
GraphGen: An FPGA Framework for Vertex-Centric Graph Computation

Eriko Nurvitadhi1, Gabriel Weisz2, Yu Wang2, Skand Hurkat3, Marie Nguyen2,
James C. Hoe2, José F. Martínez3, Carlos Guestrin4

1Intel Corporation
Pittsburgh, USA

eriko.nurvitadhi@intel.com

2Carnegie Mellon University
Pittsburgh, USA

3Cornell University
Ithaca, USA

4University of Washington
Seattle, USA

Abstract—Vertex-centric graph computations are widely used
in many machine learning and data mining applications that
operate on graph data structures. This paper presents
GraphGen, a vertex-centric framework that targets FPGA for
hardware acceleration of graph computations. GraphGen
accepts a vertex-centric graph specification and automatically
compiles it onto an application-specific synthesized graph
processor and memory system for the target FPGA platform.
We report design case studies using GraphGen to implement
stereo matching and handwriting recognition graph
applications on Terasic DE4 and Xilinx ML605 FPGA boards.
Results show up to 14.6x and 2.9x speedups over software on
Intel Core i7 CPU for the two applications, respectively.

Keywords: graph computation, design framework, case studies.

I. INTRODUCTION

Computations on graph-based data structures are the
basis of many applications in machine learning and data
mining, enabling many important capabilities in modern
computing (e.g., stereo matching [11], image segmentation
[11], handwriting recognition [9], etc). Vertex-centric
abstraction [5][7][8] is widely used for capturing such graph-
based applications, which have arbitrary graph structures,
data types, and graph update functions.

The GraphGen project provides a design framework that
automatically compiles a high-level vertex-centric graph
specification onto platforms with accelerators (e.g., FPGAs
GPGPUs). The goal is to allow application developers
without specific platform expertise to take advantage of the
performance and energy efficiency of hardware accelerators.

This paper presents the vertex-centric graph specification
used by GraphGen for automatic compilation to FPGA
platforms. The paper also provides a high-level overview of
the GraphGen framework for FPGA targets. The framework
automatically compiles a vertex-centric specification onto an
application-specific synthesized graph processor on FPGA.
The processor uses a memory subsystem designed to handle
large graph data structures stored by off-chip DRAMs. The
DMA interface to DRAMs is realized using CoRAM [3] in
order to flexibly target multiple FPGA platforms. GraphGen
also provides simulators and RTL testbenches for validation.
Figure 1 illustrates the GraphGen framework.

This paper also reports design case studies that show the
flexibility of GraphGen in implementing two applications
(stereo matching, handwriting recognition) on two FPGA
platforms (Xilinx ML605 and Terasic DE4). The results

show that GraphGen implementations are up to 14.6x and
2.9x faster than software on Intel Core i7 CPU for the two
applications, respectively.

The rest of the paper is organized as follows. Section II
elaborates on GraphGen’s vertex-centric specification.
Section III provides a high-level overview of the automatic
mapping to FPGAs. Section IV reports the design case
studies. Section V discusses related work. Section VI offers
concluding remarks.

II. GRAPHGEN’S VERTEX-CENTRIC SPECIFICATION

A. Review of Vertex-Centric Abstraction

In a vertex-centric specification [5][7][8], graph
computation is formulated as a graph G = (V, E, D), where V
and E are the vertices and edges of G. An edge e = (u,v)
connects two vertices u and v. If the edge is directed, then u
is the source and v is the destination. Arbitrary data D can be
associated with each vertex, {Dv : v  V}, and each edge, {De :
e  E}. The values of D can be updated by the execution, but
the structure of G (i.e., V and E) is fixed.

The unit of computation on a vertex is specified as an
update-function(v), which is a stateless function that modifies
the scope of the vertex v. A scope Sv is the data associated
with vertex v and its adjacent edges and vertices. The update-
function is executed for each vertex iteratively until a
termination condition is met (e.g., desired number of
iterations has been reached).

B. Update Function Specification in GraphGen

Unlike existing software frameworks that describe an
update function as a software function (e.g., C++ code),
GraphGen’s specification describes an update function as a
composition of custom graph instructions, which are mapped
to the graph processor on FPGA, as follows:
 First, custom instructions used in the update function are

defined. A user can define custom instructions that
compute any arbitrary combinational functions using the
scope and temporary data variables as input and output.
The temporary data variables are explicitly declared.

 Then, the user provides pipelined RTL implementations

Funding for this work was provided in part by Intel Science and
Technology Center for Embedded Computing and NSF SHF-1320725. We
thank Jungwook Choi and Prof. Rob A. Rutenbar from University of
Illinois for providing their stereo matching hardware for our case study.

Figure 1. GraphGen framework overview.

of these custom instructions as part of the specification.
These implementations are integrated into the graph
processor during the compilation process. They must
follow the interface declared in the specification. Any
hardware design methodology can be used to create
these custom instruction implementations. E.g., adapted
from existing hardware IPs, manually made from
scratch, generated using high-level synthesis tools.

 Finally, the update function is specified as a
composition of custom instructions. During compilation,
the specification of update function, custom instructions,
and graph structure are used to generate a sequence of
custom instructions to perform an update function for a
given vertex in the graph, i.e., a vertex program.

C. An Example Specification

Figure 2(a) shows a simple example of a graph with six
vertices (v1 to v6) and seven edges (e1 to e7). Figure 2(b)
depicts example data structure definitions for vertex data (Dv)
and edge data (De). It also shows the data structure definition
for temporary data variables used by the update function.
This example depicts three 32-bit integers (L0 to L2), but
generally it can be any arbitrary structure.

Figure 2(c) shows the declarations of custom instructions
named i1, i2, and i3. Pipelined RTL implementations for
these instructions are also included as a part of the
specification. Figure 2(d) illustrates the RTL module
interface for custom instruction i1 (clock and reset signals
not shown). It inputs a vertex data and outputs a temporary

data value, consistent with the instruction declaration for i1.
The module is annotated by the number of pipeline stages
that it has. This information is used in compilation.

Figure 2(e) depicts an example update function. It first
reads vertex data (vdata) and initializes a temporary variable
(tdata) by applying a custom instruction i1. Then, it reads
through all the adjacent edges, and uses a custom instruction
i2 to calculate a new value for tdata. Finally, adjacent edges
are updated by i3 based on input edge data (edata) and tdata.

Figure 2(f) shows an example traversal order from top-
left to bottom-right of the graph. The traversal consists of
four phases (P0, P1, P2, P3) that need to be executed in
order. The vertices within each phase are independent and
can be executed in parallel. E.g., the update functions for v2
and v3 in P1 can be executed in parallel.

While relatively simple, this example is representative of
many low-level computer vision applications [11], such as
the stereo matching application used in our case study.

From the aforementioned specification, the GraphGen
compiler can produce a vertex program, which is a sequence
of instructions for the graph processor to compute an update
function for a given vertex in the graph. Figure 3(a) shows an
example program for vertex v3. The first i1 instruction
performs initialization to temporary data variables. Then, the
for-each loop is elaborated into three i2 instructions
operating on the edges (e2, e4, e5) connected to v3. The
final three i3 instructions compute the last for-each loop.

D. Improving Parallelism Using SIMD Graph Instructions

Since an update function often contains for-each loop
operations over the connected edges and/or vertices. There is
an opportunity to improve parallelism by using a single
instruction that operates on multiple data (SIMD). GraphGen
supports such SIMD style custom instructions.

Figure 3(b) shows a SIMD version of the custom
instruction i2 from figure 2(c) applied to vertex program for
v3 from Figure 3(a). We refer to the number of data
processed at a time as SIMD-degree. In this example, two
edge data are processed by the i2 instruction. Therefore, one
i2 instruction can now process both e2 and e4 edges. As
such, the number of instructions needed to compute one for-
each loop in the update function is now reduced by one.

The RTL implementation for a SIMD instruction needs
to be included as a part of the specification. Its interface will
need to incorporate an appropriate number of vertex/edge
data inputs/outputs for the instruction’s SIMD-degree.

Figure 2. An example vertex-centric graph specification. Figure 3. Example vertex programs for v3.

III. AUTOMATIC MAPPING TO FPGAS

Due to space limitation, we provide only a high-level
overview of GraphGen’s automated mapping to FPGAs.

A. Architecture

The GraphGen framework targets a system architecture
depicted in Figure 4. It consists of a graph processor and the
memory subsystem, intermediated by scratchpads.

The processor is customizable to integrate user-defined
graph instructions provided in the input specification. The
processor executes update functions for a set of vertices (i.e.,
a subgraph) at a time. The subgraph data and vertex
programs are stored in the processor’s vertex scratchpad
(VS), edge scratchpad (ES), and instruction scratchpad (IS),
which are implemented using FPGA Block RAMs.

The graph data and vertex programs for the entire graph
are stored in external memory (DRAMs). The compiler
partitions the input graph into subgraphs and determines the
execution schedule for them. The memory system contains a
CoRAM-based DMA controller that transfers the subgraphs
to/from the processor following the execution schedule.

The processor is a slave to the DMA controller. Once the
DMA controller brings a subgraph into the processor’s
scratchpads, it tells the processor to start execution. When
finished, the processor signals the DMA controller indicating
it is now idle and ready to execute another subgraph.

To overlap data transfer and computation, the processor
uses two sets of scratchpads for double buffering. While it is
operating on one set, the DMA controller pre-fetches the
next subgraph to execute to the second set.

B. Compiler

The key steps taken by GraphGen to compile an FPGA
implementation from an input specification are as follows.

First, the graph is partitioned into smaller subgraphs so
they can fit onto the processor’s scratchpads. GraphGen
provides both manual and automatic partitioning capabilities.

After the graph is partitioned, the compiler produces a
program for each of the subgraphs. Based on the input
update function specification and graph structure, GraphGen
first creates program for every vertices. SIMD-degree is
considered accordingly (e.g., as in Figure 3(b)). Then, it
combines the programs for the vertices in a given subgraph
into a subgraph program for execution by the processor.

The next compilation step produces a memory image for
the FPGA. Various optimizations are applied to improve the
DRAM bandwidth use. Please refer to [12] for details.

Finally, the compiler generates the synthesizable RTL
implementation (Verilog), consisting of the graph processor,
scratchpads, and the memory subsystem.

IV. DESIGN CASE STUDIES

We carried out design case studies to evaluate the
effectiveness of the GraphGen framework. Experiments were
performed on the ML605 and DE4 platforms. The main
difference between them is their DRAM bandwidth. DE4 has
two DDR channels while ML605 only have one.

To demonstrate the flexibility of GraphGen, we
implemented two popular graph applications with widely
different attributes, as detailed in Table I. The first
application is stereo matching [11], which is illustrated in
Figure 5(a). This application accepts a stereo image pair (left
and right 2D images) and infers the disparity map containing
depth information for each pixel. We used the Tree-
Reweighted Message Passing (TRW-S) algorithm, which
provides superior inference quality over other alternatives
[11]. The second application we studied is handwriting
recognition, as shown in Figure 5(b). It accepts an image of a
handwritten digit and outputs an inference of what the digit
should be. We used Convolutional Neural Network (CNN)
[9], a popular algorithm for handwriting recognition.

Using GraphGen, we generated implementations with
SIMD-degrees of 1, 2, and 4 for ML605 and DE4 boards.
The only exception was CNN for the ML605, which did not
have enough routing resources to accommodate SIMD-
degree 4. We target clock frequency of 100 MHz for the
graph processors on the ML605. For DE4, we could run the
graph processor at both 100MHz and 150MHz. All DE4
implementations use 2 DDR channels, except for 150MHz
CNN with SIMD-degree 4, which did not meet timing.

Figure 6 depicts the performance for the implementations
generated by GraphGen. The y-axis shows performance as
runtime for one iteration (i.e., full graph traversal) of the

Figure 4. System architecture. Figure 5. Graph applications under study.

algorithm. The x-axis shows the various implementations
evaluated. Runtimes are broken down into the time when the
processor is active (i.e., Compute) and the time when it is
waiting for data to be loaded to its scratchpads (i.e., Data).

The results show that the SIMD optimization helps
improve performance, especially in CNN where there are
many edges for each node in its graph. Further, for most
designs, the processor stalls to wait for data is negligible.
This indicates that GraphGen memory optimizations (e.g.,
double buffering) successfully overlap data transfer with
computation. For designs where memory optimizations do
not completely hide data transfers (e.g., TRW-S on ML605
with SIMD-degree of 2 and 4), utilizing two memory
channels on the DE4 results in further improvement.

We also compared the best performing designs (DE4-
150) with software running on 1.87 GHz Intel Core i7 CPU.
GraphGen implementations were 14.6x and 2.9x faster for
stereo matching and handwriting recognition, respectively.
Against hand-made GPU implementations on Nvidia GTX
680m, the speedups were 10.8x and 1.3x.

V. RELATED WORK

Several vertex-centric frameworks, such as GraphLab

[7], GraphChi [5], and Pregel [8], have been widely used in
the machine learning community. However, these
frameworks are purely based on software, and do not take
advantage of FPGA-based acceleration.

In comparison to prior FPGA-based graph computation
frameworks [1][4][6], GraphGen is unique because it is the
only one that supports all of these features: (1) read and write
operation on the graph data, (2) the use of off-chip DRAMs
to manage the increasingly large graph dataset in modern
graph-based applications, (3) an automated end-to-end
compilation flow starting from a high-level vertex-centric
specification to an FPGA implementation, and (4) support
for multiple FPGA platforms.

VI. CONCLUSION

This paper has presented GraphGen, an FPGA
framework for vertex-centric graph computation. The
framework accepts a vertex-centric specification and
produces an FPGA implementation for the target platform.
Design case studies demonstrate that GraphGen is flexible to
handle different graph applications targeting different FPGA
platforms. They also show that GraphGen implementations
achieve significant speedups over software implementations.

REFERENCES
[1] B. Betkaoui, D.B. Thomas, W. Luk, and N. Przulj. A framework for

fpga acceleration of large graph problems: Graphlet counting case
study. 1nternational Conf. on Field-Programmable Technology, 2011.

[2] J. Choi, R. Rutenbar, “Hardware implementation of MRF map
inference on an FPGA platform,” Field Programmable Logic and
Applications, 2012.

[3] E. S. Chung, J. C. Hoe and K. Mai, “CoRAM: An In-Fabric Memory
Architecture for FPGA-based Computing”, ACM International
Symposium on Field-Programmable Gate Arrays, 2011.

[4] M. deLorimier, et. al., “GraphStep: A System Architecture for
Sparse-Graph Algorithms,” Field-Programmable Custom Computing
Machines, 2006.

[5] A. Kyrola, G. Blelloch, C. Guestrin, “GraphChi: Large-Scale Graph
Computation on Just a PC”, Symposium on Operating System Design
and Implementation (OSDI), 2012.

[6] M. Lin, I. Lebedev, J. Wawrzynek “High-throughput bayesian
computing machine with reconfigurable hardware”, ACM
International Symposium on Field-Programmable Gate Arrays, 2010.

[7] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, J. M.
Hellerstein, “GraphLab: A New Parallel Framework for Machine
Learning”, Conference on Uncertainty in Artificial Intelligence, 2010.

[8] G. Malewicz, M. H. Austern, A. J. C. Bik, J. C. Dehnert, I. Horn, N.
Leiser, G. Czajkowski, “Pregel: A System for Large-Scale Graph
Processing,” ACM SIGMOD International Conference on
Management of data, 2010.

[9] M. O’Neill, “Neural Network for Recognition of Handwritten
Digits,” CodeProject.

[10] Y. Shan, B. Wang, J. Yan, Y. Wang, N. Xu, H. Yang, “FPMR:
MapReduce Framework on FPGA A Case Study of RankBoost
Acceleration”, ACM International Symposium on Field-
Programmable Gate Arrays, 2010.

[11] R. Szeliski, et. al., “A Comparative Study of Energy Minimization
Methods for Markov Random Fields with Smoothness-Based Priors”,
IEEE Trans. on Pattern Analysis and Machine Intelligence, 2008.

[12] G. Weisz, E. Nurvitadhi, J. Hoe, “GraphGen for CoRAM: Graph
Computation on FPGAs”, Workshop on the Intersections of
Computer Architecture and Reconfigurable Logic, 2013.

TABLE I. ATTTRIBUTES OF GRAPH APPLICATIONS UNDER STUDY

Applications Stereo Matching
Handwriting
Recognition

Algorithm
Tree-Reweighted
Message Passing

(TRW-S)

Convolutional
Neural Network

(CNN)

CPU software base Middlebury [11] CodeProject [9]

Dataset
Tsukuba

(384x288 images)
MNIST database
(29x29 images)

Graph size
110,592 vertices,

221,184 edges
5,589 vertices,
341,224 edges

Graph shape Grid, regular Multi-layer, irregular

Graph traversal Diagonal First to last layer

Graph partitioning
Manual (partition to

tiles)
Automatic

Custom instruction
implementation

Adapted an existing
hardware IP from [2]

Manually made

Subgraph size Tile of 12x64 vertices
Up to 2K vertices

and 16K edges

Vertex/edge size 16 x 32-bit 32-bit

Figure 6. Performance of GraphGen implementations.

