
Performance Portable Tracking of

Evolving Surfaces

Wei Yu

A Dissertation

in Candidacy for the Degree

of Doctor of Philosophy

Recommended for Acceptance

by the Department of

Electrical and Computer Engineering

Advisers: Franz Franchetti, James C. Hoe

May 2011

c© Copyright by Wei Yu, 2011.

All rights reserved.

Abstract

Our goal is to deliver high performance portable implementations across main-

stream multicore machines for an important application: tracking evolving surfaces.

Level set is a widely used numerical algorithm for tracking evolving surfaces, which

embeds the surface in a regularly discretized volume and performs numerical com-

putation in the volume. The narrow band level set algorithm is a variation of the

level set method that reduces the computational cost by tracking the evolution in

a narrow band, which is a neighborhood region around the evolving surface. Com-

putationally, it performs numerical stencil computation on the points in the narrow

band, and tracks the motion of the narrow band in the meantime. The narrow band

level set algorithm is featured by abundant data parallelism and temporal data reuse.

However, code optimization for the algorithm is complicated by the irregularity of

the dynamically evolving sparse band and the data dependant control flow inherent

in the algorithm.

We propose a novel code transformation for the narrow band level set algorithm,

namely projective time skewing. This technique effectively extracts data reuse with

low overhead. It is essentially different from applying the existing time skewing tech-

nique to the algorithm, and is much more efficient. In addition, we applied a set

of other code transformations to fully utilize state-of-the-art multicore CPUs. These

include in-core stencil optimization, lower level memory optimizations and paralleliza-

tion, with focus on utilizing in-core resources, reducing memory access pressure, and

achieving scalable performance across multicores. We incorporate all these optimiza-

tions in a parameterized framework, and build an auto-tuner on top of it to auto-

matically search for good parameter values on different machines. The auto-tuning

approach enables us to deliver performance portable code on different machines with-

out manual re-optimization.

iii

We did experiments on two Intel x86 cache-based multicore CPUs: a Intel dual-

socket 2.8 GHz Xeon 5560 and a 1.6 GHz Atom N270. They exhibit significant

variance in their core micro-architectures, DRAM bandwidth, peak flop rates, and

the number of hardware threads. Fully tuned code shows up to 195x speedup over

a straight forward C code implementation on the dual-quadcore Xeon system. The

computational rate reaches 26% to 35% of the machine peak flop rate on Xeon, and

12% to 20% on Atom, across a wide range of problem sizes. The optimal parameters

found by our auto-tuner averagely provide a performance gain of 12% on Xeon and

17% on Atom over an educated guess of good parameterizations.

iv

Acknowledgements

I would like to thank my advisers, James C Hoe, Franz Franchetti, and Tsuhan

Chen. Tsuhan was my advisor in the first half of my Phd life, and continues to support

and advise me on research in the second half, when I work closely with James and

Franz. I am very fortunate to have more than the usual number of advisors. All

of them have always been very encouraging and supportive, to which I’d be ever

thankful. They not only taught me how to become a better researcher, but also gave

me wonderful guidance on shaping my mode of thinking, writing, presenting and

communicating, from which I will benefit all my lifetime.

I also thank Markus Puesuel, whose incisive comments and broad knowledge have

provided valuable insights on my research. He also set up a great example on how to

improve the quality of writing and presentations. I appreciate that Marios Savvides

and Ken Mai served on my qualifying exam committee as well, and gave me helpful

suggestions on my early work on GPU.

Many thanks to my committee members David O’Hallaron and Nick Nystrom

for their valuable feedback and comments, which have helped to improve the overall

quality of my work and the thesis.

I would also like to thank Dr. Chunming Li for the enlightening discussions and

suggestions on understanding the algorithms.

I feel very fortunate to get to know and work with members from three research

groups: Ahmed Ashraf, Dhruv Batra, Kevin Chang, Andrew Gallagher, Zhaoyin Jia,

Adarsh Kowdle, Hung-Chi Lai, Congcong Li, Edward Lin, David Liu, Mei-Hsuan Lu,

Devi Parikh, Hyunjung Shim, Qi Wu, Wende Zhang, Yimeng Zhang, from Advanced

Multimedia Processing group; Berkin Akin, Christos Angelopoulos, Volodymyr Arba-

tov, Christian Berger, Srinivas Chellappa, Tao Cui, Robert Koutsoyannis, Daniel Mc-

Farlin, Frédéric de Mesmay, Peter Milder, Marek Telgarsky, Qian Yu, from SPIRAL

group; and Eric Chung, Yoongu Kim, Yongjun Jeon, Peter Klemperer, Eriko Nurvi-

v

tadhi, Michael PapaMichael, Stephen Somogyi, Evangelos Vlachos, Roland Wunder-

lich from the CALCM group. Thank you for the discussions and collaborations, as

well as many pleasant memories we shared in group activities. I am especially thankful

to Volodymyr Arbatov, Kevin Chang, Eric Chung, Daniel Macfarlin and Peter Milder

for their hands-on help in my research, and many detailed suggestions in sharpening

the quality of my work.

I would also like to thank my friends, many of them from CSSA and badminton

club, Yun Gu, Fan Guo, Jinyuan Huang, Xiaoqian Jiang, Hongwen Kang, Lei Li,

Qiao Li, Yanlin Li, Di Liu, Ni Lao, Bincheng Wang, Xiaohui Wang, Yiming Wang,

Wanhong Xu, Hui Yang, Tianjun Ye, Jinyin Zhang, Xin Zhang, Zongwei Zhou and

many more. We’ve spent a lot of fun times together playing games and having parties,

making my life in the past five years much more joyous and colorful.

I thank the Department of Electrical and Computer Engineering and its staff,

especially Elaine Lawrence, Reenie Kirby, Carolyn Patterson and Claire Bauerle.

Lastly, I would like to thank my family members. Thank you to my parents Xinxin

Yu and Zhiran Zhan, my husband Weizhe An, for your continuous love and support,

and my little one George An, for all the trouble and happiness you brought to us.

This work was supported by Industrial Technology Research Institute, and ONR

(Office of Naval Research) grant N000141110112.

vi

To my family.

vii

Contents

Abstract . iii

Acknowledgements . v

List of Tables . ix

List of Figures . x

List of Symbols 1

1 Introduction 3

1.1 Tracking Evolving Surfaces . 3

1.2 Performance Portability Challenges 6

1.3 Thesis Contributions . 7

1.4 Thesis Outline . 9

2 Level Set Algorithm 11

2.1 Level Set Overview . 11

2.2 Narrow Band Level Set . 15

2.3 Level Set Algorithm Design Issues . 17

2.3.1 Edge Based Level Set . 17

2.3.2 Region Based Level Set . 20

2.3.3 Level Set Models Designed for Inhomogeneity 21

3 Related Work 30

viii

3.1 Stencil Computation . 30

3.2 Sparse Linear Algebra . 34

3.3 Improving Reuse on Sparse Data . 35

3.4 Auto-tuning . 35

4 Computational Model 38

4.1 Algorithm in Details . 38

4.2 Data Structures . 40

5 Experimental Setup 44

5.1 Hardware Platforms . 44

5.2 Software Environment . 48

5.2.1 Parallel Programming Model 48

5.2.2 Compilers . 49

5.3 Performance Measurement . 50

6 Surface Tracking Framework 52

6.1 Overview . 52

6.2 In-Core Stencil Optimizations . 54

6.3 Memory Level Optimizations . 59

6.3.1 Time skewing on Narrow Band 59

6.3.2 Lower Level Optimizations . 66

6.4 Band Update Optimizations . 67

6.5 Parallelization on Multicores . 69

7 Auto-tuning 71

7.1 Code Generation . 72

7.2 Parameter Space . 73

7.3 Search Strategy . 74

ix

8 Performance and Evaluation 77

8.1 Description . 77

8.2 In-Core Stencil Kernel Performance 78

8.3 Auto-tuning Performance . 80

8.3.1 Xeon . 80

8.3.2 Atom . 83

8.3.3 Fraction of Computation Part and Band Update Part 85

8.3.4 Multicore Parallelization Results 87

8.4 Architectural Comparison . 90

8.5 Performance Gain from Autotuning 91

8.6 Sensitivity to Input Data . 91

8.7 Comparison to Third-Party Code . 92

9 Future Work 96

10 Conclusion 99

List of Notations 102

Bibliography 103

x

List of Tables

2.1 CPU Runtime and Iteration Numbers for the LBF and the IR model 29

5.1 Summary of Hardware Platforms . 45

7.1 Summary of Optimizations and Tuning Parameters 74

8.1 Stencil Kernel Performance . 80

8.2 Single-threaded Speedup over Scalar C Code Baseline on Xeon 81

8.3 Auto-tuner Delivered Computational Rate on Xeon 82

8.4 Single-threaded Speedup over Scalar C Code Baseline on Atom 83

8.5 Auto-tuner Delivered Computational Rate on Atom 84

8.6 Full speedup over Baseline Code with Multithreading 89

xi

List of Figures

1.1 A Simple Example of Evolving Surface 4

1.2 Arithmetic Intensity of Narrow Band Level Set 5

2.1 Level Set function and Its Zero Level Set 12

2.2 Signed Distance Function . 13

2.3 Level Set Evolution for Image Segmentation 15

2.4 Illustration of the Narrow Band . 16

2.5 Narrow Band Level Set Algorithm Flow 16

2.6 Example of Inhomogeneity Regions 22

2.7 Example when LBF Gets Stuck in Local Minima 25

2.8 Evolution of Level Set Functions in LBF and IR Model 26

2.9 Comparison of Local Binary Fitting Functions in LBF and IR 27

2.10 Comparison of Convergence Rate of LBF and IR 28

2.11 Image Examples of Converged Segmentation of LBF and IR 29

3.1 Time Skewing on 1-D Dense Grid . 32

3.2 Time Skewing on 2-D Dense Grid . 33

4.1 Example of the Narrow Band Update Process and Data Structures . 40

4.2 Pseudo Code of the Narrow Band Level Set Algorithm 43

5.1 Machine Configurations . 46

xii

6.1 Fundamental Tradeoff between Computation and Band Update . . . 53

6.2 Illustration of SIMD Alignment of 4-pixel 55

6.3 Data Dependency Graph of Stencil Computation 57

6.4 Illustration of Replicate and Interleave Schemes 58

6.5 2-D Time Skewing Applied to a Fixed Narrow Band 61

6.6 Projection of 2-D Sparse Grid to 1-D Dense Array 62

6.7 Time Skewing for a 2-D Narrow Band after Projection to an 1-D Array 62

6.8 Projective Time Skewing on a Dynamically Evolving Narrow Band . 64

6.9 Time Skewing on Dynamically Evolving Narrow Band 65

6.10 Psuedo Code of Computing One Polytope in Steady State 66

6.11 Performance on Fixed Narrow Band 67

6.12 Example of Unrolled Scatter Process 68

6.13 Psuedo Code of Unrolled Scatter Process 69

6.14 Parallelization on Multicores . 70

8.1 Stencil Kernel Performance of Different Instruction Sequences 79

8.2 Single-threaded Speedup over Scalar C code Baseline on Xeon 81

8.3 Auto-tuner Delivered Computational Rate on Xeon 82

8.4 Single-threaded Speedup over Scalar C code Baseline on Atom 84

8.5 Auto-tuner Delivered Computational Rate on Atom 85

8.6 Fraction of CompLS in Total Runtime after Tuning 85

8.7 Example of Decomposition of Runtime in CompLS and UpdateB . . . 86

8.8 Parallelization Speedup on Xeon . 87

8.9 Full speedup over Baseline Code with Multithreading 88

8.10 Performance Sensitivity to the Polytope Size with Multithreading . . 89

8.11 Performance Gain of Auto-tuning over an Educated Guess 91

8.12 Example Images Used in the Sensitivity Test 92

8.13 Sensitivity of the Optimal Tuning Parameters on Xeon 93

xiii

8.14 Sensitivity of the Optimal Tuning Parameters on Atom 94

8.15 Comparison to Third-Party Code . 95

xiv

List of Symbols

PDE Partial Differential Equation

ATLAS Automatically Tuned Linear Algebra Software

AVX Advanced Vector Extensions

CSE Common Sub-expression Elimination

CSR Compressed Sparse Row

DDG Data Dependency Graph

DRAM Dynamic Random Access Memory

FLAME Formal Linear Algebra Methods Environment

FP Floating Point

FSB Front Side Bus

GAC Geodesic Active Contours

HT Hyper-threading

ICC Intel C/C++ Compiler

ILP Instruction Level Parallelism

IR Intensity Re-weighting

LBF Local Binary Fitting

LLC Last Level Cache

MPI Message Passing Interface

NUMA non-uniform memory access

OoO Out-of-Order

1

OpenMP Open Multi-Processing

OSKI Optimized Sparse Kernel Interface

PETSc Portable, Extensible Toolkit for Scientific Computation

Pthreads POSIX threads

QPI QuickPath Interconnect

SMT Simultaneous Multithreading

SPARSEKIT Sparse Matrix Utility Package

SPIRAL Signal Processing Implementation Research for Adaptable Libraries

2

Chapter 1

Introduction

1.1 Tracking Evolving Surfaces

Tracking the continuous evolution of surfaces such as a shock wavefront or flame dis-

turbance in the wind (so-called interfaces) has a wide range of applications in image

processing, computer graphics, computational geometry, computational fluid mechan-

ics, and many other fields. Usually the surfaces undergo deformations governed by

some force field which can be modeled using PDEs (partial differential equations).

The level set is a powerful and widely used numerical method to track the compli-

cated motion of interfaces, especially when the interface undergoes extreme topologi-

cal changes like merging or splitting. The level set method embeds the interface into

a higher dimensional function defined on a structural discretized grid volume, and

performs numerical computation on the fixed grid instead of directly parameterizing

the interface, which allows easy and robust handling of topological changes.

Fig 1.1 shows a simple example of a 2D evolving surface in a 3D regular data cube.

In the level set method, the 3D data cube is discretized into a regular grid. A level

set function is defined on the 3D cube, and the 2D evolving interface corresponds to

the subset of points whose level set function values are zero. The level set tracks the

3

50

100

50

100

50

100

150

200

150

200

150

200

50 100 150 200 250 300

250

300

50 100 150 200 250 300

250

300

50 100 150 200 250 300

250

300

(1) (2) (3)

50

100

50

100

50

100

(1) (2) (3)

100

150

200

100

150

200

100

150

200

50 100 150 200 250 300

250

300

50 100 150 200 250 300

250

300

50 100 150 200 250 300

250

300

(4) (5) (6)(4) (5) (6)

Figure 1.1: A simple synthesized example of an evolving surface in 3D cube, which
converges at the boundary of two tori. (Images are extracted from a video created
by Dr. Chunming Li)

motion of the evolving interface through an iterative process of updating the level set

function value.

From a computational perspective, the level set algorithm performs a computation

similar to iteratively solving PDEs with nearest neighbor stencil computation. In each

iteration the level set function gets updated on every grid point based on the values

of the level set function on neighboring points in the previous iteration. Performing

computation on a fixed Cartesian grid is one important benefit of the level set method,

but at the price of increasing computational cost.

The narrow band level set [44] is a variation of the level set method that can

significantly reduce the computational cost without noticeable change in quality. The

key observation is that the region of interest is the interface rather than the whole level

set function. Therefore, the narrow band level set algorithm restricts the computation

to points in the neighborhood region of the interface which are held inside a narrow

4

Narrow Band Level Set Iterative StencilSparse Matrix

Br iter

Br iter N iter

Br iter

O(1) O(N)

Memory Bound Compute Bound

Dense & regular data

structure

Sparse data with dense

substructure

Sparse and irregular data

structure

() ()

structuresubstructurestructure

Figure 1.2: Arithmetic Intensity of the narrow band level set algorithm is in between
sparse linear algebra and iterative stencil on dense grid. Red points are active grid
points involved in computation. Note that the narrow band gradually evolves during
the computational process, and gets updated every Br iterations, where r is the
narrow band radius.

band around the interface, and updates the band during the iterative computation

process.

The goal of this work is to develop a system that enable efficient mapping of

the narrow band level set algorithm to the mainstream multicore platforms. The

narrow band level set algorithm is computationally intensive, and has abundant data

parallelism and data reuse. In each iteration, the stencil computation for every point

in the sparse band can be parallelized. Usually, the interface motion is tracked for

a large number of iterations, thus having the potential for a high data reuse rate.

Realizing the reuse is a challenging problem because the data is scattered on the

continuously evolving narrow band, making code optimization on mainstream CPUs

with multicores, deep memory hierarchies, diverse core micro-architectures and SIMD

instructions a difficult task.

5

This work is closely related to prior works on optimization of stencils and sparse

linear algebra. Sparse linear algebra usually has low data reuse, therefore it is likely

to be memory-bound and the optimization effort focused on improving bandwidth

utilization. Iterative stencil computation is highly data parallel with abundant reuse.

Most prior works focused on stencil computation on the dense grid. The relationship

of narrow band level set algorithm to the two well investigated areas are illustrated

in Fig 1.2.

We will combine ideas developed for these prior works, as well as ideas from auto-

tuning and code generation, to deliver highly efficient implementations of the narrow

band level set algorithm on mainstream multicore platforms.

1.2 Performance Portability Challenges

The computer industry had been pushing the performance on single core chips through

frequency-scaling and exploring instruction level parallelism, until single-threaded

performance stopped to increase due to the heat density and power constraints in

2005. Since then, the microprocessor industry shifted to a new design paradigm of

building power-efficient multicore platforms that have multiple simpler and lower fre-

quency cores on a chip. This leads to massive thread-level parallelism and tremendous

potential performance, but requires efficient parallel programming as well as extensive

optimization on single-threaded performance to attain high machine utilization.

The goal of this work is to deliver performance portable implementations of track-

ing evolving surfaces. Portability means the ability to develop code once and achieve

good performance on diverse multicore computers. Current general purpose compilers

are not capable of automatically producing highly efficiency parallel code on multicore

machines, even for very simple computational kernels [59, 40, 21]. The reason is that

the complexity of current hardware and software is beyond what general purpose com-

6

pilers can handle. General purpose compilers perform well on handling basic blocks

and simple loop transformations of independent data. But the tight budget in compi-

lation time constrains the compilers to rely on simple heuristics instead of thorough

experiments to find appropriate order and parameters of the code transformations.

Furthermore, they usually lack the ability to identify complex but important domain-

specific algorithmic transformations from software written in high-level languages like

C/C++.

To achieve performance portability in front of the diversity and complexity of

current multicore platforms, we adopted the auto-tuning approach, which allows us

to achieve high performance code across different machines in a productive way. The

auto-tuning method been successfully applied to many linear algebra kernels and

numerical applications, including SPIRAL [40], FFTW [29, 28], ATLAS [55], Stencil

[21, 22, 23], sparse linear algebra [53, 52, 57, 56].

To build an auto-tuning framework, we first need to thoroughly explore useful code

transformations, and integrate them into a parameterized code framework. Auto-

tuner is one layer on top of the parameterized framework, that automatically search

for good parameter values on different machines using empirical methods.

1.3 Thesis Contributions

In this thesis, we propose a general recipe to generate high performance code for

an important computational pattern: iterative stencil computation over a dynami-

cally evolving region of interest, which is the neighborhood of a dynamically evolving

sub-manifold inside a regularly discretized grid volume. This computational pat-

tern is typical in the narrow band level set algorithm, which is a numerical method

widely adopted for tracking evolving surfaces. We demonstrated the effectiveness of

our methodology by going through an example of applying the narrow band level

7

set algorithm to the image segmentation problem. More specifically, our primary

contributions include:

1. A novel code transformation called projective time skewing. This technique effec-

tively improves locality when input data size cannot fit into cache. It is essentially

different from applying the existing time skewing technique to the algorithm, and

is much more efficient. The idea is to project a n + 1-dim grid into n-dim, where

each node in the n-dim space represents one sparse row in the original n + 1-dim

space. The continuous evolving interface which is sparse in the n+1-dim space now

becomes dense in the n-dim space. The time skewing space and the narrow band

manipulation (representation and tracking) are decoupled through the projection,

which is the key for achieving high efficiency.

2. A parameterized code framework and an autotuner to deliver performance portable

code. To deliver highly efficient code, we build a parameterized code framework

that integrates the projective time skewing as well as a set of lower level opti-

mizations to address different system bottlenecks. These optimizations include

SIMDization, approximating transcendental functions, instruction ordering, using

a code generator to unroll short loops with unpredictable trip counts into jump ta-

bles, and low overhead parallelization and synchronization on multicores. On top

of this parameterized framework, we build an autotuner that can automatically

search for good parameter values in the optimization parameter space. This en-

ables performance portability of generating high performance code across different

machines without the need for manual re-optimization.

3. Others: Intensity Re-weighting Level Set Model. We also propose a new energy

model for the image segmentation problem: the intensity re-weighting level set

model. This model allows fast and robust image segmentation when an image has

inhomogeneity in regions.

8

1.4 Thesis Outline

The rest of the thesis is organized as following:

Chapter 2 gives an overview of the level set algorithm and its narrow band vari-

ation, along with an example of applying level set for the image segmentation prob-

lem. We also discuss various models that govern the evolution process in the level set

method.

Chapter 3 reviews the two topics closely related to our work, optimizations of

stencil computation on dense regular grid, and sparse linear algebra. These two topics

are extensively investigated in the literature. We also discuss about the relationship

and difference of our work with the prior work.

Chapter 4 describes the computational model used in the narrow band level set

algorithm. We will formally present the computational flow of the algorithm, and

detail the data structures.

Chapter 5 elaborates the cache-based multicore machines we performed experi-

ments on. We also introduce important details in our experimental setup, including

compilers, parallel programming models, and the performance evaluation metrics.

Chapter 6 introduces the full space of optimizations we explored for the com-

putational pattern of the narrow band level set algorithm. The optimizations are

introduced in the order of in-core optimization, memory-level optimization, band up-

date optimization, and parallelization.

Chapter 7 explains how we incorporate all optimizations into a parameterized

auto-tuner. We will detail the parameter search space, code generation, and empirical

search strategies.

Chapter 8 discusses the performance results on the image segmentation example.

We will show the speedup of auto-tuner generated code over a straight forward base-

line implementation. We will also report the computational flop rate, and discuss

architectural impacts on performance. The image segmentation example is represen-

9

tative of many other applications with a similar computational pattern. By under-

standing how optimizations and auto-tuning technique contribute to the performance

results as well as the their limitations, we can learn how to apply these techniques to

other applications.

Chapter 9 discusses future research directions, and Chapter 10 concludes our

work.

10

Chapter 2

Level Set Algorithm

2.1 Level Set Overview

The level set is a widely used numerical method for tracking evolution of surfaces, for

example, flame motion in the wind or a shock wave-front. The level set method was

developed in the 1980s by the American mathematicians Stanley Osher and James

Sethian [39, 44], and widely applied in image processing, computer graphics, com-

putational geometry, computational fluid mechanics, and manufacturing of computer

chips.

The level set method embeds the irregularly shaped surface into the so-called level

set function, which is defined on a higher dimensional regular dense grid. Tracking

evolution of the level set function is simply implemented by performing stencil compu-

tation on the fixed Cartesian grid, like in a partial differential equation (PDE) solver.

The major advantage of the level set method is that it can easily handle topological

changes such as splitting and merging. It has also been proven to be more accurate

in handling complex shapes such as sharp corners and cusps than tracking surface

motion in the lower dimension directly.

11

level set function

l l tzero level set

2!D image plane

Figure 2.1: Illustration of the level set function defined on a 2-D image plane, and its
corresponding zero level set.

In the thesis, we use an image segmentation problem as an illustrative example of

how to apply the level set method to real world problems. This by no means restrains

our work to the image processing application. In fact, the techniques developed for

this problem are well applicable to other applications as long as the computational

pattern is similar. For example, we can replace the stencil kernel in image segmenta-

tion with other stencil computational kernels, or work on higher dimensional data.

In the image segmentation example, the level set is a function φ defined on the 2-D

image plane, whose zero level set corresponds to the evolving interface. The zero level

set is the intersection of φ and the zero plane: {(y, x)|φ(y, x) = 0}, as illustrated in

Fig 2.1. By tracking the evolution of the higher dimensional function φ instead of the

interface itself, the level set method has the benefit of easy numerical implementation

on fixed Cartesian grid as well as the capability to handle topological changes.

Ideally there is an one-to-one correspondence between the zero level set and the

level set function φ [44]. φ should be a signed distance function, whose value char-

acterizes the distance of a point to the boundary specified by the zero level set. The

points inside the boundary have positive values, which gradually decrease to 0 as

12

approaching the boundary. The points outside the boundary has negative values.

Having negative values for inside points and positive values for outside points is also

valid. The signed distance function f has a property of |∇f | = 1. Fig 2.2 shows an

example of the relationship.

zero level set level set: signed distance function

Figure 2.2: The level set function is a signed distance function of the zero level set.
Figure is from [4].

The evolution of φ is driven by some force field such that at convergence, the

zero level set forms a smooth contour on the object boundary. There are many

different choices in designing the force field, which will be discussed in more details

in section 2.3. Here we briefly explain one edge-based model used in medical image

segmentation [16].

The force field should attract the zero level set to evolve and converge on the

object boundary. This is achieved by minimizing an energy target in the variational

level set method. In [16], the energy term has three components:

1. The geodesic length term, which measures the weighted length of the zero level set

in Euclidean space. The weighted curve length is defined as a function of the edge

strength along the curve. The weight is large for smooth areas with weak edges

and small for boundary areas with strong edges.

13

2. The balloon force term, which always drives the contour to expand or contract.

This force can accelerate motion of the zero level set, but requires prior knowledge

of whether the object is inside of outside the initial contour.

3. The regularization term, which regularizes φ to be close to signed distance func-

tion. This guarantees numerical stability without manual re-initialization to signed

distance function during the evolution process.

The definition of the target energy function in [16] is

∫

Ω

(

gδ(φ)|∇φ|+ gH(−φ) +
λ

2
|∇φ| − 1)2

)

dxdy. (2.1)

g is the edge indicator function, which acts as the weight for curve length.

∫

Ω (gδ(φ)|∇φ|)dxdy is the geodesic length of the contour.
∫

Ω (gH(−φ))dxdy is

the balloon force. And
∫

Ω

(

λ
2
|∇φ| − 1)2)

)

dxdy is the regularization term. More

details of Eq 2.1 and other algorithmic design issues of the level set method can be

found in section 2.3.

The evolution process of the level set function φ for the image segmentation prob-

lem is illustrated in Fig 2.3. The lower row shows the evolution of φ, and the upper

row shows the corresponding zero level set.

Taking the derivative of Eq 2.1 gives the evolution function of the level set function

φ.

∂φ

∂t
= µ

(

∆φ − div

(

∇φ

|∇φ|

))

+ λδ(φ)div

(

g
∇φ

|∇φ|

)

+ νgδ(φ) (2.2)

In real implementation, all terms in Eq 2.2 are computed using their numerical approx-

imations. For example, first-order derivatives are estimated using a simple three-point

estimation, like φx = (φ(x + 1, y) − φ(x − 1, y))/2.

14

Figure 2.3: An example of level set evolution for image segmentation. First row shows
evolution of the zero level set ; second row shows evolution of the level set function.

From a computational perspective, updating the level set evolution function fol-

lowing Eq 2.2 can be viewed as nearest-neighbor stencil computation. In this example,

φ(t+1) = F(φt(x ± ∆x, y ± ∆y)), ∆x, ∆y ∈ {0, 1, 2}. (2.3)

2.2 Narrow Band Level Set

Essentially, the level set method tracks a n-dim propagating interface (zero level set)

in (n + 1)-dim space. For example, in the image segmentation case, we track a 1-D

contour by evolving φ defined on the 2-D image plane. The computational complexity

is O(Nn+1 · T), assuming N is the length along each dimension and T is the total

number of iterations.

In the level set method, what we are interested in is the evolution of the interface

(zero level set) rather than the complete level set function. This leads to the lower

15

complexity narrow band level set method, in which the computation is restricted to

a narrow band around the zero level set, as illustrated in Fig 2.4.

l lzero level set

narrow band

Figure 2.4: The narrow band is a neighborhood region of radius Br around the zero
level set.

CompLSCompLS

(update level set function)

UpdateB

(update the band)

Converge?
NO

YES

Figure 2.5: Algorithm flow of the narrow band level set: it repeats the CompLS and
UpdateB till convergence.

16

The narrow band level set algorithm has two basic components: 1) CompLS per-

forms the stencil computation for all points in the narrow band following Eq 2.2, and

2) UpdateB rebuilds the band based on the current level set function φ. It iterates

over these two steps until the level set function value gets converged, as shown in

Fig 2.5. Conceptually, we need to re-detect the zero level set given the updated φ,

and then construct a neighborhood region around the updated zero level set as the

new band. More details of the computational model will be given in Chapter 4.

2.3 Level Set Algorithm Design Issues

There are many different ways to define the target energy. The definition in Eq 2.1

is one example of edge based level set that formulates the energy term based on edge

information of the image. Different definitions involves intricate design considera-

tions, including robustness to initialization, sensitivity to input data, computational

complexity, etc. Given the complexity and diversity of real world images, there is no

energy definition that can work well for all cases. Usually people define the energy

according to specific properties of the application domain. Finding appropriate en-

ergy formulations is an active research topic in image processing and computer vision.

We discuss about two mainstream categories of energy formulations that address dif-

ferent issues in the image segmentation problem: edge based and region based level

set. We also discuss about some recent advances in level set models that can handle

inhomogeneous regions.

2.3.1 Edge Based Level Set

In the edge based level set method, the active contour evolves according to some

intrinsic geometric measure related to the edge strength of the image. Usually edge

based models [49, 48, 41] have good localization property, but they are sensitive to

17

initialization and image content. A widely used edge based model is the geodesic

active contours (GAC) model proposed by Caselles et al. [48]. The GAC model

aims at finding a contour corresponding to the minimal curve length in a Riemannian

space, whose distance metric is defined as a function of the edge strength. The length

of the curve is a weighted version of the original curve length in Euclidean space,

defined as

Lg(φ) =
∫

Ω
gδ(φ)|∇φ|dxdy. (2.4)

g in the above equation is the edge indicator function defined as

g(x, y) =
1

1 + |∇Gσ(x, y) ∗ I(x, y)|2
. (2.5)

∇Gσ ∗I is the convolution of the gradient of the Gaussian kernel and the input image,

which is essentially the smoothed image gradient. g has small value for points where

the gradient is large, and large value in smooth areas. δ in Eq 2.4 is the univariate

Dirac function, which is close to 1 at zero level set, and close to 0 when getting further

away from the zero level set. By minimizing the weighted length term Lg(φ) in Eq 2.4,

the contour is expected to converge at desired object boundary.

Since the level set is a numerical method, the contour advances a small step each

time. When the contour position is far from the real object boundary, the contour has

no ideas in which direction it should advance. This is why the edge based model is

sensitive to initialization. Usually to guide the motion of contour in the smooth area,

there is an additional balloon force term, that always drives the contour to expand

or contract, depending on whether the initial contour is inside or outside the object.

The balloon force term is defined as

Ag(φ) =
∫

Ω
gH(−φ)dxdy. (2.6)

18

In Eq 2.6, H(x) is the Heaviside function, which is integral of δ. It is close to 1 for

positive x; and close to 0 for negative x.

Traditionally, the level set function needs to be re-initialized to be close to signed

distance function shown in Fig 2.2, for numerical stability [44, 38, 34]. The tradi-

tional re-initialization process is performed in an adhoc manner and may result in

undesirable effects. For example, the zero level set may be moved from the expected

positions as a result of the regularization process [44, 38].

Li et al. proposed a better solution to regularize the level set function without

the need of re-initialization [17, 16]. They integrate a term in the energy target in

the variational level set, which penalizes the level set function when it deviates from

the desired shape.

A simple penalty term was introduced by Li et al. in [16], which regularizes ∇φ

to be close to 1. It is defined as

P(φ) =
∫

Ω

1

2
(|∇φ| − 1)2dxdy. (2.7)

A more complicated penalty term is recently proposed in [17], which is an extension

of the above idea. The complicated penalty term regularizes ∇φ to be close to 1

around the zero level set, and close to 0 in smooth areas.

P2(φ) =















1
(2π)2

(1 − cos(2π|∇φ|)) if |∇φ| ≤ 1

1
2
(|∇φ| − 1)2 if |∇φ| > 1

(2.8)

Incorporating the penalty term allows automatic adjustment of the level set function

during the evolution process.

19

Combining the geodesic length term, the balloon force, and the penalty term, we

obtained the energy target used in the edge-based level set method,

E(φ) = µP(φ) + λLg(φ) + νAg(φ). (2.9)

This is exactly the same as the energy target defined in Eq 2.1 when we introduced

the level set method in Section 2.1.

2.3.2 Region Based Level Set

The region based level set algorithm assumes that the image should be segmented

into different regions, where certain image properties like intensity are homogeneous or

smoothly varying within each region, and change abruptly across the region boundary.

It has two major advantages over the edge based model. First, it performs better on

weak boundaries, because it does not rely on gradient information. Second, it is

significantly more robust to the initial position of the contour. However, region based

level set is usually much more expensive in computation because it iteratively collects

regional statistics of certain image properties.

In 1989, Mumford and Shah proposed a generic model that serves as the basis

for many practical region based segmentation models. The segments the image into

disjoint regions, where in reach region the Mumford-Shah model assumes smoothly

varying image intensity, and defines the energy target as

F MS(u, C) =
∫

Ω
(I − u)2dxdy + µ

∫

Ω\C
|∇u|2dxdy + λ|C|. (2.10)

Ω ⊂ R2 is the 2-D image domain, and I : Ω → R is the image intensity. C is the

contour that divides the image into disjoint regions. |C| is the length of the contour.

It is difficult to minimize the above energy term, because of the unknown contour

position C and function u, as well as the non-convexity of the target function.

20

Later on, people developed many practical models based on the Mumford-Shah

model. Two popular region based models are the piecewise constant model [20]

and a more general piecewise smooth model [50]. The piecewise smooth model [20],

also called Chan-Vese model, is a special case of Mumford-Shah model. It assumes

constant image intensity in each region. The target energy in the Chan-Vese model

is defined as

F PC(C, c1, c2) = µ
(
∫

interior
(I − c1)

2dxdy +
∫

exterior
(I − c2)

2dxdy
)

+ λ|C|. (2.11)

Later Chan and Vese extend the above piecewise constant model to handle smoothly

varying regions, and proposed a piecewise smooth model.

F PS(I1, I2, φ) =
∑

i=1,2

∫

Ω
|∇Ii|

2Hi(φ)dxdy + µ
∑

i=1,2

∫

Ω
|Ii − I|2Hi(φ)dxdy + λ|C|(2.12)

In the above equation, I1 and I2 are the piecewise smooth functions that approximate

the original image. φ is the level set function. H1(φ) is the Heaviside function, which

is close to 1 when φ is positive, and close to 0 when φ is negative. H2(φ) is defined

as 1 − H1(φ). Hi(φ), (i = 1, 2) can be viewed as the probability estimate of a pixel

belonging to region i. The optimization process for this model is much more complex.

In each iteration, it requires solving a PDE for φ while fixing I1 and I2, and solving

two PDEs for I1 and I2 while fixing φ.

2.3.3 Level Set Models Designed for Inhomogeneity

Localized region based model.

Recently, people have proposed several region based models with an emphasis on

local image information [18, 19, 31]. This model can handle inhomogeneous intensity

within each region, which overcomes the limitation of models that utilize global image

statistics. Fig 2.6 shows a synthetic example of foreground and background with

21

heterogeneous intensity, where piecewise constant Chan-Vese model fails to obtain

the desired segmentation.

Figure 2.6: A synthetic example of a blob with heterogeneous intensity in foreground
and background. (a) initial contour. (b). segmentation results using piecewise con-
stant model [20]. (c) segmentation results using edge-based model or localized region
based model. This figure is cited from [31].

Here we first briefly introduce a popular localized region based model, the local

binary fitting (LBF) model proposed by Li. et al [18, 19]. Next, we discuss an

extension of the LBF model we proposed, which is more robust to initialization and

computationally more efficient [54].

LBF model.

In the LBF model, the energy term ELBF is defined for each point x in the image

as following

ELBF
x

(φ, f1(x), f2(x)) = λ1

∫

Kσ(y − x)|I(y) − f1(x)|2H1(φ(y))dy

+ λ2

∫

Kσ(y − x)|I(y) − f2(x)|2H2(φ(y))dy. (2.13)

ELBF
x

measures the summation of intensity variation within a local neighborhood

of point x for two regions. Kσ(y − x) is a Gaussian kernel that diminishes with

distance from x. S1 and S2 refers to segment of φ > 0 and φ < 0 respectively. f1(x)

and f2(x) are spatial fitting functions, capturing weighted average intensities of S1

22

and S2 from a local view of x. I(y) is the intensity at y. H1(φ(y)) and H2(φ(y))

capture the probability of point y in S1 and S2. H1(φ) is a Heaviside function.

H1(φ) =
1

2

(

1 +
2

π
arctan(

φ

ε
)

)

(2.14)

H2(φ) = 1 − H1(φ) (2.15)

An intuitive explanation of minimizing ELBF
x

is that I(y) should be close to f1(x) if

H1(φ(y)) is high, and close to f2(x) otherwise. The complete LBF energy is defined

as

ELBF (φ, f1, f2) =
∫

x

ELBF
x

(φ, f1(x), f2(x)) dx. (2.16)

Keeping φ fixed, minimizing ELBF with respect to f1(x), f2(x) gives

fi(x) =
Kσ(x) ∗ [Hi(φ(x))I(x)]

Kσ(x) ∗ [Hi(φ(x)]
, i = 1, 2. (2.17)

Keeping f1 and f2 fixed, minimizing ELBF with respect to φ, we derive the gradient

descent flow.

∂φ

∂t
= −

∂ELBF

∂φ
= −δ(φ)(λ1e1 − λ2e2) (2.18)

ei(x) =
∫

Kσ(x − y)|I(x) − fi(y)|2dy (2.19)

In Eq 2.19, ei(x) measures the intensity coherence of I(x) with the average intensity

of Si near x. Larger ei means less coherent. Eq 2.18 can be interpreted as increasing

the belief of x in S1 if e1 < e2, and vice versa.

The complete energy definition has two extra regularization terms: E = ELBF
x

+

µP(φ) + νL(φ). P(φ) is the penalty term and L(φ) is the geodesic length term, as in

the edge based level set model in Eq 2.9.

23

Intensity re-weighting model.

The motivation of the intensity re-weighting model is that the LBF model can

easily get stuck in local minima for some initializations. Fig 2.7 shows such an ex-

ample. In the following, R1, R2 refer to the brighter and darker region in an image

respectively. S1, S2 refer to two segmented areas: S1 corresponds to the segment of

φ > 0, and S2 corresponds to the segment of φ < 0. The goal of LBF model is to

evolve φ such that φ has different signs in R1 and R2 to minimize energy. For the

example in Fig 2.7, the contour is initialized to be close to boundary Br. After a few

iterations, the contour is formed around boundary Bl to reflect the intensity contrast,

and the contour around boundary Br is attracted towards the true boundary. How-

ever, evolution of φ around Bl and Br are independent in the first few iterations. This

results φ < 0 around Bl and φ > 0 around Br in R1, and leads to region 1 separated

into two at convergence. The reason is that the initial contour is far from Bl, leading

to two ambiguous directions to evolve φ around Bl: either φ > 0 for R1 and φ < 0

for R2, or the other way round. Small perturbations will cause φ to evolve in one of

the two directions, because having the same sign of φ along both sides of the true

boundary is an unstable state of high energy. But in which direction φ evolves is hard

to predict when the initial contour position is far away.

The goal of segmentation is to make Si and Ri (i = 1, 2) paired, either S1 =

R1, S2 = R2 or S1 = R2, S2 = R1 at convergence. Without loss of generality, we

assume the goal is Si = Ri, i.e. φ > 0 in the brighter region and φ < 0 in the

darker region at convergence. We propose to incorporate bias in the level set function

evolution process by adjusting the intensity weight when computing f1 and f2 in

Eq 2.17. fi(y) measures the average intensity of Si around point y. Given the

assumption that R1 is brighter than R2 along the boundary, we can put higher weights

on brighter pixels when computing f1 and higher weights on darker pixels when

24

iter. 4 iter. 6 iter. 128 convergedinitial

lB

rB

rB

rB rB rBlB lB lB lB

Figure 2.7: An example for which LBF converges to local minimums. First row shows
contour evolution, second row illustrates areas where φ > 0 (white) and φ < 0 (black).
Bl and Br marked true object boundary discussed in the text.

computing f2.

fi =
Kσ(x) ∗ [Hi(φ(x))I(x)Wi(I(x))]

Kσ(x) ∗ [Hi(φ(x)Wi(I(x))]
, i = 1, 2 (2.20)

W1(I(x)) = I(x) (2.21)

W2(I(x)) = 255 − I(x) (2.22)

We call LBF with intensity re-weighting the IR model, which naturally encourages

φ of brighter pixels to increase and φ of darker pixels to decrease along boundary.

Fig 2.8 shows for the first example in Fig 2.7, why LBF gets stuck at a local minimum

and IR converges to the desired global minimum. We initialize the sign of φ to be

the convergence state in Fig 2.7, with absolute value of 0.1. Here we just show values

for the middle row in the image (other rows are similar given no vertical intensity

variation in the image). Eq 2.19 can be approximated as ei(x) = |I(x) − fi(x)|2

because fi(y) ≈ fi(x) when y is close to x. Eq 2.18 can be interpreted as increasing

φ if |I(x) − f1(x)| < |I(x) − f2(x)|, and decreasing φ otherwise. In LBF around

25

0 50 100
-50

0

50

0 50 100
-50

0

50

0 50 100
50

100

150

200
1
f

2
f I

0 50 100
50

100

150

200

LBF

IR

1 0
100 64 C

1
S

2
S

1
S

2
S

lB rB

1
S

2
S

1
S

2
S

lB rB

(a) (b)

(c) (d)

Figure 2.8: Comparison of LBF and IR for the first example in Fig 2.7. Here we only
show values for the middle row of the image. φ is initialized to the convergence state
in Fig 2.7. One the left, we show f1, f2 and I in the first iteration. On the right, we
show the evolution of φ. φt is φ at iteration t. φ0 is the initialization, and φC is φ at
convergence. LBF does not change sign of φ in the evolution process, so gets stuck
in local minimum. IR drives the sign of φ to flip in iteration 1, and converges to a
global minimum.

boundary Bl, φ > 0 for darker pixels and φ < 0 for brighter pixels when initialized,

resulting in f1 < f2. So near Bl, Eq 2.18 drives φ to increase in S1(φ > 0) and

decrease in in S2(φ < 0), as shown in Fig 2.8 (b). In IR, around Bl, f1 > f2 because

brighter pixels are weighted more in f1, and darker pixels are weighted more in f2. So

near Bl, Eq 2.18 drives φ to decrease in S1(φ > 0) and increase in S2(φ < 0), causing

the sign of φ to flip around Bl. At convergence, φ has consistent sign in each region.

Fig 2.9 shows a real example. The evolution direction of φ is visualized in the last

column: increase φ for bright pixels (∂φ

∂t
> 0) and decrease φ for dark pixels (∂φ

∂t
< 0).

In both LBF and IR, if a pixel is close to initial contour and true boundary (like A, B),

then f1 > f2. So Eq 2.18 drives φ to increase for bright pixel B and decrease for dark

26

LBF

initialization

A

B

C

D

!

-200

0

200

400

D D

CC C

D

A

B B

A
A

B

B

-100

0

100

200

A

B

C

D

C

D

A

B

A

B

C

D

IR

/ t"# #

/ t"# #

Figure 2.9: Comparing f1(x), f2(x) and ∂φ

∂t
in the LBF and the IR models. ‘+’ and

‘-’ indicates sign of the level set function φ.

pixel A. However, if a pixel is close to true boundary but far from initialization (like

C, D), in LBF f1 ≈ f2. This makes it unclear how φ evolves to reflect the intensity

contrast on that boundary. Either increasing φ for C and decreasing φ for D or vice

versa can decrease the energy. Such uncertainty of which direction to go is exactly

the reason that can lead to local minima (convergence shown in Fig. 6 first column).

In IR model, f1 > f2 near C and D, driving φ to evolve in the desired direction.

Another advantage of the IR model is that it enables faster convergence. LBF

relies on the closeness of the current contour to the true boundary to guide evolution

in the right direction. Whereas IR provides additional driving force from intensity

contrast to guide evolution even when current contour is far from the true boundary.

Fig 2.10 gives such an example.

27

LBF

IR

iter. 2 iter. 4 iter. 8 iter. 16 iter. 32 iter. 64

Figure 2.10: Comparing evolution contour (in red) at iteration 2–64 for the same
initialization (in cyan) for the LBF and the IR model.

All experimental results use the same parameter setting λ1 = λ2 = 1, ν = 0.001×

2552, µ = 1, σ = 3.0, ε = 1, except for the first example in Fig 2.10, we set ν =

0.003 × 2552.

We first show some examples for which LBF gets stuck in local minima, but

IR successfully converges to the desired boundary in Fig 2.11. The last column

shows an example where IR model does not work. This is an example when the

basic assumption is violated. The two regions are of completely symmetric intensity.

Unsurprisingly, at convergence φ > 0 maps to brighter areas. Preprocessing the image

(like computing the gradient image) can meet the basic assumption.

In Fig 2.11, we show both real and synthetic examples, and compare CPU time

using LBF and IR in Table 1. To make fair comparison of computing time, we choose

examples in which both models converge (or closely) to desired region boundaries.

Table 2.3.3 lists CPU time for Matlab code on a Dell XPS 720 machine with 2.66

GHz Intel Core 2 Extreme QX6700 CPU and 2GB memory. We check convergence

every 25 iterations. If the average percentage of pixels that change the sign of φ is

less than 0.2%, then the model converges. It is clear that the IR model converges

faster than the LBF model.

28

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

! !

!

!

!

!

!

!

Figure 2.11: Top to bottom: initialization, final contours in LBF model, final contours
in IR model. ‘+’ and ‘-’ indicates sign of the level set function φ. First four columns
show examples in which LBF model gets stuck in local minima and IR model converges
to the desired boundary. The last column shows an example where the IR model fails.

ImgID 1 2 3 4 5 6

LBF(Runtime in secs) 3.16 4.23 7.47 0.80 7.02 2.33
number of iterations 350 225 350 75 275 175

IR(Runtime in secs) 0.78 2.14 1.80 0.64 5.18 1.47
number of iterations 75 100 75 50 175 100

Table 2.1: CPU time (in second) and iteration number at convergence for LBF and
IR model in Fig 2.11.

29

Chapter 3

Related Work

From a computational perspective, tracking evolving surfaces using the narrow band

level set algorithm consists of two components, as described in chapter 2. First is the

stencil computation on the narrow band, second is to track the motion of the narrow

band. The stencil computation is closely related to prior works on optimization

of stencils, and the narrow band tracking process is closely related to prior works

on sparse linear algebra. Some prior works also explored improving data reuse on

sparse data. Our work is also influenced by past work on auto-tuning, which is a

generally adopted approach when performance portability is desirable. The auto-

tuning technique has also been successfully applied to both stencil computation and

sparse linear algebra, and to many other computational kernels.

3.1 Stencil Computation

Prior work on stencils has been primarily focusing on dense structured grids. Datta

et al. investigate one-pass dense stencil computation over a wide range of multicore

platforms [23, 21]. For a one-pass dense stencil, data reuse is relatively low because

there is only one iteration in the temporal iteration space. There is some level of

data reuse among stencil computation of neighboring grid points. Depending on the

30

computational complexity of the stencil kernel and the machine balance (CPU com-

putational rate over memory bandwidth), the one-pass stencil can be either compute

bound or memory bound. For example, in their work, the 7-point stencil is memory

bound on all platforms, and optimization effort is focusing on utilizing memory band-

width more effectively; while the 27-point stencil is compute intensive, and common

sub-expression elimination (CSE) turns out to be important to reduce the flops/point

and improve the overall performance.

There are many works in the literature investigating multiple-pass dense sten-

cils. Given the abundant temporal reuse of data, the most important technique is

performing time skewing in the iteration space, to effectively remove the bandwidth

bottleneck [22, 58]. Time skewing is a special case of the polyhedral model, which is

a nice mathematical framework for loop nest optimization in compiler theory [15, 14].

Some commonly used libraries for polyhedral transformation include Omega Library

[26], PolyLib [33], and PPL [12]. The polyhedral model performs affine transforma-

tions on the original data structure, which is often modeled as mathematical objects

called polytopes, and converts the original nested loops into more efficient loops in

terms of locality and parallelism. In the following, we will use “time skewing” and

“polyhedral transform” interchangeably, because the meaning will be clear in the

context.

Time skewing on dense stencil.

In the following, we will briefly review the time skewing technique for dense stencil

computation. This technique will be extended to work under the dynamic sparse

narrow band setting in section 6.3 .

Time skewing is a general loop optimization technique that can effectively remove

the memory bandwidth bottleneck or remove data dependency in the innermost loop

for data parallelism. We first briefly review the basic polyhedral transform using

examples of stencil computation on a dense 1-D grid (Fig 3.1) and a 2-D grid (Fig 3.2).

31

iter 0
3

1D stencil

iter 1

it 2

P1 P2 P3 P4

iter 2

iter 3

i b

iter 4

iter number

Figure 3.1: Polyhedral transform for 1-D and 2-D dense stencil. Data dependency
assumes every point depends on three nearest neighbors in the previous iteration.

In the 1-D example, in each iteration, φ(x) depends on φ(x− 1), φ(x), φ(x + 1) in

the previous iteration. The näıve approach is to sequentially finish each iteration on

the complete array. The problem with this approach is that when the array size is too

large to fit into cache, then each iteration it will load all source data from the main

memory and store the updated value to the main memory. Given the poor machine

balance (CPU computational rate over memory bandwidth) on modern cache-based

architectures, the näıve approach easily becomes memory-bound.

The polyhedral transform reorganizes the computation order to improve data

reuse. In the 1-D example, the computation in the space of 4 iterations is divided into

four blocks (also called polytopes): P1–P4. Instead of finishing computation iteration

by iteration, here we finish polytope by polytope, and in each polytope, computation

is done iteration by iteration. If the polytope size is chosen appropriately to fit into

the last level cache, all intermediate variables (points computed in iteration 1–3) will

32

2D stencil

iter 0

2D stencil

iter 1 iter 2

P1
P1

P1

P2
P2

P2 P3

P3
P3

P4 P5 P6

P4 P5 P6

P4 P5 P6

P4 P5 P6

P7 P8 P9
P7 P8 P9

P7 P8 P9

Figure 3.2: Polyhedral transform for 2-D dense stencil. Data dependency assumes
every point depends on five nearest neighbors in the previous iteration.

reside in cache, and memory accesses only happen to points on the polytope borders

(load points computed in iteration 0 and store points computed in iteration 4). The

shape of the polytope depends on the exact data dependency of stencil computation.

The blocking idea can be generalized to higher dimensional grid.

Fig 3.2 shows an example of 2-D stencil, where in each iteration, φ(y, x) depends on

five nearest neighbors in the previous iteration: φ(y−1, x), φ(y, x−1), φ(y, x), φ(y, x+

1), φ(y+1, x). Similarly, after blocking, computation is finished polytope by polytope

(from P1 to P9). Within each polytope, computation is done iteration by iteration

(from iteration 0 to iteration 2). With time skewing transformation, the data reuse is

significantly improved by blocking in the temporal iteration space, and the application

is likely to be compute bound.

33

3.2 Sparse Linear Algebra

Performance optimization on linear algebra is an extensively investigated topic. Many

of the fundamental understanding and optimization methods are developed from re-

search in optimizing linear algebra kernels, and extended to more complicated ap-

plications. Among the large family of linear algebra algorithms, there are numerous

works on sparse matrix solvers. Some popular libraries developed for sparse matrix

solvers include OSKI [53, 42], SPARSEKIT [43], and PETSc [13].

Most prior works on sparse linear algebra are memory intensive, and they focus

on improving data reuse to better utilize the memory bandwidth. Earlier work by Im

et al. [27] explored blocking strategies to save storage for indices, and register and

cache level optimizations to improve locality. Recently, Vuduc et al. did thorough

research in data structures, optimization spaces, and performance models to deliver

high performance implementations and understand their efficiency [52]. Williams et

al. extended Vuduc et al.’s work to thoroughly explore optimization opportunities on

cache-based multicore platforms. Belgin et al. [35] pushed further in the direction

of data representation of the sparse matrices, and proposed more efficient coding

strategy for non-zero blocks. Their key observation is that for some types of the sparse

matrices, patterns of how non-zero points are distributed inside non-zero blocks occur

repetitively, and a small number of patterns are enough to capture the majority of

the blocks.

The narrow band is naturally represented in sparse matrix format. We used a

format similar to the compressed sparse row (CSR) format, which is an efficient

format for storage of the sparse matrix data [13, 52]. In the CSR format, the sparse

matrix is first tiled, and positions and data values of non-empty tiles are stored.

Tiling can save storage for indices and better utilize computational resources on-chip.

Conceptually, there is a 1-D array recording horizontal positions of non-empty tiles in

every row, and another 1-D array per row recording the starting position of each row

34

in the first array. Similar to the sparse matrix solver, we also unroll the computation

inside the tile, and explore opportunities to improve instruction level parallelism and

register reuse. In a sparse matrix solver, the data values of non-empty tiles are also

recorded in a compact array, when repeated computation on the same sparse matrix

is performed. We are not compacting the data values as in the case of the sparse

matrix solver, because the narrow band position is constantly changing to capture

the motion of evolving surfaces.

3.3 Improving Reuse on Sparse Data

Sparse tiling [46, 45] and cache blocking [25] are techniques to improve locality for

unstructured grids. In both methods, they assume a large number of iterations is

performed on a stationary irregular mesh graph. Iteration space is tiled or blocked

for better locality. The preprocessing stage to construct and partition the graph has

a significant overhead, which hopefully can be amortized through a large number of

iterations on the same mesh. For our case, we have a dynamic narrow band, and

only a small number (Br) of iterations are performed on every fixed band position,

therefore the overhead cannot be well amortized. Also, constructing the mesh graph

is unnecessary for our case. In other words, narrow band level set is a special case of

iterative computation on an unstructured grid, but has a far more efficient solution

for locality than the general sparse tiling or cache blocking technique.

3.4 Auto-tuning

Auto-tuning provides a productive solution to portability — the ability to write pro-

gram once and deliver good performance across diverse multicore platforms. An auto-

tuner requires a nontrivial amount of time to build. However, that time is amortized

35

through the performance portability that the auto-tuner offers. Auto-tuning typically

consists of four basic steps.

1. Start with an application or a kernel of interest.

2. Identify all optimization opportunities and their parameters. For example, the

block size used in blocking algorithms, the degree of loop unrolling, instruction

scheduling, whether to use special instructions (like fused multiply-add), and

how to vectorize code with SIMD instructions. Some choices are architecture-

dependent, like SIMD instruction intrinsics and memory affinity. In such cases, an

auto-tuner needs to generate specific code variants on different architectures.

3. Integrate all optimizations into an unified, parameterized auto-tuner. Different

implementations are controlled simply by adjusting the parameter configurations.

In some cases, the parameter choices lead to very different code that cannot be

handled solely with the C preprocessor macros. In such cases, we either manually

write code constructs, or we design a code generator to automatically synthesize

the code parts according to the parameters if the code has a regular structure and

highly repetitive pattern.

4. Find the best code by models or empirical search. The full search space typically

grows factorially with the number of implementation choices. Current library gen-

erators usually incorporate some practical search strategies (like “hill climbing”)

or performance models to prune the search space such that the optimal or near-

optimal parameter values can be found within reasonable amount of time.

Auto-tuning has demonstrated its effectiveness and advantages in a number of

successful examples, including ATLAS [55, 24] for linear algebra, FFT libraries [29, 28,

51, 47, 37] for computing the discrete Fourier transform (DFT), SPIRAL [40, 36, 51]

for a wide range of digital signal processing (DSP) transforms, OSKI [42, 53] for

36

computational kernels on sparse matrices, stencil computation on dense and regular

grids [23, 21, 22], and many other applications.

37

Chapter 4

Computational Model

In this chapter, we describe the computational model used for the narrow band level

set algorithm, including details of the stencil computation involved in the image

segmentation example described in Chapter 2, and the data structures used in the

narrow band level set implementation.

4.1 Algorithm in Details

We detail the stencil computation involved in edge-based level set for image segmen-

tation in Eq 2.2, because later we will show how to optimize this stencil kernel based

on its computational properties. For a different stencil kernel, for example, the sten-

cil used in region based models, a similar optimization procedure should be applied,

though details might differ.

In Eq 2.2, we need to compute following terms,

1. ∆φ, which is the divergence of φ. It is computed using its numerical approximation

as

∆φ = φ(x, y + 1) + φ(x, y − 1) + φ(x − 1, y) + φ(x + 1, y)− 4φ(x, y). (4.1)

38

2. φx, φy, which are first order derivatives of φ in x and y directions.

3. normal vector N = [Nx, Ny]. [Nx, Ny] are x, y components of the normal vector.

N =
[φx, φy]
√

φ2
x + φ2

y

(4.2)

4. curvature k = div(∇φ

|∇φ|
), computed as

k =
∂Nx

∂x
+

∂Ny

∂y
. (4.3)

5. g, which is the edge indicator function in Eq 2.5.

6. gx, gy, which are first order derivative of g in x and y directions.

7. δ, which is the univariate Dirac function.

δε(φ) =















0 |φ| > ε

1
2ε

[

1 + cos(πφ

ε
)
]

|φ| ≤ ε
(4.4)

8. ∂φ

∂t
, which is the update of level set function at each time step. Derived from Eq 2.2,

it is computed as a function of the above terms

∂φ

∂t
= µ (∆φ − k) + λδ(φ) (gxNx + gyNy + gk) + νgδ(φ). (4.5)

In the real implementation, all first-order derivatives are computed using a simple

three-point numerical approximation. For example, φx, φy are computed as

φx =
1

2
(φ(x + 1, y)− φ(x − 1, y)) , (4.6)

φy =
1

2
(φ(x, y + 1) − φ(x, y − 1)) . (4.7)

39

Among all the terms, g, gx, and gy are not dependent on φ, therefore they can be

pre-computed. The other terms change as the surface evolves and must be updated

in each iteration.

4.2 Data Structures

As discussed in chapter 2, the narrow band level set has two major components:

the stencil computation CompLS and the band update UpdateB. The narrow band is

a set of sparse pixels in the image and can be represented using a data structure

similar to CSR (Compressed Sparse Row) format in the sparse matrix solver [52]. We

tile the band using tile size Th × Tw . Similar to tiling in the sparse matrix solver,

choosing the appropriate tile size can lead to better instruction level parallelism (ILP),

register reuse, and save storage for indices. Given that band is represented in the tile

granularity, the cost of UpdateB is closely related to the tile size.

3 4 5 6 7 8 9 10 11 12

…

3 4 5 6 7 8 9 10 11 12

4 2 3 5 6 -

Br

4 3 4 5 6 -

3 4 5 6 - -

…

3 4 5 6 - -

crossing point

Figure 4.1: Illustration of the narrow band update process and data structures. Solid
and dashed lines are the old zero level set and the updated one. In this example, the
narrow band is tiled using 2 × 2 tile size.

In CompLS, we perform stencil computation on every pixel in each tile in the band,

following Eq 4.5. To compute Eq 4.5 at position (y, x), we need to first compute a

40

normal vector N at its nearest neighbors (y ± 1, x± 1), following Eq 4.2. Computing

the normal vector is expensive, since it requires square root and division. To save

redundant computation, CompLS can be decomposed into two steps:

1. CompN step computes normal vector N=[Nx,Ny] for all pixels in the band fol-

lowing Eq 4.2.

2. CompL step computes the updated level set function following Eq 4.5.

After decomposition, CompN at (y, x) depends on φ at (y ± 1, x ± 1), and CompL at

(y, x) depends on φ and normal vector N at (y ± ∆, x ± ∆), where ∆ ∈ {0, 1}.

In UpdateB, we need to check every point in the current band if it is a crossing-

point using the following condition:

φ(y − 1, x) · φ(y + 1, x) ≤ 0 or φ(y, x− 1) · φ(y, x + 1) ≤ 0

. The set of crossing-points form the new zero level set. Each crossing-point is

expanded in four directions (up, down, left, right) of Br pixels, whose union forms

the updated band. This process is illustrated in Fig 4.1. To guarantee numerical

stability, we need to do UpdateB once after every Br iterations of stencil computation.

This ensures newly generated crossing-points will not trespass the current band.

The data structure used for the band maintenance includes three arrays: BI , Bptr

and Blist. Assuming the image size is h × w , BI is a 2D char array of size h×w
Th×Tw

,

with each element taking 0/1, indicating if the tile is in the updated band. Bptr is a

1D int array of size h
Th

, and Blist is a 2D int array of size h×w
Th×Tw

. Tiles in the narrow

band are recorded using Bptr and Blist, in a way similar to the CSR format. As shown

in Fig 4.1, Blist[j][] records tile indices in each row, Bptr tracks how many tiles there

are in each row. Unlike the exact CSR, we do not re-organize φ value on the sparse

band into a continuous array. This is because the band is dynamically evolving, and

the cost of re-organizing data is too high compared to its benefit. Instead, φ, Nx

41

and Ny are stored in separate 2D float arrays, each of size h × w. UpdateB is also

decomposed into two steps:

1. scatter step checks all points in the band. If a point is a crossing-point,

then BI is updated accordingly, by setting 1 for all tiles covered by the square

neighborhood around the point. Here a tile is covered if at least one point in it

is covered.

2. gather step rebuilds the new band by scanning BI for entries of 1s, and updates

Blist and Bptr accordingly.

The complete computation and band update process is summarized in the following

pseudo code.

42

// Computation part (CompLS)

for (int iter=0; iter <Br; iter++)

for (int j=0; j<h/Th; j++)

for (int k=0; k<B_ptr[j]; k++)

{do CompN for tile at (j, B_list[j][k]).}

for (int iter=0; iter <Br; iter++)

for (int j=0; j<h/Th; j++)

for (int k=0; k<B_ptr[j]; k++)

{do CompL for tile at (j, B_list[j][k]).}

//Band update part (UpdateB)

//scatter

for (int j=0; j<h/Th; j++)

for (int k=0; k<B_ptr[j]; k++)

{

int i = B_list[j][k];

int y0 = j*Th, x0 = i*Tw;

for (int y=y0; y<y0+Th; y++)

for (int x=x0; x<x0+Tw; x++)

{

//check crossing -point

if(phi[y][x-1]*phi[y][x+1]<=0 || phi[y-1][x]*phi[y+1][x]<=0)

{

int y_l = (y-Br)/Th, y_u = (y+Br)/Th;

int x_l = (x-Br)/Tw, x_u = (x+Br)/Tw;

for (int ys=y_l; ys <=y_u; ys++)

for (int xs=x_l; xs <=x_u; xs++)

B_I[ys][xs]=1;

}

}

}

//gather

for (int j=0; j<h/Th; j++) {

int k=0;

for (int i=0; i<w/Tw; i++) {

if (B_I[j][i]) B_list[j][k++] = i;

}

B_ptr[j] = k;

}

Figure 4.2: Pseudo code of the narrow band level set algorithm.

43

Chapter 5

Experimental Setup

In this chapter, we discuss details of the hardware development platforms, the parallel

programming model we used in our experiments, and the compiler setup. We also

explain how the experiment is designed and what kinds of performance metrics are

used to understand the efficiency of the delivered code.

5.1 Hardware Platforms

We perform experiments on two Intel x86 multicore CPUs: a Intel dual-socket 2.8 GHz

Xeon 5560 and a 1.6 GHz Atom N270. The two platforms represent two extremes

on the power efficiency spectrum. They have a significant difference in the core

micro-architecture, memory system hierarchy, the number of hardware threads, peak

flop rates and DRAM bandwidth, which are summarized in Table 5.1. Performing

experiments on the two platforms allow us to understand the impact of architectural

differences on the performance. Also it will demonstrate how to generate performance

portable code using the auto-tuning approach.

Hardware configuration diagrams of both machines used in our study are shown

in Fig 5.1.

Intel Dell T410.

44

Table 5.1: Summary of Hardware Platforms

Processor Intel Xeon 5560 Intel Atom N270

Core Microarchitecture Nehalem Atom
Type superscalar OoO in-order

Threads/Core 2 2
Clk (GHz) 2.8 1.6
SP Gflop/s 22.4 6.4
L1 D-cache 32kB 32kB
L2(private) 256kB 512kB
L3(shared) 8M –

System Dell T410 Atom N270

Cores/Socket 4 1
Sockets 2 1

SP Gflop/s 179.2 6.4
DRAM size (GB) 12 1

peak DRAM BW (GB/s) 63.98 4.26
Compiler ICC 11.0 ICC 11.0

Dell T410 is a 2.8 GHz dual-processor machine. Each processor is a quad-core

Nehalem-based Xeon 5560. The Nehalem used a modern multi-socket architecture.

There is a 6.4 GT/s QuickPath Interconnect (QPI) on-chip, handling communication

between the two sockets like fetching data from remote DRAM, cache coherency, and

I/O accesses. In this dual socket system, accessing DRAM memory from a local

socket has much higher bandwidth and lower latency than accessing DRAM in a

remote socket. This type of architectural design is called non-uniform memory access

(NUMA). To attain full memory bandwidth offered by the NUMA based multi-socket

system, programmers are responsible to map memory pages to the appropriate DRAM

to minimize memory accesses to remote sockets.

The Nehalem microarchitecture also supports Hyperthreading (HT) and Turbo

Boost technology. HT is Intel’s term for SMT (simultaneous multithreading). Xeon

5560 supports two-way HT, allowing two hardware threads to run simultaneously on

the same physical core. The idea of HT is to let one thread fill in the pipeline holes

45

512K L2

MT core

6
.4

 G
T/
s

M
T

 c
o
re

M
T

 c
o
re

M
T

 c
o
re

M
T

 c
o
re

M
T

 c
o
re

M
T

 c
o
re

M
T

 c
o
re

M
T

 c
o
re

FSB

512K L2

4.26 GB/s

Q
P
I
6

8MB

M M M M

2
5
6
K

2
5
6
K

2
5
6
K

2
5
6
K

8MB

M M M M

2
5
6
K

2
5
6
K

2
5
6
K

2
5
6
K

MCH

4.26 GB/s

DDR2!533

4.26 GB/s

31.99 GB/s31.99 GB/s

3x64b controllers

Shared L3

3x64b controllers

Shared L3

Intel Atom (N270)Intel dual!socket Xeon5560 (Nehalem)

DDR3!1333 DDR3!1333

Figure 5.1: Hardware configuration diagrams for the machines in our study.

when the other thread is stalled, with little additional hardware cost. Physically,

HT is implemented by replicating registers, statically partitioning load/store buffers

between the two threads, and competitively sharing reservation station and caches

[2]. The performance gain expected from HT technology depends on the exact per-

formance bottleneck. When the bottleneck comes from some shared resource, there

may be no performance improvement or even performance degradation from enabling

HT technology. The Turbo Boost technology feature allows the core to run faster

than its base operating frequency by dynamic over-clocking under certain workloads.

However, it produces inconsistent timing results, therefore is disabled in our experi-

ments.

Xeon 5560 supports x86-64 instruction set. In the dual-socket T410, each proces-

sor has four out-of-order (OoO) cores. Each core has its private 32kB L1 and 256kB

L2 cache and the four cores share a 8M L3 cache. Each core can issue a 128-bit SIMD

FP (floating point) multiplication and one 128-bit SIMD FP addition simultaneously

per cycle. The theoretical peak of single precision FP arithmetic of this machine is

2 × 4 × 2.8 × 8 = 179.2 Gflop/s. Each socket integrates an on-chip DDR3 memory

controller of three channels, providing 31.99GB/s DRAM bandwidth for each socket.

46

The integrated memory controller offers much higher memory bandwidth compared

to the front side bus (FSB) used in the earlier Intel Core micro-architecture. The Na-

helem microarchitecture also supports 2/4MB page size, which may be useful when

TLB miss penalty has a noteworthy impact on overall performance. There is a single

32 entry DTLB for the large pages, according to the performance analysis guide for

Nahelem based processors [32].

Intel Atom N270.

The Intel Atom N270 is a low-end processor designed for energy efficiency. It

is mainly used for netbooks, mobile devices, smartphones, and consumer electronics

(CE) devices. Our Atom N270 laptop is a 1.6GHz single processor machine, with

a single core based on the Atom micro-architecture, which is highly optimized to

reduce energy consumption. The Atom core has a two-issue wide, in-order pipeline

that supports two-way Hyperthreading. It does not support Turbo Boost technology.

Atom implements the x86 (IA-32) instruction set. x86-64 is only activated

for higher-end Atom processors designed for desktops, e.g. the Diamondville and

Pineview cores. The Atom N2xx models cannot run x86-64 code [1].

The front end of Atom can issue up to two instructions (a 128-bit SIMD arithmetic

operation and one memory operation) per cycle, delivering a theoretical peak of 1.6×4

= 6.4 Gflop/s for single precision FP arithmetic. The Atom processor has a 512kB

L2 and a 32kB L1 data cache. The processor is attached to a memory controller via a

533MHz FSB, providing a memory bandwidth of 4.26 GB/s. Atom does not support

large page size.

47

5.2 Software Environment

5.2.1 Parallel Programming Model

Three commonly used parallel programming models are OpenMP (Open Multi-

Processing) [6], Pthreads (POSIX threads) [3], and MPI (Message Passing Interface)

[5]. OpenMP and Pthreads are widely used for shared memory programming, and

MPI is the dominant programming technique for distributed memory.

Pthreads are realized through an Application Programming Interface expressed

in C programming language types and functions, to create and manipulate parallel

threads. The threads created are fairly lightweight, unlike in MPI, where processes

are much more heavyweight and require much information of programming resources

and execution states. Programmers can explicitly control the number of threads

created and how they are bound to physical cores (the so called “thread affinity”) in

Pthreads.

OpenMP supports multi-platform shared memory programming using a set of

compiler directives, library routines, and environment variables that influence run-

time behavior [6]. Similar to Pthreads, threads created using OpenMP are relatively

lightweight. Additionally, OpenMP has the advantage of being fairly easy to use.

Compiler handles most of the lower level details necessary for creating and running

parallel threads. Programmers can easily create parallel regions and handle thread

affinity through a simple and flexible interface.

Explicit and versatile thread affinity control in OpenMP becomes available re-

cently. In earlier release of the OpenMP standard, compiler is decisive on controlling

the parallelism. It could overwrite the number of threads specified by the programmer.

The thread affinity is also handled completely by the compiler, therefore programmers

had no control or knowledge over how the parallel threads got mapped to the multi-

core system [21]. Recently, full control of thread affinity is provided though the Intel

48

thread affinity interface [7], which is a runtime library that can be used with Intel

C/C++ compiler (ICC). Programmers can specify the binding of threads to physical

cores using high-level, mid-level or low-level thread affinity interface, depending on

how much details they want to control and specify. The low level thread affinity

interface is very similar to the sched setaffinity in Pthreads.

Given the above advantages of OpenMP programming model, we choose OpenMP

in our experiments. We control the number of parallel threads by

#pragma omp parallel num threads(NUM THREADS).

The thread affinity is simply controlled by setting an environmental variable named

KMP AFFINITY. For example,

set KMP AFFINITY=verbose,granularity=fine,proclist=[0,1,2,3],explicit

explicitly binds four hardware threads to the processor specified in proclist, and

verbose will enable display of the physical binding when the parallel threads are

created.

In our experiments, we experiment with the number of threads which is a power

of 2, and always exhaust resource on a given part of the chip before exploring new

hardware, as Datta et al. did for stencil optimization [21]. For example, in Dell

T410, we first experiment with 1,2, and 4 cores in the first socket, and finally 8

cores in both sockets. This approach allows us to understand the scaling efficiency of

multicore systems. Also, we do not over-subscribe the number of threads to physical

cores, because context switching between software threads is expensive and degrades

the overall performance.

5.2.2 Compilers

The compiler we chose in our experiment is the Intel C/C++ compiler (icc), because

it is considered to be the the best compiler today for Intel x86 platforms. icc has

proven to generate superior code than gcc under most application scenarios [21, 9].

49

Also icc supports the Intel runtime library for controlling the thread affinity. icc

can do some automatic SIMDization for simple loop structures, but can not handle

complex data dependencies such as what we found in the stencil computation. For

those complicated cases, we will manually SIMDize code, as will be explained in

section 6.2.

5.3 Performance Measurement

Commonly used metrics to gauge machine utilization are delivered computational rate

in Gflop/s and measured bandwidth in GB/s. We will show that these two metrics

are not enough for our application.

For the narrow band level set algorithm, as explained in Section 2.2, it has a

computational part CompLS and a band update part UpdateB. The computational

part mainly consists of iterative stencil computations on the narrow band, which

is computationally intensive. The band update part involves unpredictable control

flows, for example, nested loops whose trip counts are hard to predict. We will show

in Section 6.1, that the cost of CompLS and UpdateB are not fixed in terms the total

number of arithmetic operations. By adjusting some algorithmic parameters, we can

increase the cost on one part while decreasing the cost on the other part. Since there

is no fixed arithmetic operation count, reporting Gflop/s does not reflect real runtime.

However, reporting runtime itself is not very informative about the code efficiency,

because it does not provide insight such as how much fraction of the machine peak is

achieved.

To fully understand efficiency of the delivered code, we first build a stencil kernel

code under an ideal setting, which uses a small image grid size such that all data

can fit into the last level on-chip cache. This removes the memory bandwidth as a

possible performance bottleneck. The kernel computation is performed on the whole

50

image grid as in the level set method, without the overhead of the narrow band

representation. We also choose a relatively long unit-stride dimension to maximize

memory access continuity. The stencil computational code is heavily optimized under

such setting, as described in section 6.2. The measured performance serves as the

“speed-of-the-light” upper bound of attainable performance for this specific stencil

computation.

In the results section, we will report following performance metrics on each devel-

opment machine.

1. Speedup over our baseline, which is a straight-forward implementation of the nar-

row band level set algorithm. We will compare our baseline with the best publicly

available third-party code.

2. Delivered computational rate in Gflop/s for the computational part CompLS. We

will compare this result with the kernel upper bound to understand the code

efficiency.

3. Measured efficiency of control flows for the band update part UpdateB. After opti-

mization, band update part mainly consists of big switch statements and memory

writes. It is difficult to characterize the bottleneck for such control-intensive flows.

We will report cycles/entry and cycles/write to the best effort.

4. Fraction of runtime spent in CompLS and UpdateB. This number reflects under pro-

posed optimization techniques, the best tradeoff point found between the compute

part and the band update part.

51

Chapter 6

Surface Tracking Framework

6.1 Overview

Surface tracking algorithm is closed related to stencil and sparse linear algebra, as

discussed in Chapter 3. To deliver highly efficient code, we combine ideas developed

for stencil and sparse linear algebra, and incorporate various code transformation

techniques into an unified surface tracking framework.

We discuss about algorithmic design tradeoffs as well as code optimizations that

address different possible system bottlenecks. The algorithmic design tradeoff ex-

plores balance between the stencil computational part and the band tracking part.

The system utilization bottlenecks can be caused by on-chip resources, DRAM mem-

ory transfer, and multithreading. We elaborate them in more details in the following.

Algorithmic design tradeoff.

As introduced in section 2.2, the narrow band level set algorithm has a compute

part CompLS, and a band update part UpdateB. There is a fundamental algorithmic

tradeoff between the cost of these two parts. The tradeoff is controlled by band radius

Br and tile size Th × Tw. Increasing Br leads to fewer band update passes because

the band update is performed every Br iterations, but higher computational cost

52

because more pixels are computed. In the extreme case when Br is large enough to

encompass the complete image, it degrades to the level set method on the complete

grid. A similar relationship exists for the tile size: increasing the tile size reduces the

cost of the band update because fewer tiles are needed to track the band, but the

number of pixels in the band is increased. We will develop optimizations for both

CompLS and UpdateB, and finally find out Br, Th, Tw that optimize the tradeoff in the

auto-tuning process described in Chapter 7. The optimal Br, Th, Tw largely depends

on how well each part is optimized, as illustrated in Fig 6.1.

tiruntime

Increases or Increases

Figure 6.1: The fundamental tradeoff between computation and band update, con-
trolled by Br, Th and Tw. Solid and dashed lines correspond to runtime before and
after optimizations.

Code optimizations.

We propose a set of code optimization techniques for CompLS and UpdateB, orga-

nized into four categories:

1. In-core stencil optimizations that explore efficient utilization of on-chip resources;

2. Memory level optimizations that target at improving cache reuse;

53

3. Band update optimizations that reduce the cost of short loops with unpredictable

trip counts;

4. Parallelization optimization that targets at achieving scalable performance with

the number of cores on multicore system.

For the compute part CompLS, the in-core stencil optimizations are the most im-

portant when the data set size is small enough to fit into the last level on-chip cache.

Memory level optimizations are most important when the data set size cannot fit

into on-chip caches and the DRAM memory accesses become a bottleneck. Band

update optimizations can effectively reduce the overhead of control intensive flows

in UpdateB. With all these optimizations, we can achieve speedup of tens of times

over varying input sizes for single-threaded performance. The parallelization scheme

is specifically designed to minimize the computation and communication overhead

when scaling to multiple cores. We observe close to linear speedup with the number

of cores using our parallelization method.

6.2 In-Core Stencil Optimizations

We propose three optimizations aimed at maximizing utilization of in-core computa-

tional resources: SIMDization, approximate transcendental arithmetic, and instruc-

tion scheduling in the basic block of unrolled tile. In the following text, stencil com-

putation of pixels in the same basic tile is completely unrolled and packed together

to form a large basic block to explore ILP. The basic tile size th × tw can be different

from the tile size Th × Tw used for tiling the band. Th × Tw is chosen to balance

the tradeoff as discussed in Section 6.1. For a set of basic tile sizes th ∈ {1, 2, 4}

and tw ∈ {4, 8, 16}, we will explore the best instruction scheduling for the unrolled

basic block formed using each of the basic tile sizes. In the auto-tuning search pro-

cess, for any given Th and Tw, we simply constrain that Th × Tw can be divided into

54

multiple basic tiles of size th × tw, and choose the basic tile size that maximizes the

computational rate.

4pixels to the left

4pixels to the right

4!pixel aligned 4!pixel aligned

p g

Figure 6.2: Illustration of four-pixel alignment. In computing first order derivatives,
we need misaligned 4 pixels to the left and to the right. This is implemented by SIMD
loads and shuffles to repack misaligned 4 pixels into 128-bit variables.

SIMDization.

Vector instructions naturally use a basic tile size that is a multiple of 1×4. Some-

times the stencil computation involves data dependency that is not 4-pixel aligned.

For example, when computing the first-order derivatives of φ, we need φ(x) of 4 pixels

to the left and to the right, as illustrated in Fig 6.2. In this case, we use SIMD loads

and SIMD shuffle instructions to repack the 4 pixels to the left or to the right into

a 128-bit variable. We also experimented with other tile sizes that are not 4-pixel

aligned, but observed severe performance degradation. Therefore we constrain the

basic tile width tw to be a multiple of 4.

Approximate transcendental functions.

In CompL, notice there is the smoothed dirichlet function δ(φ) computed as in

Eq 4.4. In that equation, 1
2
[1 + cos(πx)] for x ∈ [−1, 1] can be well approximated by

55

1− x2, which can be easily vectorized. In CompN, we need to compute the magnitude

of the norm, which is 1/
√

(u2
x + u2

y) in Eq 4.2. Instead of using mm sqrt ps and

mm div ps, we can use the fast and low precision mm rsqrt ps without a noticeable

impact on the final contour.

Instruction ordering.

Stencil computation on every pixel uses the same data dependency graph (DDG).

We unroll the stencil computation instructions for all pixels in the same basic tile

and pack them into a long basic block. Ideally compilers will perform instruction

scheduling and register allocation to attain the best performance, no matter how C

instructions are ordered in the basic block. However, we observe a large variance on

performance when using different sequences of instructions that performs the same

computation. Therefore, we generate a set of C instruction sequences and empirically

find the best one. We do not change anything in the compiler, so this approach is

compatible with future generation of compilers.

We generate a search space of instruction sequences using the following to two

schemes: replicate and interleave, aimed at exploring a good balance between resul-

tant register spills/reloads and ILP exposed. The replicate scheme is prone to placing

dependent instructions close to each other to minimize additional memory transfers;

while the interleave scheme is prone to interleaving independent instructions to max-

imize ILP. Fig 6.4 shows a simple example to illustrate these two schemes. We found

that the assembly code for the interleave scheme typically has more spills than that

of the replicate scheme, indicating that compilers re-schedule the input instruction

sequences locally. All the instruction sequences are generated automatically by a code

generator, which takes DDG of the stencil computation and the tile size as inputs.

Empirically, we observed up to 70% performance difference between the best and the

worst input instruction sequences.

56

CompL

CompN

Figure 6.3: Data dependency graph (DDG) of stencil computation on one superpixel
of 1 × 4 pixels. The upper plot shows DDG of CompL, the upper plot shows DDG of
CompN.

Fig 6.4 shows a simple example to illustrate how these two schemes are imple-

mented. In this example, assuming the DDG for each superpixel has 6 instructions:

57

P1 1 P1 3(P2 2)

DDG of stencil for basic tile size of two superpixels of1x8 pixels

P2 3P1 2 (P2 1)

ld

P1.1 P1.3(P2.2)

P1 5

P2.3

P2 4 P2 5

P1.2 (P2.1)

ld ld ld

P1.4
P1.5

P1 6

P2.4 P2.5

add mul add mul

P2 6P1.6
add add

P2.6

A set of valid schedulings

for one superpixel

replicate: choose a valid scheduling, repeat it for

all superpixels in the basic tile

P1 1 P1 2 P1 3 P1 4 P1 5 P1 6

123456

P1.1, P1.2, P1.3, P1.4, P1.5, P1.6,

P2.1, P2.2, P2.3, P2.4, P2.5, P2.6

interleave: randomly choose schedulings for every124356

……

interleave: randomly choose schedulings for every

superpixel in the basic tile and interleave them

P1.1, P2.3, P1.2, P2.2, P1.3, P2.5,

325146

P1.4, P2.1, P1.5, P2.4, P1.6, P2.6

Figure 6.4: Illustration of replicate and interleave ordering schemes for an unrolled
basic tile of 1× 2 superpixels. A superpixel consists of 1× 4 pixels. For SIMDization
purpose, we only consider tile sizes which are multiples of 1× 4. The two superpixels
use the same DDG (Pi.j means the j-th instruction of pixel i). In the example,
they share two inputs, P1.2 = P2.1, P1.3 = P2.2. We generate a set of instruction
sequences for one superpixel. The replicate scheme concatenates one sequence super-
pixel by superpixel; the interleave scheme mix two randomly chosen sequences of two
superpixels. We use different sequences in interleave because usually a core can issue
instructions of different types in the same cycle. In both schemes, redundant (shared)
instructions of multiple superpixels will be removed.

3 loads, 2 additions, and 1 multiplication. The tile has two superpixels of 1×8 pixels,

so DDG of two superpixels are packed into one basic block. The two superpixels

share some input data, which is common in the nearest neighbor stencil computa-

tion, for example when computing first order derivatives. We first generate a set of

valid sequences of 6 instructions of one superpixel, based on its DDG. The replicate

58

scheme simply concatenates one sequence superpixel by superpixel; while the inter-

leave scheme interleave two randomly selected sequences from the set of valid ones.

Note that we choose to interleave different sequences in interleave instead of the same

one. This results in better balanced instruction types in a local window, and instruc-

tions of different types may be issued in the same cycle. In both schemes, redundant

(shared) instructions of multiple superpixels will be removed. The same method can

be applied to scalar code without SIMDization by replacing superpixel with pixel.

In real implementations, we randomly generate 200 prototype sequences of CompL

on one superpixel of 1×4 pixels, based on its DDG. The replicate scheme simply

replicates each as illustrated in the above example, when the basic tile has multiple

superpixels. The interleave scheme randomly picks up th × tw sequences from the

200 prototypes, and interleaves them into a new sequence. This process is repeated

200 hundred times to generate 200 interleaved sequences for each basic tile size. For

CompN, we choose 50 instead of 200, because the DDG of CompN is much simpler

than that of CompL, as illustrated in Fig 6.3. In CompL, a superpixel of 1×4 pixels

performs 14 vector ADD and 14 vector MUL; while in CompN, a superpixel of 1×4

pixels performs 4 vector ADD and 4 vector MUL.

6.3 Memory Level Optimizations

6.3.1 Time skewing on Narrow Band

Why traditional time skewing does not work?

Fig 6.5 (a) shows applying the traditional 2-D time skewing to the narrow band.

Here we assume a five nearest-neighbor stencil. Let us start from a fixed narrow

band tiled with 2×2 tile size. The 2D grid is partitioned into blocks, and each block

is skewed left-ward and up-ward by one pixel in the iteration space to respect the

data dependency. Misalignment of the time skewing space with the tile size requires

59

programmers to handle corner cases when a tile is partially covered by the block. An

alternative could be aligning the skewing space with the tile size, such as in Fig 6.5

(b). However, the traditional time skewing incurs considerable code overhead:

1. Identifying which tiles are active in the block has a non-trivial cost. It can be done

either by checking an indication array like BI for active tiles, or by checking the

Blist in CSR format. Both methods consist of a number of unpredictable branches.

2. A broader region of the image needs to be considered, rather than the narrow band

region. A block containing no active tiles at iteration t may contain active tiles at

future time steps in the skewed space. The problem gets even more complicated

when considering a dynamically evolving narrow band. The iteration space needs

to be further skewed to respect the data dependency in the band update process,

which leads to more complicated code and less efficient cache reuse.

The inefficiency is caused majorly by the interaction between the time skewing

space and handling of the narrow band (representation and updating). In the follow-

ing, we propose a novel technique called projective time skewing, which essentially

decouples the time skewing space and the narrow band part. Nice properties of the

traditional time skewing are maintained, and code overhead is kept very low.

Projective time skewing.

In our solution, we project the 2-D sparse grid into a 1-D array of sparse rows,

where each node in the 1-D array corresponds to a sparse row in the original 2-

D image, as illustrated in Fig 6.6. Let’s consider a fixed narrow band first. After

projection, updating each node depends on its three nearest neighbors in the previous

iteration. Therefore, we can treat the problem in the same way as 1-D dense stencil

computation, as illustrated in Fig 6.7. The only difference is that now each node

corresponds to one sparse row in the original image, and may have a variable length

of effective tiles in the narrow band. Given that a sparse row usually has a small

60

2

t+1

t+2
t+1

t+2

t

t+1

t

(a) (b)

Figure 6.5: Applying traditional 2-D time skewing to 2-D sparse and fixed narrow
band.

number of tiles, it is reasonable to assume a fairly large number of sparse rows can fit

into caches on-chip, and time skewing can significantly reduce the DRAM accesses.

In addition, the CSR representation of the sparse matrix naturally merges into this

projective time skewing method, because it exactly contains the position information

of “active” tiles in each sparse row.

Now let us consider the evolving band. The band needs to get updated every Br

iterations. If Br is a multiple of the height of polytope, band update can be done

after every Br iterations on the whole image. However, usually Br is small to keep

the band “narrow” to reduce the number arithmetic operations. And the polytope

height is usually large to increase data reuse. Typically, Br is much smaller than

polytope height. Under this case, we need to incorporate the band update process in

the time skewing space.

The original time skewing space needs to be modified to accommodate the data

dependency involved in the band update process. This is illustrated in Fig 6.8. As-

suming polytope height is 4 and Br = 2. Consider a polytope in steady state, starting

from row 6 and 7 at time t. After two iterations, we can not proceed to compute row

61

Figure 6.6: Projecting 2-D sparse grid to 1-D dense array, where each node in 1-D
array corresponds to a sparse row in the 2-D grid.

Row index

prologue steady steady epilogue

t

t+1

r6

r6r5r3 r4

r0 r1 r5 r6r2 r3 r4

r0 r1 r2 r7

r7

r8

r8

t+2

t+3

r0 r1 r5 r6r2 r3 r4

r0 r1 r2 r3 r5 r6r4

r7

r7

r8

r8

Figure 6.7: Time skewing of fixed 2-D narrow band, after projecting the 2-D sparse
grid to 1-D array of sparse rows.

4 and 5 at time t + 2 because the narrow band shape changes and we do not have

enough information to reconstruct the narrow band in row 4 and 5 yet. Additional

skewing is needed to compensate the data dependency involved in the band recon-

struction process, as shown in Fig 6.8. We reconstruct the narrow band as far as

62

possible with currently available information. When φ known for rows j ∈ [js, je), we

have enough information to update BI for row j ∈ [js +1, je−1), and update Blist for

rows j ∈ [js + ∆s, je − ∆s), where ∆s = bBr−1
Th

c + 2. This is because a crossing-point

in row j can only change BI for rows j ∈ [j − bBr−1
Th

c − 1, j + bBr−1
Th

c + 1]. After

Ph iterations, the row index is left shift by ∆p = b (2Br+∆s−1)Ph

Br
c. Both ∆s and ∆p

can be pre-computed and used as preprocessor macros, so index manipulations in the

time-skewing is very cheap.

In this example, band is updated for row 2 and 3, and we can proceed with

additional two time steps. Notice that the content of a row could change after the

band update process. In this way, the interaction between the time skewing space

and the narrow band part is kept minimal, and nice properties of the traditional time

skewing on dense grid become reusable.

In real implementation of the image segmentation problem, update of φ defined

in Eq 2.2 is broken down into CompN and CompL, as introduced in Section 4.2. Either

CompN or CompL of row j depends on level set value φ and normal vector N for row

j − 1, j and j + 1 in the previous iteration. Please note that the row here is also

in the tile granularity, that is, row index j is the original row index scaled by 1
Th

.

So each iteration actually consists of two small 1-D stencil computations: the first

one for CompN and the second one for CompL. Note that we use two arrays to store

the output of CompN and CompL, which essentially serve as ping-pong buffers for con-

secutive iterations. Otherwise, an additional buffer is needed to make sure data is

not overwritten before it is needed again, which will incur an overhead of buffering

data. The projective time skewing used for the real image segmentation problem is

summarized in Fig 6.9.

Following pseudo code is for computing one polytope in steady state in Fig 6.10.

63

r10r8t

Row index

r6r0 r1 r5 r6r2 r3 r4 r7 r9 r11

steady

Cannot proceed..

Need band update

r10

r10

r8

r8

t

t+1

r6

r6r5r3 r4

r0 r1 r5 r6r2 r3 r4

r0 r1 r2 r7

r7 r9

r9

r11

r11

Need band update
r10

r10

r8

r8

t+2

t+3

r0 r1 r5 r6r2 r3 r4

r0 r1 r2 r3 r5 r6r4

r7

r7

r9

r9

r11

r11

Row index

(a)

r10r8t r6r0 r1 r5 r6r2 r3 r4 r7 r9 r11

steady

r10

r10

r8

r8t+1

t+2

r6r5r3 r4

r0 r1 r5 r6r2 r3 r4

r0 r1 r2 r7

r7 r9

r9

r11

r11

band update

r10

r10

r8

r8t+3

r0 r1 r5 r6r2 r3 r4

r0 r1 r2 r3 r5 r6r4

r7

r7

r9

r9

r11

r11
band update

(b)

Figure 6.8: Projective time skewing on a dynamically evolving narrow band. In
the example, Br = 2, Ph = 4, Pw = 4. Band update happens every Br iterations
(indicated by triangles), and is integrated into the time skewing space.

With the polyhedral transform, we can save space for BI by using it in a cyclic

way. Height of BI can be reduced to ∆p + Pw + 2∆s, because this is an upper bound

of the number of rows that are “active” at the same time.

Here we give a qualitative analysis of the choice of the polytope size. We name

all points in consecutive Ph iterations as one polyhedral segment. In Fig 6.9, we show

three segments : current segment, previous and next one. If we assume perfect LRU

cache replacement policy, and miss rate without polyhedral transform being M . There

are two conditions under which cache miss rate is reduced: I) when two consecutive

polytopes can fit into cache, that is, ∆p + 2Pw rows can fit, cache misses happen

only on the polyhedral segment boundary, so total miss rate is roughly M
Ph

; II) when

condition I is false and Pw rows can fit, a cache miss happens to nodes on the polytope

64

CompN CompL UpdateB
Row index

Pre

Cur

Next
Iter#Iter#

Figure 6.9: Polyhedral transform for narrow band level set. In the example, Br = 2,
Ph = 4, Pw = 4. Every Ph iterations form a polyhedral segment. Computation
is finished in the order of segment by segment. Within each segment, computation
is finished polytope by polytope. UpdateB is performed every Br iterations in each
polytope(here finishing a stripe of CompN and CompL counts as 1 iteration).

boundary. The total miss rate is then roughly M(1
Ph

+ 1
Pw

). Given fixed cache size and

parameters Br, Th, Tw, if condition I holds, the miss rate decreases as Ph increases.

When condition II holds, a low miss rate corresponds to relatively large Pw and Ph.

When both conditions do not hold, miss rate is high as if there is no polyhedral

transform. Therefore, when the cache size is big enough to hold a fairly large number

of sparse rows, cache misses will no longer be the bottleneck since the miss rate

changes roughly with 1
Ph

, 1
Pw

. This is observed on Xeon with a 8MB L3. When the

cache size is small, it is possible the cache miss penalty can only be partially hidden,

which is observed on Atom with a 512K L2.

65

int Bcnt=Br;

for (int iter=0; iter <Ph; iter++){

for (int j=js; j<je; j++) {CompN for tiles in row j;}

js --; je--;

for (int j=js; j<je; j++) {CompL for tiles in row j;}

js --; je--;

Bcnt --;

if (Bcnt==0){

for (int j=js; j<je; j++) {

scatter: check crossing -point and update B_I.}

for (int j=js-Delta_s +1; j<je-Delta_s +1; j++) {

gather: rebuild band by updating B_ptr and B_list.}

Bcnt=Br; js = js-Delta_s +1; je = je-Delta_s +1;

}

}

//update js and je for the next polytope

js = je + Delta_p; je = js + Pw;

Figure 6.10: One polytope in steady state.

6.3.2 Lower Level Optimizations

With the polyhedral transform only, we cannot completely hide the memory access

penalty. Fig 6.11 shows the result on Xeon assuming a fixed band. After the polyhe-

dral transform, performance slowly decays as the image size grows, with a few bumps

at certain image sizes. By collecting hardware performance counters information us-

ing Intel Vtune [10], we determined that the slope is caused by page walk penalties.

On Xeon, each core has an L1 TLB of 64 entries and a shared 512-entry L2 TLB for

4kB pages. There is a 32-entry DTLB for the large 2/4MB pages. Therefore, the

large-page TLB can hold a maximum address span of 64MB/128MB, while 4kB TLB

can only hold 2MB. Using the large page size can almost completely remove the page

miss penalty. The bumps are caused by conflict misses in the last level cache, which

can be removed with appropriate padding.

66

CompL on Xeon
C l / i l i i

256

Cycle/pixel vs. image size

64

128
NoPoly&4K

NoPoly&2M

16

32

y

Poly&4K

Poly&2M

8

16
y

Poly&2M&Pad

4

0 2000 4000 6000 8000 10000 12000

Figure 6.11: Performance (cycle/pixel) of CompL on fixed narrow band, with Br = 1,
Th × Tw = 1 × 4. With polyhedral transform, large page support and padding, the
application becomes completely compute bound.

6.4 Band Update Optimizations

The cost of the band update is largely dependent on the choice of the tile size, because

the band is tracked in the tile granularity. Given fixed tile size and band radius, we

propose two optimizations.

Optscatter.

The Scatter step searches for crossing-points and updates BI at the same time.

We propose two level of optimizations on Scatter. Level 1 optimization SIMDizes

the search process. To check a superpixel of 1 × 4 pixels, we need superpixels on the

up, down, left and right: m t, m d, m l, m r. We compute an integer pattern in 0–15,

with 4 bits each indicating one pixel being a crossing-point or not, using the following

SIMD instructions:

__m128 ud = _mm_xor_ps(m_u , m_d);

__m128 lr = _mm_xor_ps(m_l , m_r);

int pattern = _mm_movemask_ps(_mm_or_ps(lr, ud));

67

Level 2 optimization unrolls the BI update part. Updating BI in the square

neighborhood of new crossing-points involves short nested loops with unpredictable

trip counts. With known Br, Th, Tw, we wrote a Perl script enumerating all possible

cases, unrolling the code and organizing them into a big switch statement.

tile boundarytile boundary

tile boundary

tile boundary

Figure 6.12: An example to illustrate the unrolled scatter process. In this example,
the tile size is 2 × 4. The relative position of the superpixel within the tile is (1,0),
meaning it is the lower half of the tile. The superpixel has a crossing-point pattern
of ’0110’. Band radius Br = 2. The red dotted box illustrates expanded area of the
crossing points. All tiles that have a non-empty intersections with the red dotted box
should be included into the updated band.

We show a simple example in Fig 6.12. The original code and code after unrolling

for this example is shown in Fig 6.13.

Optgather.

gather simply scans BI for 1s, and collects tile column indices into Blist. Instead

of loading char in BI one by one, we load 4 chars or 16 chars each time, and

build a big switch statement for each possible case. This reduces load and branching

overhead. It helps most when the image width is large and the application is compute

bound.

68

// Original code without unrolling

void scatter0110(int j,int i,int rj,int ri,char B_I[][BIw]){

int j_l = (j*Th+rj-Br)/Th;

int j_u = (j*Th+rj+Br)/Th;

int i_l = (i*Tw+ri+1-Br)/Tw;

int i_l = (i*Tw+ri+2+Br)/Tw;

for (int j=j_l; j<=j_u; j++)

for (int i=i_l; i<=i_u; i++)

B_I[j][i] = 1;

}

// Optimized code with unrolling

//we can pre -compute j_l , j_u , i_l , i_u

//j_l = j-1; j_u = j+1; i_l = i-1; i_u = i+1;

//The following code will be inserted in a big switch

//statement , with one entry for one possible

// combination of (rj, ri, pattern)

B_I[j-1][i-1]=1; B_I[j-1][i]=1; B_I[j-1][i+1]=1;

B_I[j][i-1]=1; B_I[j][i]=1; B_I[j][i+1]=1;

B_I[j+1][i-1]=1; B_I[j+1][i]=1; B_I[j+1][i+1]=1;

Figure 6.13: An example of unrolled scatter.

6.5 Parallelization on Multicores

There are multiple ways to explore data parallelism when scaling to multicores. We

use the method in [58] due to its low communication cost, but tailor the original

method to the narrow band setting. This is shown in Fig 6.14. Core n first finishes

its prologue, then sets DONE[n] to 1, indicating core n − 1 it has finished. Then

core n makes progress in the steady state until entering the epilogue. It will wait

until DONE[n+1] is set because it needs some information produced in the prologue

of core n + 1. Each core has a private BI array as in the single-threaded case, and

an additional buffer B′
I for processing the epilogue. When processor n + 1 finishes

its prologue, it will copy BI information of certain rows (indicated by little triangles

in Fig 6.14) to B′
I of core n. When core n finishes the last polytope in the steady

state, it also copies BI of certain rows (indicated by the little triangles in Fig 6.14)

to its own B′
I . Size of B′

I is 2(∆p + ∆s)
w
Tw

to make sure all “alive” rows at the same

69

time can fit in. For large image size, each core has enough work in the steady state,

so when core n reaches the epilogue, core n + 1 should have finished the prologue

and set the DONE[n + 1]. The overhead of this method is low since no redundant

computation is needed near the partition borders. To balance the workload among

the cores, after each polyhedral segment, we re-collect information of the number of

tiles in the narrow band per row, and partition rows in a way such that the number

of tiles per core is roughly the same.

Core n Core n Core n+1

prologue prologuesteady state

epilogue
core n

epilogue
core n!1

Figure 6.14: Parallelization on multicores (small triangles indicate rows whose BI

information needs to be copied to an additional buffer B′
I for the epilogue processing).

We also attempted a finer grain partition scheme so that processors share cache

resources, that is, two cores cooperate to finish each row, with core 0 computing all

even entries in Blist[j][] and core 1 computing all odd entries. Experiments show

a 1.5x speed-up when each core has its private L1. The main penalty comes from

data sharing among the two cores on chip, incurring a lot of “modified data sharing”

transactions (verified by Vtune hardware counters [10]). We also experimented with

SMT (simultaneous multithreading) using this scheme, however observed no speed-

up. This is likely due to some shared resource of SMT becoming the bottleneck.

70

Chapter 7

Auto-tuning

With all optimization techniques discussed in the surface tracking framework in Sec-

tion 6, now we have a fully parameterized code framework. The remaining question

is to generate code based on different parameter configurations and identify good

parameter values. Näıvely, we can manually try out all possible combinations of pa-

rameter values and pick the best one. In practice, this process is very tedious and

even unfeasible because of the two reasons. First, the total number of possible combi-

nations usually grow factorially with the number of parameters, making it impossible

to explore the complete parameter space. Second, even for a small number of tun-

ing parameters, it will be very time consuming to manually tune parameters when

porting code to a new machine.

Auto-tuning is a method that automatically finds out good parameter values us-

ing some empirical search schemes. It provides a desirable solution to performance

portability. It takes non-trivial amount of effort to build an auto-tuner, but once the

auto-tuner is built, it can be used to automatically generate high performance code

on different machines.

The general auto-tuning methodology has been introduced in Section 3.4. In this

Chapter, we will discuss the code generation process, the tuning parameter space

71

developed for our application, and the search strategy we used in this work. We

found that auto-tuning technique can provide up to 50% performance gain over an

educated guess for this surface tracking application.

7.1 Code Generation

We need to generate code variants based on different code optimizations and pa-

rameters proposed in Chapter 6. Some parameters can be specified through simple

C preprocessor flags, for example, tile size Th × Tw, band radius Br, polytope size

Ph, Pw, and index increments/decrements in the projective time skewing. For more

complicated optimizations, we develop specialized code generators in PERL scripting

language to automatically generate code variants. Code generator is used to generate

the search space of instruction sequences in Section 6.2, and enumerate all possible

combinations in the optscatter process in the band update in Section 6.4. The code

generator saves the painful and error prone process of manually developing C code

for similar and repetitive patterns.

One important problem is to verify correctness of the full space of auto-tuner

generated code. Our current auto-tuner is not yet capable of automatically checking

the correctness of code, thus still relies on programmers to verify it manually. This is

not a scalable approach in the long term. In the future, we hope to construct a set of

semantic rules of the optimization space, and embed those rules in a domain specific

compiler that can automatically generate code by exploring different code transfor-

mations and verify the correctness at the same time. Such approach is deployed in

more mature auto-tuning systems like FLAME [30] and SPIRAL [40].

72

7.2 Parameter Space

All optimizations are summarized in Table 7.2. The primary tunable parameters

are Br, Th, Tw, Ph and Pw. Parameters Br, Th, Tw control the tradeoff between the

computational part and the band update part. Their optimal values largely depend

on architectural properties. For example, Sandy Bridge processor family supports

AVX (Advanced Vector Extensions) [8], which defines 256-bit registers that can be

used as 8-way single-precision vectors or 16-way single-precision vectors. We would

expect larger Br, Th, Tw values are preferred on those machines to take advantage of its

strengthened SIMD units. The Polytope size Ph and Pw depend on edge distributions

in the image as well as last level cache size. The goal is to choose a large enough

polytope size to improve data reuse, but the sparse rows held in the Polytope should

fit into cache. The nice thing of building an auto-tuner is that it automates the

process of finding good parameter values when the underlying algorithm changes, or

the input size changes, or the architecture changes.

Some optimizations are controlled with a Enable/Disable parameters. We observe

from experiments that choosing Enable will not degrade the performance. The reason

we put Enable/Disable tuning parameters here is twofold: first, to understand the

effectiveness of the optimization choices; second, to allow easier future extension on

the current version because we may want to replace or upgrade certain optimizations.

Empirically, we found for the surface tracking application, there is an up to 50%

performance difference between the good parameter values found by the auto-tuner

and a fixed educated guess of good parameter values. The educated guess can be

taken by domain experts with prior knowledge of good ranges of parameters. How-

ever, provided with the diversity and complexity of the hardware architectures, it is

extremely difficult to guess or build an analytical model to infer good parameter val-

ues on different machines. For example, the vector length in the SIMD instructions

73

Category Optimization Tunable paramters

Fundamental
Tradeoff

opt. tradeoff between
CompLS and UpdateB

Br ∈ {1..8}, Th ∈ {1..8}, Tw ∈
{4, 8, 16}

In-core
SIMD Enable/Disable

approx complex arith-
metic

Enable/Disable

instruction ordering Enable/Disable

Memory
polyhedral transform Enable/Disable, Ph ∈ Phs, Pw ∈

Pws

padding Enable/Disable

large page Enable/Disable

Band Update

optscatter 0 (näıve)
1 (SIMDized search)
2 (unrolled scatter)

optgather 0 (näıve)
1 (load 4 chars per time)
2 (load 16 chars per time)

note:Phs = {2, 4, 8, 16, 24, 32, 48, 64, 80, 96, 128, 160, 192}, Pws = {2, 4, 8, 12, 16, 32}

Table 7.1: Summary of Optimizations and Tuning Parameters

will have an impact on the choice of band radius and tile size, which also depends on

the effectiveness of other optimizations.

7.3 Search Strategy

Given that the total number of possible combinations of tuning parameters grows com-

binatorially, an exhaustive search is often not feasible in practice. Instead, heuristics

are used to construct a reasonable search space, or to perform a limited search in the

complete space, or to guess good parameter ranges learnt from past experience. We

use heuristics in the instruction ordering optimization and an iterative greedy search

method to sample the overall optimization space. We also discuss machine learning

methods which are promising for future work.

74

Heuristics.

For instruction ordering discussed in Section 6.2, we use simple heuristics to con-

struct a set of valid sequences. The goal is to construct a reasonably large space to

explore good tradeoffs between ILP and additional load/store instructions, and hope-

fully the best sequence resides in this space or stays close. As discussed in Section 6.2,

we generate sequences using replicate and interleave schemes for both stencil kernels:

CompL and CompN. For a given basic tile size th× tw, we simply measure the Gflop/s of

all generated sequences under ideal settings described in Section 5.3, and find out the

best one for each stencil kernel on every development machine. In later experiments

on real input data, a tile size of Th × Tw is organized into multiple basic tiles. The

basic tile size is chosen such that Th is a multiple of th, Tw is a multiple of tw, and

th × tw delivers the best Gflop/s under the previous constraint.

Iterative greedy search.

For the overall tuning process, we adopt the iterative greedy search method. The

idea is perform greedy line search of one parameter while fixing the other parameters,

and iterate this process for every parameter. The line search simply means searching

for all possible values within the range of that parameter and choosing the best one.

The order in which parameters are searched may incorporate some expert knowledge.

In our case, we simply organize them category by category as shown in Table 7.2.

The iterative greedy search will find the global optimal configuration if the param-

eters are independent of each other. However, parameters are unavoidably coupled.

For example, tuning parameters Th, Tw and Br in the first category largely depends

on how well computation part and band update part are optimized, which are closely

related to tuning parameters in the last three categories in Table 7.2. Therefore, iter-

ative greedy search could converge to a local minimum. In practice, we run multiple

passes of the iterative greedy search. In each pass, we iterate over all parameters once,

and use the result as a starting configuration for the next pass. Given the nature of

75

the iterative greedy search process, the performance will not degrade after each iter-

ation. Usually after 2-3 passes, performance no longer improves and converges to a

stable point. The configuration found is used as the final tuned output.

Machine learning.

Some auto-tuning frameworks use machine learning to search the parameter space.

Machine learning methods can learn from past experience, and predict for the future.

The basic idea is that we could learn the relationship between some features (like

the machine characteristics, problem sizes) and good choices of tuning parameters.

The SPIRAL project used machine learning method to find the best DSP algorithms.

Ganapathi et al. applied machine learning to stencil computation on multicores [11].

We believe that machine learning is a promising research direction for the application

of tracking evolving surfaces. The optimization configurations are closely related to

image contents, for example, the density of edges. Depending on the applications,

tuning for every image may not be feasible. It would be very interesting to learn

some useful image features to predict good parameterizations or reduce the size of

the search range. For other applications of the level set algorithm, domain specific

knowledge may provide useful insights to constrain the search space.

76

Chapter 8

Performance and Evaluation

8.1 Description

The experimental results are presented in the following order.

1. We construct a kernel code under the ideal settings as described in Section 5.3,

and apply all in-core optimizations to the kernel code. The performance measured

for the stencil kernel serves as the upper bound of the computational rate. In this

experiment, we searches over a set of generated sequences for stencil computation

and reports the best performance.

2. We test our auto-tuning framework on both Intel dual-socket Xeon 5560 and Intel

Atom 270 machines. We add optimizations proposed in Chapter 6 one by one.

After adding each optimization, we report the best delivered performance after

tuning all optimizations added so far. This allows us to understand the effective-

ness of optimizations under the experimental context. We also report the final

computational rate delivered by our auto-tuner, as well as fraction of the runtime

spent in the computation part and band update part. Architectural differences

and their impact on performance are also analyzed.

77

3. We discuss the performance result of multithreading, and its implication for future

scaling to even larger systems.

4. We discuss the performance gain from tuning, as well as the sensitivity of tuning

to input images.

5. Finally, we compare our baseline code with the best publicly available third-party

code.

8.2 In-Core Stencil Kernel Performance

As discussed in Section 5.3, the kernel code explores how to maximize utilization of

the on-chip hardware resource. It is tested under the setting of full image grid without

narrow band representation, and a small enough data set size that fits into the last

level on-chip cache.

We apply all in-core optimizations discussed in Section 6.2, and report perfor-

mance results using basic tile size th × tw, where th ∈ {1, 2, 4} and tw ∈ {4, 8}. In

CompN, a superpixel of 1×4 pixels performs 4 vector ADD and 4 vector MUL, so the

theoretical peak performance is 1 cycle/pixel on Xeon, and 2 cycle/pixel on Atom.

In CompL, a superpixel of 1×4 pixels performs 14 vector ADD and 14 vector MUL, so

the theoretical peak performance is 3.5 cycle/pixel on Xeon, and 6.75 cycle/pixel on

Atom.

Table 8.1 summarizes measured kernel performance for CompN and CompL, and the

corresponding Gflop/s. The kernel code runs at 50% of 22.4 Gflop/s machine peak on

Xeon and 25% of 6.4 Gflop/s machine peak on Atom. The gap between the achieved

Gflop/s and peak Gflop/s is mainly due to pipeline stalls caused by the complex

data dependencies in the stencil kernel, and additional memory transfer instructions

caused by register spills/reloads.

78

There are two main reasons why a higher fraction of peak performance is attained

on the Xeon. First, the Xeon uses aggressive out-of-order cores, and has many more

physical 128-bit registers in the physical register file. Second, the compiler sees six-

teen xmm registers on the 64-bit Xeon, but only 8 xmm registers on the 32-bit Atom.

Therefore, the assembly code on the Atom has far more register spill/reload instruc-

tions than on the Xeon. This can be seen from the additional memory transfer ratio

in Fig 8.1.

3.515

Atom Xeon

3
13

14

2.5

11

12

13

35%32%

0 0.5 1
2

0 1 2 3 4
10

11

dditi l t f ti dditi l t f tiadditional memory transfer ratio additional memory transfer ratio

Atom Xeoncycles/pixel cycles/pixel

9

10

30

35
Atom Xeoncycles/pixel cycles/pixel

CompL CompL

7

8

25

30

40% 72%

0 1 2 3 4
5

6

2 4 6 8
20

25

0 1 2 3 42 4 6 8

additional memory transfer ratio additional memory transfer ratio

Figure 8.1: Performance of different instruction sequences vs. additional memory
transfer ratio for basic tile size of 4 × 8.

79

th × tw 1 × 4 2 × 4 4 × 4 1 × 8 2 × 8 4 × 8

Atom
CompN (cycle/pixel) 12.8 9.0 9.5 9.9 10.1 10.7
CompL (cycle/pixel) 26.9 23.7 23.1 23.8 24.3 23.4
Aggregate Gflop/s 1.4 1.7 1.7 1.7 1.6 1.6

Xeon
CompN (cycle/pixel) 3.0 2.7 2.5 2.6 2.5 2.4
CompL (cycle/pixel) 6.7 6.2 5.8 5.91 5.79 5.70
Aggregate Gflop/s 10.1 11.0 11.7 11.5 11.8 12.2

Table 8.1: Stencil Kernel Performance for CompN and CompL, and corresponding ag-
gregate Gflop/s.

Fig 8.1 shows the performance versus additional memory transfer ratio of different

instruction sequences. The additional memory transfer ratio is defined as

(

of loads and stores in the assembly code of the long basic block

of loads and stores in the original C code in the long basic block
− 1

)

.

As expected, the interleave scheme generates more register spills/reloads com-

pared to the replicate scheme. In general, interleave performs better on Atom than

on Xeon, because it explores some level of inter-pixel ILP. The optimal sequences

for CompN use interleave on both machines, while CompL use replicate. This could be

because DDG CompL is more complicated and has better intra-pixel ILP. Also, we can

see from Table 8.1 that using larger basic tile size has about 10%–20% performance

gain over using the basic tile size of 1 × 4.

8.3 Auto-tuning Performance

8.3.1 Xeon

Fig 8.2 shows the performance result delivered by our auto-tuner on Xeon for square

image sizes varying from 64 to 8,192 (the input data is generated by scaling the

example image in Fig 2.3). In this plot, we show the relative speed-up over our

baseline code by adding the optimizations one by one, in the order of in-core stencil,

80

memory level, and band update optimizations. The baseline is a straight-forward

implementation of the pseudo code described in Section 4.2. It is scalar C code, with

tile size 1× 1 and Br = 1. Every time a new optimization is added, we perform three

passes of iterative greedy search, as discussed in Section 7.3. Therefore, each bar in

the figure should be interpreted as the best performance with all optimizations so far

in the search space. The speedup numbers are summarized in Table 8.2.

Single threaded Speedup over Baseline

35

40

Single threaded!Speedup!over!Baseline!

L2 L3 DRAM

30

35 L2 L3 DRAM

20

25

+!UpdateB!opt

10

15
+!Memory!opt

+!Incore!opt

NB scalar

0

5

NB!scalar

0
6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

8
1
9
2

image!size

Figure 8.2: Single-threaded speedup over scalar C code baseline on Xeon. Each point
in the figure should be interpreted as the optimal performance with all optimizations
so far. Scalar code on full image grid is also shown for comparison. (Best view in
color)

It can be observed from Fig 8.2 that for small image sizes fitting into the last

level cache, in-core and band update optimizations are most effective; and for large

image size, the polyhedral transform plays an important role to remove the memory

bottleneck.

81

Image Size 64 128 256 512 1024 2048 4096 8192

full grid 0.42 0.22 0.12 0.10 0.09 0.07 0.04 0.03
narrow band baseline 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
+ in-core opt 7.20 6.05 6.07 6.16 6.39 5.40 5.22 6.85
+ memory opt 7.24 6.36 6.34 6.89 7.66 9.67 12.66 22.95
+ band update opt 10.45 10.13 8.75 9.39 10.40 13.27 18.03 36.16

Table 8.2: Single-threaded speedup over scalar C code baseline on Xeon.

Compuational Rate (CompLS) on Xeon

14

Compuational Rate (CompLS) on Xeon
SP Performance [Gflop/s] vs image size

12

14

8

10
measured perf

kernel bound

4

6

2

4

0

64 128 256 512 1024 2048 4096 8192

image size

Figure 8.3: Auto-tuner delivered computational rate on Xeon. Kernel stencil perfor-
mance is shown for comparison. The basic tile size used in kernel stencil is the same
th × tw found by the auto-tuner for any image size

Image Size 64 128 256 512 1024 2048 4096 8192

Kernel Computational Rate 11.7 11.7 11.7 11.7 11.7 11.7 11.7 11.7
Measured Computational Rate 7.75 6.79 6.64 6.89 6.55 6.57 5.88 5.75

Table 8.3: Auto-tuner delivered computational rate on Xeon (in Gflop/s).

Fig 8.3 shows the computational rate in Gflop/s measured for the computation

part (CompLS), which is about 26%–35% of the machine peak for varying input sizes.

82

The real numbers are summarized in Table 8.3. The performance is almost flat when

image sizes grow out of cache. So the application is close to compute-bound. The gap

between the kernel performance and the measured performance is due to overhead of

the indirect memory access using the CSR format. We test the kernel code using the

CSR format for the complete image, and got almost the same computational rate.

It is difficult to characterize the code efficiency for UpdateB, because the main

body in both scatter and gather consists of switch statements, which are highly

unpredictable depending on the exact evolution pattern of the band. Here we report

a lower bound by counting the total number of switch statement entries and memory

writes, divided by CPU cycles. On average, UpdateB spends 80% of time in scatter

and 20% of time in gather. In scatter, it takes about 29 cycle/entry in the switch

statement, and writes to BI takes about 13 cycle/write. In gather, on average it takes

30 cycle/entry in the switch statement, and writes to Blist takes 23 cycle/write. The

performance is most likely limited by the unpredictable control flow.

8.3.2 Atom

Fig 8.4 shows the performance result delivered by our auto-tuner on Atom for square

image size varying from 64 to 4,096. The plot is similar to Xeon, where for small image

size that can fit into L2, in-core and band update optimizations are most important,

and for large image size, the polyhedral transform plays a key role to reduce the

memory pressure. The real numbers are summarized in Table 8.4.

Fig 8.5 also shows the computational rate on Atom, which is about 12%–20%

of the machine peak for varying input sizes. The real numbers are summarized in

Table 8.5. The performance degrades as the image size increases, indicating the

polyhedral transform cannot completely remove the memory bottleneck.

For the band update, similar to Xeon, 80% of the time is spent in scatter, and

20% in gather. On average, in scatter it takes 50 cycle/entry, and writes to BI

83

14

Single threaded!Speedup!over!Baseline!

12

14

L2 DRAM

10

6

8 +!UpdateB!opt

+!Memory!opt

+ Incore opt

4

+!Incore!opt

NB!scalar

0

2

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

image!size

Figure 8.4: Single-threaded speedup over scalar C code baseline on Atom. (Best view
in color)

Image Size 64 128 256 512 1024 2048 4096

full grid 0.37 0.20 0.13 0.10 0.07 0.04 0.04
narrow band baseline 1.00 1.00 1.00 1.00 1.00 1.00 1.00
+ in-core opt 5.69 5.14 4.21 2.64 2.79 3.51 4.93
+ memory opt 5.75 5.21 5.48 5.11 5.09 6.47 8.05
+ band update opt 9.14 9.27 8.73 7.41 6.79 8.19 13.00

Table 8.4: Single-threaded speedup over scalar C code baseline on Atom.

Image Size 64 128 256 512 1024 2048 4096

Kernel Computational Rate 1.7 1.7 1.7 1.7 1.7 1.7 1.7
Measured Computational Rate 1.26 1.19 0.94 0.82 0.90 0.82 0.79

Table 8.5: Auto-tuner delivered computational rate on Atom (in Gflop/s).

84

Computational Rate (CompLS) on Atom

2

Computational Rate (CompLS) on Atom
SP Performance [Gflop/s] vs image size

1.6

2

1.2
measured perf

kernel bound

0.8

0.4

0

64 128 256 512 1024 2048 4096

image size

Figure 8.5: Auto-tuner delivered computational rate on Atom. Kernel stencil perfor-
mance is shown for comparison. The basic tile size used in kernel stencil is the same
th × tw found by the auto-tuner for any image size.

takes 10 cycle/write. In gather, it takes 36 cycle/entry, and writes to Blist takes 28

cycle/write.

85

8.3.3 Fraction of Computation Part and Band Update Part

Fraction of Computation Part (CompLS) in Total Runtime
percentage (%) vs image size

1

percentage (%) vs image size

0.8

0.6 %(Atom)

%(Nahelem)

0.4

0.2

0

64 128 256 512 1024 2048 4096 8192

Figure 8.6: Fraction of CompLS in total runtime after tuning.

Fig 8.6 shows the fraction of CompLS and UpdateB after full tuning. For most of

the cases, computation takes 80% of total runtime. Given the computational rate

achieved, there’s little headroom for further improvement. As discussed in section

IV, the optimal tradeoff between CompLS and UpdateB depends on how well each part

is optimized. Further optimization should be focusing on the band update part, if

possible.

86

Time in UpdateB Time in CompLS

Runtime (Gcycles)
Single!threaded program on Xeon 5560

350

Time in UpdateB Time in CompLS

250

300

200

BR (1 2 8)

150

BR=(1,2,...,8)

50

100

0

50

Figure 8.7: An example of decomposition of runtime in CompLS and UpdateB, with

varying Th × Tw and Br. Each group corresponds to a fixed tile size while Br varies

in {1, 2, ... ,8}.

Fig 8.7 shows an example of the decomposition of measured runtime with varying

tunable parameters Th×Tw and Br. The result is tested for image size of 4,096 × 4,096,

with full optimizations. As discussed in Section 6.1, the tradeoff between CompLS and

UpdateB is controlled by the three parameters. It is observed that increasing the tile

size quickly lengthen the runtime spent in CompLS. We found that on both machines,

the optimal tradeoff usually corresponds to a relatively small tile size like 2 × {4, 8}

and Br ∈ {2, 3, 4}. Therefore, we fix Th×Tw to 2×4 and Br to 2, as a reasonably good

benchmark of performance without auto-tuning, which will be used in Section 8.5.

87

8.3.4 Multicore Parallelization Results

Parallelization Speedup over Single!threaded Performance

8

4

2

8

4
2

2

1

128 256 512 1024 2048 4096 8192

image size

Figure 8.8: Parallelization speedup on Xeon using 2, 4 and 8 cores.

Fig 8.8 shows the parallelization result on the dual-socket Xeon. We constrain

the number of rows processed by any core to be at least 2(∆p + ∆s) to make sure

prologues and epilogues do not overlap. For small image sizes, the number of rows

per core may be too small to satisfy the constraint, therefore we do not report any

performance number for this case.

For a very small image size such as 128, the synchronization overhead is relatively

high, because each core has little work in the steady state. For medium image sizes, we

observe close-to-linear speed-up for 2 and 4 cores. When scaling from 4 cores (single-

socket) to 8 cores (dual-socket), we observe a degradation in speed-up for large image

sizes. This is because all L2 misses go through the main memory attached to the first

socket, and this doubles the memory pressure compared to the single socket case.

Given the high data transfer rate offered by the QPI link between the two sockets,

latency of transferring data between DRAM attached to the first socket and processor

in the second socket could be the major cause of performance penalty observed.

88

With NUMA-aware memory management, it is possible to relieve the pressure by

utilizing DRAM bandwidth in the second socket. This could possibly lead to some

further speed-up using 8 cores for large image sizes, but requires non-trivial effort to

reduce the overhead along the partition boundary between the two sockets.

The compound speedup with single-threaded optimizations and multithreading

over the baseline code is shown in Fig 8.9, and summarized in Table 8.6, ranging in

14–195x.

Compound Speedup over Baseline on Xeon

200

250

150

200

100

50

0

128 256 512 1024 2048 4096 8192

image size

Figure 8.9: Full speedup over baseline code with multithreading up to 8 cores.

Image Size 128 256 512 1024 2048 4096 8192

Full speedup over Baseline 14.48 16.89 25.98 66.37 81.8 93.19 195.36

Table 8.6: Full speedup over baseline code with multithreading up to 8 cores.

We did some experiments to understand how performance varies with the polytope

size when using 1, 2, 4 and 8 threads. Fig 8.10 shows the result for image size 8,192×

8,192, with fixed Th × Tw = 1 × 4, Br = 2, and Pw = 4. According to the analysis

in Section 6.3, the miss rate of LLC is inversely proportional to Ph, as long as Ph

89

9
Runtime per Iteration (sec)

7

8

9

6

7

1 thread

4

5 2 threads

4 threads

8 th d

2

3
8 threads

0

1

1 4 16 64 256

Figure 8.10: Performance sensitivity to Ph, with fixed Pw = 4. The result shows for
image size 8,192× 8,192, with Th × Tw = 1× 4 and Br = 2, the performance of using
1, 2, 4, and 8 threads. The fat dots show the optimal performance of using 1, 2, 4,
and 8 threads, and corresponding Ph after full tuning.

sparse rows from each thread can fit into LLC. Therefore, when the number of threads

doubles, the range of Ph delivering good performance is narrowed—roughly speaking,

the lower end of Ph is doubled to halve the LLC miss rate per thread, and the upper

end of Ph is halved for fitting into the LLC capacity. When scaling to two sockets,

only the lower end gets doubled because LLC capacity doubles. This explains what

we observed in Fig 8.10. The fat dots in the figure shows the optimal performance

and its Ph after auto-tuning. For fewer number of threads, its larger range of the good

polytope size indicates more flexibility in the search space, which explains why the

performance gain from tuning is larger. From this result, we learned that when scaling

to even larger systems with more processors, utilizing bandwidth of every processor is

important. Simply replying on polyhedral transform to reduce memory traffic is not

a scalable solution. For large systems, additional code transformations that handle

90

NUMA-aware data allocation and reduce communication overhead among processor

will ne necessary for good performance.

8.4 Architectural Comparison

In general, for single-threaded performance Atom is about 4.7x slower then Xeon5560

for small data set sizes that fit into on-chip cache, and 5–6x slower for large data set

sizes that cannot fit.

There are two reasons for the 6x slow down for small data size that fit into last

level cache. First, Atom has a peak single-threaded Gflop/s rate of 6.4, which is

28.6% of the peak Gflop/s on Xeon. Second, Nehalem is capable to effectively hide

data dependency by OoO engine, while the in-order Atom need to fill in much more

register spill/reload instructions for higher ILP to avoid pipeline stalls. This explains

why stencil kernel achieves about 50% of peak on Xeon, but only 20%–30% on Atom.

The performance gap enlarges as the image size increases. Xeon can maintain

almost flat performance with increasing image size. It has a large enough (8M) L3 to

decrease the LLC miss rate such that the application is compute-bound. On Atom,

with the best polyhedral transform size, L2 miss rate can be effectively reduced,

however not to the extent that can completely remove bandwidth bottleneck. In

addition, the lack of large page support on Atom results in increasing page miss

penalty as the input image size increases.

8.5 Performance Gain from Autotuning

To understand the benefits of auto-tuning, we compare against a reasonably good

choice of the parameters: Th × Tw = 2 × 4, Br = 2, Ph = min(w
64

, 48), with all other

optimizations enabled or set to the highest level wherever applicable. Fig 8.11 shows

91

the speed-up of fully tuned code over the educated guess, which is 12% on Xeon and

17% on Atom in average.

Performance Gain using Auto!tuning
speedup over using fixed parameters vs image size

1.4

1.5

1.3 Atom

Xeon

1.1

1.2 Xeon

1

64 128 256 512 1024 2048 4096 8192

Figure 8.11: Speed-up of fully tuned code over using fixed optimization parameters
from an educated guess.

8.6 Sensitivity to Input Data

Figure 8.12: Four input images used in sensitivity test of the auto-tuning parameters.

In Fig 8.13 and Fig 8.14, we shows how sensitive the performance result is to

different image inputs on Xeon and Atom. We use four different images as our

inputs, as shown in Fig 8.12. For each image, we perform the auto-tuning process to

find out the optimal parameter for it. And we do a cross-test to apply the optimal

92

parameters found by one image to another. In both figures, the number in j-th row

i-th column shows the runtime when using the optimal parameters of image i on

image j, normalized to the optimal runtime of image j.

8.7 Comparison to Third-Party Code

The best publicly available code for comparison is the C code provided by Li. et at[16]

in the form of a pre-compiled dll file called through a Matlab interface. Their code

is close to a straight forward C implementation of the algorithm. Due to portability

issues of the dll file, we only got their code to run on a Core 2 Extreme machine with

64-bit Windows Vista. The speed-up of our scalar C code baseline over their code is

plotted in Fig 8.15. The speed-up is about 1.3–2.0x when compiled using MS Visual

Studio compiler 32-bit, and 2.0–3.0x when compiler with ICC 32-bit or 64-bit.

93

256x256

1.00 1.00 1.08 1.00 1.00 1.00

1 00 1 00 1 04 1 03 1 03 1 02

1.12

128x128

1.00 1.13 1.14 1.00 1.13 1.16

1 00 1 00 1 00 1 03 1 00 1 00

1.14

1.16

1.00 1.00 1.04 1.03 1.03 1.02

1.09 1.07 1.00 1.09 1.06 1.05

1 00 1 00 1 03 1 00 1 01 1 00
1 06

1.08

1.11.00 1.00 1.00 1.03 1.00 1.00

1.00 1.00 1.00 1.00 1.00 1.01

1 04 1 10 1 06 1 00 1 05 1 12

1.08

1.1

1.12

1.00 1.00 1.03 1.00 1.01 1.00

1.05 1.05 1.14 1.04 1.00 1.00

1 01 1 01 1 04 1 01 1 00 1 00

1.02

1.04

1.06
1.04 1.10 1.06 1.00 1.05 1.12

1.03 1.04 1.02 1.00 1.00 1.02

1 03 1 00 1 00 1 04 1 00 1 00
1.02

1.04

1.06

1024x1024

1 09

512x512

1.15

1.01 1.01 1.04 1.01 1.00 1.00

1

1.03 1.00 1.00 1.04 1.00 1.00

1

1.00 1.10 1.00 1.02 1.00 1.00

1.00 1.00 1.02 1.00 1.01 1.03

1 06

1.07

1.08

1.09

1.00 1.13 1.00 1.01 1.00 1.00

1.04 1.00 1.02 1.04 1.00 1.05

1.1

1.00 1.03 1.00 1.00 1.00 1.02

1.01 1.05 1.03 1.00 1.01 1.03

1.03

1.04

1.05

1.06

1.02 1.13 1.00 1.06 1.07 1.01

1.06 1.15 1.02 1.00 1.00 1.06

1.05

1.01 1.05 1.01 1.00 1.00 1.04

1.00 1.05 1.04 1.00 1.03 1.00

1

1.01

1.02
1.04 1.14 1.00 1.06 1.00 1.05

1.00 1.13 1.00 1.00 1.00 1.00

1

4096x4096

1.00 1.00 1.03 1.03 1.00 1.00

1 00 1 00 1 04 1 03 1 01 1 00

1.05

2048x2048

1.00 1.00 1.48 1.02 1.14 1.01

1 02 1 00 1 49 1 12 1 19 1 12

1.4

1.45

1.00 1.00 1.04 1.03 1.01 1.00

1.06 1.02 1.00 1.06 1.02 1.02

1 03 1 03 1 04 1 00 1 03 1 03

1.03

1.04

1.02 1.00 1.49 1.12 1.19 1.12

1.00 1.00 1.00 1.00 1.01 1.01

1 01 1 00 1 17 1 00 1 03 1 00

1.25

1.3

1.35

1.03 1.03 1.04 1.00 1.03 1.03

1.00 1.00 1.01 1.05 1.00 1.00

1 00 1 00 1 02 1 02 1 01 1 00

1.01

1.02

1.01 1.00 1.17 1.00 1.03 1.00

1.05 1.06 1.02 1.00 1.00 1.01

1 04 1 08 1 42 1 01 1 08 1 00 1 05

1.1

1.15

1.2

1.00 1.00 1.02 1.02 1.01 1.00

1

1.04 1.08 1.42 1.01 1.08 1.00

1

1.05

8192x8192

1 06

1.00 1.01 1.04 1.00 1.01 1.00

1.00 1.00 1.03 1.00 1.00 1.00

1 04

1.05

1.06

1.00 1.02 1.00 1.01 1.02 1.00

1.00 1.01 1.04 1.00 1.00 1.00

1.02

1.03

1.04

1.04 1.00 1.06 1.05 1.00 1.04

1.00 1.02 1.01 1.00 1.02 1.00

1

1.01

Figure 8.13: Sensitivity of applying the optimal tuning parameters from one image
to other images on Xeon. The number in j-th row i-th column shows the runtime
when using the optimal parameters of image i on image j, normalized to the optimal
runtime of image j. Four test images are shown in Fig 8.12.

94

256x256

1.00 1.02 1.04 1.01 1.01 1.00

1 00 1 00 1 09 1 01 1 00 1 00

1.1

128x128

1.00 1.02 1.02 1.04 1.07 1.06

1 04 1 00 1 03 1 03 1 08 1 01

1.07

1.08

1.00 1.00 1.09 1.01 1.00 1.00

1.01 1.01 1.00 1.00 1.00 1.02

1 00 1 00 1 01 1 00 1 00 1 01

1.06

1.08
1.04 1.00 1.03 1.03 1.08 1.01

1.05 1.02 1.00 1.07 1.07 1.00

1 03 1 08 1 03 1 00 1 02 1 04

1.04

1.05

1.06

1.00 1.00 1.01 1.00 1.00 1.01

1.00 1.00 1.00 1.00 1.00 1.00

1 00 1 01 1 11 1 04 1 00 1 00

1.02

1.04

1.03 1.08 1.03 1.00 1.02 1.04

1.00 1.00 1.00 1.00 1.00 1.00

1 00 1 01 1 05 1 00 1 02 1 00
1.01

1.02

1.03

1024x1024512x512

1.00 1.01 1.11 1.04 1.00 1.00

1

1.00 1.01 1.05 1.00 1.02 1.00

1

1.00 1.00 1.03 1.01 1.06 1.00

1.01 1.00 1.09 1.12 1.05 1.00

1 08

1.1

1.12
1.00 1.03 1.11 1.00 1.16 1.00

1.06 1.00 1.22 1.04 1.19 1.03

1 15

1.2

1.06 1.07 1.00 1.04 1.01 1.00

1.08 1.05 1.03 1.00 1.05 1.00

1.04

1.06

1.08

1.01 1.00 1.00 1.02 1.02 1.02

1.01 1.02 1.07 1.00 1.12 1.01 1.1

1.15

1.00 1.01 1.03 1.01 1.00 1.00

1.13 1.06 1.06 1.03 1.06 1.00

1

1.02

1.04

1.03 1.00 1.00 1.01 1.00 1.04

1.07 1.06 1.24 1.01 1.25 1.00

1

1.05

4096x4096

1.00 1.01 1.10 1.02 1.03 1.02

1 00 1 00 1 05 1 01 1 03 1 00

1.08

1.09

2048x2048

1.00 1.00 1.09 1.00 1.00 1.02

1 08 1 00 1 04 1 05 1 06 1 06

1.08

1.09

1.00 1.00 1.05 1.01 1.03 1.00

1.00 1.00 1.00 1.00 1.00 1.00

1 00 1 00 1 02 1 00 1 01 1 00

1.05

1.06

1.07
1.08 1.00 1.04 1.05 1.06 1.06

1.03 1.03 1.00 1.09 1.08 1.08

1 00 1 00 1 01 1 00 1 04 1 01 1 04

1.05

1.06

1.07

1.00 1.00 1.02 1.00 1.01 1.00

1.00 1.00 1.00 1.00 1.00 1.00

1 00 1 00 1 05 1 02 1 05 1 00
1 01

1.02

1.03

1.041.00 1.00 1.01 1.00 1.04 1.01

1.00 1.00 1.05 1.02 1.00 1.03

1 01 1 00 1 01 1 02 1 07 1 00
1 01

1.02

1.03

1.04

1.00 1.00 1.05 1.02 1.05 1.00

1

1.01
1.01 1.00 1.01 1.02 1.07 1.00

1

1.01

Figure 8.14: Sensitivity of applying the optimal tuning parameters from one image
to other images on Atom. The number in j-th row i-th column shows the runtime
when using the optimal parameters of image i on image j, normalized to the optimal
runtime of image j. Four test images are shown in Fig 8.12.

95

Speedup of the Baseline Code over DLL Code (3rd party code)

3

3.5

2.5

3

dll code

2

dll code

baseline MS32

baseline ICC32

1

1.5 baseline ICC64

0.5

1

0

64 128 256 512 1024 2048

image size

Figure 8.15: Speedup of our baseline C code over the best publicly available code.
The result is shown when our baseline is compiled using three different compilers:
MS Visual Studio 32-bit, ICC 32-bit and ICC 64-bit.

96

Chapter 9

Future Work

This thesis investigates performance optimization opportunities for an important real

world application — tracking motion of irregular surfaces. This application repre-

sents an interesting computational pattern featured by massive data parallelism plus

data dependent control flow. We proposed a set of effective optimizations for this

computational pattern on current multicore platforms. The work presented in this

thesis serves as a prelude to a set of related research problems, rather than a thorough

solution.

In the future, we hope to generalize the ideas proposed in this thesis to a broader

set of similar computational problems. Some open problems remained to be explored

are listed as following.

1. The current auto-tuning framework is designed for the specific stencil kernel used

in image segmentation. Changing the stencil kernel will involve manual effort in

modifying the in-core stencil optimizations as well as the formulation of polytopes

in the time-skewing technique. A better solution would be to extract semantic

structures or rules as basic building blocks of the auto-tuning framework. This ap-

proach is taken in more developed auto-tuning systems. For example in SPIRAL, a

specially designed compiler searches various transformations and generates target

97

code by manipulating a domain specific language called SPL (Signal Processing

Language). The SPL formulas or structures can be pre-verified, thus it can auto-

matically guarantee correctness of the generated code. Formalizing semantic rules

also allows easier and more structural exploration of algorithmic transforms. For

example, replacing stencil kernels with different algorithms discussed in Section 2.3

will be fully automatic. In the future, we hope the auto-tuning framework will be

able to take in a stencil kernel in the form of a DDG (data dependency graph),

and automatically generate and search code variants based on optimization rules.

2. Many interesting surface tracking problems requires computation in a higher di-

mensional space. By projecting the narrow banded grid into a lower dimensional

space, we have shown the irregular stencil computation can be solved in a way

similar to the stencil computation on a dense regular grid. Existing polyhedral

transform frameworks can handle high dimensional regular grids well. We hope to

combine the idea of projection and some components from the polyhedral trans-

form library to build a general framework that can track surface motion in higher

dimensions.

3. Depending on the application area, the range of good parameterizations may vary

and relate closely to the property of the force field that drives the surface evolution.

This currently is not a big issue for our image segmentation problem, but may be

important when the input force field is diverse and no unique parameterization

of the tuning parameters can work reasonably well in general case. It is usually

infeasible to tune for each possible input data. Under such cases, machine learning

methods can be helpful in learning relationship of some important features and

good values of the tuning parameters. For example, edge density is important

in choosing the polytope size in the time skewing technique. We can sample the

image and compute the edge strength to generate some heuristics, learn how those

98

heuristics affect the choice of parameters through some examples, and predict good

parameter values or their ranges when presented with new examples.

99

Chapter 10

Conclusion

Developing highly efficient computational code on modern multicore CPUs is a hard

problem. Performance portable implementations that deliver high machine utilization

across multiple machines usually require thorough exploration of useful code transfor-

mation techniques based on the application domain, in conjunction with auto-tuning

and program generation approaches.

In this thesis, we present a methodology to deliver highly efficient performance

portable implementations of the surface tracking application. The surface motion

is tracked by the narrow band level set algorithm, characterized by iterative stencil

computation on a dynamically evolving narrow band, which is a sparse sub-set of grid

points held in a neighborhood region around the evolving surface in a regular dense

grid. we developed a novel projective time skewing technique to extract data reuse

for this irregular algorithm with data-dependent control flow. In addition, we ap-

plied other code transformations aggressively to address different system bottlenecks.

These include in-core stencil optimization, lower level memory optimizations and par-

allelization, with focus on utilizing in-core resources, reducing page miss penalty and

conflict misses, and achieving scalable performance across multicores, separately. We

100

built an auto-tuning framework to find good parameterizations for our code transfor-

mations.

We demonstrate the effectiveness of the proposed optimization methodology

through a 2D image segmentation example. The fully optimized code shows up to

195x speed-up over our scalar C baseline code on a dual-quadcore Xeon system,

reaching 26%–35% of the machine peak performance across a wide range of prob-

lem sizes. On the low-end power-efficient, single-core Atom, the fully tuned code

achieves up to 13x speedup over the baseline code, reaching 12%–20% of the machine

peak performance. Speed-up of our baseline code over the best publicly-available

third-party implementation ranges in 1.3–2.0x for various input sizes. The primary

reasons for the performance gap between Xeon and Atom are the power of the core

microarchitectures, how efficiently they tolerate cache misses, and the last level cache

sizes. On Xeon, with the projective time-skewing technique, the application becomes

completely compute-bound, even for very large input sizes. Thus there is little

head room for further performance improvement. On Atom, the memory bandwidth

pressure cannot be fully hidden for large input sizes, because of the limited size of the

last level cache, the less efficient tolerance scheme for cache miss, and the TLB miss

penalty. Re-organizing the data structure could possibly lead to further performance

gain by hiding TLB miss penalty. This can be implemented by copying a broader

area of tiles that cover the current narrow band to a continuous region in memory.

Whenever the narrow band evolves outside the area, we need to repeat this process

of copying-to-continuous-memory. The tradeoff between the benefit and cost of this

method is left to be explored.

The current architectural trend indicates the disparity between processor compu-

tational rate and memory bandwidth will continue to increase. More and more cores

will be integrated onto one chip, delivering higher computational rate. However, the

memory bandwidth grows much slower, indicating bandwidth per core will become

101

increasingly scarce. In the dual-quadcore system, we observed that the range of the

polyhedral size that can completely hide the memory bottleneck is getting more and

more constrained as the number of cores increases. The architectural trend implies

there is a limit to which the projective time skewing technique can hide the memory

bandwidth bottleneck. Most likely, performance will be memory bound and some

cores will become effectively unused on many core platforms in the future.

Stencil kernel in other applications may exhibit a different ratio between arithmetic

operations and memory transfers. So the application can be compute bound, or

memory bound, or likely influenced by both. The nice thing of having an auto-tuned

parameterized code framework is that tuning parameters can adapt themselves to the

algorithmic and hardware properties.

The methodology proposed in the thesis is more like an optimization recipe of how

to optimize code for a broader set of problems with similar computational pattern. In

the future, we hope to automate the code transformations used in this work, so that

code can be automatically generated for other stencil kernels or higher dimensional

data grid. Building a domain specific compiler that automatically search and combine

code transformations in a structural way will allow better productivity in the code

generation as well as the validation process.

102

List of Notations

φ Level set function . 12

Br Narrow band radius .5

Th × Tw Tile size (height×width) in tiling the narrow band 40

h image height .41

w image width . 41

BI 2-D indicator array of tiles inside or outside the narrow band 41

Bptr 1-D array recording the number of tiles per row 41

Blist 2-D array recording the position of tiles in the narrow band 41

th × tw Tile size (height×width) in in-core stencil computation54

∆s Row index shift within a polytope when updating the band 63

∆p Row index shift for a complete polytope . 63

Ph Polytope height .65

Pw Polytope width . 65

DONE Communication signal among multicores . 69

B′
I Additional indicator array when scaled to multiple threads 69

103

Bibliography

[1] Intel Atom Processor Specifications. http://www.intel.com/products/processor/
atom/index.htm.

[2] Performance Insights to Intel Hyper-Threading Tech-
nology. http://software.intel.com/en-us/articles/
performance-insights-to-intel-hyper-threading-technology/.

[3] POSIX Threads Programming. https://computing.llnl.gov/tutorials/pthreads/.

[4] Signed Distance Function. http://en.wikipedia.org/wiki/Signed distance
function.

[5] The Message Passing Interface (MPI) standard. http://www.mcs.anl.gov/
research/projects/mpi/.

[6] The OpenMP API specification for parallel programming. http://openmp.org/
wp/.

[7] Thread Affinity Interface (Linux and Windows). http://software.intel.com/
sites/products/documentation/hpc/compilerpro/en-us/fortran/lin/compiler f/
optaps/common/optaps openmp thread affinity.htm.

[8] Intel Advanced Vector Extensions programming reference. 2008. http://software.
intel.com/en-us/avx/.

[9] Performance of ICC, GCC and OpenMP. Equalizer White Paper, 2008. http://
www.equalizergraphics.com/documents/WhitePapers/OpenMP ICC.pdf.

[10] Intel VTune Amplifier XE 2011: Optimize Performance and Multicore Scala-
bility on Windows and Linux. 2011. http://software.intel.com/en-us/articles/
intel-vtune-amplifier-xe/.

[11] A. Fox A. Ganapathi, K. Datta and D. Patterson. A case for machine learning
to optimize multicore performance. First USENIX Workshop on Hot Topics in
Parallelism, 2009.

[12] R. Bagnara, P. M. Hill, and E. Zaffanella. PPL: The Parma Polyhedra Library.
http://www.cs.unipr.it/ppl/.

104

http://www.intel.com/products/processor/atom/index.htm
http://www.intel.com/products/processor/atom/index.htm
http://software.intel.com/en-us/articles/performance-insights-to-intel-hyper-threading-technology/
http://software.intel.com/en-us/articles/performance-insights-to-intel-hyper-threading-technology/
https://computing.llnl.gov/tutorials/pthreads/
http://en.wikipedia.org/wiki/Signed_distance_function
http://en.wikipedia.org/wiki/Signed_distance_function
http://www.mcs.anl.gov/research/projects/mpi/
http://www.mcs.anl.gov/research/projects/mpi/
http://openmp.org/wp/
http://openmp.org/wp/
http://software.intel.com/sites/products/documentation/hpc/compilerpro/en-us/fortran/lin/compiler_f/optaps/common/optaps_openmp_thread_affinity.htm
http://software.intel.com/sites/products/documentation/hpc/compilerpro/en-us/fortran/lin/compiler_f/optaps/common/optaps_openmp_thread_affinity.htm
http://software.intel.com/sites/products/documentation/hpc/compilerpro/en-us/fortran/lin/compiler_f/optaps/common/optaps_openmp_thread_affinity.htm
http://software.intel.com/en-us/avx/
http://software.intel.com/en-us/avx/
http://www.equalizergraphics.com/documents/WhitePapers/OpenMP_ICC.pdf
http://www.equalizergraphics.com/documents/WhitePapers/OpenMP_ICC.pdf
http://software.intel.com/en-us/articles/intel-vtune-amplifier-xe/
http://software.intel.com/en-us/articles/intel-vtune-amplifier-xe/
http://www.cs.unipr.it/ppl/

[13] Satish Balay, Jed Brown, Kris Buschelman, William D. Gropp, Dinesh Kaushik,
Matthew G. Knepley, Lois Curfman McInnes, Barry F. Smith, and Hong Zhang.
PETSc: Portable, Extensible Toolkit for Scientific Computation. 2011. http://
www.mcs.anl.gov/petsc.

[14] C. Bastoul. Code generation in the polyhedral model is easier than you think.
Proc. of the 13th International Conference on Parallel Architectures and Com-
pilation Techniques (PACT), 2004.

[15] U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan. PLUTO: A
practical and fully automatic polyhedral program optimization system. Proc.
ACM SIGPLAN 2008 Conference on Programming Language Design and Imple-
mentation (PLDI), 2008.

[16] C. Gui C. Li, C. Xu and M. D. Fox. Level set evolution without re-initialization:
A new variational formulation. Proceeding of Computer Vision and Pattern
Recognition (CVPR), 2005.

[17] C. Gui C. Li, C. Xu and M. D. Fox. Distance regularized level set evolution and
its application to image segmentation. IEEE Transaction on Image Processing,
19(12), 2010.

[18] J. C. Gore C. Li, C. Kao and Z. Ding. Implicit active contours driven by local
binary fitting energy. Proceeding of Computer Vision and Pattern Recognition
(CVPR), 2007.

[19] J. C. Gore C. Li, C. Kao and Z. Ding. Minimization of region-scalable fit-
ting energy for image segmentation. IEEE Transaction on Image Processing,
17(10):1940–1949, 2008.

[20] T. Chan and L. Vese. Active contours without edges. IEEE Transaction on
Image Processing, 10:266–277, 2001.

[21] K. Datta. Auto-tuning Stencil Codes for Cache-Based Multicore Platforms. PhD
thesis, PhD thesis and University of California and Berkeley, 2009.

[22] K. Datta, S. Kamil, S. Williams, L. Oliker, J. Shalf, and K. Yelick. Optimization
and performance modeling of stencil computations on modern microprocessors.
SIAM Review, 51(1):129–159, 2009.

[23] K. Datta, M. Murphy, V. Volkov, S. Williams, J. Carter, L. Oliker, D. Patterson,
J. Shalf, and K. Yelick. Stencil computation optimization and auto-tuning on
state-of-the-art multicore architectures. Proceeding of ACM/IEEE Conference
on Supercomputing (SC), 2008.

[24] J. Demmel, J. Dongarra, V. Eijkhout, E. Fuentes, A. Petitet, R. Vuduc, C. Wha-
ley, and K. Yelick. Self-adapting linear algebra algorithms and software. Pro-
ceedings of IEEE, 93(2):293–312, 2005.

105

http://www.mcs.anl.gov/petsc
http://www.mcs.anl.gov/petsc

[25] Craig C. Douglas, Jonathan Hu, Markus Kowarschik, Ulrich Ŕ’ude, Ulrich R
Ude, and Christian Wei? Cache optimization for structured and unstructured
grid multigrid. Elect. Trans. Numer. Anal, 10:21–40, 1999.

[26] W. Pugh D. Wonnacott E. Rosser, W. Kelly and T. Shpeisman. The Omega
Project: Frameworks and Algorithms for the Analysis and Transformation of
Scientific Programs. http://www.cs.umd.edu/projects/omega/.

[27] Katherine Yelick Eun-Jin Im and Richard Vuduc. SPARSITY: Optimization
framework for sparse matrix kernels. International Journal on High Performance
Computing Applications (IJHPCA), 18(1):135–158, 2004.

[28] M. Frigo and S. G. Johnson. A fast Fourier transform compiler. Proc. ACM
SIGPLAN Conf. Programming Language Design and Implementation (PLDI),
pages 169–180, 1999.

[29] M. Frigo and S. G. Johnson. The design and implementation of FFTW3. Proc.
IEEE, 93(2):216–231, 2005.

[30] John A. Gunnels, Fred G. Gustavson, Greg M. Henry, and Robert A. van de
Geijn. FLAME: Formal Linear Algebra Methods Environment. ACM Transac-
tions on Mathematical Software, 27(4):422–455, 2001.

[31] S. Lankton and A. Tannenbaum. Localizing region based active contours. IEEE
Transaction on Image Processing, 17(11), 2008.

[32] David Levinthal. Performance Analysis Guide for Intel Core i7 Processor and
Intel Xeon 5500 Processors. http://software.intel.com/sites/products/collateral/
hpc/vtune/performance analysis guide.pdf.

[33] V. Loechner. PolyLib: A library of polyhedral functions. http://icps.u-strasbg.
fr/polylib/.

[34] P. Smereka M. Sussman and S. Osher. A level set approach for computing
solutions to incompressible two-phase flow. Journal of Computational Physics,
114(1):146–159, 1994.

[35] G. Back M.Belgin and C. J. Ribbens. Pattern-based sparse matrix representation
for memory-efficient SMVM kernels. In Proceedings of the 23rd international
conference on Supercomputing (ICS), 2009.

[36] P. A. Milder, F. Franchetti, J. C. Hoe, and M. Puschel. Formal datapath rep-
resentation and manipulation for implementing DSP transforms. Proceedings of
Design Automation Conference (DAC), pages 385–390, 2008.

[37] D. Mirković and S. L. Johnsson. Automatic performance tuning in the UHFFT
library. Proc. Intl Conf. Computational Science (ICCS), 2073:71–80, 2001.

106

http://www.cs.umd.edu/projects/omega/
http://software.intel.com/sites/products/collateral/hpc/vtune/performance_analysis_guide.pdf
http://software.intel.com/sites/products/collateral/hpc/vtune/performance_analysis_guide.pdf
http://icps.u-strasbg.fr/polylib/
http://icps.u-strasbg.fr/polylib/

[38] S. Osher and R. Fedkiw. Level Set Methods and Dynamic Implicit Surfaces. New
York: Springer-Verlag, 2002.

[39] S. Osher and J. A. Sethian. Fronts propagating with curvature-dependent speed:
Algorithms based on Hamilton–Jacobi formulations. Journal of Computational
Physics, 79:12–49, 1988.

[40] M. Puschel, J. M. F. Moura, J. Johnson, D. Padua, M. Veloso, B. Singer,
J. Xiong, F. Franchetti, A. Gacic, Y. Voronenko, K. Chen, R. W. Johnson,
and N. Rizzolo. SPIRAL: Code generation for dsp transforms. Proceeding of
IEEE, 93(2):232–275, 2005.

[41] J. A. Sethian R. Malladi and B. C. Vemur. Shape modeling with front propaga-
tion: a level set approach. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 17:158–175, 1995.

[42] J. Demmel R. Vuduc and K. Yelick. OSKI: Optimized Sparse Kernel Interface.
http://bebop.cs.berkeley.edu/oski/.

[43] Youcef Saad. SPARSEKIT: Sparse Matrix Utility Package. http://people.sc.fsu.
edu/∼jburkardt/f src/sparsekit/sparsekit.html.

[44] J. A. Sethian. Level Set Methods and Fast Marching Methods: Evolving Inter-
faces in Computational Geometry and Fluid Mechanics and Computer Vision
and Material Science. Cambridge University Press, 1999.

[45] M. M. Strout, L. Carter, J. Ferrante, J. Freeman, and B. Kreaseck. Combin-
ing performance aspects of irregular gauss-seidel via sparse tiling. In in 15th
Workshop on Languages and Compilers for Parallel Computing (LCPC, 2002.

[46] M. M. Strout, L. Carter, J. Ferrante, and B. Kreaseck. Sparse tiling for station-
ary iterative methods. International Journal of High Performance Computing
Applications, 18:95–113, 2004.

[47] D. Takahashi. An implementation of parallel 1-D FFT using SSE3 instructions
on dual-core processors. Proc. Intl Workshop on State-of-the-Art in Scientific
and Parallel Computing (PARA), pages 1178–1187, 2006.

[48] R. Kimmel V. Caselles and G. Sapiro. Geodesic active contours. International
Journal of Computer Vision, 22(1):61–79, 1997.

[49] T. Coll V. Caselles, F. Catte and F. Dibos. A geometric model for active contours
in image processing. Numerische Mathematik, 66(1):1–31, 1993.

[50] L. Vese and T. Chan. A multiphase level set framework for image segmentation
using the Mumford and Shah model. International Journal on Computer Vision,
50:271–293, 2002.

107

http://bebop.cs.berkeley.edu/oski/
http://people.sc.fsu.edu/~jburkardt/f_src/sparsekit/sparsekit.html
http://people.sc.fsu.edu/~jburkardt/f_src/sparsekit/sparsekit.html

[51] Y. Voronenko. Library Generation for Linear Transforms. PhD thesis, PhD
thesis of Electrical and Computer Engineering, Carnegie Mellon University, 2008.

[52] R. Vuduc. Automatic Performance Tuning of Sparse Matrix Kernels. PhD thesis,
PhD thesis and University of California and Berkeley, 2004.

[53] R. Vuduc, J. W. Demmel, and K. A. Yelick. OSKI: A library of automatically
tuned sparse matrix kernels. In Proc. SciDAC, J. Physics, 2005.

[54] Y.-J. Chang W. Yu, F. Franchetti and T. Chen. Fast and robust active contours
for image segmentation. IEEE International Conference on Image Processing
(ICIP), 2010.

[55] R. Clint Whaley, Antoine Petitet, and Jack J. Dongarra. Automated empirical
optimization of software and the ATLAS project. Parallel Computing, 27(1–
2):3–35, 2001.

[56] S. Williams. Auto-tuning Performance on Multicore Computers. PhD thesis,
PhD thesis and University of California and Berkeley, 2008.

[57] S. Williams, L. Oliker, R. Vuduc, J. Shalf, K. Yelick, and J. Demmel. Matrix-
vector multiplication on emerging multicore platforms. Proceeding of ACM/IEEE
Conference on Supercomputing (SC), 2007.

[58] David Wonnacott. Using time skewing to eliminate idle time due to memory
bandwidth and network limitations. International Parallel and Distributed Pro-
cessing Symposium(IPDPS), 2000.

[59] Kamen Yotov, Xiaoming Li, Gang Ren, Michael Cibulskis, Gerald DeJong, Maria
Garzaran, David Padua, Keshav Pingali, Paul Stodghill, and Peng Wu. A com-
parison of empirical and model-driven optimization. Proceedings of the ACM
SIGPLAN conference on Programming Language Design and Implementation
(PLDI), pages 63–76, 2003.

108

	Abstract
	Acknowledgements
	Contents
	List of Tables
	List of Figures
	List of Symbols
	1 Introduction
	1.1 Tracking Evolving Surfaces
	1.2 Performance Portability Challenges
	1.3 Thesis Contributions
	1.4 Thesis Outline

	2 Level Set Algorithm
	2.1 Level Set Overview
	2.2 Narrow Band Level Set
	2.3 Level Set Algorithm Design Issues
	2.3.1 Edge Based Level Set
	2.3.2 Region Based Level Set
	2.3.3 Level Set Models Designed for Inhomogeneity

	3 Related Work
	3.1 Stencil Computation
	3.2 Sparse Linear Algebra
	3.3 Improving Reuse on Sparse Data
	3.4 Auto-tuning

	4 Computational Model
	4.1 Algorithm in Details
	4.2 Data Structures

	5 Experimental Setup
	5.1 Hardware Platforms
	5.2 Software Environment
	5.2.1 Parallel Programming Model
	5.2.2 Compilers

	5.3 Performance Measurement

	6 Surface Tracking Framework
	6.1 Overview
	6.2 In-Core Stencil Optimizations
	6.3 Memory Level Optimizations
	6.3.1 Time skewing on Narrow Band
	6.3.2 Lower Level Optimizations

	6.4 Band Update Optimizations
	6.5 Parallelization on Multicores

	7 Auto-tuning
	7.1 Code Generation
	7.2 Parameter Space
	7.3 Search Strategy

	8 Performance and Evaluation
	8.1 Description
	8.2 In-Core Stencil Kernel Performance
	8.3 Auto-tuning Performance
	8.3.1 Xeon
	8.3.2 Atom
	8.3.3 Fraction of Computation Part and Band Update Part
	8.3.4 Multicore Parallelization Results

	8.4 Architectural Comparison
	8.5 Performance Gain from Autotuning
	8.6 Sensitivity to Input Data
	8.7 Comparison to Third-Party Code

	9 Future Work
	10 Conclusion
	List of Notations
	Bibliography

