
FAST BILATERAL FILTERING BY ADAPTING BLOCK SIZE

Wei Yu1, Franz Franchetti1, James C. Hoe1 , Yao-Jen Chang2, Tsuhan Chen2

1Carnegie Mellon University, 2 Cornell University

ABSTRACT

Direct implementations of bilateral filtering show O(r2) com-
putational complexity per pixel, where r is the filter window
radius. Several lower complexity methods have been devel-
oped. State-of-the-art low complexity algorithm is an O(1)
bilateral filtering, in which computational cost per pixel is
nearly constant for large image size. Although the overall
computational complexity does not go up with the window
radius, it is linearly proportional to the number of quantiza-
tion levels of bilateral filtering computed per pixel in the al-
gorithm. In this paper, we show that overall runtime depends
on two factors, computing time per pixel per level and aver-
age number of levels per pixel. We explain a fundamental
trade-off between these two factors, which can be controlled
by adjusting block size. We establish a model to estimate
run time and search for the optimal block size. Using this
model, we demonstrate an average speedup of 1.2–26.0x over
the pervious method for typical bilateral filtering parameters.

Index Terms— bilateral filtering, algorithm complexity,
real time

1. INTRODUCTION

Bilateral filtering is a non-linear filter introduced by Tomasi
et al. in 1998 [1]. It smoothes out an image by averaging
neighborhood pixels like a Gaussian filter, but preserves sharp
edges by decreasing weights of pixels when the intensity dif-
ference is large. Bilateral filtering is useful in many image
processing and vision applications such as image denoising
[1, 2], tone mapping [3], and stereo matching [4].

Direct implementation of bilateral filtering from defini-
tion is computationally expensive. There are generally three
directions to make an algorithm run faster. First, design lower
complexity algorithms without degrading accuracy; second,
optimize code extensively for a given algorithm; third, op-
timize code on a more powerful hardware platform. In this
paper, our focus is along the first path.

Related work. The computational complexity per pixel
for direct implementation is O(r2), where r is the filter win-
dow radius. Recently, several methods have been proposed to
reduce the arithmetic complexity of the algorithm. Porikli et
al. [5] proposed a constant time bilateral filtering with respect
to filter size for three types of bilateral filters. Quantization

of image intensity in this method may significantly degrade
the quality of the filtering output. Also, memory footprint re-
quirement is large for storing the integral histograms. Yang
et al. [6] propose a O(1) bilateral filtering which extends Du-
rand and Dorsey’s piecewise-linear bilateral filtering method
[3]. It can achieve O(1) complexity with arbitrary spatial and
arbitrary range kernels (assuming the exact or approximated
spatial filtering is O(1) complexity), with much better accu-
racy and less memory footprint than [5]. In [6], they discretize
the image intensities. For each quantization value, they com-
pute a linear spatial filtering, whose output is defined as Prin-
ciple Bilateral Filtered Image Component (PBFIC). The final
bilateral filtering output is a linear interpolation between the
two closest PBFICs. For typical parameter settings (see sec-
tion 4), processing time of [6] on a 2.67GHz CPU with 2GB
RAM for image of size 600 × 800 is on the order of tens of
milliseconds to several seconds.

Overview of proposed method. In this paper, we pro-
pose an extension of [6], to further reduce the run time based
on an important trade-off we found. The overall computing
time depends on two factors, the computational cost per pixel
per PBFIC, and the average number of PBFICs computed per
pixel. O(1) cost per pixel only reflects the first factor. We
will show there is a fundamental trade-off between these two
factors, and changing the block size can control the trade-
off. Block size of 1×1 corresponds to direct implementation,
and block size up to the original image size corresponds to
the implementation in [6]. The optimal block size should be
somewhere in between for general cases. We build a model to
predict run time given a fixed block size, and use this model
to search for the best block size.

Synopsis. In the following, we briefly review the O(1) bi-
lateral filtering proposed in [6], and explains the fundamental
trade-off in Section 2. Section 3 details a model to estimate
the computing time. Section 4 shows experiment results and
Section 5 concludes.

2. OBSERVATION OF A FUNDAMENTAL
TRADE-OFF

From the definition of bilateral filtering, it is a compound of
linear spatial filtering and non-linear range filtering. Spatial
filtering kernel is usually a simple box filtering kernel or a
Gaussian kernel, both having O(1) (approximate) algorithms.

3281978-1-4244-7994-8/10/$26.00 ©2010 IEEE ICIP 2010

Proceedings of 2010 IEEE 17th International Conference on Image Processing September 26-29, 2010, Hong Kong

Range filtering kernel is usually a Gaussian kernel that assigns
lower weight to pixels with large intensity difference. The
filter output of a pixel x is

IB(x) =

∑
y∈N(x) fs(y, x) · fr(I(y), I(x)) · I(y)
∑

y∈N(x) fs(y, x) · fr(I(y), I(x))
(1)

In Eq. (1), I(x) is intensity of pixel x. fs(y, x) and fr(I(y), I(x))
are spatial and range filter kernels. N(x) denotes a neighbor-
hood window around x. The key idea in [6] is to turn both
dividend and divisor in Eq. (1) into linear spatial filters by
fixing I(x) to be constant. This is achieved by quantizing
intensity value into multiple levels and computing so-called
Principle Bilateral Filtered Image Component (PBFIC). As-
suming intensity is quantized into L levels I0, I1, ..., IL−1.
The l-th PBFIC is computed as

IB
l (x) =

∑
y∈N(x) fs(y, x) · fr(I(y), Il) · I(y)
∑

y∈N(x) fs(y, x) · fr(I(y), Il)
(2)

The final output IB(x) is interpolated from two closest
PBFICs. In the following, we assume spatial filtering to be
simple box filtering to simplify the complexity analysis. But
the idea in this paper is applicable to other O(1) spatial filters
as well. The range filter is assumed to be commonly used
Gaussian filter fr(I1, I2) = exp(−(I1 − I2)

2/(σ2
r)). Here a

constant is omitted because it does not affect the final output.
Given O(1) spatial filtering complexity for computing

IB
l (x), the total complexity of computing bilateral filtering is

O(1) per pixel with respect to filter window radius r. How-
ever, the computational complexity also grows linearly with
the number of quantization levels L, and L is roughly propor-
tional to the intensity range of the image for a given accuracy
requirement. We use e to control accuracy. We fix the lowest
and highest quantization values to Imin and Imax, which
are minimal and maximal intensity values in the image. The
number of quantization levels

L = max(min(K, 2), min(K, round(
K

256 · σr · e
))) (3)

K is the intensity range, which equals Imax−Imin+1. When
e ≤ 1

256·σr

, L equals K , the bilateral filtering output is exact.
When e increases, accuracy decreases. We fix e to 1.0, where
we observe PSNR>50dB for almost all images. This is con-
sidered of the same visual quality to the exact output.

Let’s partition the image into blocks of size bh × bw, and
apply the above method to each block. Here we do a rough
estimation of the run time, without considering interpolation
step. More accurate modeling can be found in Section 3. The
computing time is roughly proportional to Ta · La, where Ta

is the average computing time per pixel per PBFIC level and
La is the average number of PBFIC levels per block. Ta for

box filtering can be roughly estimated as

Ta ≈
C · (bh + 2r) · (bw + 2r)

(bh · bw)
(4)

C is a constant depending on computing platforms. Gener-
ally speaking, most images contain a large portion of slowly
varying regions, therefore intensity range within small blocks
are smaller than the intensity range of the whole image.

Fig. 1 shows for an example image on the left side, how
Ta and La changes with the block size bh × bw. The trend is
similar for other images. Here L = K for each block. Im-
age size is 512 × 512. We test square blocks, and log2(bw)
varies from 0 to 9. As expected, Ta (♦) decreases with the
increasing block size, and La (�) increases with the increas-
ing block size. For different r, Ta · La (•) reaches minimum
at different bw. It is no surprise to see that for small r, La is
the dominating factor and prefers small wb; for large r, Ta is
the dominating factor and prefers large wb. When block size
equals image size, it becomes exactly the O(1) bilateral fil-
tering in [6]. When block size equals 1 × 1, every block has
only one intensity and La = 1. The filtering cost is O(r2)
per pixel, which degenerates to the naive implementation of
bilateral filtering.

Fig. 1. Tradeoff between Ta and La for varying r =
2, 4, 8, 16. Here L = K for each block. x-axis shows
log2(bw). We only test square blocks of size bw × bw. y-
axis shows Ta, La and Ta · La normalized to their maximum
values. Optimal bw for Ta · La is circled.

The above analysis is an approximation of run time. Fig. 2
further demonstrates the relationship between run time and
block size by measuring the real run time for varying block
size. We use the same example image. Block size is the same
as in Fig. 1. 256σr varies in {1, 16}. The code of [6] is
publicly available on website. We simply modify the code
such that bilateral filtering is looped on each block. When
256σr = 1, L = K , the trend of normalized run time with
respect to bw is close to Fig. 1. When 256σr = 16, which is
a typical setting for image denoising, increase of La is much
slower than K for small bw, but Ta remains a decreasing func-

3282

tion of increasing bw. That is why we observe decreasing run
time for small bw values.

Fig. 2. Measured run time vs. block width, for varying r =
2, 4, 8, 16. x-axis shows log2(bw). y-axis shows normalized
run time to the maximum values.(best view in color)

3. PROPOSED MODEL

In this section, we build a much more detailed model to es-
timate relationship between run time and block size. This
model should be accurate enough to enable us to search for
optimal or near optimal block size. It should also be simple
so that modeling overhead is low.

The total run time of bilateral filtering for a block of size
bh × bw includes four parts.

• Part 1: time to compute fr(I(y), Il)) and fr(I(y), Il) ·
I(y) in Eq. (2). fr(I(y), Il) can be pre-computed and
stored in a table. For 8-bit intensities, only 256 table en-
tries are needed. The computing time can be estimated
as T1 = C1(bh + 2r)(bw + 2r)L.

• Part 2: time to compute dividend and divisor in Eq. (2).
Both are box spatial filtering, which can be decom-
posed into horizontal sum filter followed by a vertical
sum filter. For horizontal filter, each row takes 2(bw +
r − 1) additions/subtractions (after computing summa-
tion of neighbors for the first pixel, for consecutive pix-
els, summation is computed by adding a new pixel and
subtracting an old pixel from the previous summation).
Total number of rows is bh+2r. For vertical filter, each
column takes 2(bh + r − 1) additions/subtractions. To-
tal number of columns is bw. So the time is estimated
as T2 = C2((bw + r−1)(bh +2r)+ (bh + r−1)bw)L.

• Part 3: time to compute division in Eq. (2), estimated
as T3 = C3bhbwL.

• Part 4: time to interpolate. The way we implement
interpolation is that after computing the l-th level of
PBFIC, we check all pixels in the block if I(x) is in
[Il−1, Il). If so, then interpolate as Eq. (3). So roughly
speaking, every pixel is checked for L − 1 times, and
only one time its final bilater filtering output is interpo-
lated. The time is estimated as T4 = C4bhbw(L− 2)+
C5bhbw.

All parameters C1, C2, C3, C4, and C5 are platform de-
pendent, and should be calibrated for each hardware platform.
We use the example image in Fig. 1 and varying bh, bw to cal-
ibrate those parameters. Both log2 bh and log2 bw vary from
2 to log2 min(w, h), and they can be different. For each of
the four parts, we use RDTSC() function (Intel time-stamp
counter) to measure elapsed time. Fitting C1, C2, C3 are sim-
ple, e.g. C3 is average of T3/(bhbwL). C4, C5 are estimated
using robustfit() in Matlab.

We do the experiment on a Dell XPS 720 desktop, with
Intel Core2 Duo E6750 2.67GHz CPU and 2GB RAM. Esti-
mated C1 = 28.56, C2 = 17.96, C3 = 32.45, C4 = 32.52,
C5 = 140.48. Fig. 3 shows for each of the four parts,
the measured run time (Tm) and run time predicted from the
model (Tp). Average prediction error (| Tp

Tm

− 1|) of part 1
to 4 are 0.01, 0.05, 0.03, 0.10, standard deviations are 0.013,
0.055, 0.027, 0.113. Using the same C1–C5 on other images
gives very similar results.

Fig. 3. Measured run time vs. predicted run time from model
for part 1–4 (Unit for both run time is Giga-cycles).

4. EXPERIMENTAL RESULT

In this section, we show how well the model works, and how
much speedup can be achieved compared to the method pro-
posed in [6]. The dataset includes randomly downloaded 50
images from website, size ranging from 100 × 120 to 600 ×
800. For bilateral filtering parameters r and σr, we test r in
{2, 4, 8, 16}, 256σr in {1, 2, 4, 8, 16, 32}, which represent
typical range of these parameters.

About the model, we are concerned about the following
questions.

• How much extra cost does this model introduce?
• Is the optimal block size searched by this model

matches the real optimal one?
• If answer to the second question is no, then how much

worse is the searched block size from the real one?

For the first question, modeling time involves collecting
number of quantization levels for a given block size, which
needs the information of Imin and Imax for every block.
We limit our search range to all square blocks (bw × bw,
log2 bw varies from 0 to log2 min(w, h)), and all blocks
whose height is twice of width (2bw × bw, log2 bw varies
from 0 to log2 min(w, h) − 1). For these block sizes, we can

3283

sort them in an increasing order, and quantization levels of a
certain block size can be easily built from previous block size
because current block contains two small previous blocks.
The measured modeling time is low. We found for about 97%
of all cases, modeling time is less than 10% of the measured
run time for the optimal block size. The second and third
question relates to modeling accuracy. Fig. 4 (a) shows pre-
dicted run time from modeling (Tp) vs. measured run time
(Tm) for all images and parameter settings we tested. Av-
erage prediction error (| Tp

Tm

− 1|) is 0.04, standard deviation
is 0.038. Fig. 4 (b) shows measured run time of predicted
optimal block size and the true optimal block size. For 80.2%
of all cases, the optimal block size predicted by the model
matches the true optimal block size. However, for only about
0.6% of all cases, measured run time of the predicted optimal
block size is 10% greater than that of the true optimal block
size.

Fig. 4. (a) Measured run time vs. predicted run time from
model; (b) run time of the predicted optimal block size vs.
run time of the true optimal block size. (Unit for all run time
is Giga-cycles).

Next we will show the speedup of using this model over
using full image size as block size, which is exactly the O(1)
bilateral filtering in [6]. Fig. 5 shows for varying σr, aver-
age speedup over all images vs. r. In each subfigure, the
line (with �) shows the upper bound of speedup, which is
the speedup by using the true optimal block size. The line
(with ×) shows the achieved speedup by using the optimal
block size predicted by the model. Here we take into ac-
count the model overhead. The speedup decreases when r
increases. This is consistent with Fig. 1. When r is large,
Ta becomes the dominating factor in run time, and encour-
ages large block size. For large block size, both Ta and La

changes slowly with respect to the block size, so the observed
speedup is small. The speedup also decreases when σr in-
creases, especially for small r. When r is small, La becomes
the dominating factor. However the difference of La for small
and large block sizes becomes smaller when σr gets larger.
For example, La = 1 for 1 × 1 block, but La ≈ 256

256σr

for
block equaling image size. That is why the observed speedup
decreases with increasing σr. In summary, we observe aver-
age speedup of 1.2–26.0x on all images for typical parameter
settings.

Fig. 5. Average speedup vs. r over the O(1) bilateral filter-
ing in [6] for varying 256σr. The line (with �) shows upper
bound of speedup by using the true optimal block size, and
the line (with ×) shows real speedup of the proposed model.

5. CONCLUSION

In this paper, we show a fundamental trade-off between two
factors in the O(1) bilateral filtering method in[6]. The two
factors are the computing time per pixel per quantization level
and the average number of quantization levels per pixel. The
trade-off can be controlled by varying block size. We build
a timing model to estimate run time for a given block size.
Experiments show the model gives reasonably accurate esti-
mation of the run time with negligible overhead. More im-
portantly, run time of the optimal block size predicted by the
model is very close to the run time of the true optimal block
size for most cases. Experiments also demonstrates an aver-
age speedup of 1.2–26.0x on all images for typical parameter
settings. We expect to see even more significant speedup for
HDR (high dynamic range) images because intensity ranges
of HDR images are usually much larger than 256, which is a
typical range of 8-bit digital images.

6. REFERENCES

[1] Tomasi C. and Manduchi R., “Bilateral filtering for gray and
color images,” in ICCV, 1998.

[2] A. Buades, B. Coll, and Morel J.M., “A review of image denois-
ing algorithms, with a new one,” in Multiscale Modeling and
Simulation, 2005.

[3] F. Durand and J. Dorsey, “Fast bilateral filtering for the display
of high-dynamic-range images,” in Proc. of SIGGRAPH, 2002.

[4] K. J. Yoon and I. S. Kweon, “Adaptive support-weight approach
for correspondence search,” in IEEE Trans on PAMI, 2006.

[5] Fatih Porikli, “Constant time o(1) bilateral filtering,” in Proc.
of CVPR, 2008.

[6] Qingxiong Yang, Kar-Han Tan, and N. Ahuja, “Real-time o(1)
bilateral filtering,” in Proc. of CVPR, 2009.

3284

