Memory Bandwidth Efficient Two-Dimensional Fast Fourier Transform Algorithm
and Implementation for Large Problem Sizes

Berkin Akin, Peter A. Milder, Franz Franchetti, James C. Hoe
Electrical and Computer Engineering Department
Carnegie Mellon University, Pittsburgh, PA, USA

{bakin, pam, franzf, jhoe} @ece.cmu.edu

Abstract—Prevailing VLSI trends point to a growing gap be-
tween the scaling of on-chip processing throughput and off-chip
memory bandwidth. An efficient use of memory bandwidth
must become a first-class design consideration in order to fully
utilize the processing capability of highly concurrent processing
platforms like FPGAs. In this paper, we present key aspects of
this challenge in developing FPGA-based implementations of
two-dimensional fast Fourier transform (2D-FFT) where the
large datasets must reside off-chip in DRAM. Our scalable
implementations address the memory bandwidth bottleneck
through both (1) algorithm design to enable efficient DRAM
access patterns and (2) datapath design to extract the maximum
compute throughput for a given level of memory bandwidth.
We present results for double-precision 2D-FFT up to size
2,048-by-2,048. On an Altera DE4 platform our implementation
of the 2,048-by-2,048 2D-FFT can achieve over 19.2 Gflop/s
from the 12 GByte/s maximum DRAM bandwidth available.
The results also show that our FPGA-based implementations
of 2D-FFT are more efficient than 2D-FFT running on state-of-
the-art CPUs and GPUs in terms of the bandwidth and power
efficiency.

Keywords-2D-FFT, 2D-DFT, Memory Bandwidth, DRAM,
FPGA.

I. INTRODUCTION

While there has been extensive prior work in DSP trans-
forms for FPGAs, their designed performance is typically
achievable only when the datasets are readily accessed
from fast on-chip SRAMs. In this paper, we develop high-
performance FPGA implementations of the 2D-FFT for large
problem sizes where the datasets must be held externally in
DRAM. The calculation must proceed in stages where only
a portion of the dataset that fits on-chip is operated on at a
time, requiring data elements to make multiple roundtrips to
and from DRAM. The constant reading and writing of data
elements in DRAM exert a heavy pressure on the available
memory bandwidth and is typically the determining factor
in the overall performance.

Our development approach combines both careful al-
gorithmic and architecture-level design optimizations. The
hardware design effort is preceded by an investigation
into DRAM-compatible 2D-FFT algorithms. Standard 2D-
FFT algorithms require large strided accesses through the
DRAM; their low spatial locality makes very inefficient use
of the DRAM row buffer. We find a restructured algorithm
with symmetric stages that makes full use of each DRAM

row touched, allowing close to theoretical peak DRAM
bandwidth to be sustained throughout the calculation.

II. BACKGROUND

Fast Fourier transform. An n point discrete Fourier
transform (DFT,,) is the matrix-vector multiplication:

y = DFT, z, — g~ 27i/n

DFTn = [wﬁqogk,5<n7 Wn,
A literal calculation of DFT,, by matrix-vector multiplica-
tion requires O(n?) arithmetic operations. So-called Fast
Fourier Transforms (FFTs) are algorithms that compute
DFT,, in O(nlogn) arithmetic operations.

The two-dimensional DFT (2D-DFT) is again a matrix-
vector multiplication. The input and output vectors now have
n? complex elements. These n2-element vectors are usually
interpreted as holding a 2D n-by-n array in row-major order.

Similar to the 1D-DFT, the 2D-DFT can be computed
efficiently using “fast” 2D-FFT algorithms [1]. For example,
the well-known row-column algorithm can be summarized
as follows: Taking the vector to be a 2D n-by-n array,
first apply n-point ID-FFT to each of the n rows and
then to apply n-point 1D-FFT to each of the n columns.
The first stage of the calculation accesses the n2-element
input vector’s elements sequentially; the second stage of the
calculation requires stride-n accesses.

DDR-SDRAM operation. The row buffer is a fast buffer
storing the most recently referenced row from a bank of
DRAM. High row buffer locality can improve DRAM per-
formance significantly: if the accessed bank and row pair are
already active, i.e., the referenced row is already in the row
buffer, then a row buffer hit occurs which reduces the access
latency and energy consumption considerably. On the other
hand, when a different row in the active bank is accessed, a
row buffer miss occurs, requiring the newly referenced row
to be read into the row buffer.

On the Altera DE4 platform with DDR2-800 SO-DIMM
modules, the maximum bandwidth of 6 GByte/s (per chan-
nel) can only be approached when accessing memory in
aligned 8KByte (or multiple of) chunks (8KByte is the row
buffer size). In stark contrast, large-strided accesses that
access only one 8-byte double-precision value per DRAM
row yield only 155 MByte/s. Of the two cases above, the

row 0
Tile Tile row1 Tile
(0,0) (0,1) : (0,n/k-1)
row k-1
Tile ‘
(1,0)
W
- . |
o- X T'|I.e Kk g n
cc c (i,j) S
EE £ E
EERG — ©
Qo o
k
Tile Tile
(n/k-1,0) (n/lcLn/ke1)
row n-1
n
Figure 1. 2D abstraction of dataset.

former is the case for the first stage of the row-column 2D-
FFT algorithm; the latter is the case for the second column-
wise stage.

ITII. DRAM-FRIENDLY TWO-DIMENSIONAL FFTSs

A bandwidth efficient implementation of 2D-FFT algo-
rithm must only interact with DRAM in large row buffer
sized chunks.

Tiled data remapping. So far, we have assumed the
common row-major mapping of the 2D n-by-n array onto
the n2-element vector. As such, a row-wise traversal of the
array results in the efficient sequential memory accesses
while a column-wise traversal results in problematic stride-n
accesses. To avoid the strided memory access pattern during
the column-wise traversal step, we have to alter the spatial
locality of memory accesses by choosing a different mapping
as illustrated in Figure 1.

We logically divide the n-by-n array into n/k-by-n/k
tiles where each square tile has k2 elements. Instead of
the conventional row-major mapping, we map the elements
within a file to consecutive locations and we then order
the whole tiles in row-major order. The size of a tile (k?)
is selected to match the size of the DRAM row buffer.
By requiring our desired 2D-FFT implementation to access
DRAM only in the granularity of at least a full tile, we
ensure efficient DRAM accesses.

Row-column algorithm with tiled data mapping. After
the remapping, the row-stage progresses in groups of k row-
wise 1D-FFTs. To do so, we read each complete row of tiles,
and reshuffle their data on-chip into %k natural-ordered data
rows so that £ 1D-FFTs can be applied. After applying the
k 1D-FFTs on the rows, we reshuffle the data back into tile-
order and write back a row of tiles. Similarly in the column
stage, we read each complete column of tiles, apply k£ 1D-
FFTs on the k£ data columns, then write back the column
of tiles. We still perform the same number of reads and
writes as the original row-column algorithm, but since we
always transfer row buffer sized tiles to and from DRAM,
we maximize DRAM bandwidth utilization.

D2L L2c
g Memory # Local $
§ <—> Controller Memory
=) A A
Read Write
Buffer Buffer
AI"D_' Core —ED:I:I—)[]:
§ Memory Local
::t <—> Controller Memory
a B ¢ B $
D2L L2c

Figure 2. Detailed view of resulting architecture.

Final algorithm. Instead of creating a fixed design in-
stance, we built a parametrized design generator that can
quickly create designs tuned for different platforms with
different row buffer sizes or DRAM bandwidths. Internally,
our generator uses a formalism based on tensor products
[1] to represent and manipulate the FFT algorithms. Using
this formalism, we can further derive a conceptually more
challenging but implementation-wise more elegant design,
where the operations of the two stages become identical
and therefore can reuse the same exact datapath. Without
providing a formal derivation, our final 2D-FFT algorithm
can be summarized as follows: We bring in each row of tiles
and apply 1D-FFT on the k data rows as before. However,
when writing back, we locally transpose the contents of each
tile and then write back as a column of tiles. By introducing
this on-the-fly transposition, stage two becomes identical to
stage one and can reuse the same datapath.

IV. ARCHITECTURE

In this section, we present our scalable parametrized
datapath design that can sustain the maximum DRAM band-
width throughout the computation based on the algorithm
we discussed in the previous section. Figure 2 conceptually
depicts the datapath.

Memory Controllers. The Altera DE4 platform provides
two independent DDR channels. In our usage, a memory
controller (Altera’s High Performance Controller) attained
over 90% of the theoretical peak bandwidth (6 GByte/s
for DDR2-800). To make use of the two independent
channels, for the first stage of the algorithm, the input
vector starts from DRAM on channel A, and the output
vector is produced into the channel B. The multiplexers
and demultiplexers shown in Figure 2 enable the two DDR
channels to exchange their input/output roles for the second
stage of the algorithm reusing the same datapath without
modification.

Local Memory. In both stages of our algorithm, the row-
wise applications of the 1D-FFT progress in steps of k£ rows
of the input matrix at a time, corresponding to reading a
row of tiles. In each step, the working-set of n X k elements

is buffered in Local Memory constructed from embedded
SRAM on the FPGA. Because the data elements are brought
in from DRAM in tiled order, the D2L controller in Figure 2
has to re-linearize the data elements into row-order in
the Local Memory. To manage this data shuffling without
bank conflicts in light of the multiple elements arriving in
tile-order per cycle is a non-trivial problem; we construct
our solution using the technique given in [2]. To sustain
the maximum DRAM bandwidth continuously, we employ
double buffering in Local Memories. We can overlap the
loading, unloading, and compute operations corresponding
to different rows of tiles using this technique.

Computational Core. The streaming 1D-FFT kernel that
operates on the SRAM-buffered k-row working set is auto-
matically generated using the public Spiral online tool [3].
The Spiral generator can produce fully pipelined 1D-FFT
cores over a wide range of user-selected processing rates for
a commensurate charge in logic cost. For a balanced design,
we generate the 1D-FFT pipeline that exactly matches the
data rate of our DRAM reading and writing bandwidth, so
the 1D-FFT core performance is neither the bottleneck nor
unnecessarily high.

V. RESULTS

In this section, we evaluate the performance, bandwidth
efficiency, and power efficiency of our 2D-FFT imple-
mentations by comparing against both existing hardware
(FPGA, ASIC) and software implementations (CPU, GPU).
Our implementations are targeted to the Altera Stratix IV
EP4SGX530 FPGA on the DE4 development board. Our
implementations support complex double-precision floating
point values (2x64 bits per complex word) which are
required in realistic use scenarios for large 2D-FFTs to
preserve sufficient accuracy in the final result (particularly
in scientific computing applications).

A. Performance Comparisons

We evaluate our implementations along three metrics: raw
performance, bandwidth efficiency, and power efficiency.
As is customary in the FFT literature, our raw perfor-
mance metric is reported in “pseudo” billion floating point
operations per second, (Gflop/s); this metric is calculated
as 1/runtime scaled by a constant that is the standard
nominal operation count'. We define bandwidth efficiency
as performance normalized to available memory bandwidth,
(Gflop/s)/(GByte/s), and power efficiency as performance
normalized to power consumed, (Gflop/s)/Watt). Higher val-
ues are better for all metrics.

Against other ASIC and FPGA implementations. In
Table I, we first benchmark our performance against other
hardware solutions (ASIC and FPGA) found in the literature.
Our implementation outperformed all benchmarked imple-
mentations except one design that used 16-bit fixed-point

'5n2 log, n?, for n-by-n 2D-FFT

Table I
PERFORMANCE COMPARISON WITH EXISTING HARDWARE SOLUTIONS
(1,024-BY-1,024 2D-FFT).

Platform Memory Precision Runtime Source
(bits) (ms)

Virtex-5 LX155 1xDDR2-400 32 (single) 102.6 [4]

Virtex-E 4xSRAM 16 (fixed) 62.5 [5]

ASIC (180nm) 4xSDRAM 32 (single) 21 [6]

Virtex-5 FX IXDDR2-400 16 (fixed) 550 [71

Stratix IV 2xDDR2-800 64 (double) 6.1 Ours

(M In this implementation a final bit-reversal permutation is separated
from 2D-FFT computation and handled by the host computer.

and omitted the non-trivial final bit-reversal permutation. An
important caveat to keep in mind is that this comparison
of published designs is based on self-reported performance
achieved on different platforms, memory systems, and data
precisions. To give an absolute sense of quality, however,
the performance of our implementation is within 11% of
an idealized platform with infinitely fast on-chip processing
and a perfect off-chip memory system that has a bounded
bandwidth but no access latency, row buffer miss penalty,
or refresh penalty.

Against CPUs and GPUs. Figure 3(a) compares our raw
performance to the best-available platform-tuned software
solutions running on a quad-core 3.2 GHz Intel Core i7
960 CPU and an NVIDIA GeForce GTX 480 GPU. For
the Core i7 we used the Spiral framework [8]; for the
GTX 480 we used CUFFT 4.0 [9]. For this comparison,
all platforms (summarized in Table 3) are running exactly
the same application: double-precision 2D-FFT.

In terms of raw performance the GTX 480 dominates for
almost all problem sizes. This is not too surprising since
the GTX 480 enjoys 177.4 GByte/s of memory bandwidth.
When the Core i7 and the DE4 are compared, we observe
that for small problem sizes (e.g. < 256 x 256), the Core 17
outperforms the DE4 implementation. Once the problem size
exceeds the Core i7’s 8 MByte L3 cache, its performance
degrades to about half of our implementation’s (even though
the Core i7 has 25.6 GByte/s of memory bandwidth, more
than twice the DE4’s).

We next direct our attention to bandwidth and power
efficiency. Going forward, off-chip bandwidth and power
budgets will not grow as fast as on-chip processing per-
formance. A comparison of bandwidth efficiency and power
efficiency answers the question: for a given amount of mem-
ory bandwidth and power on a hypothetical future computing
device, how do you extract the maximum performance?
Figure 3(b) reports the comparison of memory bandwidth
efficiency of the 2D-FFT running on the Altera DE4, Intel
Core i7 and NVIDIA GTX 480. The DE4 implementations
have significantly better bandwidth efficiency over all prob-
lem sizes relative to both GTX 480 and Core i7. For the
problem size of 2,048-by-2,048, we could produce a re-tuned
implementation that equals the absolute performance of the

2D-FFT Raw Performance (double precision)
Performance [Gflop/s]

90 1.8
80 1.6
70 1.4
60 1.2
50 GTX 480 1

40 0.8
30 0.6
20 DE4 o 0.4
10 — 0.2
0 0" : .

2D-FFT Bandwidth Efficiency (double precision)
Bandwidth normalized performance [(Gflop/s)/(GB/s)]

2D-FFT Power Efficiency (double precision)
Power normalized performance [(Gflop/s)/Watt]

0.9

0.8

0.7 DE4
0.6
0.5
0.4
0.3
0.2
Core i7 960 0.1
T T . 0 - T T T T |

GTX 480

Core i7 960

64x64 128x128 256x256 512x512 1Kx1K

Problem Size

2Kx2K

(a) Raw performance

Figure 3.
Table II
COMPARISON OF THE PLATFORMS.

Core i7 GTX Stratix IV
960 480 EP4SGXS530
DRAM Type DDR3 GDDRS5 DDR2
of Memory Channels 3 6 2
Off-chip BW (GByte/s) 25.6 177.4 12
On-chip Memory (MByte) 8 1.69 2.53
Proc. Frequency (MHz) 3,200 1,401 200

GTX 480 if we had available an FPGA platform with 49.6
GByte/s (just 28% of the bandwidth available to the GTX
480). Figure 3(c) next reports the comparison of the power
efficiency. All power numbers reported in this figure are
measured on actual systems and include DRAM power. The
DE4 implementations offer the best power efficiency, about
twice the efficiency of the GTX 480, for all problem sizes.

VI. RELATED WORK

There have been many implementations of 2D-FFT on
a variety of platforms. These include software implementa-
tions on CPUs [8] and GPUs [9]. There are also examples of
ASIC-based [6] and FPGA-based 2D-FFT implementations.
Some FPGA examples only consider on-chip operation and
assume the dataset fits in on-chip memory [10]. FPGA exam-
ples that consider off-chip memory interfacing include [7],
[4], [S]. Among these implementations, few directly ad-
dressed the efficient utilization of the off-chip memory band-
width. The designs in [7] and [4] do address the memory
bandwidth problem but not at the level of detail that includes
DRAM row buffer effects. None of the prior FPGA-based
implementations targeted double-precision arithmetic which
is the required norm for the problem sizes we are concerned
with.

VII. CONCLUSIONS

For 2D-FFTs on large data sets, the main performance
bottleneck is the off-chip memory bandwidth. Traditional
row-column or transpose-based algorithms do not exploit
off-chip memory bandwidth efficiently due to poor memory
access patterns. In this work, we addressed this issue through
a joint optimization of algorithm and architecture. Our effort
resulted in highly optimized 2D-FFT implementations based

64x64 128x128 256x256 512x512 1Kx1K

Problem Size

(b) Bandwidth efficiency

2Kx2K 64x64 128x128 256x256 512x512 1Kx1K 2Kx2K

Problem Size

(c) Power efficiency

Raw performance, bandwidth efficiency, and power efficiency results for FPGA (DE4), CPU (Core i7 960) and GPU (GTX 480).

on an algorithm designed specifically for efficient use of the
DRAM row buffer. Our implementations make efficient use
of the on-chip compute resources and can sustain the max-
imum off-chip memory bandwidth throughout the 2D-FFT
computation. Our results showed that in raw performance
at the target problem sizes, we significantly outperform
other comparable FPGA-based solutions. Our architecture
is also more efficient than the best-available software run-
ning on state-of-the-art GPUs and CPUs in terms of the
ratio between achieved performance and available off-chip
bandwidth and the ratio between achieved performance and
power consumption.

ACKNOWLEDGEMENTS

The authors acknowledge the support of the C2S2 Fo-
cus Center, one of six research centers funded under the
Focus Center Research Program (FCRP), a Semiconductor
Research Corporation entity. Funding for this work was also
provided in part by NSF CCF-1012851 and Altera. The
authors thank Altera for their FPGA and tool donations.

REFERENCES

[1] C. Van Loan, Computational frameworks for the fast Fourier
transform. SIAM, 1992.

[2] M. Piischel et al., “Permuting streaming data using RAMs,”
Journal of the ACM, vol. 56, no. 2, pp. 10:1-10:34, 2009.

[3] “Spiral DFT/FFT Ip generator,”
http://www.spiral.net/hardware/dftgen.html.

[4] C.-L. Yu et al., “Multidimensional DFT IP generator for
FPGA platforms,” IEEE Transactions on Circuits and Sys-
tems, vol. 58, no. 4, pp. 755-764, 2010.

[5] I. S. Uzun et al., “FPGA implementations of fast Fourier
transforms for real-time signal and image processing,” in
IEEE Conference on Field-Programmable Technology (FPT),
2003, pp. 102-109.

[6] “PowerFFT ASIC,” http://www.eonic.com/.

[7]1 C.-L. Yu et al., “FPGA architecture for 2D discrete Fourier
transform based on 2D decomposition for large-sized data,”
Journal of Signal Processing Systems, vol. 64, no. 1, pp. 109—
122, 2011.

[8] “Spiral,” http://spiral.net/.

[9] “CUDA 4.0 CUFFT,” http://developer.nvidia.com/cuFFT.

[10] P. A. Milder et al., “Formal datapath representation and
manipulation for implementing DSP transforms,” in Design
Automation Conference (DAC), 2008, pp. 385-390.

