory Access Pattern (c) 

Dirty	
  Pages	
  

Dirty	
  Pages	
  

Dirty	
  Pages	
  

Figure 6.13: Memory access pattern comparison and the effect of various write patterns on dirty
page creation. All three patterns write 1024 MB into the buffer but in different ways: pattern (a)
writes 1024 MB into a static 1024 MB window, pattern (b) writes 1024 MB into two overlapping
512 MB drifting windows, pattern (c) writes 1024 MB total into sixteen overlapping 64 MB drifting
windows. Each of these patterns results in different dirty page list sizes with corresponding effects
on Delta-Copy snapshot memory copy overhead.

ies fewer pages than the single 1024 MB window, resulting in a faster delta-copy snapshot, despite

the fact that each memory access pattern writes the same number of megabytes in each scenario.

Drifting-Load: No Load/Spin Load

There is no need to re-evaluate the no guest load conditions because only the guest load is changing;

previous results for Delta-Copy Snapshot are sufficient.

Drifting-Load: Guest Load

The snapshotting mechanisms are evaluated with drifting write loads in several conditions: three

different drifting window sizes (64, 512, and 1024 MB), and snapshot periods (1-128 seconds) all

writing at maximum rate 1024 MB buffers. Figure 6.14 illustrates how varying access patterns

were observed to effect snapshotting overhead for both (a) Stop-Copy snapshots and (b) Delta-

Copy snapshots. Each subfigure provides four different views into each testset, the top chart shows

absolute memory bandwidth, the next chart shows normalized memory bandwidth, the second chart

from the bottom shows average snapshot memory copy time, and the bottom chart shows average

dirty pages copied per snapshot.



81 Chapter 6. Microbenchmark Evaluation

Drifting Window Workload (Stop-Copy) (Speed 100%)

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000

 1  2  4  8  16  32  128

W
rit

e 
Ba

nd
w

id
th

 (M
B/

se
c)

Snapshot Period (secs)

Snapshot Period vs. Average Requests Handled per Second

64 MB Window
512 MB Window

1024 MB Window

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  2  4  8  16  32  128

W
rit

e 
Ba

nd
w

id
th

 (d
im

en
si

on
le

ss
)

Snapshot Period (secs)

Snapshot Period vs. Normalized Average Requests Handled per Second

64 MB Window
512 MB Window

1024 MB Window

 0

 200

 400

 600

 800

 1000

 1  2  4  8  16  32  128

Av
er

ag
e 

Sn
ap

sh
ot

 S
to

p 
Ti

m
e

Snapshot Period (secs)

Snapshot Period vs. Average Snapshot Stop Time

64 MB Window
512 MB Window

1024 MB Window

 0

 512

 1024

 1536

 2048

 1  2  4  8  16  32  128Av
er

ag
e 

Sn
ap

sh
ot

 D
irt

y 
Pa

ge
s 

(M
B)

Snapshot Period (secs)

Snapshot Period vs Maximum Snapshot Dirty Page Count

64 MB Window
512 MB Window

1024 MB Window

(a) Stop-Copy Snapshot

Figure 6.14: Effect of varying memory access patterns on snapshotting overhead for (a) stop-copy
and (b) delta-copy snapshotted guests. (Continued on next page.)



6.3. Microbenchmark Evaluation 82

Drifting Window Workload (Delta-Copy) (Speed 100%)

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000

 1  2  4  8  16  32  128

W
rit

e 
Ba

nd
w

id
th

 (M
B/

se
c)

Snapshot Period (secs)

Snapshot Period vs. Average Requests Handled per Second

 64 MB Window
 512 MB Window

 1024 MB Window

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  2  4  8  16  32  128

W
rit

e 
Ba

nd
w

id
th

 (d
im

en
si

on
le

ss
)

Snapshot Period (secs)

Snapshot Period vs. Normalized Average Requests Handled per Second

 64 MB Window
 512 MB Window

 1024 MB Window

 0

 200

 400

 600

 800

 1000

 1  2  4  8  16  32  128

Av
er

ag
e 

Sn
ap

sh
ot

 S
to

p 
Ti

m
e

Snapshot Period (secs)

Snapshot Period vs. Average Snapshot Stop Time

 64 MB Window
 512 MB Window

 1024 MB Window

 0

 512

 1024

 1536

 2048

 1  2  4  8  16  32  128Av
er

ag
e 

Sn
ap

sh
ot

 D
irt

y 
Pa

ge
s 

(M
B)

Snapshot Period (secs)

Snapshot Period vs Maximum Snapshot Dirty Page Count

 64 MB Window
 512 MB Window

 1024 MB Window

(b) Delta-Copy Snapshot

Figure 6.14: (Continued from previous page.) Effect of varying memory access patterns on snap-
shotting overhead for (a) stop-copy and (b) delta-copy snapshotted guests.



83 Chapter 6. Microbenchmark Evaluation

The Stop-Copy snapshot chart shows no difference between the working-set-sizes, which is

expected because stop-copy snapshotting has no inherent guest-load dependency. As seen in the

average dirty pages copied per snapshot chart, all pages are copied in each snapshot regardless of

guest load behavior.

The Delta-Copy snapshot exhibits unique and interesting behavior with the drifting guest loads.

As with the static-window loads tested in the previous section, the performance of the Memory Load

Microbenchmark test changes with working-set-size; larger working sets perform worse because

more pages must be copied per snapshot. However, the drifting-window guest load will cause the

load to perform differently under different snapshotting period conditions. For example, at one

second snapshot period the 64 MB drifting window can be observed to generate roughly 64 MB of

dirty pages per snapshot but at 128.0 second snapshot period it has had time to dirty all 1024 MB

of pages in it’s buffer. In between these snapshot periods, the drifting window writes proportionally

more memory as the period lengthens. As a comparison with the static-window tests of the previous

section, the 64 MB drifting window in a 1024 MB buffer can be said to merge the performance of a

64 MB working-set-size static load at 1 second snapshot period and the 1024 MB working-set-size

static load at the 128.0 second snapshot period.

Drifting-Load: Introspection Load

Introspection load testing of the drifting-load benchmark was not performed and may be explored

in future work.

6.3.4 Pre-Copy Snapshot Evaluation

The Pre-Copy snapshotting mechanism is a variation on the Delta-Copy mechanism with the addi-

tion of a capability to eagerly copy memory pages into the snapshot before the snapshot stop time

using a special precopy thread. Listing 6.2 contains pseudo-code describing the precopy thread that

eagerly copies dirty pages after the snapshot has been released from introspection.



6.3. Microbenchmark Evaluation 84

Listing 6.2: Precopy Thread Pseudo-Code Implementation
1 void precopy thread()
2 {
3 sync dirty pages();
4 while( precopy active ) {
5 copy if dirty and clear( page++ );
6 if( time > last time + SYNC PERIOD ) {
7 sync dirty pages();
8 }
9 }

10 }

Pre-Copy: No Load/Spin Load

The No Load/Spin Load tests only validate the memory copy performance during snapshot time

and so no results are presented for the Pre-Copy snapshot mechanism. This is because the precopy

mechanism is only enabled after a snapshot has been released by the introspection application and

is disabled before the snapshot is taken. The snapshotting mechanism for Pre-Copy is actually

Delta-Copy, if the snapshot is never released by the introspection application.

Pre-Copy: Guest Load

The evaluation of the Precopy mechanism was performed using a static window benchmark (read

and write) of varying working-set-size (64,512,1024 MB) and access speed (10% and 100% of

baseline maximum). Figure 6.15 contains two subfigures, (a) shows the reads, and (b) shows

the writes. Each chart illustrates the normalized performance overhead of the microbenmark under

test at varying snapshot periods with Precopy disabled (delta-copy) and Pre-Copy enabled with

unlimited pre-copy transfer bandwidth.

In each case, the performance of the unlimited precopy condition is worse than the delta-copy.

Pre-copy slows reads and writes alike, however, writes are most significantly impacted. The impact

of pre-copy independent of snapshotting (the 128.0 s snapshot period), is 20% for both the 100%

speed write and the 10% speed write. The microbenchmark performance decreases with buffer size

for writes as the precopy thread increases. This effect is examined more in the key results, later on

in this section.



85 Chapter 6. Microbenchmark Evaluation

Precopy Drift Rates and Precopy Xfer Rates
Snapshot Period vs. Normalized Average read Requests Handled per Second

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  2  4  8  16  32  128

N
or

m
al

iz
ed

 B
an

dw
id

th
 (u

ni
tle

ss
)

Snapshot Period (secs)

Drift Window 64 MB, Speed 100%

Precopy Off
Precopy Unlimited

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  2  4  8  16  32  128

N
or

m
al

iz
ed

 B
an

dw
id

th
 (u

ni
tle

ss
)

Snapshot Period (secs)

Drift Window 512 MB, Speed 100%

Precopy Off
Precopy Unlimited

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  2  4  8  16  32  128

N
or

m
al

iz
ed

 B
an

dw
id

th
 (u

ni
tle

ss
)

Snapshot Period (secs)

Drift Window 1024 MB, Speed 100%

Precopy Off
Precopy Unlimited

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  2  4  8  16  32  128

N
or

m
al

iz
ed

 B
an

dw
id

th
 (u

ni
tle

ss
)

Snapshot Period (secs)

Drift Window 64 MB, Speed 10%

Precopy Off
Precopy Unlimited

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  2  4  8  16  32  128

N
or

m
al

iz
ed

 B
an

dw
id

th
 (u

ni
tle

ss
)

Snapshot Period (secs)

Drift Window 512 MB, Speed 10%

Precopy Off
Precopy Unlimited

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  2  4  8  16  32  128

N
or

m
al

iz
ed

 B
an

dw
id

th
 (u

ni
tle

ss
)

Snapshot Period (secs)

Drift Window 1024 MB, Speed 10%

Precopy Off
Precopy Unlimited

(a) Read Load

Figure 6.15: Runtime overhead of Pre-Copy Snapshotting on (a) read and (b) write guest loads
with varying working set sizes and access rates. Performance of delta copy (or ”Precopy Off”) is
compared unlimited precopy rate performance. (Figure continues on next page.)



6.3. Microbenchmark Evaluation 86

Precopy Drift Rates and Precopy Xfer Rates
Snapshot Period vs. Normalized Average write Requests Handled per Second

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  2  4  8  16  32  128

N
or

m
al

iz
ed

 B
an

dw
id

th
 (u

ni
tle

ss
)

Snapshot Period (secs)

Drift Window 64 MB, Speed 100%

Precopy Off
Precopy Unlimited

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  2  4  8  16  32  128

N
or

m
al

iz
ed

 B
an

dw
id

th
 (u

ni
tle

ss
)

Snapshot Period (secs)

Drift Window 512 MB, Speed 100%

Precopy Off
Precopy Unlimited

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  2  4  8  16  32  128

N
or

m
al

iz
ed

 B
an

dw
id

th
 (u

ni
tle

ss
)

Snapshot Period (secs)

Drift Window 1024 MB, Speed 100%

Precopy Off
Precopy Unlimited

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  2  4  8  16  32  128

N
or

m
al

iz
ed

 B
an

dw
id

th
 (u

ni
tle

ss
)

Snapshot Period (secs)

Drift Window 64 MB, Speed 10%

Precopy Off
Precopy Unlimited

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  2  4  8  16  32  128

N
or

m
al

iz
ed

 B
an

dw
id

th
 (u

ni
tle

ss
)

Snapshot Period (secs)

Drift Window 512 MB, Speed 10%

Precopy Off
Precopy Unlimited

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  2  4  8  16  32  128

N
or

m
al

iz
ed

 B
an

dw
id

th
 (u

ni
tle

ss
)

Snapshot Period (secs)

Drift Window 1024 MB, Speed 10%

Precopy Off
Precopy Unlimited

(b) Write Load

Figure 6.15: (Figure continued from previous page.) Runtime overhead of Pre-Copy Snapshotting
on (a) read and (b) write guest loads with varying working set sizes and access rates. Performance
of delta copy (or ”Precopy Off”) is compared unlimited precopy rate performance.



87 Chapter 6. Microbenchmark Evaluation

Pre-Copy: Introspection Load

After examining the effect of guest-loads on pre-copy snapshotting, introspection loads are now

added to the snapshotted-guest with unlimited precopy scenario. Figure 6.16 illustrates the

runtime overhead of the pre-copy snapshotting and introspection on a static-window Memory Load

Microbenchmark-loaded guest. Figure 6.7(a) shows a 10% baseline performance slow-read load,

Figure 6.7(b) shows a 100% baseline performance fast-read load, Figure 6.7(c) shows a 10% base-

line performance slow-write load, and Figure 6.7(d) shows a 100% baseline performance fast-write

load. Each of these subfigures contains four graphs: the top graph shows the absolute benchmark

performance versus snapshot period, the second graph shows the normalized benchmark perfor-

mance versus snapshot period, the third graph shows average snapshot memory copy time versus

snapshot period, and the bottom graph shows the average dirty pages copied each snapshot versus

snapshot period.

The introspection load test series measures the impact of introspection by reading from the

snapshot at varying rates (baseline 0 MB/s, 2000 MB/s, 4000 MB/s, 6000 MB/s, and 8000 MB/s)

and were performed in the same manner as the stop-copy and delta-copy tests. Similar to stop-copy,

the maximum observed delta-copy introspection rates decrease with snapshot period for all four test

series. Different from stop-copy, the observed introspection performance decrease is stronger with

the fast-write load than was observed for slow-write or both read loads.

The Pre-Copy snapshot with introspection results provide a unique view into the behavior of

the pre-copy mechanism. The average of dirty page count is observed to fall to nearly zero for both

of the 128 second snapshot period write tests and decrease slightly in the 32.0 period tests. This

result implies that the pre-copy mechanism is functional, even if it is not copying enough pages to

overcome it’s overhead by reducing the snapshot copy costs.

More research will be required to understand why the pre-copy mechanism does not increase

performance. The mechanism may be useful in regimes that were not explored here. Further re-

search into reducing the unallocated snapshot stop-time costs unrelated to memory copying may

change the balance of costs that contributes to the failure of the Pre-Copy snapshotting mechanism.



6.3. Microbenchmark Evaluation 88

Static Window Workload (Pre-Copy) (read Speed 10%, Buffer 1024)

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 1  2  4  8  16  32  128

Ba
nd

w
id

th
 (M

B/
se

c)

Snapshot Period (secs)

Snapshot Period vs. Average Memory Bandwidth

0 MB/sec
2000 MB/sec
4000 MB/sec
6000 MB/sec
8000 MB/sec

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  2  4  8  16  32  128N
or

m
al

iz
ed

 B
an

dw
id

th
 (d

im
en

si
on

le
ss

)

Snapshot Period (secs)

Snapshot Period vs. Normalized Average Memory Bandwidth

0 MB/sec
2000 MB/sec
4000 MB/sec
6000 MB/sec
8000 MB/sec

 0

 200

 400

 600

 800

 1000

 1  2  4  8  16  32  128

M
em

or
y 

C
op

y 
Ti

m
e 

(m
se

c)

Snapshot Period (secs)

Snapshot Period vs. Average Snapshot Memory Copy Time

0 MB/sec
2000 MB/sec
4000 MB/sec
6000 MB/sec
8000 MB/sec

 0

 512

 1024

 1536

 2048

 1  2  4  8  16  32  128

Av
er

ag
e 

D
irt

y 
Pa

ge
s 

(M
B)

Snapshot Period (secs)

Snapshot Period vs Maximum Snapshot Dirty Page Count

0 MB/sec
2000 MB/sec
4000 MB/sec
6000 MB/sec
8000 MB/sec

(a) Slow-Read Load

Figure 6.16: Pre-Copy Snapshotting on (a) slow-read, (b) fast-read, (c) slow-write, and (d) fast-
write guest loads with varying periods. Fast accesses at max rate and slow accesses rate limited to
ten percent of max. Pre-Copy rate unlimited for all tests shown. (Figure continues on next page.)



89 Chapter 6. Microbenchmark Evaluation

Static Window Workload (Pre-Copy) (read Speed 100%, Buffer 1024)

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 1  2  4  8  16  32  128

Ba
nd

w
id

th
 (M

B/
se

c)

Snapshot Period (secs)

Snapshot Period vs. Average Memory Bandwidth

0 MB/sec
2000 MB/sec
4000 MB/sec
6000 MB/sec
8000 MB/sec

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  2  4  8  16  32  128N
or

m
al

iz
ed

 B
an

dw
id

th
 (d

im
en

si
on

le
ss

)

Snapshot Period (secs)

Snapshot Period vs. Normalized Average Memory Bandwidth

0 MB/sec
2000 MB/sec
4000 MB/sec
6000 MB/sec
8000 MB/sec

 0

 200

 400

 600

 800

 1000

 1  2  4  8  16  32  128

M
em

or
y 

C
op

y 
Ti

m
e 

(m
se

c)

Snapshot Period (secs)

Snapshot Period vs. Average Snapshot Memory Copy Time

0 MB/sec
2000 MB/sec
4000 MB/sec
6000 MB/sec
8000 MB/sec

 0

 512

 1024

 1536

 2048

 1  2  4  8  16  32  128

Av
er

ag
e 

D
irt

y 
Pa

ge
s 

(M
B)

Snapshot Period (secs)

Snapshot Period vs Maximum Snapshot Dirty Page Count

0 MB/sec
2000 MB/sec
4000 MB/sec
6000 MB/sec
8000 MB/sec

(b) Fast-Read Load

Figure 6.16: Pre-Copy Snapshotting on (a) slow-read, (b) fast-read, (c) slow-write, and (d) fast-
write guest loads with varying periods. Fast accesses at max rate and slow accesses rate limited to
ten percent of max. Pre-Copy rate unlimited for all tests shown. (Figure continued on next page.)



6.3. Microbenchmark Evaluation 90

Static Window Workload (Pre-Copy) (write Speed 10%, Buffer 1024)

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000

 1  2  4  8  16  32  128

Ba
nd

w
id

th
 (M

B/
se

c)

Snapshot Period (secs)

Snapshot Period vs. Average Memory Bandwidth

0 MB/sec
2000 MB/sec
4000 MB/sec
6000 MB/sec
8000 MB/sec

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  2  4  8  16  32  128N
or

m
al

iz
ed

 B
an

dw
id

th
 (d

im
en

si
on

le
ss

)

Snapshot Period (secs)

Snapshot Period vs. Normalized Average Memory Bandwidth

0 MB/sec
2000 MB/sec
4000 MB/sec
6000 MB/sec
8000 MB/sec

 0

 200

 400

 600

 800

 1000

 1  2  4  8  16  32  128

M
em

or
y 

C
op

y 
Ti

m
e 

(m
se

c)

Snapshot Period (secs)

Snapshot Period vs. Average Snapshot Memory Copy Time

0 MB/sec
2000 MB/sec
4000 MB/sec
6000 MB/sec
8000 MB/sec

 0

 512

 1024

 1536

 2048

 1  2  4  8  16  32  128

Av
er

ag
e 

D
irt

y 
Pa

ge
s 

(M
B)

Snapshot Period (secs)

Snapshot Period vs Maximum Snapshot Dirty Page Count

0 MB/sec
2000 MB/sec
4000 MB/sec
6000 MB/sec
8000 MB/sec

(c) Slow-Write Load

Figure 6.16: Pre-Copy Snapshotting on (a) slow-read, (b) fast-read, (c) slow-write, and (d) fast-
write guest loads with varying periods. Fast accesses at max rate and slow accesses rate limited to
ten percent of max. Pre-Copy rate unlimited for all tests shown. (Figure continues on next page.)



91 Chapter 6. Microbenchmark Evaluation

Static Window Workload (Pre-Copy) (write Speed 100%, Buffer 1024)

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000

 1  2  4  8  16  32  128

Ba
nd

w
id

th
 (M

B/
se

c)

Snapshot Period (secs)

Snapshot Period vs. Average Memory Bandwidth

0 MB/sec
2000 MB/sec
4000 MB/sec
6000 MB/sec
8000 MB/sec

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  2  4  8  16  32  128N
or

m
al

iz
ed

 B
an

dw
id

th
 (d

im
en

si
on

le
ss

)

Snapshot Period (secs)

Snapshot Period vs. Normalized Average Memory Bandwidth

0 MB/sec
2000 MB/sec
4000 MB/sec
6000 MB/sec
8000 MB/sec

 0

 200

 400

 600

 800

 1000

 1  2  4  8  16  32  128

M
em

or
y 

C
op

y 
Ti

m
e 

(m
se

c)

Snapshot Period (secs)

Snapshot Period vs. Average Snapshot Memory Copy Time

0 MB/sec
2000 MB/sec
4000 MB/sec
6000 MB/sec
8000 MB/sec

 0

 512

 1024

 1536

 2048

 1  2  4  8  16  32  128

Av
er

ag
e 

D
irt

y 
Pa

ge
s 

(M
B)

Snapshot Period (secs)

Snapshot Period vs Maximum Snapshot Dirty Page Count

0 MB/sec
2000 MB/sec
4000 MB/sec
6000 MB/sec
8000 MB/sec

(d) Fast-Write Load

Figure 6.16: (Figure continued from previous page.) Pre-Copy Snapshotting on (a) slow-read, (b)
fast-read, (c) slow-write, and (d) fast-write guest loads with varying periods. Fast accesses at max
rate and slow rate limited to ten percent of max. Pre-Copy rate unlimited for all tests shown.



6.4. Microbenchmark Evaluation: Key Results 92

6.4 Microbenchmark Evaluation: Key Results

The systematic evaluation of the microbnechmark introspection scenarios revealed several key re-

sults about efficient introspection. This section will review the microbenchmark evaluation, call out

those key results, and provide some discussion.

6.4.1 Snapshot Frequency Most Significant Influence on Guest Performance

Snapshot frequency dictats how often the guest is snapshotted. In order ot maintain coherence, the

snapshots are performed with the guest paused. While the length of these pauses are be dictated

by the specific properties of the snapshotting mechanism and guest load, the cost of pausing can be

amortized by performing fewer snapshots in a given period of time.

6.4.2 Delta-Copy Snapshot Offers Superior Performance

Delta-Copy snapshotting offers performance gains for guest loads and is the best performing snap-

shot solution. A wide variety of memory access patterns were examined in the microbenchmark

evaluation but delta-copy snapshotting offered superior performance over stop-copy and pre-copy.

Delta-copy snapshotting is the preferred snapshotting mechanism for normal guest operation.

6.4.3 Unaccounted Snapshot Stop-Time

The actual causes of slowdown due to the unaccounted snapshot stop-time are not fully understood.

In addition to the snapshot memory copy time, which is directly measurable, the unaccounted slow-

down accounted for Stop-Copy in Figure 6.4 and Delta-Copy in Figure 6.9 is a significant factor

in snapshot stop time. The unaccounted snapshot stop-time was so significant that it dictated the

minimum snapshot periods tested in this work.

Further research should explore whether these slowdowns are attributable to the process of paus-

ing and restarting the guest. If the unaccounted slowdown is related to pause-restart, large perfor-

mance gains could be recovered by modifying the hypervisor pause-and-resume mechanisms to

improve efficiency of snapshotting while still maintaining memory coherency.



93 Chapter 6. Microbenchmark Evaluation

6.4.4 Dirty Page Tracking is Cheap

Delta-Copy snapshotting relies on a dirty-page tracking mechanism that is implemented by the

KVM kernel driver. Table 6.2 compares guest Memory Bandwidth Microbenchmark read and write

performance with dirty page tracking enabled and disabled for a range of buffer sizes. The perfor-

mance impact of dirty page tracking is observed to be negligible for both reads and writes over a

range of buffer sizes. Dirty page tracking is used throughout virtualization and has been engineered

to be cheap.

6.4.5 Introspection Impact on Guest

The systematic evaluation of the microbenchmark introspection scenarios revealed that introspec-

tion does not impact snapshotting stop time, but can impact guest-load performance through mem-

ory bandwidth competition. Figure 6.17 illustrates impact of introspection on the guest isolated

from snapshotting. The write guest load is observed to approach a bandwidth cap of 6000 MB/s

in the presence of an 8000 MB/s introspection read load. The read guest load is observed to suffer

a uniform performance impact across all guest loads when in the presence of introspection loads.

The exact underlying causes of these impacts is left unexplored but likely require detailed, platform

specific architectural-level modeling to explain. In a practical virtualized system – like the systems

assumed to be present in this thesis – the guest-load would not only be competeing with the intro-

spection for memory bandwidth, but also with other guests and their potential introspection, limiting

the utility of such models in predicting practical system performance.

lmbench Read Test (MB/s) Write Test (MB/s)
Buffer Size (MB) No Tracking With Tracking No Tracking With Tracking

1 MB 7135 7165 10387 10231
64 MB 5936 5938 7885 7674

1024 MB 5908 5957 7896 7808
2048 MB 207 183 233 247

Table 6.2: Memory Bandwidth Microbenchmark performance with dirty page tracking enabled and
disabled for a range of configurations.



6.4. Microbenchmark Evaluation: Key Results 94

Static Window Introspection (Stop-Copy) (Period 128.0, Buffer 1024)

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0  2000  4000  6000  8000  10000 12000 14000

In
tro

sp
ec

te
d 

G
ue

st
 B

an
dw

id
th

 (M
B/

se
c)

No Introspection Guest Bandwidth (MB/sec)

Read Guest Load

0 MB/sec
2000 MB/sec
4000 MB/sec
6000 MB/sec
8000 MB/sec

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0  2000  4000  6000  8000  10000 12000 14000

In
tro

sp
ec

te
d 

G
ue

st
 B

an
dw

id
th

 (M
B/

se
c)

No Introspection Guest Bandwidth (MB/sec)

Write Guest Load

0 MB/sec
2000 MB/sec
4000 MB/sec
6000 MB/sec
8000 MB/sec

Figure 6.17: Impact of varied introspection loads on the Memory Load Microbenchmark isolated
from snapshotting.

6.4.6 Stop-Copy Snapshotting Impacts Only Guest Runtime

The performance impact imposed upon guest loads by the Stop-and-Copy snapshot mechanism

is observed to be independent of the three guest loads tested: no load, Application Runtime Mi-

crobenchmark, Memory Load Microbenchmark. Figure 6.3 shows that the snapshot memory copy

time is not affected by the Application Runtime Microbenchmark compared to an unloaded guest.

The overheads accounted for the Application Runtime Microbenchmark-loaded guest in Figure 6.4

correspond with with the overheads observed on the Memory Load Microbenchmark-loaded guest

configuration illustrated in Figure 6.6. Stop-and-Copy snapshotting is expensive in terms of snapshot-

stop time overhead compared to Delta-Copy but offers a very consistent stop time across all ob-

served guest-loads, which could be useful for some introspection application scenarios.

6.4.7 Dirty Page List Synchronization is Expensive

Dirty page tracking is cheap, but synchronizing the list of dirty pages between the tracking mech-

anism and the efficient introspection is expensive. Table 6.3 compares Memory Bandwidth Mi-

crobenchmark read and write performance with dirty page table synchronization performed at var-

ious frequencies. The read performance of the guest is largely unaffected by synchronization even

when synchronization is performed four times per second, but guest write performance is halved



95 Chapter 6. Microbenchmark Evaluation

at 2 Hz synchronization frequency with a 1024 MB guest write buffer. This is not a problem for

the Delta-Copy snapshotting mechanism, as it must only synchronize the dirty page tracking once

per snapshot, that synchronization happens while the guest is paused, and the costs of tracking are

small compared to the impact of the snapshot itself. The Pre-Copy snapshotting mechanism relies

on searching the dirty-page list for new pages to eagerly pre-copy while the guest is still running.

Updateing the dirty-page list more frequently during guest operation reveals more pages to pre-

copy. The expense of dirty-page list synchronization limits the frequency that new pages can be

pre-copied and hamstrings the effectiveness of the pre-copy snapshot mechanism overall.

6.5 Efficient Introspection Performance Guidance

The systematic evaluation of the efficient introspection with microbenchmarking revealed several

key facts that will provide guidance on new applications. First, the frequency of snapshotting and

the memory access pattern of the guest load are determining factors in predicting an applications

performance under introspection. Second, Delta-Copy snapshotting reduces performance overhead

compared to Stop-Copy and Pre-Copy snapshotting. Figure 6.18 is a heat map of observed per-

formance over all the Delta-Copy Memory Load Microbenchmark trials presented in this thesis

regardless of specific configuration. The results were aggregated by binning the trials by snapshot

period (0.25,0.5,1,2,4,8,16,32, and 128 seconds) and observed average dirty pages per snapshot

ranges ( >1024, 1024-512, 512-256, 256-64, and <64 MB). Each bin is annotated with the average

normalized performance overhead and colored to indicate the amount of impact; 100% performance

lmbench Read Test (MB/s) Write Test (MB/s)
Buffer Size (MB) No Sync 4 Hz No Sync 1 Hz 2 Hz 4 Hz

1 MB 7135 6830 10387 9916 9903 9896
64 MB 5936 5657 7885 7610 7841 7705

512 MB 5977 5732 7773 7845 7816 3654
1024 MB 5908 5715 7896 7771 3734 2611
2048 MB 207 152 233 171 192 188

Table 6.3: Memory Bandwidth Microbenchmark (lmbench) performance with dirty page synchro-
nization performed with various frequencies. Only dirty page synchronization was performed, no
memory was copied. The highlighted figures indicate an observed performance impact at 4 Hz for
the 512 MB lmbench write and 2/4 Hz for the 1024 MB lmbench write.



6.5. Efficient Introspection Performance Guidance 96

Snapshot Period (s) 
0.25 0.5 1 2 4 8 16 32 128 

D
irt

y 
Pa

ge
s/

Sn
ap

sh
ot

 R
an

ge
s (

M
B)

 >1024 None None None 63% 81% 91% 97% 99% 100% 

1024-
512 None None 37% 73% 88% 94% 97% 99% 100% 

512- 
256 None 28% 66% 86% 93% 96% 98% 100% 100% 

256- 
64 40% 63% 85% 93% 96% 98% 99% 100% 100% 

<64 45% 74% 87% 94% 97% 98% 99% 100% 100%* 

Figure 6.18: Efficient introspection delta-copy snapshot performance heat map for all tests presented
in this thesis. *Note: no tests were observed with snapshot period 128.0 and less than 64 MB of
dirty pages but performance in this regime will be 100%.

means no impact and is colored green, decreasing performance is more red. The general trends of

the heat map are that the longer snapshot period bins how better Memory Load Microbenchmark

performance and that the performance of microbenchmark increases as the average dirty pages per

snapshot decreases. No tests were observed to complete in the low-period high-dirty-pages corner

of the heat map. Those bins are labeled ”none” and colored white. It should be noted that no trials

were observed with less than 64 MB of average dirty pages at the 128.0 snapshot period, likely

because of operating system memory overheads unrelated to the loads, but intuition suggests that

performance should remain 100% that scenario.

The performance heat map can provide guidance in the prediction of a potential guest loads

performance with efficient introspection. The table would have to be computed for application to a

specific platform. In this way, the introspection application developer could tune the snapshotting

period to the memory access pattern of their guest load and find a performance overhead level that

met up with their definition of ”normal guest performance.” These predictions will be applied to

several potential introspection application scenarios in the next chapter.



Chapter 7

Potential Applications

This chapter discusses issues surrounding the implementation of two potential introspection security

applications. These applications are the signature-based antivirus scanner, which demonstrates full

memory signature generation at a single moment in time, and the network integrity manager, where

packets passing the guest-based firewall are verified against packets routed by the host. These

two security applications were previously too slow to tackle without efficient introspection. The

limitations associated with previously-existing introspection plaforms are presented in comparison.

7.1 Introspection Application Performance Goals

This thesis defines the introspection application performance target as follows: for a given task, in-

trospection should incur no additional penalty over performing that same task in a non-introspected

environment. For example, if a guest were performing a task while simultaneously sweeping mem-

ory for the presence of a virus, then the time to perform the sweep and the time to perform the

task should not vary when the memory sweep is performed from the hypervisor using introspection

instead of in the guest. Another important goal of performance evaluation will be characterising the

performance relative to existing introspection patterns (e.g. pause-resume, small atomic checks, and

incoherent memory sharing). The exact choice of performance metrics and guest workloads will be

chosen to match the specific scanning technique being demonstrated.

97



7.2. Potential Application: Antivirus Signature Memory Scan 98

1 

10 

100 

1000 

10000 

100000 

kernel 
symbol 

virtual 
address 

read 
memory 
chunk 

read 
memory 

loop 

Be
nc

hm
ar

k 
Ru

nt
im

e 
(s

ec
s)

 
Xen Zero-Copy 
Qemu One-Copy 
Qemu Serial-Socket 

LibVMI	
  Benchmark	
  Performance	
  Comparisons	
  

Figure 7.1: LibVMI benchmarks (kernel symbol translation, virtual address translation, read mem-
ory chunks, and read memory byte-by-byte) comparing performance between three interfaces: Xen
Zero-Copy, KVM/QEMU One-Copy Socket, and KVM/QEMU Serial Socket.

7.2 Potential Application: Antivirus Signature Memory Scan

Signature-based antivirus identifies virus infected memory by comparing the checksums of mem-

ory against a list of the checksums of known virus infected memory. Various hashing techniques

have been used for memory signature generation including MD5 hashes for Copilot by Petroni et

al. [16], SHA-1 for SecVisor by Seshadri et al. [17], or custom signature generation schemes like

that developed by Dolan-Gavitt et al. [18].

7.2.1 Previous Antivirus Capability

Previous introspection platforms that did not meet the requirements for Efficient Introspection were

evaluated for implementation of memory-signature antivirus scanning and found to be inadequate.

Figure 7.1 shows introspection memory access performance measurements for LibVMI accessing a

Xen guest, LibVMI accessing a KVM guest with a socket based interface, and LIbVMI accessing

a KVM guest with a serial style interface. While this figure only compares the relative runtimes of

the LibVMI benchmarks, the read access performance of the Xen guest was observed to operate at

the native memory access of the host computer.

Xen can be observed to access guest memory at native memory access speeds and at first glance

appears to be a competitive platform for the implementation of signature-based antivirus introspec-

tion. However, in order to realize the benefit of memory coherency, the Xen guest would have to



99 Chapter 7. Potential Applications

1 

VM 

Guest Load 

Snapshotting 

Guest 
Host 

Antivirus 
Scanner	



Figure 7.2: Block diagram showing the host-based Antivirus software performing memory hashing
on the introspected guest.

be paused for the entire antivirus scan. The Xen guest could also be run in parallel with the scan,

removing the guest-stop overhead entirely, but then a clever virus might be able to hide it’s presence

by moving through memory to stay ahead and out of reach of the signature generation mechanism.

Only scanning the entire memory at a single point in time can guarantee the signature mechanism

access to malicious memory.

The LibVMI interfaces to KVM can both be seen to operate at significantly lower than native

memory performances, approximately 5x slower for LibVMI One-Copy and 3000x slower for Lib-

VMI serial. These inefficient interfaces are themselves a bottleneck to implementation of a memory

intensive introspection application like memory-signature scanning without efficient introspection.

7.2.2 Antivirus with Efficient Introspection

The goal of the Antivirus Signature Memory Scan demonstration is not to create a practical virus

detection tool, instead, the goal is to define a limit to the memory bandwidth available to the in-

trospection check, exercise the introspection memory system, and demonstrate the feasibility of a

previously performance-limited application. Figure 7.2 shows a block diagram describing the pro-

cess of the host-based Antivirus Software performing memory hashing on the introspected guest.

The VM guest running it’s guest load is snapshotted by the hypervisor when triggered by the An-

tivirus Scanner introspection application. The hypervisor then shares the snapshotted memory with

the Antivirus scanner.

To this end, complex signature hashes will be eschewed in favor of minimizing CPU calculation.

Memory bandwidth requirements will be maximized by calculating a simple XOR-based checksum

for each page in guest physical memory for a given snapshot as shown in Listing 7.1. In the case



7.2. Potential Application: Antivirus Signature Memory Scan 100

Listing 7.1: Antivirus Case Study memory page XOR-hashing algorithm.
1

2 uint64 t HashThisPage( uint64 t ∗memory page, long page size bytes )
3 {
4 uint64 t hash = 0;
5 int i = 0;
6

7 for( i = 0; i < (page size bytes / sizeof(uint64 t)); i++ ) {
8 hash = hash ˆ memory page[i];
9 }

10 return hash;
11 }

of the computer used for this test, XOR-hashing was performed at approximately 8 GB/s. This

compares favorably with the maximum read speed observed on the same computer of 8.2 GB/s,

suggesting that the XOR-hashing algorithm was essentially memory bandwidth limited. The time

to create a complete page-by-page checksum list of the entire guest memory was recorded as the

time to perform a complete scan. Pause-resume models used previously would lose interactivity by

stopping the VM guest long enough to perform a complete scan.

7.2.3 Performance Evaluation of Antivirus with Efficient Introspection

The efficient introspection microbenchmark performance heat map from the previous chapter has

been overlayed with Antivirus-specific restrictions in Figure 7.3 contains The 0.25 second snapshot

period position on the performance heat map have been eliminated because the introspection ap-

plication would not have time to complete the antivirus signature generation between each of the

snapshots. At 0.5 seconds or above, the impact of the antivirus scan will decrease with increasing

between snapshots and checks. For given guest loads, the impact of snapshotting will decrease with

the dirty page access footprint of the guest load. The efficient introspection performance estimate

heat map can provide guidance on the implementation of the the Antivirus Signature Memory Scan.

Limitations of Antivirus Signature Memory Scan

The signature-based antivirus scanner only mimics the memory scanning action of a traditional

signature-based antivirus memory scanner and does not diagnose actual virus infections against



101 Chapter 7. Potential Applications

Snapshot Period (s) 
0.25 0.5 1 2 4 8 16 32 128 

D
irt

y 
Pa

ge
s/

Sn
ap

sh
ot

 (
M

B)
 

>1024 None None None 63% 81% 91% 97% 99% 100% 

1024 
-512 None None 37% 73% 88% 94% 97% 99% 100% 

512- 
256 None 28% 66% 86% 93% 96% 98% 100% 100% 

256- 
64 40% 63% 85% 93% 96% 98% 99% 100% 100% 

<64 45% 74% 87% 94% 97% 98% 99% 100% 100%* 

In
tro

sp
ec

t L
im

it	



Guest Memory Use + Buffer	



Figure 7.3: Efficient introspection microbenchmark performance heat map overlayed with Antivirus
specific limitations.

a large corpus of signatures. The performance profile of the Antivirus Signature Memory Scan

demonstration application will differ from that of a genuine Antivirus Signature Scanning software

in terms of memory, CPU, and disk use.

7.3 Potential Application: Network Integrity Manager

The Network Integrity Manager identifies virus infected guests by verifying packets allowed through

the guest-based firewalls against packets observed by the host. Packet verification reveals the pres-

ence of rootkits in the guest that, like the Mebroot rootkit, evade guest-based application firewalls

by injecting packets into undocumented interfaces within the NDIS netowrk driver stack.

7.3.1 Previous Network Scanning Capability.

Previously, with VMware VProbes, memory introspection performance issues limited the verifica-

tion to simply counting packets. VProbes operates by running a call-back routine that introspects the

guest when certain triggering events occur. In the case of the NetIM network scanner, the triggering

event was the guest network firewall passing a packet through to the network. The introspection ac-

tion of the initial NetIM prototype was to count that a packet had been passed by the guest firewall.

Copying any properties of the packet out of memory was not possible due to the nature of the



7.3. Potential Application: Network Integrity Manager 102

libpcap	
  Net	
  Monitor	
  

Guest	
  
Firewall	
  

netperf	
  

Test	
  
Des7na7on	
  

VMX	
  Root	
  
VMX	
  non-­‐root	
  

Network	
  Module	
  

VProbes	
  

Figure 7.4: This block diagram describes the major features of the Network Integrity Module and
it’s associated testing framework. The Net Monitor compares the traces collected with vprobes and
libcap. Netperf generates defined network traffic to the test destination.

VProbes introspection implementation. The VMware hypervisor pauses the guest while running

the introspection call-back routine. VMware VProbes actively limits the runtime of introspection

call-back routines to prevent the VProbes from incurring an adverse impact on the guest.

Currently the limiting factor in the performance of the Network Integrity Manager is the slow-

down imposed by instrumenting the guest firewall with the VMWare VProbes. For these tests the

Ubuntu 8.10 Intel Core-i7 host with 6 GB of RAM is running the VMWare Workstation 7.1.15

hypervisor deploying a Windows XPSP1 guest with 1 CPU and 512 MB of RAM. The network

performance was evaluated with netperf 2.4.5 [19] built to support spin waits between packet bursts

and running a standard TCP STREAM test. The baseline system performed the netperf TCP test at

312.93 Mbits/second. Enabling only the VProbes instrumentation with no data logging decreased

the netperf TCP test performance 37.35% to 196.04 Mbits/second. The counting-only Network

Integrity Manager reduced performance 42.11% to 181.16 Mbits/second.

Despite these limitations, the counting-only network packet verification can identify instances

of guest infection by the Mebroot virus. The Network Monitor compares both the host- and guest-

based network traffic views and Figure 7.4 is a block diagram of system.

While count-only verification can identify packets injected by the Mebroot sample, the efficient

introspection memory access could enable more advanced checking, like full packet comparison,

that could detect packet redirection man-in-the-middle attacks (and others).



103 Chapter 7. Potential Applications

VM 

Guest Load 

Guest 
Host 

Network 
Scanner	



Guest Firewall 

Host PCAP 

Internet	



Snapshotting 

PCAP Buffer 

Figure 7.5: Block diagram showing the host-based NetIM software performing differential analysis
comparing the outgoing packets passed by the guest firewall with the packets observed leaving the
guest.

7.3.2 NetIM with Efficient Introspection

In the initial VProbes implementation of the Network Integrity Manager, introspection performance

issues limited the implementation to only counting packets passed. Better security could be provided

if the NetIM could provide more complete packet comparisons. Efficient introspection potentially

provides the high-performance introspection mechanism neccessary to achieve these higher security

implementations.

Any potential NetIM implementation must overcome one specific limitation of the current

KVM-based efficient introspection prototype: increasing guest overhead with snapshot frequency.

Snapshotting every few seconds can be done cheaply for most loads, but snapshotting at every net-

work packet event would not be done in the context of efficient introspection. While efficient intro-

spection provides coherent, high-performance access to guest state, it does not support snapshotting

at network packet event scale. This same type of limitation is observed in standard OS-level packet

capturing and the solution is to cache network packets in a ring buffer until they can be processed.

This solution is also ideal for hypervisor-based introspection because it trades the costly snapshot

time for the abundant memory bandwidth available with efficient introspection.

Figure 7.5 contains a block diagram describing the process of the NetIM introspecting the guest

to obtain a list of packets passed by the outgoing guest firewall to compare with the list of pack-

ets observed leaving the guest by the host-based packet capture software. This implementation of

NetIM with efficient introspection can be compared with the block diagram of the VProbes imple-



7.3. Potential Application: Network Integrity Manager 104

mentation of the NetIM from Figure 7.4. Notable differences between the two are the addition of

snapshotting replacing the VProbes memory introspection interface and the instrumentation of the

guest firewall with the PCAP buffer that facilitates trading time for memory bandwidth.

Limitations of NetIM

Installing a ring buffer inside of the guest firewall inside of the guest means that the introspection

is only measuring which packets were passed by the guest firewall, not the integrity of the guest

firewall. A rootkit in the guest could subvert the behavior of the guest firewall to pass packets created

by the rookit and they would appear normal to the NetIM. The NetIM only exposes packets that hid

by inserting themselves behind the guest firewall, it makes no guarantees about the provenance of

packets that do not appear hidden. Other guest- or introspection-based security mitigations will

have to step in and fill this possible gap.

7.3.3 Performance Evaluation of NetIM with Efficient Introspection

Evaluating the potential performance of the NetIM with efficient introspection must begin with

understanding the requirements for supporting guest packet capture with the ring buffer. Then the

specific limitations on performance imposed by the NetIM must be examined in the context of our

knowledge of efficient introspection behavior informed by the microbenchmarking analysis.

In order for the NetIM to recover guest network packet information, the information must be

cached in the ring buffer by the guest firewall. The potential NetIM application only retrieves

network packet information during a snapshot event. The ring buffer must be sized appropriately

for all the packet information to be successfully stored between hypervisor snapshots.

The exact sizing of the buffer can be estimated by multiplying the time between snapshot events

by the network traffic rate of the guest. Figure 7.6 contains a chart illustrating the memory re-

quirements for buffering outgoing network packets at various performance levels and snapshotting

periods. Three performance level are plotted: slow, 1 MB/s, which is actually faster than required

for most desktop computing tasks like online banking or writing documents; medium, 10 MB/s,

which represents the requirements of streaming video online; and, fast, 700 MB/s, which was the

fastest network transfer rate observed from our test platform. The chart was limited to only display



105 Chapter 7. Potential Applications

0	
  

128	
  

256	
  

384	
  

0.25	
  0.5	
   1	
   2	
   4	
   8	
   16	
   32	
   64	
   128	
  

Ri
ng
	
  B
uff

er
	
  S
iz
e	
  
(M

B)
	
  

Snapshot	
  Period	
  (s)	
  

Minimum	
  Predicted	
  Ring	
  Buffer	
  Size	
  Requirements	
  

Fast	
  (700MBS)	
  

Medium	
  (10MBS)	
  

Slow	
  (1MBS)	
  

Figure 7.6: Chart illustrating the memory requirements to buffer outgoing network packets for
analysis by the NetIM.

ring buffer sizes less than 512 MB, or one-quarter of the total VM size, as spending that much mem-

ory to support the NetIM application would represent an undue burden on normal guest operation.

The same general trend is seen for all three performances levels, at low periods the minimum ring

buffer size requirements are small but the ring buffer size requirements as snapshots become further

apart in time.

The packet capture ring buffer size imposes memory overheads on the guest, but also effects

guest performance in other ways. Ring buffer size limits the maximum time between snapshots.

For the slow network performance level shown in Figure 7.6 this maximum time is approximately

a minute between snapshots for a 64 MB buffer, but for the fast performance level the smallest time

between snapshots is 0.5 seconds for a reasonably sized buffer. The number of bytes written into the

ring buffer will also affect snapshot stop time performance. Like any other dirty pages, the pages

written into the ring buffer will have to be copied into the snapshot memory during the snapshot by

the Delta-Copy snapshot mechanism.

These application specific limitations – ring buffer memory overhead, ring buffer capacity, and

ring buffer effect on snapshot performance – must be examined in the context of snapshot perfor-

mance in order to determine the feasability of the potential NetIM application. Figure 7.7 contains

the efficient introspection Performance Estimate heat map overlayed with NetIM-specific restric-

tions. As with the antivirus scanner, the time available between snapshots for the introspection

application to actually measure the packet capture buffer may be insufficient for short snapshot



7.4. Application Summary 106

Snapshot Period (s) 
0.25 0.5 1 2 4 8 16 32 128 

D
irt

y 
Pa

ge
s/

Sn
ap

sh
ot

 (
M

B)
 

>1024 None None None 63% 81% 91% 97% 99% 100% 

1024 
-512 None None 37% 73% 88% 94% 97% 99% 100% 

512- 
256 None 28% 66% 86% 93% 96% 98% 100% 100% 

256- 
64 40% 63% 85% 93% 96% 98% 99% 100% 100% 

<64 45% 74% 87% 94% 97% 98% 99% 100% 100%* 

In
tro

sp
ec

t L
im

it	


Guest Memory Use + Buffer	



PCAP	


Buffer	


Limit	



Figure 7.7: efficient introspection performance heat map overlayed with NetIM specific limitations.

periods. At the longer end of the snapshot period scale, the memory overhead of capturing large

amounts of packets in the ring buffer becomes infeasible. Where the introspection and buffer ca-

pacities are feasible, it must be noted that the guest memory dirty page load must account for both

the guest load but also the packet capture buffer.

Limitations of NetIM

The Network Integrity Manger provides protections against software that subverts an OS-based

firewall by inserting itself below the firewall, it provides no protection against software that disables

the firewall directly. The addition of the ring-buffer to the guest firewall also means that the guest

must be modified for high performance with the NetIM security application. The intention of this

proposed work is to strengthen the assumptions made by OS-level security protection mechanisms,

not to replace OS-level security.

7.4 Application Summary

Two potential applications, signature-based Antivirus and NetIM, could not be implemented using

introspection support tools available before efficient introspection. Both applications were were

evaluated to determine whether the performance of the efficient introspection is sufficient to support

interesting security applications. The performance of each security application was estimated by



107 Chapter 7. Potential Applications

comparing the memory writing and snapshot frequency requirements of the applications against

the performance of microbenchmark evaluations under conditions with similiar memory writing

and snapshotting frequencies. The evaluation of these potential applications serves as guidance

for potential developers interested in developing new security applications that take advantage of

efficient introspection.

Snapshot stop time is a significant source of performance overhead in efficient introspection.

In the case of the NetIM, the guest firewall had to be modified to store outgoing packets in a ring

buffer because snapshotting frequencies could not be scaled to meet the application requirements.

These modifications enabled the NetIM application to trade snapshot stop time costs for memory

requirements. Trading memory for time exploits the guest-memory introspection performance of

efficient introspection while minimizing the performance impact of snapshot stop time and should

be applied to all future applications implemented using efficient introspection.

The Antivirus and NetIM case studies presented in this chapter suggest that the performance

of the efficient introspection should be sufficicent to carry out useful security applications while

maintaining normal guest operation for a variety of guest loads.



Chapter 8

Related Work

Hypervisor Introspection

The primary application of efficient introspection is to increase the performance of dynamic ad-hoc

introspection techniques [6, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30] and examining existing sys-

tems will provide insights into possible pitfalls in their implementation and evaluation. Traditional

antivirus software relies on signature checking and signature checking techniques have been ap-

plied from the high-ground position of a virtualized environment [31, 16, 32, 33, 18, 34]. efficient

introspection will increase the performance of memory scanning and, thereby, the speed at which

memory signatures can be calculated and evaluated for malware. efficient introspection will benefit

semantic malware detection techniques like virtualization-based system call analysis [35, 36, 37]

by providing fast, coherent access to system call arguments and system state at the time of call-gate

execution. Kernel state validation from the hypervisor [38, 39, 40, 10] typically validates only a

small subset of the kernel state to maintain real-time performance but efficient introspection will

enable increased validation.

Real-time instruction-grain monitoring a logging techniques offered by tools like Valgrind [41]

supports fine-grained instruction and memory flow checks like memory taintedness tracking and

checking for references to uninitialized memory through small atomic checks. These appraoches

tightly couple monitoring and checking to instruction execution in the monitored CPU and incur

substantial overhead in software-only implementations. Hardware support for real-time instruction-

grain monitoring such as Log Base Architectures (LBA) [42] and Dynamic Instruction Stream Edit-

108



109 Chapter 8. Related Work

ing (DISE) [43] promise normal process performance by augmenting the processor with hardware-

assisted propogation tracking support. In contrast to these approaches, efficient introspection sup-

ports large checks by decoupling monitoring from execution, thereby reducing developer overhead

and enabling new classes of checking that are too inefficient even with the hardware assisted track-

ing supports. These two approaches – instruction grain tracking versus system-level snapshotting

– are complimentary, providing different answers to different problems but both increase overall

security while maintaining performance.

Hypervisor Replay

Examining fast hypervisor-based replay [44, 45, 46] techniques will provide important insight into

the development of high performance efficient introspection implementations. One critical differ-

ence between replay and efficient introspection operation is that efficient introspection operates in

realtime and does not require saving complete system state for future replay. The efficient introspec-

tion relies on quickly generating VM-guest memory snapshots and newly proposed architectural

features like RowClone by Seshadri et al. [47] could benefit efficient introspection by efficiently

copying memory pages directly in-DRAM, significantly reducing memory bandwidth and CPU

overhead penalties.

Hidden Process Detection

The Lycosid hidden process detection mechanism developed by Jones et al. [48] provided the inspi-

ration for the Network and Disk Integrity Managers. Lycosid detects hidden processes by comparing

the guest reported process list (top) with a list generated by the hypervisor observing guest address

space creations and deletions associated with process creation and destruction. One significant dif-

ference between the Integrity Managers and Lycosid is that the Integrity Managers can directly

observe every single network or disk access while Lycosid must measure the processes running on

the guest indirectly. This allows the Integrity Manager to directly compare the reported and ob-

served lists but Lycosid must use statistical comparison techniques to detect the existence of hidden

processes.



110

Semantic Gap

The system state context lost between studying the operating system from within itself versus ex-

amining an operating system from the privileged hypervisor is frequently referred to as a semantic

gap. The semantic gap has been studied in depth [49, 50, 51, 40], revealing the neccessity for higher

performance tools that allow deeper introspection with acceptable performance that can bridge that

semantic gap. The Volatility Framework [52] is a set of python tools for extracting context from

volatile RAM samples. The Volatility Framework has forensic capabilities for analyzing RAM

samples from Windows, Linux, Android, and MacOS and extracting details like process listing,

listing network interfaces, and listing mounted devices. The LibVMI library can act as an interface

between The Volatility Framework and running virtual machine guests.

Rootkit Detection

Existing kernel-resident behavioral Windows API instrumentation, such as TTAnalyze by Bayer

et. al. [53], CWSandbox [54], Anubis by Bayer et. al. [55], and Process Implanting by Zhongshu

et. al. [56], provide guidance for the design of Windows API instrumentation implemented at the

hypervisor level.

Virtualization supported behavioral malware detection software, such as Ether by Dinaburg et.

al. [26], demonstrate the capability of non-resident guest monitoring for monitoring guest behavior

and the Integrity Manager expands the scope of out-of-guest monitoring.

VMDetector by Wang et. al. [57] uses multi-view rootkit technology but relies on in-guest

instrumentation that can be corrupted by the virus under analysis. Patagonix by Litty et. al. [58]

acts in a similiar manner to VMDetector but adds program signature matching.

Hypervisor-Guest Isolation

Managed virtual appliances like MokaFive Live PC [59], VMware Player [60], Invincia [61], Oracle

Virtual Box [62], and Citrix Xen App [63] provide users with familiar computing environments for

running their applications while freeing them from performing system management tasks like soft-

ware updates. The Qubes OS by Rutkowska and Marczykowski also supports virtual appliances but

focuses on security sandboxing and disposable guests [64]. The efficient introspection prototype



111 Chapter 8. Related Work

will build on an existing hypervisor to provide additional security protection against rootkits and

viruses. It is the authors’ hope that, in the future, Virtual Appliance developers will be able to in-

crease the security of their customers computing by implementing efficient introspection-enhanced

security modules appropriate to their specific applications. Other work developing a trusted com-

puting base [65, 66], implementing instruction trace construction [67, 68], dynamic taint track-

ing [27, 69, 70, 71] or exploiting the isolation properties of virtualization [72] may not benefit

directly from efficient introspection but systems designed to exploit these properties could apply

efficient introspection accelerated security applications to increase security as needed using the vir-

tualization platform already in place.

InZero [73] is a commercial security product which provides an entirely seperate computer

on which to perform critical computing tasks that is securely accessed from the consumers usual

computer. The physical seperation provided by InZero’s product increases isolation but at significant

cost in duplication in hardware. Virtual Appliances provide less isolation than duplicated machines,

but protections, like those propsed by the Integrity Manager, provide increased guarantees against

persistent, hidden infections.



Chapter 9

Conclusions

This thesis creates a new efficient introspection platform that enables the development of new classes

of introspection applications that were previously rejected as slow or expensive to develop.

9.1 The Need for Efficient Snapshotting

Rootkits are a class of malicious software that operate with operating system-level privilege and

evade detection by subverting operating system-level mitigations. Hypervisor-based introspection

operates at a higher privilege level than the guest operating system and provides a high-ground

position for malicious software protection isolated from potential malicious software in the guest.

This thesis develops three requirement for efficient introspection:

1. coherent memory views between the host and guest,

2. native memory introspection performance,

3. normal guest performance.

Coherent memory views are required to access the complete state of the guest at a single moment

in time and simplify the development of introspection applications. Native memory introspection

performance is required to support introspection applications that perform extensive inspection of

the entire guest memory, like full memory antivirus signature scanning, within reasonable periods

of time. Normal guest performance ensures that efficient introspection applications will not be

rejected for placing an undue burden on the end-users of the introspected system. The efficient

112



113 Chapter 9. Conclusions

introspection platform developed in this thesis combines all three of these properties by decoupling

guest operation from introspection through high-performance memory snapshotting.

9.2 Summary of Work

Requirements for Efficient Introspection: This thesis develops three requirements for efficient

introspection: coherent memory views between the host and guest, native memory introspection

performance, and normal guest performance. These requirements are necessary to provide support

for a broad array of introspection applications without imposing heavy burdens upon security end-

users. These requirements provide broad guidance across specific implementations of hypervisor

introspection.

Fast Snapshotting: This thesis presents the case that high-performance memory snapshotting pro-

vides a practical solution to satisfying the three requirements for efficient introspection. Three

methods for implementing fast snapshotting are presented and evaluated: Stop-Copy snapshotting,

Delta-Copy snapshotting, and Pre-Copy snapshotting.

Application Benchmarking Evaluation: This thesis demonstrates that a prototype implementa-

tion of efficient introspection provides guest performance for a selection of application benchmarks.

These applications include: Kernel compilation, ClamAV Antivirus scan, Apache Web Server, Net-

perf network performance, and Weka machine learning. The performance of these application

benchmarks under introspection demonstrates that normal guest operation can be attained for a

variety of applications.

Microbenchmarking Evaluation: This thesis presents a microbenchmark evaluation of the effi-

cient introspection prototype. The microbenchmark evaluation allows for a systematic evaluation of

various snapshotting, introspection, and guest load behavior parameters. Further, the microbench-

mark evaluation provides explanation of why the application benchmarks performed well.

Potential Applications: This thesis presents two potential applications of efficient introspection: a

memory-signature-based antivirus scanner and hidden network packet scanner. These two potential

applications exploit the high-ground-position of hypervisor based introspection. Potential perfor-

mance is analyzed by comparing the specific properties of each application with the results observed

in the systematic microbenchmark evaluation. Specific performance advantages of implementing



9.3. Concluding Remarks 114

the potential application with efficient introspection instead of previously available platforms were

shown.

9.3 Concluding Remarks

Celebrity photo leaks [74], financial data breaches at major retailers [75], and cyberwarefare [76]

have placed computer security and privacy concerns squarely into popular culture. Traditional mit-

igations like signature-based antivirus software and firewalls have been widely deployed and yet

these threats persist. Computer science and engineering will have to meet these concerns by provid-

ing new security techniques to help control these threats and increase public trust in computing.

Hypervisor-based antivirus is one of these techniques. The hypervisor combines total control

over guest operation with isolation from the guest execution to create a high-ground position from

which to provide security protections with introspection. Efficient introspection holds normal guest

operation as a first-class requirement and therefore provides the benefits of hypervisor-based an-

tivirus without placing undue burdens on the performance of the user applications

Adoption of the cloud, desktop virutalization, and even virtualization layers in mobile and gam-

ing consoles, are increasing the number of installed virtualization platforms. New platforms and

applications of virtualization increase the relevancy of introspection and exands creates new op-

portunities for hypervisor-based security protection. It is my hope that the efficient introspection

capabilities at the heart this thesis will be carried beyond these limited demonstrations to enable

new applications that will create a secure computing future.

9.4 Future Work

While Delta-Copy snapshotting can reduce snapshot-memory copy time very significantly, non-

copy snapshotting costs related to stopping and restarting the guest remain a barrier to efficient

snapshotting. The reasons for the slow-snapshot pause-restart time demonstrated in this thesis are

specific to the implementation of the KVM hypervisor. KVM is a split virtualization platform where

most events are handled directly by the bare-metal processor, but certain events are passed off to an

emulator. For efficiency, the emulator caches certain guest-state, like some memory, locally to the



115 Chapter 9. Conclusions

emulator. One of the major events taking place during a VM pause event is synchronizing the locally

held emulator state back into the global guest-state data structures. Flushing these caches back

into global state is critical to satisfying the introspection requirement of coherent memory access.

Future research into revealing the underlying causes of these non-copy snapshotting bottlenecks and

resolving them could enable finer-grained snapshotting than is currently possible.

This thesis presents an implementation of efficient snapshotting as an extension of the KVM

hypervisor. The properties of KVM that are exploited in the extension of are all required to provide

efficient guest migration: pause-resume capability, dirty-page tracking, and memory introspection.

Most commonly available hypervisors offer these properties and these hypervisors could be ex-

tended to support introspection. Future work could measure the efficiency of other hypervisors

in implementing these properties when contemplating adaptation of efficient snapshotting to other

platforms.

In the current implementation, snapshots cannot be synchronized to events taking place within

the guest or hypervisor. Some possible events are: guest accesses to specific memory addresses,

guest execution of specific memory addresses, guest system events like page table misses, guest disk

accesses, guest network accesses, and hypervisor handled page table misses. Further research might

reveal even more interesting events. The introspection application would configure the hypervisor

to snapshot at the next trigger event and then call-back to the introspection application. Implement-

ing event-triggered snapshotting capability would enable new classes of introspection applications

introspect. Event-triggers might even create opportunities for extension of the application domain

of snapshotted introspection beyond security to debugging.

Initial Open-Source release to the LibVMI project already began with Stop-Copy snapshotting

but Delta-Copy snapshotting is planned. The LibVMI project already includes a basic implementa-

tion of the Stop-Copy snapshotting mechanism. The release is packaged as an Open-Source patch

to the KVM hypervisor. Delta-Copy snapshotting KVM-patch may be released to the LibVMI

project. Currently the patch to the KVM hypervisor is applied and compiled by LibVMI end-users.

The patch could also be released beyond the LibVMI project as a contribution directly to the KVM

Project. Exploration into the feasibility and acceptance of this type of extension of the KVM Project

is left for future work.

In this thesis snapshot-stop time and snapshot period are identified as key factors effect normal



9.4. Future Work 116

guest performance. Benchmark evaluations evaluated guest performance in the context of fixed

snapshot periods. These snapshot periods do not have to be fixed and could be dynamically ad-

justed to meet guest service requirements. The snapshot stop-time could be predicted by measuring

the number of dirty pages that would need to be copied, and the snapshot could be delayed by a

corresponding factor to ameliorate stop time. Future work could develop this type of service-level-

guaranteeing introspection.

Instrumenting guests by allowing introspection applications to modify guest state is not cur-

rently supported by the shared efficient snapshot mechanism. Maintaining coherency between the

guest state and introspection application will become more difficult as currently the introspection

application is provided read-only access to the guest. Future research could examine mechanisms

that support dynamic, runtime guest instrumentation while still satisfying the requirements for effi-

cient introspection.

Full VM snapshotting may not be necessary for all applications. Significant performance gains

could be realized if only certain portions of guest memory state had to be snapshotted. Partial snap-

shotting would be espicially useful for guest loads which write to significant proportions of their

memory space, where the Delta-Copy snapshotting mechanism does not show significant improve-

ments over Stop-Copy. Future work into the feasibility of partial snapshots will have to begin with

an exploration of appropriate introspection applications, like statistical sampling methods, that will

not have their security properties compromised by only accessing partial guest state.

Snapshotting guest memory for introspection may map favorably onto the well tread field of

memory transactions. The decoupled introspection thread may begin it’s introspection process by

opening a memory transaction for the guest memory region on behalf of the guest. The shared

memory will then appear snapshotted to the introspection thread until the introspection completes

and the guest memory transaction completes, committing the transactions into the updated snap-

shot. Software implementations of memory transactions like RVM by Satyanarayanan et al. [77]

show that memory transactions of this type can be efficient on timescales shorter than the snapshot

periods explored in this work without incurring prohibitive code complexity. Hardware-accelerated

implementations like Transactional Memory Coherency and Consistency by Hammond et al. [78]

should be examined in the context of the newly released Intel Transactional Synchronization Ex-

tensions [79]. Future work into applying the lessons from memory transactions to creating high-



117 Chapter 9. Conclusions

performance memory snapshots may provide a way towards lessening the memory cost of efficient

introspection while maintaining coherence and normal performance.

Rootkits and other malicious software have developed countermeasures to security detection

that include self-modification and self-encryption that present a smaller footprint in memory for

detection. Malicious software has been observed to detect the presence an imminent and further

reduce it’s footprint. Future work into examining whether snapshots can be detected by an in-guest

rootkit and whether that snapshots timing can be hidden from the guest to prevent possible malware

from taking evasive actions.

Guests frequently contain duplicated pages. The current implementation of snapshotting makes

no attempt to identify these duplicates. In fact, to ensure coherency, the snapshotting mechanism

copies each guest page individually using mechanisms that may prevent OS- or hypervisor-level de-

duplication mechanisms from functioning. Future work will examine whether de-duplication could

reduce the overhead of the snapshot memory which is currently 100% of the snapshotted guest.

Dirty page tracking could inform introspection application scanning behavior. For example, the

signature-based antivirus scanner could consult the dirty page list for a new snapshot and only re-

scan pages that had been changed since their previous scan. Future work could explore introspection

applications that could benefit from this capability and efficient ways to communicate the dirty page

list from the hypervisor to the introspection applicaiton.

Currently the Pre-Copy mechanism relies on a thread that periodically updates the dirty-page list

managed by the hypervisor kernel module to select dirty pages for pre-copying, clears them from the

list, and copies them. This method is inefficient as the list of pages is slow to synchronize, adversely

affects guest performance, and must be iterated page-by-page to identify dirty pages. An alternative

implementation of the pre-copy which relied on the hypervisor dirty page call-back mechanism to

identify dirty pages directly might be more efficient and could be explored in future work.



Bibliography

[1] B. D. Payne, “VMITools - Virtual Machine Introspection Tools.” http://code.google.

com/p/vmitools/, 2013.

[2] T. K. Project, “Kernel samepage merging,” 2014.

[3] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori, “kvm: the Linux virtual machine

monitor,” in Ottawa Linux Symposium, pp. 225–230, July 2007.

[4] C. A. Waldspurger, “Memory resource management in vmware esx server,” SIGOPS Oper.

Syst. Rev., vol. 36, pp. 181–194, Dec. 2002.

[5] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer, I. Pratt, and

A. Warfield, “Xen and the art of virtualization,” in Proceedings of the nineteenth ACM sympo-

sium on Operating systems principles, SOSP ’03, (New York, NY, USA), pp. 164–177, ACM,

2003.

[6] B. Payne, M. de Carbone, and W. Lee, “Secure and flexible monitoring of virtual machines,”

in Computer Security Applications Conference, 2007. ACSAC 2007. Twenty-Third Annual,

pp. 385 –397, dec. 2007.

[7] G. Team, “Stealth MBR rootkit.” http://www2.gmer.net/mbr/, Jan. 2008.

[8] H. Lau, “Are mbr infections back in fashion? (infographic).” http://www.symantec.

com/connect/blogs/are-mbr-infections-back-fashion-infographic,

Aug. 2011.

[9] P. Kleissner, “Analysis of mebratrix.” http://web17.webbpro.de/index.php?

page=analysis-of-mebratix, 2010.

118

http://code.google.com/p/vmitools/
http://code.google.com/p/vmitools/
http://www2.gmer.net/mbr/
http://www.symantec.com/connect/blogs/are-mbr-infections-back-fashion-infographic
http://www.symantec.com/connect/blogs/are-mbr-infections-back-fashion-infographic
http://web17.webbpro.de/index.php?page=analysis-of-mebratix
http://web17.webbpro.de/index.php?page=analysis-of-mebratix


119 BIBLIOGRAPHY

[10] M. Carbone, W. Cui, L. Lu, W. Lee, M. Peinado, and X. Jiang, “Mapping kernel objects to en-

able systematic integrity checking,” in Proceedings of the 16th ACM conference on Computer

and communications security, CCS ’09, (New York, NY, USA), pp. 555–565, ACM, 2009.

[11] S. T. Jones, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau, “Vmm-based hidden pro-

cess detection and identification using lycosid,” in Proceedings of the fourth ACM SIG-

PLAN/SIGOPS international conference on Virtual execution environments, VEE ’08, (New

York, NY, USA), pp. 91–100, ACM, 2008.

[12] P. Ször and P. Ferrie, “Whitepaper: Hunting For Metamorphic.” http://www.symantec.

com/avcenter/reference/hunting.for.metamorphic.pdf, 2003.

[13] C. Staelin and H. packard Laboratories, “lmbench: Portable tools for performance analysis,”

in In USENIX Annual Technical Conference, pp. 279–294, 1996.

[14] O. S. Hofmann, A. M. Dunn, S. Kim, I. Roy, and E. Witchel, “Ensuring operating system

kernel integrity with osck,” SIGPLAN Not., vol. 47, pp. 279–290, Mar. 2011.

[15] Q. Team, “Qemu.” http://qemu.org, 2013.

[16] N. L. Petroni, Jr., T. Fraser, J. Molina, and W. A. Arbaugh, “Copilot - a coprocessor-based

kernel runtime integrity monitor,” in Proceedings of the 13th conference on USENIX Security

Symposium - Volume 13, SSYM’04, (Berkeley, CA, USA), pp. 13–13, USENIX Association,

2004.

[17] A. Seshadri, M. Luk, N. Qu, and A. Perrig, “Secvisor: a tiny hypervisor to provide lifetime

kernel code integrity for commodity oses,” in Proceedings of twenty-first ACM SIGOPS sym-

posium on Operating systems principles, SOSP ’07, (New York, NY, USA), pp. 335–350,

ACM, 2007.

[18] B. Dolan-Gavitt, A. Srivastava, P. Traynor, and J. Giffin, “Robust signatures for kernel data

structures,” in Proceedings of the 16th ACM conference on Computer and communications

security, CCS ’09, (New York, NY, USA), pp. 566–577, ACM, 2009.

[19] R. Jones, “The netperf homepage.” http://www.netperf.org/, 2012.

http://www.symantec.com/avcenter/reference/hunting.for.metamorphic.pdf
http://www.symantec.com/avcenter/reference/hunting.for.metamorphic.pdf
http://qemu.org
http://www.netperf.org/


BIBLIOGRAPHY 120

[20] J. Chow, T. Garfinkel, and P. M. Chen, “Decoupling dynamic program analysis from execution

in virtual environments,” in USENIX 2008 Annual Technical Conference on Annual Technical

Conference, ATC’08, (Berkeley, CA, USA), pp. 1–14, USENIX Association, 2008.

[21] M. I. Sharif, W. Lee, W. Cui, and A. Lanzi, “Secure in-VM monitoring using hardware vir-

tualization,” in Proceedings of the 16th ACM conference on Computer and communications

security, CCS ’09, (New York, NY, USA), pp. 477–487, ACM, 2009.

[22] F. Baiardi and D. Sgandurra, “Building trustworthy intrusion detection through vm introspec-

tion,” in Proceedings of the Third International Symposium on Information Assurance and

Security, IAS ’07, (Washington, DC, USA), pp. 209–214, IEEE Computer Society, 2007.

[23] D. Bruening, Q. Zhao, and S. Amarasinghe, “Transparent dynamic instrumentation,” SIG-

PLAN Not., vol. 47, pp. 133–144, Mar. 2012.

[24] N. A. Quynh and K. Suzaki, “Xenprobes, a lightweight user-space probing framework for

xen virtual machine,” in 2007 USENIX Annual Technical Conference on Proceedings of

the USENIX Annual Technical Conference, ATC’07, (Berkeley, CA, USA), pp. 2:1–2:14,

USENIX Association, 2007.

[25] J. Pfoh, C. Schneider, and C. Eckert, “A formal model for virtual machine introspection,” in

Proceedings of the 1st ACM workshop on Virtual machine security, VMSec ’09, (New York,

NY, USA), pp. 1–10, ACM, 2009.

[26] A. Dinaburg, P. Royal, M. Sharif, and W. Lee, “Ether: malware analysis via hardware virtual-

ization extensions,” in Proceedings of the 15th ACM conference on Computer and communi-

cations security, CCS ’08, (New York, NY, USA), pp. 51–62, ACM, 2008.

[27] N. Nethercote and J. Seward, “How to shadow every byte of memory used by a program,” in

Proceedings of the 3rd international conference on Virtual execution environments, VEE ’07,

(New York, NY, USA), pp. 65–74, ACM, 2007.

[28] B. Payne, M. Carbone, M. Sharif, and W. Lee, “Lares: An Architecture for Secure Active

Monitoring Using Virtualization,” in Security and Privacy, 2008. SP 2008. IEEE Symposium

on, pp. 233 –247, May 2008.



121 BIBLIOGRAPHY

[29] P. M. Chen and B. D. Noble, “When virtual is better than real,” in Proceedings of the

Eighth Workshop on Hot Topics in Operating Systems, HOTOS ’01, (Washington, DC, USA),

pp. 133–, IEEE Computer Society, 2001.

[30] D. G. Murray, G. Milos, and S. Hand, “Improving xen security through disaggregation,” in

Proceedings of the fourth ACM SIGPLAN/SIGOPS international conference on Virtual execu-

tion environments, VEE ’08, (New York, NY, USA), pp. 151–160, ACM, 2008.

[31] X. Jiang, X. Wang, and D. Xu, “Stealthy malware detection through vmm-based ”out-of-the-

box” semantic view reconstruction,” in Proceedings of the 14th ACM conference on Computer

and communications security, CCS ’07, (New York, NY, USA), pp. 128–138, ACM, 2007.

[32] M. Payer and T. R. Gross, “Fine-grained user-space security through virtualization,” SIGPLAN

Not., vol. 46, pp. 157–168, Mar. 2011.

[33] S. Ghosh, J. Hiser, and J. W. Davidson, “Replacement attacks against vm-protected applica-

tions,” in Proceedings of the 8th ACM SIGPLAN/SIGOPS conference on Virtual Execution

Environments, VEE ’12, (New York, NY, USA), pp. 203–214, ACM, 2012.

[34] N. R. Paul, Disk-level behavioral malware detection. PhD thesis, University of Virginia, Char-

lottesville, VA, USA, May 2008. AAI3312124.

[35] N. A. Quynh and Y. Takefuji, “Towards a tamper-resistant kernel rootkit detector,” in Proceed-

ings of the 2007 ACM symposium on Applied computing, SAC ’07, (New York, NY, USA),

pp. 276–283, ACM, 2007.

[36] M. Laureano, C. Maziero, and E. Jamhour, “Intrusion detection in virtual machine environ-

ments,” in Proceedings of the 30th EUROMICRO Conference, EUROMICRO ’04, (Washing-

ton, DC, USA), pp. 520–525, IEEE Computer Society, 2004.

[37] T. Garfinkel, “Traps and pitfalls: Practical problems in system call interposition based security

tools,” in In Proc. Network and Distributed Systems Security Symposium, pp. 163–176, 2003.

[38] R. Riley, X. Jiang, and D. Xu, “Guest-transparent prevention of kernel rootkits with vmm-

based memory shadowing,” in Proceedings of the 11th international symposium on Recent



BIBLIOGRAPHY 122

Advances in Intrusion Detection, RAID ’08, (Berlin, Heidelberg), pp. 1–20, Springer-Verlag,

2008.

[39] M. Neugschwandtner, C. Platzer, P. M. Comparetti, and U. Bayer, “danubis: dynamic device

driver analysis based on virtual machine introspection,” in Proceedings of the 7th international

conference on Detection of intrusions and malware, and vulnerability assessment, DIMVA’10,

(Berlin, Heidelberg), pp. 41–60, Springer-Verlag, 2010.

[40] Y. Fu and Z. Lin, “Space traveling across vm: Automatically bridging the semantic gap in

virtual machine introspection via online kernel data redirection,” in Security and Privacy (SP),

2012 IEEE Symposium on, pp. 586 –600, May 2012.

[41] N. Nethercote and J. Seward, “Valgrind: A framework for heavyweight dynamic binary in-

strumentation,” in Proceedings of the 2007 ACM SIGPLAN Conference on Programming Lan-

guage Design and Implementation, PLDI ’07, (New York, NY, USA), pp. 89–100, ACM,

2007.

[42] S. Chen, M. Kozuch, T. Strigkos, B. Falsafi, P. B. Gibbons, T. C. Mowry, V. Ramachandran,

O. Ruwase, M. Ryan, and E. Vlachos, “Flexible hardware acceleration for instruction-grain

program monitoring,” in Proceedings of the 35th Annual International Symposium on Com-

puter Architecture, ISCA ’08, (Washington, DC, USA), pp. 377–388, IEEE Computer Society,

2008.

[43] M. L. Corliss, E. C. Lewis, and A. Roth, “Dise: A programmable macro engine for customiz-

ing applications,” SIGARCH Comput. Archit. News, vol. 31, pp. 362–373, May 2003.

[44] S. M. Srinivasan, S. Kandula, C. R. Andrews, and Y. Zhou, “Flashback: a lightweight exten-

sion for rollback and deterministic replay for software debugging,” in Proceedings of the an-

nual conference on USENIX Annual Technical Conference, ATEC ’04, (Berkeley, CA, USA),

pp. 3–3, USENIX Association, 2004.

[45] O. Laadan, R. A. Baratto, D. B. Phung, S. Potter, and J. Nieh, “Dejaview: a personal virtual

computer recorder,” SIGOPS Oper. Syst. Rev., vol. 41, pp. 279–292, Oct. 2007.



123 BIBLIOGRAPHY

[46] J. Chow, D. Lucchetti, T. Garfinkel, G. Lefebvre, R. Gardner, J. Mason, S. Small, and P. M.

Chen, “Multi-stage replay with crosscut,” SIGPLAN Not., vol. 45, pp. 13–24, Mar. 2010.

[47] V. Seshadri, Y. Kim, C. Fallin, D. Lee, R. Ausavarungnirun, G. Pekhimenko, Y. Luo, O. M.

u, P. B. Gibbons, M. A. Kozuch, and T. C. Mowry, “RowClone: Fast and Efficient In-DRAM

Copy and Initialization of Bulk Data,” Tech. Rep. CMU-CS-13-108, Computer Science De-

partment, School of Computer Science, Carnegie Mellon University, April 2013.

[48] S. T. Jones, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau, “VMM-based hidden process

detection and identification using Lycosid,” in VEE ’08: Proceedings of the fourth ACM SIG-

PLAN/SIGOPS international conference on Virtual execution environments, (New York, NY,

USA), pp. 91–100, ACM, 2008.

[49] B. Dolan-Gavitt, T. Leek, M. Zhivich, J. Giffin, and W. Lee, “Virtuoso: Narrowing the se-

mantic gap in virtual machine introspection,” in Proceedings of the 2011 IEEE Symposium on

Security and Privacy, SP ’11, (Washington, DC, USA), pp. 297–312, IEEE Computer Society,

2011.

[50] B. Dolan-Gavitt, B. Payne, and W. Lee, “Tech report gt-cs-11-05: Leveraging forensic tools for

virtual machine introspection.” http://hdl.handle.net/1853/38424, Nov. 2011.

[51] S. Bahram, X. Jiang, Z. Wang, M. Grace, J. Li, D. Srinivasan, J. Rhee, and D. Xu, “Dksm: Sub-

verting virtual machine introspection for fun and profit,” in Proceedings of the 2010 29th IEEE

Symposium on Reliable Distributed Systems, SRDS ’10, (Washington, DC, USA), pp. 82–91,

IEEE Computer Society, 2010.

[52] M. Auty, A. Case, M. Cohen, B. Dolan-Gavitt, M. Hale Ligh, J. Levy, and A. Walters, “The

volatility framework v2.3.” http://code.google.com/p/volatility/, 2013.

[53] U. Bayer, C. Kruegel, and E. Kirda, “Ttanalyze: A tool for analyzing malware,” Apr. 2006.

[54] C. Willems, T. Holz, and F. Freiling, “Toward automated dynamic malware analysis using

cwsandbox,” Security Privacy, IEEE, vol. 5, pp. 32 –39, march-april 2007.

http://hdl.handle.net/1853/38424
http://code.google.com/p/volatility/


BIBLIOGRAPHY 124

[55] U. Bayer, I. Habibi, D. Balzarotti, E. Kirda, and C. Kruegel, “A view on current malware

behaviors,” in Proceedings of the 2nd USENIX conference on Large-scale exploits and emer-

gent threats: botnets, spyware, worms, and more, LEET’09, (Berkeley, CA, USA), pp. 8–8,

USENIX Association, 2009.

[56] Z. Gu, Z. Deng, D. Xu, and X. Jiang, “Process implanting: A new active introspection frame-

work for virtualization,” in Reliable Distributed Systems (SRDS), 2011 30th IEEE Symposium

on, pp. 147 –156, oct. 2011.

[57] Y. Wang, C. Hu, and B. Li, “Vmdetector: A vmm-based platform to detect hidden process by

multi-view comparison,” in High-Assurance Systems Engineering (HASE), 2011 IEEE 13th

International Symposium on, pp. 307 –312, nov. 2011.

[58] L. Litty, H. A. Lagar-Cavilla, and D. Lie, “Hypervisor support for identifying covertly execut-

ing binaries,” in Proceedings of the 17th Conference on Security Symposium, SS’08, (Berkeley,

CA, USA), pp. 243–258, USENIX Association, 2008.

[59] moka5, Inc., “MokaFive Suite Overview.” http://www.moka5.com, Jan. 2011.

[60] VMware, Inc., “VMware Virtual Appliance Marketplace: Virtual Applications for the Cloud.”

http://www.vmware.com/appliances, Jan. 2011.

[61] Invincea, Inc., “White paper: Web malware explosion requires new protection

paradigm.” http://www.invincea.com/images/uploads/INV_Malware_WP_

FW.pdf, Mar. 2010.

[62] Oracle, Inc., “VirtualBox.” http://www.virtualbox.org, Jan. 2011.

[63] Citrix Systems, Inc., “Citrix XenApp - Product Overview.” http://www.citrix.com/

site/resources/dynamic/salesdocs/XenApp6/Product_Overview.pdf,

Jan. 2011.

[64] J. Rutkowska and M. Marczykowski, “Welcome to the Qubes OS Project.” http://qubes-

os.org, Mar. 2013.

http://www.moka5.com
http://www.vmware.com/appliances
http://www.invincea.com/images/uploads/INV_Malware_WP_FW.pdf
http://www.invincea.com/images/uploads/INV_Malware_WP_FW.pdf
http://www.virtualbox.org
http://www.citrix.com/site/resources/dynamic/salesdocs/XenApp6/Product_Overview.pdf
http://www.citrix.com/site/resources/dynamic/salesdocs/XenApp6/Product_Overview.pdf
http://qubes-os.org
http://qubes-os.org


125 BIBLIOGRAPHY

[65] T. Shinagawa, H. Eiraku, K. Tanimoto, K. Omote, S. Hasegawa, T. Horie, M. Hirano,

K. Kourai, Y. Oyama, E. Kawai, K. Kono, S. Chiba, Y. Shinjo, and K. Kato, “Bitvisor:

a thin hypervisor for enforcing i/o device security,” in Proceedings of the 2009 ACM SIG-

PLAN/SIGOPS international conference on Virtual execution environments, VEE ’09, (New

York, NY, USA), pp. 121–130, ACM, 2009.

[66] T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and D. Boneh, “Terra: a virtual machine-based

platform for trusted computing,” SIGOPS Oper. Syst. Rev., vol. 37, pp. 193–206, Oct. 2003.

[67] L.-K. Yan, M. Jayachandra, M. Zhang, and H. Yin, “V2e: combining hardware virtualiza-

tion and softwareemulation for transparent and extensible malware analysis,” SIGPLAN Not.,

vol. 47, pp. 227–238, Mar. 2012.

[68] X. Hu, T.-c. Chiueh, and K. G. Shin, “Large-scale malware indexing using function-call

graphs,” in Proceedings of the 16th ACM conference on Computer and communications se-

curity, CCS ’09, (New York, NY, USA), pp. 611–620, ACM, 2009.

[69] M. Egele, C. Kruegel, E. Kirda, H. Yin, and D. Song, “Dynamic spyware analysis,” in 2007

USENIX Annual Technical Conference on Proceedings of the USENIX Annual Technical Con-

ference, ATC’07, (Berkeley, CA, USA), pp. 18:1–18:14, USENIX Association, 2007.

[70] H. Yin, D. Song, M. Egele, C. Kruegel, and E. Kirda, “Panorama: capturing system-wide infor-

mation flow for malware detection and analysis,” in Proceedings of the 14th ACM conference

on Computer and communications security, CCS ’07, (New York, NY, USA), pp. 116–127,

ACM, 2007.

[71] H. Yin and D. Song, “Technical report: Temu: Binary code analysis via whole-

system layered annotative execution.” http://techreports.lib.berkeley.edu/

accessPages/EECS-2010-3.html, Jan. 2011.

[72] J. Andrus, C. Dall, A. V. Hof, O. Laadan, and J. Nieh, “Cells: a virtual mobile smartphone ar-

chitecture,” in Proceedings of the Twenty-Third ACM Symposium on Operating Systems Prin-

ciples, SOSP ’11, (New York, NY, USA), pp. 173–187, ACM, 2011.

http://techreports.lib.berkeley.edu/accessPages/EECS-2010-3.html
http://techreports.lib.berkeley.edu/accessPages/EECS-2010-3.html


BIBLIOGRAPHY 126

[73] Philip Zimmermann, “A brief assessment of the InZero security gateway.”

http://www.inzerosystems.com/wp-content/uploads/2010/05/A-

brief-assessment-of-the-InZero-security-gateway-Philip-

Zimmermann.pdf, Dec. 2009.

[74] C. Boren, “Olympic gymnast mckayla maroney says leaked racy photos are fake, fends

off twitter backlash.” http://www.washingtonpost.com/blogs/early-

lead/wp/2014/09/01/olympic-gymnast-mckayla-maroney-says-

leaked-racy-photos-are-fake-fends-off-twitter-backlash/, Sept.

2014.

[75] B. Krebs, “In home depot breach, investigation focuses on self-checkout lanes.”

http://krebsonsecurity.com/2014/09/in-home-depot-breach-

investigation-focuses-on-self-checkout-lanes/, Sept. 2014.

[76] S. Weinberger, “Computer security: Is this the start of cyberwarfare?,” Nature, vol. 474,

pp. 142–145, June 2011.

[77] M. Satyanarayanan, H. H. Mashburn, P. Kumar, D. C. Steere, and J. J. Kistler, “Lightweight

recoverable virtual memory,” ACM Trans. Comput. Syst., vol. 12, pp. 33–57, Feb. 1994.

[78] L. Hammond, V. Wong, M. Chen, B. D. Carlstrom, J. D. Davis, B. Hertzberg, M. K. Prabhu,

H. Wijaya, C. Kozyrakis, and K. Olukotun, “Transactional memory coherence and consis-

tency,” SIGARCH Comput. Archit. News, vol. 32, pp. 102–, Mar. 2004.

[79] Intel Corporation, “Intel 64 and IA-32 Architectures Optimization Reference Manual. Chapter

12: INTEL TSX RECOMMENDATIONS,” 2014.

http://www.inzerosystems.com/wp-content/uploads/2010/05/A-brief-assessment-of-the-InZero-security-gateway-Philip-Zimmermann.pdf
http://www.inzerosystems.com/wp-content/uploads/2010/05/A-brief-assessment-of-the-InZero-security-gateway-Philip-Zimmermann.pdf
http://www.inzerosystems.com/wp-content/uploads/2010/05/A-brief-assessment-of-the-InZero-security-gateway-Philip-Zimmermann.pdf
http://www.washingtonpost.com/blogs/early-lead/wp/2014/09/01/olympic-gymnast-mckayla-maroney-says-leaked-racy-photos-are-fake-fends-off-twitter-backlash/
http://www.washingtonpost.com/blogs/early-lead/wp/2014/09/01/olympic-gymnast-mckayla-maroney-says-leaked-racy-photos-are-fake-fends-off-twitter-backlash/
http://www.washingtonpost.com/blogs/early-lead/wp/2014/09/01/olympic-gymnast-mckayla-maroney-says-leaked-racy-photos-are-fake-fends-off-twitter-backlash/
http://krebsonsecurity.com/2014/09/in-home-depot-breach-investigation-focuses-on-self-checkout-lanes/
http://krebsonsecurity.com/2014/09/in-home-depot-breach-investigation-focuses-on-self-checkout-lanes/

	Introduction
	Motivation
	Memory Introspection
	Achieving Efficient Introspection
	Thesis Contributions
	Thesis Organization

	Background
	Hypervisor Background
	Memory Translation
	KVM Hypervisor

	Hypervisor Based Security
	Hypervisor Based Introspection for Security
	Introspection Software: VMware VProbes
	Introspection Software: LibVMI

	Detecting the Mebroot Rookit with Introspection
	Mebroot Threats 
	Mebroot Virus Family
	Differential Mebroot Network Traffic Analysis

	Background Summary

	Key Ingredients for Efficient Introspection
	Memory Introspection
	Developing Requirements for Efficient Introspection
	Pausing is too slow so we need coherency
	Parallelism without coherency is insufficient
	Efficient Introspection: Parallelism with Coherency

	Requirements for Efficient Introspection
	Requirement 1: Native Memory Introspection Performance
	Requirement 2: Coherent Memory Views
	Requirement 3: Normal Guest Performance

	Existing Introspection Platforms Inadequate
	Summary

	Implementing Efficient Introspection by Snapshotting
	High Performance Snapshotting
	Stop-and-Copy Snapshot
	Delta-Copy Snapshot
	Pre-Copy Snapshot
	Snapshotting Mechanism Guidance

	KVM/QEMU Hypervisor Modifications
	KVM Host Linux Kernel Module
	QEMU Modification Details

	The LibVMI Project Modifications
	LibVMI API Changes

	Example Minimal LibVMI Application

	Application Benchmark Evaluation
	Benchmark Testing Procedure
	Application Benchmarks
	Kernel Build
	ClamAV Antivirus Scan
	Apache Web Server
	Netperf Network Performance
	Weka Machine Learning

	Application Benchmarking: Winners & Losers

	Microbenchmark Evaluation
	Why Microbenchmarking?
	Microbenchmark Procedure
	Application Runtime Microbenchmark
	Memory Load Microbenchmark

	Microbenchmark Evaluation
	Stop-Copy Snapshot Evaluation
	Delta-Copy Snapshot Evaluation
	Drifting Load Evaluation
	Pre-Copy Snapshot Evaluation

	Microbenchmark Evaluation: Key Results
	Snapshot Frequency Most Significant Influence on Guest Performance
	Delta-Copy Snapshot Offers Superior Performance
	Unaccounted Snapshot Stop-Time
	Dirty Page Tracking is Cheap
	Introspection Impact on Guest
	Stop-Copy Snapshotting Impacts Only Guest Runtime
	Dirty Page List Synchronization is Expensive

	Efficient Introspection Performance Guidance

	Potential Applications
	Introspection Application Performance Goals
	Potential Application: Antivirus Signature Memory Scan
	Previous Antivirus Capability
	Antivirus with Efficient Introspection
	Performance Evaluation of Antivirus with Efficient Introspection

	Potential Application: Network Integrity Manager
	Previous Network Scanning Capability.
	NetIM with Efficient Introspection
	Performance Evaluation of NetIM with Efficient Introspection

	Application Summary

	Related Work
	Conclusions
	The Need for Efficient Snapshotting
	Summary of Work
	Concluding Remarks
	Future Work


