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Abstract—Vertex-centric graph computations are widely used 
in many machine learning and data mining applications that 
operate on graph data structures. This paper presents 
GraphGen, a vertex-centric framework that targets FPGA for 
hardware acceleration of graph computations. GraphGen 
accepts a vertex-centric graph specification and automatically 
compiles it onto an application-specific synthesized graph 
processor and memory system for the target FPGA platform. 
We report design case studies using GraphGen to implement 
stereo matching and handwriting recognition graph 
applications on Terasic DE4 and Xilinx ML605 FPGA boards. 
Results show up to 14.6x and 2.9x speedups over software on 
Intel Core i7 CPU for the two applications, respectively. 
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I.  INTRODUCTION 

Computations on graph-based data structures are the 
basis of many applications in machine learning and data 
mining, enabling many important capabilities in modern 
computing (e.g., stereo matching [11], image segmentation 
[11], handwriting recognition [9], etc). Vertex-centric 
abstraction [5][7][8] is widely used for capturing such graph-
based applications, which have arbitrary graph structures, 
data types, and graph update functions. 

The GraphGen project provides a design framework that 
automatically compiles a high-level vertex-centric graph 
specification onto platforms with accelerators (e.g., FPGAs 
GPGPUs). The goal is to allow application developers 
without specific platform expertise to take advantage of the 
performance and energy efficiency of hardware accelerators.  

This paper presents the vertex-centric graph specification 
used by GraphGen for automatic compilation to FPGA 
platforms. The paper also provides a high-level overview of 
the GraphGen framework for FPGA targets. The framework 
automatically compiles a vertex-centric specification onto an 
application-specific synthesized graph processor on FPGA. 
The processor uses a memory subsystem designed to handle 
large graph data structures stored by off-chip DRAMs. The 
DMA interface to DRAMs is realized using CoRAM [3] in 
order to flexibly target multiple FPGA platforms. GraphGen 
also provides simulators and RTL testbenches for validation. 
Figure 1 illustrates the GraphGen framework. 

This paper also reports design case studies that show the 
flexibility of GraphGen in implementing two applications 
(stereo matching, handwriting recognition) on two FPGA 
platforms (Xilinx ML605 and Terasic DE4). The results 

show that GraphGen implementations are up to 14.6x and 
2.9x faster than software on Intel Core i7 CPU for the two 
applications, respectively.  

The rest of the paper is organized as follows. Section II 
elaborates on GraphGen’s vertex-centric specification. 
Section III provides a high-level overview of the automatic 
mapping to FPGAs. Section IV reports the design case 
studies. Section V discusses related work. Section VI offers 
concluding remarks.  

II. GRAPHGEN’S VERTEX-CENTRIC SPECIFICATION  

A. Review of Vertex-Centric Abstraction 

In a vertex-centric specification [5][7][8], graph 
computation is formulated as a graph G = (V, E, D), where V 
and E are the vertices and edges of G. An edge e = (u,v) 
connects two vertices u and v. If the edge is directed, then u 
is the source and v is the destination. Arbitrary data D can be 
associated with each vertex, {Dv : v  V}, and each edge, {De : 
e  E}. The values of D can be updated by the execution, but 
the structure of G (i.e., V and E) is fixed. 

The unit of computation on a vertex is specified as an 
update-function(v), which is a stateless function that modifies 
the scope of the vertex v. A scope Sv is the data associated 
with vertex v and its adjacent edges and vertices. The update-
function is executed for each vertex iteratively until a 
termination condition is met (e.g., desired number of 
iterations has been reached). 

B. Update Function Specification in GraphGen 

Unlike existing software frameworks that describe an 
update function as a software function (e.g., C++ code), 
GraphGen’s specification describes an update function as a 
composition of custom graph instructions, which are mapped 
to the graph processor on FPGA, as follows: 
 First, custom instructions used in the update function are 

defined. A user can define custom instructions that 
compute any arbitrary combinational functions using the 
scope and temporary data variables as input and output.  
The temporary data variables are explicitly declared.  

 Then, the user provides pipelined RTL implementations 
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Figure 1. GraphGen framework overview. 



 

of these custom instructions as part of the specification. 
These implementations are integrated into the graph 
processor during the compilation process. They must 
follow the interface declared in the specification. Any 
hardware design methodology can be used to create 
these custom instruction implementations. E.g., adapted 
from existing hardware IPs, manually made from 
scratch, generated using high-level synthesis tools.  

 Finally, the update function is specified as a 
composition of custom instructions. During compilation, 
the specification of update function, custom instructions, 
and graph structure are used to generate a sequence of 
custom instructions to perform an update function for a 
given vertex in the graph, i.e., a vertex program.  

C. An Example Specification 

Figure 2(a) shows a simple example of a graph with six 
vertices (v1 to v6) and seven edges (e1 to e7). Figure 2(b) 
depicts example data structure definitions for vertex data (Dv) 
and edge data (De). It also shows the data structure definition 
for temporary data variables used by the update function. 
This example depicts three 32-bit integers (L0 to L2), but 
generally it can be any arbitrary structure. 

Figure 2(c) shows the declarations of custom instructions 
named i1, i2, and i3. Pipelined RTL implementations for 
these instructions are also included as a part of the 
specification. Figure 2(d) illustrates the RTL module 
interface for custom instruction i1 (clock and reset signals 
not shown). It inputs a vertex data and outputs a temporary 

data value, consistent with the instruction declaration for i1. 
The module is annotated by the number of pipeline stages 
that it has. This information is used in compilation.  

Figure 2(e) depicts an example update function. It first 
reads vertex data (vdata) and initializes a temporary variable 
(tdata) by applying a custom instruction i1. Then, it reads 
through all the adjacent edges, and uses a custom instruction 
i2 to calculate a new value for tdata. Finally, adjacent edges 
are updated by i3 based on input edge data (edata) and tdata.  

Figure 2(f) shows an example traversal order from top-
left to bottom-right of the graph. The traversal consists of 
four phases (P0, P1, P2, P3) that need to be executed in 
order. The vertices within each phase are independent and 
can be executed in parallel. E.g., the update functions for v2 
and v3 in P1 can be executed in parallel.  

While relatively simple, this example is representative of 
many low-level computer vision applications [11], such as 
the stereo matching application used in our case study.  

From the aforementioned specification, the GraphGen 
compiler can produce a vertex program, which is a sequence 
of instructions for the graph processor to compute an update 
function for a given vertex in the graph. Figure 3(a) shows an 
example program for vertex v3. The first i1 instruction 
performs initialization to temporary data variables. Then, the 
for-each loop is elaborated into three i2 instructions 
operating on the edges (e2, e4, e5) connected to v3. The 
final three i3 instructions compute the last for-each loop.  

D. Improving Parallelism Using SIMD Graph Instructions 

Since an update function often contains for-each loop 
operations over the connected edges and/or vertices. There is 
an opportunity to improve parallelism by using a single 
instruction that operates on multiple data (SIMD). GraphGen 
supports such SIMD style custom instructions.  

Figure 3(b) shows a SIMD version of the custom 
instruction i2 from figure 2(c) applied to vertex program for 
v3 from Figure 3(a). We refer to the number of data 
processed at a time as SIMD-degree. In this example, two 
edge data are processed by the i2 instruction. Therefore, one 
i2 instruction can now process both e2 and e4 edges. As 
such, the number of instructions needed to compute one for-
each loop in the update function is now reduced by one. 

The RTL implementation for a SIMD instruction needs 
to be included as a part of the specification. Its interface will 
need to incorporate an appropriate number of vertex/edge 
data inputs/outputs for the instruction’s SIMD-degree.  

Figure 2. An example vertex-centric graph specification. Figure 3. Example vertex programs for v3.  



 

III. AUTOMATIC MAPPING TO FPGAS  

Due to space limitation, we provide only a high-level 
overview of GraphGen’s automated mapping to FPGAs.  

A. Architecture 

The GraphGen framework targets a system architecture 
depicted in Figure 4. It consists of a graph processor and the 
memory subsystem, intermediated by scratchpads.  

The processor is customizable to integrate user-defined 
graph instructions provided in the input specification. The 
processor executes update functions for a set of vertices (i.e., 
a subgraph) at a time. The subgraph data and vertex 
programs are stored in the processor’s vertex scratchpad 
(VS), edge scratchpad (ES), and instruction scratchpad (IS), 
which are implemented using FPGA Block RAMs.  

The graph data and vertex programs for the entire graph 
are stored in external memory (DRAMs). The compiler 
partitions the input graph into subgraphs and determines the 
execution schedule for them. The memory system contains a 
CoRAM-based DMA controller that transfers the subgraphs 
to/from the processor following the execution schedule.  

The processor is a slave to the DMA controller. Once the 
DMA controller brings a subgraph into the processor’s 
scratchpads, it tells the processor to start execution. When 
finished, the processor signals the DMA controller indicating 
it is now idle and ready to execute another subgraph. 

To overlap data transfer and computation, the processor 
uses two sets of scratchpads for double buffering. While it is 
operating on one set, the DMA controller pre-fetches the 
next subgraph to execute to the second set. 

B. Compiler 

The key steps taken by GraphGen to compile an FPGA 
implementation from an input specification are as follows.  

First, the graph is partitioned into smaller subgraphs so 
they can fit onto the processor’s scratchpads. GraphGen 
provides both manual and automatic partitioning capabilities.  

After the graph is partitioned, the compiler produces a 
program for each of the subgraphs. Based on the input 
update function specification and graph structure, GraphGen 
first creates program for every vertices. SIMD-degree is 
considered accordingly (e.g., as in Figure 3(b)). Then, it 
combines the programs for the vertices in a given subgraph 
into a subgraph program for execution by the processor.  

The next compilation step produces a memory image for 
the FPGA. Various optimizations are applied to improve the 
DRAM bandwidth use. Please refer to [12] for details. 

Finally, the compiler generates the synthesizable RTL 
implementation (Verilog), consisting of the graph processor, 
scratchpads, and the memory subsystem.  

IV. DESIGN CASE STUDIES 

We carried out design case studies to evaluate the 
effectiveness of the GraphGen framework. Experiments were 
performed on the ML605 and DE4 platforms. The main 
difference between them is their DRAM bandwidth. DE4 has 
two DDR channels while ML605 only have one.  

To demonstrate the flexibility of GraphGen, we 
implemented two popular graph applications with widely 
different attributes, as detailed in Table I. The first 
application is stereo matching [11], which is illustrated in 
Figure 5(a). This application accepts a stereo image pair (left 
and right 2D images) and infers the disparity map containing 
depth information for each pixel. We used the Tree-
Reweighted Message Passing (TRW-S) algorithm, which 
provides superior inference quality over other alternatives 
[11]. The second application we studied is handwriting 
recognition, as shown in Figure 5(b). It accepts an image of a 
handwritten digit and outputs an inference of what the digit 
should be. We used Convolutional Neural Network (CNN) 
[9], a popular algorithm for handwriting recognition.  

Using GraphGen, we generated implementations with 
SIMD-degrees of 1, 2, and 4 for ML605 and DE4 boards. 
The only exception was CNN for the ML605, which did not 
have enough routing resources to accommodate SIMD-
degree 4. We target clock frequency of 100 MHz for the 
graph processors on the ML605. For DE4, we could run the 
graph processor at both 100MHz and 150MHz. All DE4 
implementations use 2 DDR channels, except for 150MHz 
CNN with SIMD-degree 4, which did not meet timing. 

Figure 6 depicts the performance for the implementations 
generated by GraphGen. The y-axis shows performance as 
runtime for one iteration (i.e., full graph traversal) of the 

Figure 4. System architecture. Figure 5. Graph applications under study. 



 

algorithm. The x-axis shows the various implementations 
evaluated. Runtimes are broken down into the time when the 
processor is active (i.e., Compute) and the time when it is 
waiting for data to be loaded to its scratchpads (i.e., Data).  

The results show that the SIMD optimization helps 
improve performance, especially in CNN where there are 
many edges for each node in its graph. Further, for most 
designs, the processor stalls to wait for data is negligible. 
This indicates that GraphGen memory optimizations (e.g., 
double buffering) successfully overlap data transfer with 
computation. For designs where memory optimizations do 
not completely hide data transfers (e.g., TRW-S on ML605 
with SIMD-degree of 2 and 4), utilizing two memory 
channels on the DE4 results in further improvement.  

We also compared the best performing designs (DE4-
150) with software running on 1.87 GHz Intel Core i7 CPU. 
GraphGen implementations were 14.6x and 2.9x faster for 
stereo matching and handwriting recognition, respectively. 
Against hand-made GPU implementations on Nvidia GTX 
680m, the speedups were 10.8x and 1.3x. 

V. RELATED WORK 

Several vertex-centric frameworks, such as GraphLab 

[7], GraphChi [5], and Pregel [8], have been widely used in 
the machine learning community. However, these 
frameworks are purely based on software, and do not take 
advantage of FPGA-based acceleration.  

In comparison to prior FPGA-based graph computation 
frameworks [1][4][6], GraphGen is unique because it is the 
only one that supports all of these features: (1) read and write 
operation on the graph data, (2) the use of off-chip DRAMs 
to manage the increasingly large graph dataset in modern 
graph-based applications, (3) an automated end-to-end 
compilation flow starting from a high-level vertex-centric 
specification to an FPGA implementation, and (4) support 
for multiple FPGA platforms.  

VI. CONCLUSION 

This paper has presented GraphGen, an FPGA 
framework for vertex-centric graph computation. The 
framework accepts a vertex-centric specification and 
produces an FPGA implementation for the target platform. 
Design case studies demonstrate that GraphGen is flexible to 
handle different graph applications targeting different FPGA 
platforms. They also show that GraphGen implementations 
achieve significant speedups over software implementations.  
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TABLE I.  ATTTRIBUTES OF GRAPH APPLICATIONS UNDER STUDY 

Applications Stereo Matching 
Handwriting 
Recognition 

Algorithm 
Tree-Reweighted 
Message Passing 

(TRW-S) 

Convolutional 
Neural Network 

(CNN) 

CPU software base  Middlebury [11] CodeProject [9] 

Dataset 
Tsukuba  

(384x288 images) 
MNIST database  
(29x29 images) 

Graph size 
110,592 vertices, 

221,184 edges  
5,589 vertices,  
341,224 edges 

Graph shape Grid, regular Multi-layer, irregular 

Graph traversal Diagonal First to last layer 

Graph partitioning 
Manual (partition to 

tiles) 
Automatic 

Custom instruction 
implementation 

Adapted an existing 
hardware IP from [2] 

Manually made  

Subgraph size Tile of 12x64 vertices 
Up to 2K vertices 

and 16K edges 

Vertex/edge size 16 x 32-bit  32-bit 

Figure 6. Performance of GraphGen implementations. 


