CARNEGIEMELLON UNIVERSITY

CARNEGIE INSTITUTE OF TECHNOLOGY
DEPARTMENT OFELECTRICAL AND COMPUTERENGINEERING

THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OFDOCTOR OFPHILOSOPHY

Fingerprinting: Hash-Based Error Detection in
Microprocessors

Jared C. Smolens

January 2008



Copyright ¢ 2008 by Jared C. Smolens
All Rights Reserved



Abstract

Today's commodity processors are tuned primarily for penfance and power. As CMOS
scaling continues into the deep sub-micron regime, sofirerand device wearout will increas-
ingly jeopardize the reliability of unprotected procespipelines. To preserve reliable operation,
processor cores will require mechanisms to detect errfestafg the control and datapaths. Con-
ventional techniques such as parity, error correcting sodad self-checking circuits have high
implementation overheads and therefore these techniguemtbe easily applied to complex and
timing-critical high-performance pipelines.

This thesis proposes and evaluates architectural and anatritectural ngerprints. A nger-
print is a compact (e.g., 16-bit) signature of recent aethitral or microarchitectural state updates.
By periodically comparing a ngerprint and a reference cariinterval of execution, the system can
detect errors in a timely and bandwidth-ef cient mannerchitectural ngerprints capture in-order
architectural state with lightweight monitoring hardwatehe retirement stages of a pipeline, while
microarchitectural ngerprints leverage existing desfgntest hardware to accumulate a signature
of internal state.

This thesis explores two applications of ngerprints. IretReunion execution model, this
thesis shows that architectural ngerprints can detechlsaift errors and input incoherence with
complexity-effective redundant execution in a chip mutigessor. Cycle-accurate simulation shows
that the performance overhead is only 5-6% over more comatplicdesigns that strictly replicate
inputs. In another application, FIRST, ngerprints deteaterging wearout faults by periodically
testing the processor under marginal operating conditidfearout fault simulation in a commercial
processor show that architectural ngerprints have higiecage of widespread wearout, while mi-

croarchitectural ngerprints provide superior coveradéath individual and widespread wearout.



Acknowledgements

First, | thank Professor James C. Hoe, my academic advisoguiding and supporting me
in my graduate studies and providing a comfortable and mtddenvironment in which to do
research. His comments, criticism, and insight over thesybave greatly re ned my skills in
writing, speaking, and independent research.

| also thank Professor Babak Falsa for his guidance anda@dvHe has constantly provided
me with motivation and a valuable second opinion througmoutime in the graduate program. |
also thank my committee members Professor Shawn Blantorban&hubu Mukherjee for their
time, patience, and helpful comments. Their feedback hiastantially improved this thesis.

| thank my mentor at Intel Corporation, TM Mak, for supplyinge with abundant information
on current processor designs and using his extensive ¢srtagain access to commercial designs
for my research. Without his help and Intel's cooperatitver¢ would be many more open, or even
unrecognized, questions in this work. | also thank Sun Migstems for their generous and timely
release of the OpenSPARC RTL and architecture tools. Wehkehesources | was able to quickly
prototype and model many of the key ideas in this thesis. lliginathank the organizations that
funded my research, including the National Science Foimmalintel Corporation, and the Center
for Circuit and System Solutions (C2S2).

My fellow graduate students in the TRUSS group and CALCM aleserve abundant thanks
for all of the ways in which they have helped me over the yemduding, but not limited to,
writing and debugging simulators, coauthoring papersofpeading papers and this thesis, Xing
my talks, and tolerating my awful puns. In order of arrivathe graduate program, | speci cally
want to acknowledge Tom Wenisch, Roland Wunderlich, Jamgiion, Stephen Somogyi, Nikos

Hardavellas, Brian Gold, Eric Chung, and Eriko Nurvitadtalso thank Professor Charles Neuman



for his advice and running commentary on the state of thedwvorl

| am grateful for the long-standing encouragement, addaoé, conversation from my friends
and co-workers at Unisys Corporation, particularly Em$ialgueiro and John Black. My experi-
ences with the large computer systems at Unisys gave me aaip&rspective on the industry and
cemented my interest and curiosity for computer architectu

| am thankful for the endless patience, love, and supporté haceived from my family, Gene,
Susan, and Max, and from Yang Wang, who still stays close e¥&m far away.

Finally, I must recognize those who pleddst make it perfect, how hard can it be?



Contents

‘Chapter 1 Introduction‘ 1

1.1 Problemand Scope . . . . . . . . . . .. 2
1.2 FingerprinfsS . . . . . . . . e e e 4
1.3 Thesiscontributions . . . . . . . ... e e 4
Chapter 2: Architectural Fingerprints 7
2.1 Faultmodel . . .. . ... . . 7
2.2 Architectural Fingerprints . . . . . . . . . ... e 9
2.3 MEtriCS . . . o 01
2.3.1 DISCUSSION . . . . . o o i 14
2.4 Conclusion . . . ... 15
Chapter 3: Architectural Fingerprint Implementation 16
3.1 Architectural Fingerprints in a Superscalar Out—oﬂ@rCorL ........... 16
311 PBOVEIVIEW . . . v i ittt 17
3.1.2 Architectural Fingerprint Constrai‘nts .................. 19
3.1.3 Pentium 4 Architectural Fingerpri‘nts ................... 23
3.14 Evaluation . . . . ... 24
3.2 System-level Implementation of Architectural Fingents . . . . . ... ... .. 25
3.2.1 OpenSPARCTIOVEIVIEW . . . . v v v o et e e e e e e e e e 6 2
3.2.2 System-level Design . . . . . . . ... 28
3.2.3 Hardware Design . . . . . . . . e e e e 13
3.3 Architectural Fingerprint Synthe‘sis ........................ 32



‘3.4 Soft Error Injection Evaluation . . . . . .. .. ... .. ... ...

33
3.4.1 Methodology . . .. .. .. . . . . e 33
342 Resulls . . ... ... 35
‘3.5 Conclusio‘n ..................................... 37
‘Chapter 4: Hash Design 38
4.1 Introduction . . . . . . . . .. e 38
4.2 Background . . . ... 40
4.3 Hash Architectul’e ................................. 42
4.3.1 DesignrequiremMents. . . . . . . . . . e e e e 42
4.3.2 ParallellnputCRCUNItS. . . . . . . . . . . e 42
4.3.3 A Scalable Hash Architecture. . . . . . . .. ... ... ... . ..., 44
4.4 Hash Structures . . . . . . . . . . . . e 46
4,41 Spatial Compactors . . . . . . .. e e e 46
4.4.2 Temporal Compactors . . . . . . . . . . i 49
4.5 Evaluation . . . . . .. .. 52
45.1 Methodology . . . . . . . . e 52
4.5.2 Empirical Aliasing PropertiLas ...................... 53
4.5.3 Synthesis Results for latency andarea . . . . . ... ... ... ... 58
4.6 Conclusion . . . . ... 61
Chapter 5: Reunion 63
5.1 IntroductioL ...................................... 63
5.2 Background . . . . . ... 65
521 FaultModel . . . . . . . .. 65
5.2.2 Redundant Execution . . . . . . ... ... ... ... 66
5.2.3 Inputincoherence. . . . . . . . . ... 68
5.24 Output COomMparison . . . . . . v v v i e 70
5.2.5 Fingerprints over On-Chip Interconnelcts. 70
5.3 Reunion Execution Model . . . . ... ... ... .. e 72
5.3.1 SystemDenition . ... ... ... 27




5.3.2 Execution Modlel ............................... 37
5.3.3 RECOVEIY . . . . e e 74
5.4 Reunion MicroarchitectlJre ............................ 76
54.1 BaselineCMP . . . .. . . . . 76
5.4.2 Shared Cache Contraller . . . . .. ... ... ... ... ... ... 77
5.4.3 Processor Pipeline . . . . . . . ... 80
5.4.4 Serializing Check Overhead . . . . ... ... ... ...... ... 82
5.4.5 Fingerprint comparison interval and latency: amalytodel . . . . . . . . 83
5.4.6 Lock Primitive Implementation . . . ... ... ... ... .. .... 85
5.4.7 Checkpointing and Re-execution . . . . . . . . . ... ... ... 89
55 Evaluation . . . . . . . ... 92
5.5.1 Baseline Performa#nce ............................ 93
5.5.2 CheckingOverhead . . . . ... ... .. ... . . . ... .. ... ... 24
5.5.3 Reunion Performance . . . . . . . . . . .. ... 95
5.5.4 Inputincoherence. . . . . . . . . ... e 97
5.5.5 Synchronizing requesttype . . . . . . . . .. ... . 99
5.5.6 Serialization Overhead . . . . . . . . . ... ... e 100
5.5.7 Fingerprinting interval and ngerprints on the irdennect . . . . . . . . . 101
5.6 Conclusion . . . . ... 103
Chapter 6: Microarchitectural Fingerprints ‘ 104
6.1 FaultModel . . . . . . . . . . 105
6.2 Microarchitectural FingerprilLts .......................... 105
6.3 MetriCsS . . . . . . . 061
6.3.1 DISCUSSION . . . . . . . 710
6.4 HardwareDesign . . . . . . . . . . . . ... 107
6.5 Soft Error Injection Evaluation . . . . . .. ... ... ... . ... 110
6.5.1 Methodology . . . . . . . . . . . . .. e 011
6.5.2 Resulis .................................... 110
6.6 Conclusion . . . . . . .. 112

Vii



Chapter 7. FIRST

7.1 Introduction . ... ... ..

7.3 Detection with FIRST . . .

7.2 Background . . . ... e

7.3.1

Inducing Marginal Operation . . . . . . . . . . . . o v i e

7.4 Wearout Fault Modeling

7.4.1 \Wearout Fault Injection Study . . . . . ... ... ... ...

7.4.2 Wearout Fault Simulation . . . . . . .. . ... . . . . ...

7.5 EvaluatioL

Wearout Detection with FIRST . . . . . . . . . .. . ... ... ...

The Persistent Nature of Wearout Flaults T,

7.5.1 Feasibility of FIRST
7.5.2
7.5.3
7.5.4

Isolated Wearout Faults . . . . . . . . . . . . . . ..

Chapter 8: Related Work

8.1 Concurrent Error Detection

8.2 Wearout Detection

Chapter 9: ConclusiorL

9.1 Future Work

7.6 CoNncClusion . . . . . . s

viii

113
113
115
116
117
118
118
119
121
123
125
134
138
139

140
141
145

150



List of Tables

Table 1:  |A-32 operating environment coverage. . . . . . . . ..ccoo o oo .. 17
Table 2:  Stack pointer consumption. . . . . . . . .. . L e e 22
Table 3. Software interface to internal architectural ngent registers. . . . . . .. 28
Table 4:  Test programs used in soft error injection. . . . . ...... ... ...... 35
Table 5:  Aliasing for spatial compactors with uniform randbit errorsl. ....... 53
Table 6:  Aliasing properties for temporal compactors owgrwords. . . . . . . . . . 56
Table 7:  Aliasing properties for temporal compactors ovanywords. . . . . . . . . 56
Table 8:  Overall Aliasing properties. . . . . . . . . it 57
Table 9: Race outcomes during the store-conditional phiae bL/SC pair. . . . . . 88
Table 10: Simulated baseline CMP parameters. . . . ... ... ... ... ... 92
Table 11: Simulated workload parameJers ......................... 93
Table 12: Input incoherence events by phantom requesigstrenl B miss frequency. . 98
Table 13: OpenSPARC structural statistics. . . . ... ... . . ............ 123
Table 14: Fault activation results for the thread scheduwer a range of clock perions. 124
Table 15: OpenSPARC processor parameters. . . . . ... ... ... .... 125
Table 16: Test programs used to evaluate FIEST ................... 126



List of Figures

Figure 1:  General error detection between a system undearidsa reference. . . . . 3
Figure 2:  The error detection problem and architecturalemgints. . . . . . ... .. 5
Figure 3: CDF of error detection as a function of instructiistance. . . . . . . . . . 11
Figure 4.  Superscalar retirement and architectural ngetg. . . . . . ... ... .. 18
Figure 5:  Architectural results separated by locationaméhg! . . . . . . . ... .. 20
Figure 6: The OpenSPARC Tl pipeline. . . . . . . . .. ... .. ... . ..... 26
Figure 7:  The architectural ngerprint unitin OpenSPARC.T1 . . . . . . . .. .. 31
Figure 8:  Soft error injection detection I’eSlJlltS. < 1<)
Figure 9:  Outcomes where architectural ngerprints detdan error. . . . . . . . . . 37
Figure 10: Biterrorclasses. . . . . . . . . . . i i i e e e e e 41
Figure 11: Area-delay for N-bit parallel CRC-16 units. . . . . . .. .. .. .. .. 43
Figure 12: The scalable hash architecture. . . . . . . .. ... ... ...... 44
Figure 13: A sixty-four to sixteen parity tree-based spatempactor. . . . . .. . .. 47
Figure 14. An eight-to- ve X-compact spatial compactor ayeherator matriL. ... A48
Figure 15: Temporalcompactors. . . . . . . . . . . . . i 50
Figure 16: PDF of bit errors in spatial compactors. . . . .. ...... . .. ...... b4
Figure 17: Bits propagated in error by spatial compactors. .. . . . . ... ... .. 55
Figure 18: Area-latency curves for reference adders. . . - . . . . ... ... ... 58
Figure 19: Area-latency curves forcompactors. . .. ... . ...... . ... .... 59
Figure 20: Area-latency curves for pipelined compa(Jtors ................ 61
Figure 21: Inputincoherence onredundantcores. . . . ... .. ... ...... 67
Figure 22: The Reunion architectlJIre ............................ 72



Figure 23: Pipelines additions for ngerprint check onretnent. . . . . . ... ... 76
Figure 24: Three forms of synchronizingrequest. . . . . .. ...... ... ..... 78
Figure 25: There-execution protocol. . . . . . . . . . . . . e 81
Figure 26: Analytic pipeline performance model for arctiiteal ngerprint comparison. 85
Figure 27: Lockimplementation. . . . . . . . ... ... ... ... ... ..., 86
Figure 28: Checkpoint and recovery designspace. . . . . . ... ... ... ... 90
Figure 29: Baseline Reunion performance. . . . . . . . . .. .. ... . ..... 94
Figure 30: Performance sensitivity of strict and relaxguuirreplication. . . . . . . . . 95
Figure 31: Execution time breakdown for the baseline CMPRednion. . . . .. .. 97
Figure 32: Performance of different phantom requeststhesng . . . . . . ... ... 99
Figure 33: Performance with bilateral and null synchrarmgziequests. . . . . . . . . . 100
Figure 34:. Performance with hardware and software TLBs. ...... ... ... ... 101
Figure 35: Performance with dedicated channels and onfabipory interconnects. . 102
Figure 36: Thescanoutcell.. . . . . . . . . . .. .. . .. ... ... e 107
Figure 37: Scanout cells applied in a digital cir(luit. ................. 108
Figure 38: Microarchitectural ngerprintdesign. . . . . . ... .. .. ... ... .. 109
Figure 39: Soft error injection detectionresults. . . . . .. .. ... ... ..... 111
Figure 40: The tool ow for modeling wearout fau}ts. .................. 120
Figure 41: Baseline coverage of wearoutfaults. . . . .. .. .............. 128
Figure 42: Wearout fault coverage by individual testprogra . . . . . . .. ... .. 129
Figure 43: Isolated coverage of silent data corruption. ...... . .. ... ...... 132
Figure 44: Coverage using software-based architecturat detection. . . . . . . .. 135
Figure 45: The number of true activated paths as a functictre$s level for each unit. 136
Figure 46: Distribution of successive fault activationsuoyt, . . . . . . . ... .. .. 137
Figure 47: Detection coverage for single wearout error site . . . . . . . .. . ... 138

Xi



Chapter 1

Introduction

Reliable computer systems form the backbone of criticabrimfation technology infrastruc-
ture in today's society. Once billed as the reliable sulbstfar microprocessors, CMOS circuits
are now widely expected to suffer from increasing levelsadt srrors and wearout phenomena.
With process technologies entering the deep sub-micrdmeggprocess engineers predict that per-
chip radiation-induced single event upsets in latches anptatected SRAM will increase expo-
nentially [48, 96]. New sources of intermittent faults waélinerge, including process variation,
narrowing voltage and thermal noise margins, and aggesgiardbands [22]. Processors will
also experience “lifetime reliability” effects, where tkenaller device dimensions mean that in-
dividual transistors and wires become increasingly sugi@epto wearout phenomena including
gate oxide breakdown, negative-bias temperature ingtalbibt-carrier injection, and electromigra-
tion [65, 110].

This thesis investigates mechanisms for detecting erlmtsdccur at runtime in a processor
core, focusing on two growing threats in modern processadiation-induced soft errors and de-

vice wearout.

Soft Errors. A soft error results from a transient bit upset in a digitatgit. These upsets can oc-
cur from sources such as neutrons and alpha particlessttie silicon [121]. Because these upsets
originate from external physical sources, they occur atrestamt rate over a processor's lifetime;
however they cause no permanent damage to the underlyiogitcand are therefore considered

“soft.” When the architectural state (e.g., architectuegjisters and store values and addresses) dif-

1



fers from the speci ed behavior, an architectural erroraigldo result. An undetected architectural
error, called silent data corruption, is a serious conceabse these errors can result in incorrect
program execution or unexpected application crashes. it&athral errors that are detected, but
uncorrected, decrease the reliability and availabilityhef system; however, the user can be alerted
to the possibility of data corruption. With timely error detion mechanisms, a computer system
can recover and maintain correct execution with rollback ¢heckpoint or voting across redundant

units.

Device Wearout. Device wearout presents another challenge to reliabilityese faults develop
initially as “soft breakdown” events that cause transistoitching speeds to gradually slow, while
the underlying logical functions are preserved [60, 89]efEfore, these faults initially do not pro-
duce architectural errors during normal execution coodgj but can still be observed by removing
the voltage and frequency guardbands. Wearout faultsisteealsen with continued operation. If
emerging wearout faults can be revealed in a test beforaytmiposed in normal operating con-
ditions, the system can be repaired or replaced before glepermpose execution is affected, thus
preserving the system's reliability and correct operatiéventually, the wearout faults develop into
“hard breakdown,” where a device fails catastrophicallgtdating these permanent failures is out
of the scope of this thesis.

Without mechanisms to detect soft errors and device weanmaintaining processor reliability
will be an increasing hardship for system designers. Tadaydcessor pipelines are largely unpro-
tected and existing solutions for protection impose ungtad#e performance and area overheads

or are only applicable to speci ¢ functional units.

1.1 Problem and Scope

This thesis addresses the problem of timely error detedtiside the processor pipeline. Fig-
ure/ 1 illustrates the problem. The system under test—a psocewith faults in its datapath—is
compared with a reference execution. The error detectiochar@sm is responsible for continu-
ously comparing the two executions and detecting diffeeentaused by the underlying faults at

runtime. Over an interval of execution, the error detectimechanism must determine whether an



oI | e[

Figure 1. General error detection between a system under tes  t and a reference.

error affects execution during the interval or the execut®free of errors. The reference execu-
tion can take many forms that mirror the system under testgbior, including another processor
or execution context in an symmetric or asymmetric con diora a register-transfer level (RTL)
model, or even a functional instruction set simulator.

This thesis presents two instantiations of the problem. A(Xpncurrent error detection and
recovery microarchitecture, called Reunion, where duathmfar redundant (DMR) processor cores
symmetrically compact and compare their results agairdt ether to detect soft errors. (2) An
in- eld wearout detection procedure, called FIRST, where processor execution is compacted
and compared against itself or fault-free RTL models wittued guardbands to detect developing
wearout faults.

Error detection in this thesis is limited to the datapath eoirol logic in unretired state con-
tained in the processor core. Regular array structuresasichches and architectural register les
have well-known and effective information redundancy naeisms, including parity and error cor-
recting codes (ECC) [100], which are complementary to thigkwThe complex design and timing-
critical nature of high-performance processors preclidesise of such techniques throughout the
pipeline.

This thesis identi es three metrics for evaluating errotedéion mechanisms:

1. Detection latencyndicates the length of time from a fault's initial occurcento its detection
as an error. This measure is important for ensuring thateentieckpoints and intervals of

execution results are free of errors.



2. Comparison bandwidtis the amount of state that must be compared to check thatesmu-ex
tion interval is free of errors. Because buses and pins anaitedl resource, the mechanism's

bandwidth requirements for periodic and timely are critioaan implementation's feasibility.

3. Error coverageis the probability of detecting a given error in a timely fashto successfully
isolate or correct the error. Error coverage must be highugindo meet the desired system

reliability goals, but is rarely perfect in practice [71].

The scope of this thesis is further constrained to erroratiete mechanisms that tolerate non-
determinism and function at-speed and at runtime (in théoousr's environment). Guarantee-
ing deterministic behavior during runtime is impracticalmany commercial designs. Detection
mechanisms must allow some non-deterministic behaviolewhinimizing false positives and neg-
atives. Furthermore, detection mechanisms must functiopeply at-speed (i.e., match the core
frequency). This requirement is necessary because foesoft detection, processors are only use-
ful products if they run at full speed, while for wearout tlailf's initial onset is obscured at lower
frequencies. Finally, these detection mechanisms areusdiul if they can function at runtime in

a customer's environment.

1.2 Fingerprints

This thesis proposes and evaluates a hash-based deteethamism, calle&ingerprinting A

ngerprint is a compact signature (e.g., 16 bits) of a precg's updates to architectural or microar-
chitectural state which is periodically compared with aresponding signature from a reference
to detect errors. Fingerprinting is conceptually illusgchin Figure 2. Fingerprinting addresses
the three metrics above, while permitting limited non-daiaism and at-speed detection. They
address detection latency by moving the point of detectlosecto the actual fault. Fingerprints
bound the detection bandwidth by compacting updated sté&teai signature that concisely repre-
sents the sequence of state updates produced by the progessan interval of execution. Finally,

by carefully constructing the signature to avoid aliasiing ngerprint can be engineered to have

enough coverage to meet the design's reliability budgelt [71



= H—’%—’H—’i‘

Figure 2: Fingerprints compress architectural and microar chitectural state updates into a
compact hash.

1.3 Thesis contributions
This thesis proposes and evaluates two realizations ofrprg@ing:

Architectural ngerprints. Architectural ngerprints calculate a deterministic hashar-
chitectural state updates in processors. They permityichetiection of errors that propagate
to architectural state. This thesis presents a design apkimnentation of architectural n-
gerprints in commercial processor RTL. The results showaharchitectural ngerprint unit
in a proof-of-concept redundant execution RTL prototypdsalkss than 4% in area to an
already very simple pipeline. Statistical fault injectierperiments concretely demonstrate
that architectural ngerprints are effective for detegtinoth soft errors state and widespread

device wearout.

Microarchitectural ngerprints.  Microarchitectural ngerprints calculate a determingsti
hash of microarchitectural state updates internal to agasmr. These ngerprints allow spa-
tial and temporal localization of faults within a processocluding those not propagated to
architectural state, using existing design-for-test Wareé with slight modi cations to avoid
common sources of non-determinism. This thesis proposesigrdfor microarchitectural

ngerprints in a commercial processor.

This thesis makes the following contributions from studyihe feasibility, implementation, and

applications of ngerprints:

Scalable Hash Architecture.This thesis proposes and evaluates a scalable hash atatdtec
for accumulating architectural ngerprints. The proposesh architecture, an X-compact-
like [69] spatial and MISR-based [93] temporal compactoasdx on traditional manufac-

turing test compaction architectures—is modi ed to contpatiring architectural state. The
5



design preserves evidence of errors in the output hashexgiefly as an ideal cyclic redun-
dancy check (CRC), but can scale to accept the output frora-isgElLie superscalar processors

at a fraction of an equivalent CRC implementation's arealatehcy.

Reunion. Reunion is a formal execution model for redundant execu#ioross loosely-
coupled redundant cores in a chip multiprocessor (CMPygusrchitectural ngerprints.
This thesis shows that a key problem in redundant executadled input incoherence, can be
detected and handled with the same mechanisms needed farsofdetection and recov-
ery. The evaluation demonstrates that complexity-effectedundant execution for shared-
memory programs in a CMP can be achieved with only a 5-6% pagnce overhead over

more complicated solutions that use strict input replarati

Fingerprinting in Reliability and Self Test (FIRST). FIRST is a procedure for in- eld

wearout detection using microarchitectural ngerprinEdRST identi es emerging wearout
faults before they affect general execution. The study destnates that microarchitectural
ngerprints are effective for observing both individualcdawidespread wearout faults. Fur-
thermore, the study shows that architectural ngerprintseqguivalent to microarchitectural

ngerprints for detecting widespread wearout faults.

The remainder of this thesis is organized as follows. Chiaptetroduces background and the
concept of architectural ngerprints. Chapter 3 explotes implementation of architectural nger-
prints in two modern commercial microarchitectures. Ceaptexplores a range of hash designs
for architectural ngerprints. Chapter 5 presents andatEs the Reunion execution model, an ap-
plication of architectural ngerprints. Microarchitecal ngerprints are introduced in Chapter 6.
Chapter ¥ presents and evaluates FIRST for both architg@nd microarchitectural ngerprints.
Related work is discussed in Chapter 8. This thesis consladd identi es future research direc-

tions in Chapter 9.



Chapter 2

Architectural Fingerprints

Architectural ngerprints summarize into a compact sigmatthe in-order architectural state
updates—the general-purpose register writes and storasriwory—generated by a processor core.
Architectural ngerprints expose errors in architectustdte that otherwise have a long error detec-
tion latency. By periodically comparing small signatureattsummarize the monitored state, entire
intervals of execution are compared instantly and the coisrabandwidth can be reduced by or-
ders of magnitude over directly comparing each architattstate update. Finally, by leveraging
strong but ef cient hash functions, ngerprints can avoithaing and therefore maintain high error
coverage.

This chapter is organized as follows. The important terhoigy and fault model for this thesis
are introduced in Section 2.1. The architectural ngerpdancept is de ned in Section 2.2. The
metrics for evaluating architectural ngerprints follow Bection 2.3. The following two chapters
provide a study of implementing architectural ngerpriitiscommercial microarchitectures and a

detailed study of the architectural hash design, respagtiv

2.1 Fault model

This section introduces the terminology and fault modeltfa remainder of this thesis. The
terminology in this thesis is adopted from the “minimum camsus” view in the dependable com-

puting community/[12].



An architectural erroris a deviation from the de ned correct architectural exemubf a pro-
cessor. In the context of architectural ngerprints, thésn is abbreviated terror. This thesis is
scoped to detecting errors that arise within the micromesaecore data and control paths. Unlike
cache memories and external buses, which are excludee, tings are complex and irregular yet
still performance-critical. Thus, the core data and cdmgaths cannot easily be protected with tra-
ditional information redundancy mechanisms such as parityECC [100]. Errors propagating to
SRAM arrays (which are increasingly protected by parity B&LC) can be detected as a side effect,
but are not the focus of this work.

A fault is the hypothesized source of an error. The detection mésrharnconsidered in this
thesis directly detect errors, not the underlying fault:oEs can propagate between components of
the processor and produce. However, the error can also mamtarnal to the processor core or

disappear altogether. In this case, the erronasked

Masking. Masking occurs on many levels of abstraction. These are suiped below. Errors
can be maskedlectrically, for example, an energetic partial strike can generatersigat glitch

in logic. This glitch is attenuated by passing through saviavels of combinational logic gates.
Logical masking occurs when controlling inputs on a cone of comhinat logic prevent a glitch
from propagating. Glitches that reach a latch can still enterlatch-windowmasking unless they
arrive in the time window when an input value is recorded kg ltitch [97]. Latched errors can
still be architecturallymasked if the latched error is overwritten before propaggtd architectural
registers or store values [73]. Finally, software can alsenarite or ignore errors propagated to
architectural values througbrogram-levelmasking. The effects of electrical, latch-window, and
program-level masking are out of the scope of this thesierdfbre, the architectural ngerprints
presented in this thesis speci cally contend with both ¢adjiand architectural masking.

The errors addressed by architectural ngerprints falb itvto classes:

Soft Errors.  Soft errors arise from transient faults that cause or mdregsiin a digital circuit.
The underlying fault is a temporary upset and, unless cagtur a sequential element such as a

latch or SRAM, the effects completely disappear in a fractd a clock cycle/[17]. These faults



include well-documented sources such as energetic mastiiikes [121], and decreasing electrical

and thermal noise margins [22].

Device Wearout. Errors from device wearout are intermittent or “elusivelilfa which can be
observed as one or more bit ips in a digital circuit. Weardatlts initially cause missed timing
(e.g., setup times) in a correctly designed and manufattaireuit because the constituent logic
gates and wires gradually operate more slowly. These fandisde mechanisms such as the soft
breakdown associated with gate oxide breakdown [60], heghtas temperature instability [87],
hot-carrier injection [28] and electromigration [43]. Theset of wearout is gradual over time
and the fault activation is exacerbated by environmentdlaperating conditions such as increased
temperature and frequency and reduced voltage [65].

This thesis is concerned with detecting wearout during ls@afakdown. Detecting hard break-
down where the device ceases functioning entirely [60] isabithe scope of this thesis, although

the presented techniques may also be effective for suctsfaul

2.2 Architectural Fingerprints

Architectural ngerprints are a compact, reproducibletedministic hash of architectural state
updates from a microprocessor. Architectural state ctmsisgeneral-purpose registers, values
stored in memory, and excludes non-architectural infoienasuch as cache misses, speculated
execution, and timing. The architectural ngerprint is ceptually illustrated in Figure 2 of Chap-
ter/1. Architectural ngerprints between two units—unitgat are supposed to execute the same
program—are periodically compared to detect differenaestd architectural errors in the redun-
dant executions. The frequency of comparing architectag®rprints, measured in instructions, is
de ned as the architectural ngerprirdomparison interval Architectural ngerprints summarize
the entire set of architectural results over the compaiiistamval.

By selecting only architectural state, comparison of the twits is simpli ed. Rather than
requiring redundant processors to execute a program &yckgscle in precisely the same way,
the executions need only generate the same results. Focesgar core, this means architectural

values are sampled for the ngerprint in program order fromgessor retirement buses, only on



cycles when a value is being retired and not on cycles whebukes are idle. For other models,
such as functional simulators, this comprises a completgram-order trace of execution. Because
the hash is constructed from discrete instruction resthies,architectural ngerprint is linked to
precise architectural state on instruction boundariess pitoperty bounds the latency of detecting
architectural errors to the ngerprint comparison intérvdaurthermore, this eases integration with
recovery mechanisms such as checkpoints [4, 66] and prexcaption rollback [103], which are
generally designed to operate on an architectural ingdprugranularity.

The redundant units compare ngerprints at regular instomcintervals and at points beyond
which recovery mechanisms cannot cross (e.g., non-ideanpaiperations such as external 1/0).
Three possible outcomes can result from the comparisorst, Eire comparison can result in a
ngerprint mismatch when the ngerprint values differ, sigling that at least one unit is in error.
With two units, the ngerprint comparison can only identifjfferences, but the ngerprint alone
cannot determine which unit is incorrect. Voting can diseyuate this situation with three or more
redundant units. Second, the comparison can correcthalk&gmgerprint match when no error is
present. Finally, the comparison falsely signals a matcbnyim fact, an error is present but the
hashes alias or a common-mode failure causes the sameeicicerecution in all units. The nal

case signi es an undetected error and loss of error coverage

2.3 Metrics

The overall goal of architectural ngerprinting is to detem error in a processor's architectural
state to prevent silent data corruption (SDC) or detectedomectable errors (DUE) [73]. To
achieve this, the error detection mechanism must balamee thter-related measures: detection
latency, comparison bandwidth, and error coverage. Eadhesfe requirements is discussed in

detail below.

Detection Latency. The detection latency is the distance between an error eguand its cor-
responding effects being observed by the detection mestmarior architectural ngerprints, the
detection latency is measured in instructions. The detedtitency is governed by the granularity

at which the redundant units are compared. Ideally, ern@glatected precisely when and where

10



Figure 3: Cumulative distribution function (CDF) of errors detected as a function of instruc-

tion distance for a commercial OLTP workload.

they originate, however placing detection logic at evenjiakein the processor is unrealistic. As the
detection latency grows, isolating and recovering an sregfect becomes more dif cult because
the error can propagate to external components. Furthetmaliback recovery becomes impos-
sible if the processor has performed non-idempotent apesatsuch as network 1/O, which once
initiated, cannot be recalled. Hence, a hard bound on tretilen latency is critical to maintaining
reliability.

Traditional mainframes compare the outputs of locksteppedessors at the chip-external bus
pins [16, 95]. These systems can detect errors in the vafugstebacks of modi ed cache blocks
or erroneous memory addresses that cause cache missee. thiélsé systems are effective at de-
tecting and isolating errors within a chip, they cannot gugge the absence of latent errors in the
processor core and caches (which have not yet propagatsili@wutf the chip). Because of this
long detection latency, recovery becomes complicatedasdlsystems, requiring custom operating
systems and applications to support rollback recoverygusiftware checkpoints.

Several research proposals have also considered detettiba L1 cache write port [72, 88].
This observation location improves the detection laten@r chip-external detection because errors
must only be propagated to a store for detection. Architattagerprints can bring the detection
latency down to individual instructions. At these shorted¢ibn latencies,

The detection latency problem is now analyzed quantitgtivEigurel 3 shows the fraction of

11



errors in architectural state propagated to the chip-eatemnd the L1 cache interface within a xed
number of instructions in an on-line transaction procaes8LTP) workload. OLTP is an important
commercial workload and is representative of other worddosuch as integer SPEC CPU bench-
marks. The horizontal axis shows the distance, in instastiuntil an error in an instruction result
is observable at the L1 cache and chip-external interfatessiystem with a 1IMB L2 cache, opti-
mistically assuming program-level masking never occursg@am-level masking furthers increases
the error detection latency for errors that are still evaliyudetected). The vertical axis shows the
fraction of instructions with errors detected at that dise&afor each detection mechanism. The
key observation is that a signi cant fraction of errors (J0Pémains undetected, even after exe-
cuting hundreds or thousands of instructions. These longipmtentially unbounded—Iatencies
can make recovery impossible. Such situations includestiwtegen non-idempotent 1/0O operations
(operations that cannot be repeated) have been retireceim#éantime. Similarly, for recovery
mechanisms within a processor core, such as precise exceptiback [85], error detection mech-
anisms at the L1 cache and further from the core are insutftcier recovery because errors can
be irrevocably committed to architectural register sta&®ie they propagate to a store value. This
result argues for comparing state updates directly, as avithitectural ngerprints, to minimize
and bound the detection latency.

In Figurel 3, architectural ngerprints reach complete aage of architectural state within the
comparison interval (assuming no aliasing). By directlynparing architectural state before retire-
ment, architectural ngerprints bound the detection lateto the ngerprint comparison interval,
a parameter chosen by the system designer. Bounded deté&itocy is possible because archi-
tectural ngerprints directly observe retiring values.riaermore, the time required to generate an
architectural ngerprint hash is minimal. Chapter 4 showsvref cient hashing circuits can update

the signature in one processor clock, even in wide-issuersaglar processors.

Comparison Bandwidth. The comparison bandwidth counts the number of bits per ayele
quired to compare the execution of two units. This metricriscal to the system's overall fea-
sibility and implementation cost and is governed both bydbmparison granularity and by the

comparison interval.

12



Consider systems that directly compare execution statatapd At coarse granularities, such
as the chip-external boundary, the required bandwidthri¢ofaer than comparing every latch in
the design (hundreds of bits versus millions of bits perlglo¢iowever, the cost of comparing at
coarser granularities is the increased detection lateDloger to the processor core, the bandwidth
required for direct comparison increases dramatically-tefriag the retirement bandwidth in the
architectural register le and L1 cache write port bandwi@several hundred bits per cycle). This
bandwidth can only be sustained over dedicated on-chigpdtis.

An architectural ngerprint observes as much state as toemparison at the architectural reg-
ister le and L1 cache write ports combined, but summarizeswhole sequence instructions into
a hash of only a few bytes—which need not be compared evetg.cybe ngerprint comparison
interval has an inverse relationship with the comparisamdibadth. The Reunion study in Chap-
ter'5 shows that an interval of just sixteen instructionsufscgent to allow comparison ngerprints
over the on-chip memory interconnect of a modern chip mudtipssor. A prior study shows that
intervals of thousands of instructions are acceptablerfor eetection across nodes in a distributed

shared memory machine [105].

Error Coverage. Error coverage measures the fraction of all errors that eaddbected before
reaching an unrecoverable state. When coverage is impetiegrocessor can suffer from SDC or
DUE because they were not detected in time.

Coverage decreases in several ways. First, the aliasingeiddtection mechanism itself may
cause erroneous state to appear error-free. Second, anpstate bits may be omitted or ignored
in the detection mechanism (e.g., because the state meigisti€ cult to access). Third, the system
can mask errors before they reach the detection mechanisailyin spite of the other factors, if
the error is detected—but too late to isolate and correctaverage is lost. In actual designs, error
coverage does need not be perfect, but it must meet a desigaabr budget [71].

Architectural ngerprints containing errors can alias lwérchitectural ngerprints from error-
free execution, causing a loss of error coverage. The hagdeskto generate the ngerprint nec-
essarily lose information as a byproduct of compacting gelanumber of bits—with some bits in
error—to fewer bits. Chapter 4 studies ef cient hashes #ygiroach ideal aliasing probabilities

over a range of error patterns.

13



Second, for microarchitectural design or physical lay@atsons, not all architectural state can
be included in the hash. For example, while general-purpegisters are typically written to a
central register le, state such as the program counteckgpainter, and condition code registers
may be written to special, individual registers or at timesided entirely as an architectural opti-
mization. Fortunately, much of this state indirectly appess part of other architectural state, and

is therefore preserved in the ngerprint.

2.3.1 Discussion

Next, this thesis discusses the interaction of the threéesehrough the ngerprint comparison

interval and two additional system-level requirementsefwor detection mechanisms.

Fingerprint comparison interval. The ngerprint comparison interval is the distance, meadur
in instructions between successive architectural ngetpcomparisons. The ngerprint summa-
rizes all monitored state updates within the interval. Delireg on the context, the interval can
be a constant or application-dependent. For example, dempotent operations such as 1/0 can
force an architectural ngerprint comparison before the eh a periodic interval. The detection
latency is bounded by the comparison interval because tigerprint summarizes all monitored
architectural state updates within the interval. To the agler, comparison bandwidth is inversely
proportional to the ngerprint comparison interval becawsnly one ngerprint must be compared
for each interval. Finally, error coverage depends on trdetection. If results are not held within
the core prior to checking, an excessively-long interval abow an undetected error to propagate
outside of the processor and to an unrecoverable locatigncoBtrast, if the results are held, a
long comparison interval can incur a performance loss. & tesleoffs are discussed further in the
context of the Reunion execution model in Chapter 5.

There are also two important system-level requirementsortapt to error detection in this

work, but independent from the metrics listed above.

Determinism. For architectural ngerprints, a processor is considerathitecturally determin-
istic if it always performs the same operations and prodilcessame architectural outputs for a

given sequence of inputs and initial conditions. This isrargjer requirement than functionally

14



correct execution—for a given set of inputs, multiple pblsiarchitectural outcomes are correct
depending on timing and the outcome of “unde ned” output4][4However, architectural deter-
minism does not mean that the microarchitecture must parfirecisely the same operations on a
cycle-by-cycle basis, as in lockstep. Instead, only thaitgctural outputs must be deterministic,
while the underlying microarchitecture may operate défgly, or even be implemented differently,
across redundant executions.

Architectural determinism is a concern because a hashdlmser detection mechanism cannot
discriminate between two architecturally different, yettbcorrect, outputs and an output contain-
ing an error. In both cases, the detection mechanism signptstential error. In a system with
only detection, this behavior decreases the effectivabiiy of the system by triggering on an
error that does not exist. In a system with recovery, thisabieh incurs unnecessary recovery op-
erations, which affects performance and potentially ldadsroblems with forward progress. The

latter trade-off is exploited in Chapter 5 with the Reunise@ition model.

At-speed operation. Second, the error detection mechanism must work at-spegsteris with
runtime soft error detection cannot run more slowly thartesys without detection because they
must still meet aggressive performance goals in order toobgpetitive in the marketplace. Early
wearout detection must also work at-speed because eritedlynappear from timing faults that
are only activated when running at the highest operatinguieacies. Therefore, both applications

require the error detection mechanism to run at-speed.

2.4 Conclusion

This chapter introduced the fault model and important teatoigy for this thesis. The concept
of the architectural ngerprint was de ned and the metricg £valuating error detection mech-
anisms were presented. The following two chapters provalemete discussion on architectural
ngerprint implementation, discussing the mechanics dleming, assembling, and comparing n-

gerprints in Chapter|/3 and the design for a scalable ar¢hi@cngerprint hash unit in Chapter 4.

15



Chapter 3

Architectural Fingerprint

Implementation

Architectural ngerprints have a rich interaction with tiwstruction set architecture and mi-
croarchitecture designs. The hardware capturing an aathial ngerprint must match the retire-
ment bandwidth of aggressive modern superscalar, outetdrgrocessor designs, yet contend with
the burdens of complicated instruction sets and highlynoggd microarchitectures.

This chapter explores the hardware design and implementafiarchitectural ngerprints in
two commercial microprocessor designs. This chapter assamunderstanding of the architectural
ngerprints described in Chaptert 2. This chapter is orgadias follows. Section 3.1 presents
a trace-based proof-of-concept implementation of archital ngerprints in a superscalar out-of-
order processor. Section 3.2 presents an RTL architechgaiprint implementation and redundant
execution in a multicore, multithreaded scalar pipelineroarchitecture. This chapter concludes
with brief synthesis results for the architectural ngenpunit and a statistical error injection study
to demonstrate the effectiveness of architectural ngetprfor detecting errors in architectural

state.

3.1 Architectural Fingerprints in a Superscalar Out-of-Order Core

This section describes an investigation of architectunglerprints in a commercial superscalar,
speculative, out-of-order processor core design. Thestigagion includes a proof-of-concept de-

16



Table 1: State in the basic IA-32 environment that is covered directly or indirectly by an
architectural ngerprint.

Class State Captured

Integer 8 general purpose registers Directly covered, 48P
EFLAGS Partly covered, mask unde ned elds
Program counter (EIP) Indirectly covered

Floating-point 8 general purpose registers Directly ceder
8 MMX registers Directly covered
8 XMM registers Directly covered

CR/SR/TR/MXCSR status registers  Directly covered

x87 opcode, FIP, Data PTR registers Not covered
Segment 6 segment registers Directly covered
Memory Store addresses and value Directly covered

sign and discusses the architectural and microarchitdagsues that only become apparent when

applying the ngerprint concept to an actual microarchitee (Intel P6

3.1.1 P6 Overview

This section begins with an overview of the P6 microarchitexthat is relevant for capturing
architectural ngerprints. The IA-32 architectural statentained in the P6 which must be cap-
tured in an architectural ngerprint is listed in the 1A-38tél Architecture Software developer's
Manual [44] and summarized in Table 1. The table also indicathether the state can be captured
directly or indirectly by an architectural ngerprint. Die its complexity and decreasing relevance,
the x87 oating-point unit is disregarded in this study. Hower, oating-point values in the modern
MMX and XMM architectural registers are covered.

The P6 processor core is a three-wide retirement superscaftof-order |1A-32-compatible
core, originally shipped as the Pentium Pro [94]. The moseme Core 2 microarchitectures are
for the purposes of this study similar in design, except @ate 2 can retire four instructions per
cycle. The core speculatively fetches and decodes CIS@eatsins, in order, into a sequence of
RISC-like micro-ops, executes the micro-ops in a supeasaalt-of-order core, and retires up to

three micro-ops in program order to an architectural regisé in each cycle. Micro-ops write

1This section describes work done while the author had adoeR3L models and internal validation tests at Intel
Corporation for the later-released dual-core designseofrthbile Intel P6-based microarchitecture (Yonah) andrike |
Netburst microarchitecture (Cedarmill) designs. Thewlswon in this section is based on the P6 microarchitecase,
described by Shen and Lipasti [94].

17



J

Figure 4: (a) The instruction retirement bus can retire orde red combinations of instructions.
(b)The corresponding architectural ngerprint unit.

results to an entire 32-bit register or a portion of the rtegifr legacy instructions. In each cycle, a
single store can be written to the store buffer and anotloee slan be committed non-speculatively
to the cache. The state in Table 1 is a subset of the totalsttaed in the architectural register le
because there are also temporary registers—registerarthaiot architecturally-visible—used by
micro-ops to execute complex instructions.

Integer, control ow, and load instructions retire valuagorogram order to the integer architec-
tural register over a three-wide retirement bus. Fortsitgithe microarchitecture also guarantees
program ordering across the three possible micro-opsngtin a given cycle because the ROB
operates as a FIFO [94]. Alternatively said, any combimatbretirement buses can retire archi-
tectural results, however the buses are always orderedtatthe oldest results always occur on
the lowest bus numbers. This greatly simpli es collectirrggram-order results, as compared to a
bus that allows any ordering within the cycle. The retiretremmbinations over time are illustrated
in Figure 4(a), simpli ed for presentation purposes, to gniealent two-wide pipeline. On a given
cycle, both, one, or none of the buses retire architectesallts. New program counter values (EIP
in Intel parlance) and condition code values (EFLAGS) ase generated for each retiring micro-
ops. This means most values necessary for architectura@rprgts are already available. Valid
and destination architectural register number signalst exhich identify both when and to which
registers a value is being written.

The store buffer has dedicated read and write ports. Valeesvatten back out-of-order, but

retired from the store buffer to the L1 data cache in progradeio Physical addresses are also

18



written to the store buffer.

The architectural ngerprint for superscalar values istaagd using an architectural ngerprint
unit depicted in Figure 4. The gure is simpli ed for presatibn purposes to a two-wide retirement.
The hash unit consists of combinational logic, describedetail in Chapter 4. The multiplexer
logic ensures that values are collected and hashed in pnogrder. The illustrated logic depth is
comparable to the retirement stage selection logic for tied program counter and ags registers,

which indicates that the ngerprint unit can have cycle timguirements similar to existing logic.

3.1.2 Architectural Fingerprint Constraints

From the above description, implementation of architedtungerprints appears straightfor-
ward. However, the actual implementation runs into sevamalplications—none insurmountable—
outlined below. These complications required the impletaitgon of multiple independent nger-

prints, based on instruction class, and the addition of Emyasking logic.

Physical design. The initial concept of an architectural ngerprint calleorfa single hash of all
architectural state. However, the physical design of tire coakes this task dif cult. The core's
oorplan determines how easily various parts of architeaitistate can be collected and combined
in an architectural ngerprint. If all state is nearby, @iiting the state together poses few problems.
However, processors are physically constrained andmgtdtata is distributed throughout the pro-
cessor. For example, in the illustration in Figure 5(a)eger value retirement occurs in the execute
unit, while store values are retired in the memory unit. Ehesits can be distant from each other
and communication between them requires long, slow glolraisw

Instead, independent ngerprints for each output classvareh better-suited to addressing the
physical design constraints. Related outputs classeypitally stored close together, for example
integer values, oating-point values, store values andreskks, and ancillary state, such as IA-32
segment registers are each self-contained.

The additional bandwidth cost of a few (three to four, depmon the architecture) ngerprints
is small compared to the bandwidth savings from amortizmgarison across a ngerprint inter-
val. Furthermore, the additional bandwidth may already edon free. For example, if an on-chip
memory interconnect is used for transferring ngerprinke message payload size may already be

19



Vi

4'—/ -
(@) (b)
Figure 5: Architectural ngerprints need to be generated by output class because of (a)
physical design constraints and (b) ordering and timing con straints.

optimized for larger 64-bit transfers [113], which allowsandful of ngerprints to be included at

no additional cost over a single ngerprint value.

Asynchronous and delayed outputs. The retirement stages of a microprocessor need only pro-
vide the illusion of program-order retirement. The actogbiementation can write values to durable
architectural state out of program order. This occurs oh bw architecture level and microarchi-
tecture levels. In 1A-32 and most modern architectures xamgle of the former situation is that the
memory consistency model allows implementations to defages from committing to the global
memory ordering (through the use of a store buffer), evesr afibsequent instructions have retired
from the reorder buffer (ROB) to the architectural register Figure [5(b) illustrates the reorder
buffer retiring subsequent instructions, while the stonffds delays committing older stores to
cache because of a write miss. An example of the latter mituat that, related values, such as store
addresses and values may be read in order, but in differpalipé stages, meaning that the values
needed for architectural ngerprints are available, butmecessarily at the precise cycle time—or
in the order—desired.

This problem is also largely solved by the same solution apligsical design: separate archi-
tectural ngerprints for each instruction class. This smlo works because values within the same
class are still retired in program order with respect to eattler (e.g., integer register values and
stores both retire in program order with respect to otheget register values and stores, respec-
tively). The delayed store address problem is solved thwlay adding a staging latch to hold the

value until the address becomes available.

20



Unde ned outputs. Some architectural outputs are nebulously de ned to be éumedd” in the
architecture speci cation [44] (this designation is notigure to IA-32, however). For these out-
puts, the retiring value cannot be guaranteed to be the sammedne execution to another of the
same program. This affects architectural ngerprints lseaan unde ned value can cause two
ngerprints to mismatch, even when no errors are presentAi82, a number of EFLAGS elds
are unde ned for several integer arithmetic and logicatringtions. If a microarchitecture provides
a consistent output for these elds then the ngerprint vdllvays match. However, if there are
situations where an unde ned eld depends on internal naofiéectural state (i.e., timing-speci ¢
microarchitectural state or values on the bus, such as soché@egture-speci ¢ registers), these
values cannot be dependably captured in a ngerprint.

In P6, the values for these “unde ned” elds are well de natthe RTL implementation. There-
fore, if architectural ngerprints are compared solelyweén two identical microarchitectures with
predictable outputs, the problem is eliminated. HoweMetheé architectural ngerprint is com-
pared against another reference that generates a diffeaker, the unde ned value problem must
be addressed. This issue is encountered with the archictorsimulator for P6 (a C program
that validates the architectural results of the RTL modéthe entire EFLAGS register is used for
an architectural ngerprint, the ngerprints generatedveen these two models will differ, despite
both executions being legal.

A solution to this problem is to mask known unde ned elds fincthe architectural ngerprint.
This requires control logic to detect the condition and nthskaberrant bits to produce a predictable
value. This solution fails if the unde ned value is used ibsequent instructions through program

data ow. However, any program that does this should not lpeeted to work?

Microarchitectural Optimizations. Optimizations for power and performance can eliminate fre-
guent operations performed in a microarchitecture, whibienarchitecturally de ned, do not need
to be strictly maintained in the microarchitecture. Forrapée, the 1A-32 architecture has a limited
number of architectural registers and therefore makessixe use of the stack pointer (known as

ESP) to push and pop local values between the architecegiiters and the stack.

2The Intel developer's reference states “Developers mustaiyp on the absence of characteristics of any features or
instructions marked “reserved' or “unde ned'.” [44].

21



Table 2: Situations where ESP is consumed or updated and the c orresponding detection
scenarios.

Original error Condition Outcome
ESP as source for load address Wrong value is loaded fromrtregvaddress  Detected
Correct value loaded from the wrong address Undetected

ESP as source for store address Store address incorrect ctddkete
ESP as source for data process- Propagated to arch. regeowatoe Detected
ing instruction or store value Masked in arch. reg or stofteera Undetected
Incorrect value written to ESP Arch. ngerprint created &xplicit write Detected

In recent implementations, the ESP is only updated in lidhdiecumstances—not always when
architecturally de ned and sometimes only due to microdecture-speci ¢ timing conditions.
Therefore, when blindly observing at retiring registerwes, updates to the ESP can appear non-
deterministic. Recent P6 implementations contain a desticstack pointer engine to the pipeline to
improve power ef ciency and reduce micro-ops per macrdriregion within the pipeline (Gochman
describes this mechanism [38]). In the original P6 archii@g every macro-instruction which up-
dates the stack pointer incurs one micro-op to do so, evdreifasult is never used. This opti-
mization removes most of these micro-ops by calculatingnéhwe stack pointer at decode using a
small adder in a dedicated stack engine. The architectegaster le is only updated with a micro-
op only when an instruction architecturally needs to rea&dBBP, when the register is explicitly
changed by the programmer (e.g., by a move to ESP), or whegigbne needs to restart (e.g., on
mis-speculation and traps). These situations can onlylhedetermined dynamically.

The solution to this microarchitectural optimization isdar to the masking solution for unde-
ned values. The microarchitecture allows inference of tiee the ESP is updated by an injected
micro-op or by an instruction explicitly speci ed by the gr@ammer. Therefore, the ngerprint can
dependably include the latter case, but ignore the formas dan cause a loss of error coverage in
cases enumerated in Table 2. However, the cases where iertbesESP cannot be detected indi-
rectly are also cases where the ESP value is already masictthexrefore the error can be derated.
The last case can be identi ed with existing microarchiteat signals and safely captured in the

ngerprint.

22



Variable output widths.  The values written to architectural registers and memagysametimes
a different size than the processor's native width (for epln64-bit processors are becoming more
prevalent, yet they continue to run programs that operat82shit integers and byte-sized string
elements). Most architectures provide an interface faseéh®arrow stores to memory; 1A-32 also
allows writes of narrower widths to architectural register

These varied widths generally do not present a problem w#hect to architectural ngerprints.
As with unde ned outputs, masking logic can be used to zettered the missing output bits to

match the native machine width.

Micro-op Ordering. Finally, because the P6 implements CISC instructions—winiay have

multiple outputs—as a sequence of micro-ops, the retiréromter of the constituent micro-ops
in an instruction matters for architectural ngerprintd. the ordering of micro-ops for the same
complex instruction differs from implementation to implentation or even within a single imple-
mentation, the architectural ngerprints will mismatchh& microcode is read from ROM tables.
Therefore, in general, the microcode outputs values in digiable order (in spite of the myriad

instruction variants and operating modes). This issuegzowt to be a problem in practice.

3.1.3 Pentium 4 Architectural Fingerprints

Architectural ngerprints for the rapidly-disappearingetburst (also known as Pentium 4) mi-
croarchitecture were also brie y investigated.

The most signi cant difference between the P6 and Netbuistoarchitectures, with respect to
architectural ngerprints, is in the retirement procedutastead of writing retired register values
to an architectural register le in program order, Netbwgséculatively writes architectural register
values to a physical register le that is accessed throughrahitectural to physical register map
table [20]. At retirement, only the updated register magps written, in program order, to an
architectural register map table. However, the valuesydwamain in the physical register le.
Furthermore, because the machine speculates aggres#ivelyalues written to the physical regis-
ter le are frequently re-written during “replays” of a spéative instruction. Furthermore, if the

instruction is on the wrong-path, the nal register mappingy never be retired.

23



This speculative writeback means that architectural pgets cannot be implemented in the
existing Netburst microarchitecture without signi caritamges. Nowhere in the microarchitecture
can architectural values be observed in program order.itgipte, architectural ngerprints can be
constructed in Netburst and other physical register lsdghmachines in the same way as for P6;
however, the costs are prohibitive. To construct an archital ngerprint, the values must be read
out of the physical register le at retirement. To avoid inspiag performance through register le
port contention, this solution needs additional registerread ports that match the retirement width
of the processor. This is an expensive addition in areangand power to an already highly ported

structure|[34] and therefore makes implementing architattngerprints expensive in Netburst.

3.1.4 Evaluation

This section presents the evaluation of the trace-based-pfaconcept architectural ngerprint

implementation on a P6 RTL model.

Methodology

The P6 architectural ngerprint experimental setup cassef a single-core full-chip Yonah
RTL model, including L2 cache and external memory, Perklasace collection tools, a modi ed
version of the C-based functional x86 architectural coedatior calledarchsim , and off-line trace
analysis tools.

The RTL model loads and executes compiled memory imagesseinddy-based functional
validation test programs, following a brief processoriatitation and reset sequence. On every cy-
cle during simulation, the trace collection tool monitoemt-selected internal RTL signals, latches
retiring values, and dumps the raw output, cycle-by-cytiea trace le. This models the hard-
ware required to capture architectural values from theahqitocessor. Separately, the modi ed
architectural simulator also produces an architectuedegtace for the same program.

The RTL and architectural simulator traces are processedltolate architectural ngerprints
for each architectural result, separated by physical imcanto different classes for integer values,
oating-point values, store values and address, and x@&gispsegment registers. The functional

simulator has no concept of timing, while the RTL model prmekidetailed timing information, so

24



the relative order of each ngerprint class differs as dgsmd earlier. The trace analysis tool com-
pares sequences of each class separately. The analysisgodks matches over the full execution

of the test program and reports mismatches immediately.ridosewere injected in this evaluation.

Results

The simulation methodology outlined above was applied ter @ixty focused x86 ISA vali-
dation programs, twelve cache validation programs, thgsibne benchmark, a paging test with
virtual memory enabled, and a suite of hand-written assgpioigrams.

In all cases, the architectural ngerprint implementatiarboth the RTL monitor and archsim
matched. This simulation model required numerous revisias new instructions and behaviors
were encountered. Furthermore, architectural ngerpaisb proved to be a highly-sensitive bug
detector for its own implementation—whenever a single @ietstate was missing or sampled at
the wrong time, the architectural ngerprint was clearlyfelient from the architectural simulator
and clearly identi ed a speci ¢ dynamic instruction thateded investigation.

This trace-based proof-of-concept demonstrates thatataerstcessary for assembling architec-
tural ngerprints is available in real superscalar outesfler microarchitectures. Furthermore, the

data can be collected feasibly with modest hardware additior masking.

3.2 System-level Implementation of Architectural Fingerpints

This section studies the implementation of architecturaderprints in the multicore, multi-
threaded, scalar OpenSPARC T1 processor RTL model. Thiy &lills several goals. First, this
study serves as a substantive demonstration of archiééchgerprints working in a commercial
processor design. Second, this study quanti es the coeepfgrchitectural ngerprints for soft er-
rors and demonstrates that they are effective detectiomamézms for silent data corruption. Third,
this study demonstrates redundant execution with archii@c ngerprint comparison in both mul-
tithreaded and multicore designs. Finally, this study esgs a system-level implementation where

architectural ngerprint values are exposed to higheelgrocesses.

25



—> —
‘ —
a2 $

tt1

A4
RS

finis

Figure 6: The OpenSPARC T1 6-stage pipeline with architectu  ral ngerprint collection and
comparison hardware. Pipeline gure adapted from [113].

3.2.1 OpenSPARC T1 Overview

This section gives an overview of the OpenSPARC T1 micrdtecture, as it relates to nger-
printing. The microarchitecture is simple enough to pepnittotyping of architectural ngerprints
and redundant execution directly in the RTL model.

The OpenSPARC T1 consists of eight scalar in-order processes. Each core selects dynam-
ically from up to four hardware thread contexts on every eydlhe simpli ed pipeline is illustrated
in Figure 6. The portions that relate to architectural namts are now described. In the writeback
stage, the pipeline determines if the instruction cangdor, alternatively, triggered an exception).
If the instruction is declared safe, the pipeline writesisesg values in-order into an architectural
le through two write ports. One port is dedicated to valuesi the ALU and another for so-called
“long-latency” operations such as loads and oating-paperations which can take a variable
amount of time to complete (the single oating-point unitsisared across all eight cores on the
chip). On any cycle, a given thread can have at most one vatirang to the register le, although
two different threads can simultaneously write values.r&St@lues and addresses are written into
a dedicated eight-entry store buffer for each thread. Thakees are subsequently written back to

the shared L2 cache.

Architectural Fingerprint Prototypes. In this study, three instantiations of architectural nger
prints are prototyped in the OpenSPARC T1 RTL. First, fobemjection, an “open-loop” multi-

26



threaded implementation of architectural ngerprintsnglemented, where an architectural nger-
print is created for each thread, but the ngerprint values simply logged to a le. As with the
Yonah model, architectural ngerprints are accumulatepiasately for integer, oating-point, and
store values. This implementation is useful for error itigt studies where the ngerprints can be
compared off-line to a golden model (either a error-free TERARC execution or an architectural
simulator). The architectural ngerprint RTL prototypeusri ed against a functional architectural
simulator software model for more than 900 single core OP&REC veri cation programs.

The second model is a “closed-loop” model where architattmgerprints are compared be-
tween user-level redundant threads within the same coris. mibdel targets protecting user-level
execution from silent data corruption. Architectural nmgéants are queued for comparison, in-
curring stalls if one thread proceeds too far ahead of itenddnt partner thread. Furthermore,
the store buffer is modi ed to gate unchecked stores andgmtethem from entering the memory
system. User-level stores are only released after a sdiatesmparison with the partner threads'
stores. This design provides “fail-stop” protection fotatded architectural errors. The architectural
ngerprint register state can also be accessed and coedirtirough privileged code running on the
processor. This RTL model demonstrates system-level sspéarchitectural ngerprints, as well
as demonstrating their use to compare redundant multdeceaxecution within a single core, as is
employed in many recent microarchitecture proposals [8654, 67, 72, 81, 85, 88, 90, 106, 115].
Because ngerprinting is already demonstrated using trendpop model, further error injection
results are not presented for this model.

The third RTL model is a straightforward extension of redamidexecution model to execution
across two processor cores. Here, ngerprints are traresfeacross a dedicated cross-core channel
to compare the two executions (alternatives to the dedicatt@nnel are discussed in Chapter 5).
This RTL design demonstrates architectural ngerprints domparing redundant execution in a
multicore context, as is necessary in recent microardhiteqroposals for redundant execution in
CMPs [40, 56, 72, 104, 114] and the Reunion execution modsgnted in Chapter 5. Because
ngerprinting is already demonstrated using open-loop elpflirther error injection results are not

presented for this model.

27



Table 3. The software interface to internal architectural ngerprint registers.

Instruction Description

stxa %Il0, [%gl] ASI _ARCHFP Store an initial architectural ngerprint value
from %I0 and enable ngerprinting for the thread
speci ed in%g1

ldxa [%gl] ASI _ARCHFP, %l0 Read the architectural ngerprint value for the
thread speci ed irfoglinto %I0 and halt archi-
tectural ngerprinting

3.2.2 System-level Design

This section explores several system-level design issarearthitectural ngerprints. First,
a software-visible interface to architectural ngerpraitows operating systems to enable, disable,
and manage the ngerprints and redundant execution. Sedoisdection discusses the tradeoffs in
using virtual versus physical addresses in an architdcgarprint. Finally, this section introduces

tradeoffs and potential applications of ngerprinting @decution state or just user-level state.

Software-visible Interface. A software-visible interface to architectural ngerpriabntrol and
data registers allows privileged software to initializeset, enable or disable ngerprints. This
functionality is necessary for operating system-levebiediagnosis, recovery, and reporting. For
example, after a soft error affecting redundant executioa,redundant contexts will diverge and
their ngerprints will mismatch. Error handling rmware aoftware (e.g., machine check code or
operating system routines) needs to rst record and rep@rterror event, then reset the architec-
tural ngerprints to a consistent value in both contextsdoefrecovering and continuing redundant
execution.

Additions to the OpenSPARC T1 provide the hooks necessastdp, analyze, and restart
architectural ngerprints within privileged code. Thistanface is implemented in the RTL model
by de ning a new address space identi er (ASI) for architeel ngerprint control? The ASI
accesses are summarized as SPARC assembly instructioablen3l The instructions can address
one of the four hardware contexts on the same core by spegifiie ASI's virtual address, based

at zero and with an offset of eight bytes.

3ASIs are a common way to provide memory-mapped access imahtegister state in SPARC architectures. The
interface is through load and store instructions to an rétier address space.

28



The store instruction clears any architectural ngergigtieued for the thread and initializes the
ngerprint registers to a desired value (16-bit integeratmg-point, and memory ngerprints are
simultaneously speci ed in the store value operand), arabkss architectural ngerprinting for the
next user instruction retired by that thread. The store elsars remaining, unchecked ngerprints
for the thread because one redundant thread can run ahdselaiher and therefore queue multiple
erroneous unchecked ngerprints before a mismatch is tidecThe load instruction halts archi-
tectural ngerprint hashing for the speci ed thread andures the most recent ngerprint values to
the destination register.

This interface has been used in the multithreaded proabatept redundant execution RTL
model to compare the executions and identify mismatchesshgrograms containing two user-

level redundant threads.

Virtual and Physical Addresses Store addresses are captured by architectural ngerptnts
check for stores being written to incorrect locations. Thehiect can choose between captur-
ing virtual or physical addresses. Both addresses arelyeadiilable in modern processors, so the
design choice reduces to tradeoffs in error coverage arlicappn exibility.

Physical addresses provide higher coverage of the midibacture by checking values along
the TLB mapping and physical address datapaths ignoreddmkoty virtual addresses only. With-
out checking the physical addresses, store values can lerwtd cache silently at the wrong
location and latent errors can remain undetected (chegiinygical addresses is not a complete
end-to-end solution for detecting all errors in stores, &av much of the datapath beyond transla-
tion is already parity or ECC-protected). Furthermore dherating system frequently uses physical
addressing for functions such as page table management@uopérations. Checking only virtual
addresses leaves these critical operations vulnerable.

On the other hand, only checking virtual addresses enabitisanal applications for architec-
tural ngerprints. In user-level redundant threading [99Jo identical processes are started by the
operating system with different physical address spaagsdbntical virtual address spaces. This
simple mechanism permits the two processes to indepegdsote to memory without interfering

with each other. By ngerprinting virtual addresses on usede, these redundant processes can

29



be compared using architectural ngerprints: the physizidresses may differ, but the ngerprints
still match.

Another application is to check critical sections of usee@xion, either within a single ma-
chine or across machines. Architectural ngerprints carehabled for a small portion of code
and executed twice (sequentially, or in parallel). The glanity can be on the order of a database
transaction or other well-de ned high-level software agténs.

Variants of architectural ngerprints containing bothtuial and physical addresses are imple-
mented in the OpenSPARC T1 RTL model. For error injectiordists this work focuses on a
ngerprint that covers physical addresses because cosgamvith a golden model can be done
of ine (and therefore, no work is needed to make physicalregsies match across execution). How-
ever, due to the time and effort required to implement a cete@ystem with redundant execution,
this thesis demonstrates the redundant threaded exegutitoiypes using architectural ngerprints

only on virtual addresses and user-level state.

User-level Fingerprints. For the redundant execution proof-of-concept, redundeedgion and
comparison with architectural ngerprints is implementiedhe OpenSPARC T1 RTL model for
user-level code only. This means each instruction restilecein user-mode is accumulated in an ar-
chitectural ngerprint, while privileged-mode code is ti@r redundant nor ngerprinted. For traps,
such as TLB misses, the faulting user instruction neithemgerprinted during its rst execution,
nor is the trap handling code (which is privileged), howesethe user instruction's re-execution the
result is accumulated into the ngerprint. Furthermores sltore buffer is modi ed to gate pending
user stores until each has been checked with the redundaatithPrivileged-mode stores, which
are not executed in a redundant mode, remain ungated.

The user-level ngerprints give an assurance that the leset-instructions that have been ex-
ecuted are correct. However, this method has the drawbatKatent errors in units that are not
heavily exercised during user-level execution—such agrpelogic unit—are not captured in the
ngerprint. Therefore, while the user-level program exisucorrectly, errors can accumulate in
other regions of the core and will be encountered only whegeting privileged code, which is not
protected by the ngerprint. In these situations, the opegasystem can encounter both detected,

uncorrectable errors and silent data corruption.

30



(_
L_a #

" Eﬁ] | T
000 &

Figure 7. The architectural ngerprint unit in OpenSPARC T1

While a complete solution for redundant execution in mufeaded user and privileged code
is presented as Reunion in Chapter 5, this solution reqaineskpoints or instruction rollback.
Neither feature is presently available in the OpenSPARC tessor. Therefore, for the RTL
proof-of-concept, user-level redundant threads are imetdged by spawning two identical threads
in kernel boot-up code, using identical virtual, but sefmphysical, address spaces. This, in com-
bination with user-level ngerprints provides a workingmdenstration of architectural ngerprints

in a real processor context.

3.2.3 Hardware Design

This section describes the multi-threaded architecturjerprint unit that has been imple-
mented in the OpenSPARC T1 Verilog model.

The architectural ngerprint unit consists of three indegent collection and hash units, one
each for integer, oating-point, and store values and asii¥s. A simpli ed architectural ngerprint
unit is shown in Figure 7. The inputs are the retiring datapalue, an enable signal and thread ID
for the value. In the actual implementation, the enableaigansists of a multiple pipeline signals
that collectively indicate when the datapath value is beimigten (e.g., valid values can still be
driven on the bus during failed speculation or during a tiagnstruction). Stores values are also

masked to the appropriate width.

31



On each cycle, the hash unit computes a new ngerprint haklevased on the last hash value
for the retiring thread (stored in a register) and the mgirvalue. An incrementer counts the n-
gerprint interval and inserts the ngerprint in a queue (iempented as a circular buffer) once the
ngerprint interval has been reached. The queue contakises 16-bit entries in this implemen-
tation, which allows enough buffering for a ngerprint imt@l of one instruction, while allowing
a single thread to Il all pipeline stages, and enough loaahto stall the thread in fetch before
the buffer lls without discarding useful instructions. tifie queue lls beyond a high watermark,
the queue asserts a stall signal in the thread switch logicaeent the thread from over owing the
ngerprint queue. In this design, architectural ngerpsronly incur a performance impact when
the relative progress of two redundant threads is more gramgerprint intervals apart.

The architectural ngerprints are compared when two pattedads (statically determined in
this proof-of-concept) have valid ngerprint value at thedus of their respective queues. The
ngerprints are transferred to a comparator and if they matice queues free the ngerprint entry.
Furthermore, for store ngerprints, the store buffer isimat that it may release the stores from the
ngerprint. To support this operation, the store bufferuggd twelve additional bits of state to track
gating and the user/privilege level of each store value.npmismatch, a global signal triggers the
threads to stall and the simulation halts (a real processoitstead initiate a trap handling routine).

The same architectural ngerprint unit is used for both medlnt multithreading within a single
processor and for checking redundant threads across poycesres. The proof-of-concept with
redundant threads has been validated with soft error injeexperiments. Depending on the error,
the processor either is forced into a fail-stop state or h@s@dy deadlocked. In the former case,
the fail-stop mechanism both prevents unchecked usersstan® entering the memory system and

stops further execution. The latter requires a reset seguen recovery.

3.3 Architectural Fingerprint Synthesis

This section brie y evaluates the synthesized area utiizaof the complete user-level archi-
tectural ngerprint unit in relation to the remainder of tkipenSPARC T1 core. The processor
core and architectural ngerprint units are synthesizemgi$Synopsys Design Compiler 2005.09

mapping to the Artisan/TSMC 0.18um low-power standard ldethry [9]. Due to a lack of a

32



memory compiler, only combinational and sequential logig, not memory arrays, are evaluated.
The architectural ngerprint unit is multithreaded and tains three independent hash circuits for
integer, oating-point, and memory ngerprints, respeely. The hash circuits are based on the
X-compact [69] spatial and MISR temporal compaction desigscribed in Chapter 4.

The baseline OpenSPARC T1 processor core occupies a t@®@9,187 2 (excluding mem-
ory arrays). The additional overhead of the architecturajerprint unit is 118,493, or an addi-
tional 3.7% area overhead. This area overhead is well belen 0% rule-of-thumb area over-
head for architectural reliability mechanisms in commpditocessors [29]. Furthermore, the
OpenSPARC T1 has an extremely area-ef cient “lean” scaipelme design, which magni es the
cost of the architectural ngerprint unit. In aggressivepstscalar out-of-order microarchitectures,
such as the Intel Core 2, the area overhead is commensusataljer. In exchange for this over-
head, later chapters of this thesis show that architectagarprints provide both soft error and

early wearout detection.

3.4 Soft Error Injection Evaluation

This section evaluates the coverage of radiation-induoéicesrors for architectural ngerprints

proof-of-concept in the OpenSPARC T1 RTL model.

3.4.1 Methodology

Architectural ngerprints are evaluated using statigtisaft error injection in the single-core
OpenSPARC T1 RTL model with the open-loop architecturalengrints described earlier in this
chapter. Synopsys VCS version Y-2006.06 simulates thdogemodel with custom Verilog PLI
modules added for soft error injection. This experimenn@ras the detection capabilities of archi-
tectural ngerprints in isolation, without regard to re@y. The error detection in this experiment
is suf cient for fail-stop systems, while issues relatedd¢oovery are explored further in Reunion.

For each workload, the RTL model is rst executed in a erreefenvironment to establish the
error-free ngerprint values. The model is then run repdbtavith statistical soft error injection
in pipeline latches. Latches are speci cally targeted bseathey are numerous enough to affect

reliability and, unlike SRAM, cannot easily be protectedEsyC or parity.

33



In each run, the processor boots and starts the test progdace the program starts, the error
injector injects a single bit ip into a latch in the selectadit at the speci ed cycle. The upset bit
is selected uniformly across all latch bits in the unit. Thection cycle time is varied uniformly
across twenty possible points in execution. The model naas to run until completion of the
program (detected by reaching a speci ed completion prograunter on all threads) or a timeout
detected by 10,000 cycles of inactivity on any thread. Thedasituation indicates that the error
caused the core to deadlock.

This experiment models the expected impact of radiatiolrded upsets on latches (because
of the relatively large area of a latch, compared to an SRAN] oaulti-bit upsets are currently
considered unlikely). A single upset does not imply, howetleat only one bit will be affected in
architectural state: the upset can either be masked or gatg#o one or more latches. This experi-
mental methodology does not detect latent errors—erraitsaite neither masked nor propagated to
architectural state—in the processor core at the end ofr@nog@xecution. With respect to execu-
tion of the test program, latent errors are considered naasi@vever other test programs or further
execution may eventually expose them.

The module injects errors into several top-level and reprdive units in the OpenSPARC T1

design. The units are brie y described below:

byp is the operand bypass network and part of the executionwhith includes ECC gen-

eration for architectural register le writes.
exu is the execution unit, including control paths and ALU datig.

fcl is the instruction fetch control logic, which handles instion caches misses, PC and

branch computation.

fdp is the fetch datapath controlled by tf@ ; it is responsible for holding all PC and

computing next PC values and branch outcomes for all pipafiages.

Isu is the load-store unit, which comprises datapaths and @ologic for load operations
and the store buffeswl is a representative set of nite state machines which comiread

selection.

34



Table 4. The test programs used in soft error injection.

Name Dynamic Test Description
instructions
dram_mt_4th _loads 3,610 DRAM load/store misses
_attrib - _many
exu _rf _local 39,538 Local windowed registers and bypass network
mt_alu _ldx 1,264 Combination of ALU, load, and endian programs
mtblkldst  _loop 2,564 Back-to-back block loads/stores
mt _Ifill L2 1,582 I-cache lls/misses
mt_raw 2,018 Combination of read-after-write programs
tr _tixccO 4,232 Integer condition code traps
1 | O

Figure 8. Soft error injection detection results.

tlu is the trap handling unit and is critical for handling traign lookaside buffer (TLB)

misses and other common traps.

The entire SPARC processor core includes the above unissglstream processing unit,

built-in self test (BIST), crossbar staging latches, areldtchitectural ngerprint unit.

Each unit is exercised with seven multithreaded validatish programs from the OpenSPARC
T1 package. These programs, summarized in Table 4, aréestlecexercise a wide range of units

and processor behaviors. Each unit has at least 1,100dodivioft errors injected.

3.4.2 Results

Figure 8 shows the baseline coverage of architectural pigets using the methodology out-

lined above. Each bar indicates the fraction of soft errojscted that are eventually detected as

35



architectural errors. Architectural ngerprints reveah@h degree of masking. In the full core
error injection simulations, 90% of injected bit ips are sk&d architecturally. This is in rough
agreement with prior studies that report high degrees diit@ature-level and program-level mask-
ing [32, 49, 117], ranging from 60% to 90% in unprotected pesors and 99.97% of the time in
the heavily protected POWERG.

The gure also shows a perfect architectural error detectieechanism, performed by directly
comparing the error injected architectural state outpuitis &verror-free execution. The difference
between the perfect detection mechanism and architectugelprints establishes the degree of
aliasing in the architectural ngerprint. In the presengdgeriment, 10,629 errors were injected
and a single instance of aliasing is observed. With the L6Agierprint in this system, which
aliases with a probability & (P 1 in the presence of an architectural error, this level ofitig is
expected. Because the architectural ngerprints and pedeehitectural detection differ within the
bounds predicted by aliasing, this result shows that achital ngerprints provide an effective
summary of the full architectural state. By contrast, algingstance of aliasing cannot establish
rigorous statistical evidence of the overall aliasing ptility. The aliasing probabilities are instead
explored in Chapter 4, where the retirement stages are edddth a range of architectural error
patterns over millions of experiments.

Figure 9 explores, in more detail, the instances where®ear detected by architectural nger-
prints. This result disambiguates which failure modes tbhitectural ngerprints detect. There are
three possible outcomes. First, a ngerprintsmatchindicates an architectural error—in an oth-
erwise unprotected pipeline, this results in SDC. Secondin@errunindicates that the soft error
caused the processor to execute fewer instructions thatedgwithout rst causing a mismatch,
ending in a deadlock. This situation is trivially detecteiiva timeout mechanism, and therefore,
does not produce SDC. The architectural ngerprint unit detect this situation by observing an
architectural ngerprint generated by one execution, bigsing from a redundant execution. Fi-
nally, anoverrunindicates that the processor executes more instructicars ékpected, generally
because the processor entered an unexpected loop. Atahglecgerprints detect this situation
as SDC at the end of a ngerprint comparison interval. No #ecural errors in Figure 9 remain
undetected.

For all units except the thread select logsw( ), ngerprint mismatches dominate the errors
36



Figure 9: Outcomes in instances where architectural ngerp rints detected an architectural
error.
in architectural state. In the extreme case of the bypads(loyi ), all errors rst caused silent
data corruption. The bypass unit contains pure operangalis; therefore silent data corruption is
expected. By contrast, the thread select logic is insteadrtiied by underruns. Underruns happen
here because an error in the thread switch logic typicallysesa the sparsely encoded nite state
machines to enter invalid states. In an invalid state, theathwill never be considered “ready” and
therefore the thread stops executing entirely.

Overall, this result shows that the majority of architeatwoft errors manifest rst as SDC. Ar-
chitectural ngerprints can detect all three failure madaeswever, unlike simple detection mecha-

nisms such as timeouts, architectural ngerprints providely detection of SDC.

3.5 Conclusion

This chapter explored the hardware design and implementafi architectural ngerprints in
Intel Yonah and Sun OpenSPARC T1. Both designs demonstratelépendency hurdles lurk in
the instruction set and microarchitecture designs; howeneeproof-of-concept designs show that
none of these hurdles were insurmountable. Finally, th@tehalemonstrates, through RTL soft

error injection, that architectural ngerprints effeaily detect architectural errors.

37



Chapter 4

Hash Design

4.1 Introduction

This chapter explores the design tradeoffs of differentigéectural ngerprint hash architecture.
The prior chapter assumes an X-Compact [69] tree and nmailiqgut shift register (MISR) for
the architectural ngerprint hash design. This chaptewtes the analysis to support that design
choice.

The problem addressed in this chapter is how to compactesitty architectural state outputs
into a hash. Both architectural ngerprints and traditibmeanufacturing test techniques, such as
scan chains, require high degrees compaction to compaceerfly a complex design unit with a
reference. Because traditional scan chain compactiondeswell-studied in the context of of ine
manufacturing test, this thesis takes inspiration from ufcturing test techniques for architectural
state compaction.

However, the architectural state compaction problem iffeom manufacturing test in two
important ways. First, the compaction must be applied tosardte instruction results (e.g., an
ordered sequence of 64-bit values), instead of a contingwaam of values from an array of scan
chains. In scan chains, when latches in a design change,uthban and order of scan latches
may also change. By contrast, architectural ngerprintssirhe able to construct the same hash
value for a program's execution, regardless of the undeglynicroarchitecture and implementation.

Therefore, the hash architecture must be speci cally desigo preserve this organization.

38



Second, the compaction latency is critical for architeatungerprints. In scan chains, tester
time should be minimized to reduce costs, but scan chaigsdrgly have latencies of thousands of
cycles; however, because comparison is performed of inerd is little hardware or performance
cost to increasing this latency. By contrast, architet¢turgerprints are used in an online error
detection context where the detection latency is tied ticetiarchitectural features such as fail-
stop operation or checkpoint-based rollback recovery.sé&leatures demand latencies of only a
few cycles for timely error detection. Therefore, the oalirature requires a hash design that meets
this latency.

The hash architecture requires careful design to ensur€linidne aliasing rate—which directly
affects error coverage—is acceptable for the expected elasses, (2) the area and latency over-
heads are reasonable, and (3) the architecture can scalpgorsthe retirement bandwidth from
narrow single-issue to wide superscalar pipelines.

An effective architectural ngerprint hash preserves evide of errors in retiring architectural
state. Because a single bit upset can cause one or moredri arithe nal retiring state [54, 91]
and errors can propagate by program data ow to other instmug before detection [105], the hash
must be effective for a range of error patterns over bothespad time.

However, the design must t with reasonable area bounds veipect to the processor core
it monitors. Ten percent is rough yardstick for the accdptdbtal area overhead dedicated to
reliability mechanisms in commodity microprocessor desif29]. The architectural ngerprint
hardware is only one component of the possible reliabiligchanisms (e.g., other mechanisms
include parity and ECC on caches, control for redundant i@t etc.) and therefore can only
consume a fraction of the reliability budget. Furthermdogic for reliability must perform within
the clock frequency goals speci ed by the design. Therefarengerprint architecture must also
have a latency less than or equal to existing pipeline logic.

Finally, to avoid becoming a performance bottleneck, tlhiggcture must match the sustained
retirement bandwidth of modern pipelines. The hash is actated across instruction results, but
the operation is not commutative (to detect reordering stilts). A hash architecture must be
exible enough to work with a range of microarchitecturesitlare used in the critical enterprise
server space “fat” (e.g., the four-wide superscalar Powatbintel Core) and “lean” (e.g., the scalar

Sun OpenSPARC T1) .
39



The ideal hash design from an aliasing perspective is thecagdundancy check (CRC). While
parallel-input CRC implementations are known, they eitlegjuire a deep pipeline to meet the
cycle time or grow considerably larger and slower as thetimpdth increases [116]. This chapter
shows that simpler hash mechanisms can provide equivdlesing protection to a CRC, without
incurring the area, latency, and complexity costs of a flRICCimplementation.

This thesis proposes an architecture that satis es theaks gmd explores several options for

the hash hardware design. The following contributions aaden

A scalable architectural ngerprint hash architecture.

Empirical analysis of the aliasing properties of candidaispactor designs using error in-

jection and circuit overhead analysis using synthesis tASIC standard cell library.

The observation that while MISRs have poor aliasing progerfor few-bit errors, well-
chosen spatial compaction trees can effectively amplify-li errors into many-bit errors.
Thus, the MISR's good many-bit error performance is mairgeiacross different error pat-

terns.

A practical instantiation of the hash architecture utiiggian X-Compact-like compaction
tree and combinational MISR circuit with superior qualtifor aliasing, area, and latency

compared to the other designs considered.

4.2 Background

The input to an architectural ngerprint hash circuit is aidered sequence of retiring instruc-
tion results. The instruction results are assumed to dookig4-bit words, as is typical of high-
performance microprocessors today. The sequence haselamgth, which corresponds to the
ngerprint comparison interval and words within the seqeeican contain errors in the form of bit
ips. This sequence is hashed into a ngerprint value (assdno be sixteen bits in this study)
which non-uniquely re ects the contents of the original segce. The goal is for the hash output
of a sequence of instructions with errors to differ from tlasinof the same sequence of instruction

results without errors.

40



'
LI
LR

Figure 10: The error classes studied in this thesis, illustr ated here with ngerprint intervals
of four eight-bit instruction word outputs.

This study rst de nes an error model to aid in understandthg strengths and weaknesses of
the hash circuits. The model is summarized in Figure 10. & model is approached systemat-
ically by separately considering three classes of errohievavoiding the details of the underlying
faults and microarchitecture.

Class 1 errors are single-bit ips that occur within a singstruction word in the sequence. In
a processor, this class corresponds to the situation whangle logic bit is ipped in the pipeline,
which remains unmasked, and the resulting single-bit idifiee retires to architectural state without
propagating to other instructions. This error class isuldef modeling upsets in pipeline latches,
which occupy substantial area, and therefore are likelkpegence only solitary bit ips [49].

Class 2 errors are multiple bit ips within a single instrioect word in the sequence. This
class corresponds to corruption of a single instructior'sult from a multi-bit upset event, the
corruption of control path logic, or corruption of input spads that remain unmasked in the result.
In this class, errors in the output of one instruction do rmoppgate architecturally to subsequent
instruction results. This chapter also distinguishes betview-bit errors (2-3 bits in error) and
many-biterrors & 3 bits in error). Industry expects few-bit errors to becommreéncommon with
direct datapath corruption from a single-event upsetsalaentinued scaling, while many-bit errors
are more commonly caused by errors in the control path (&directing the wrong register value
to retirement).

Finally, class 3 errors are bit ips across multiple instian words. This class corresponds to
class 1 or 2 errors that have propagated through data owlisesyuent instructions in the ngerprint
comparison interval. No hashes discussed in this chapteguoarantee detection of all class 3

41



errors. Nevertheless, some hashes can still provide gad@hpilistic detection properties over the

spectrum of class 3 errors.

4.3 Hash Architecture

This section discusses the design requirements and atcinéeof the ngerprint hash unit,
beginning by examining the properties required and exjpigizvhy a simple CRC circuit cannot

satisfy all of the design requirements. The section thesgms a scalable hash architecture.

4.3.1 Design requirements.

As discussed in Section 4.2, the hash unit must compact @seewf instruction outputs into
a single, small hash value. An ideal compactor has progestimilar to ap-bit cyclic redundancy

check (CRC) [84], which can detect:
Any single-bit error
Any single, double, triple, or odd-bit error in a range ufo?! bits
Any single burst error up tp bits
Larger-scale errors, with probability af 2 P

A sixteen-bit hash output is chosen as the basis for conguaitisthe remainder of this thesis, based
on the results in [105] for the aliasing probability, howetiee analysis and results here can be

generalized to hashes of other sizes.

4.3.2 Parallel Input CRC units.

Unfortunately, building larger CRC units is not withoutsigant costs. With wider pipelines
(e.g., the 4-way retirement in recent microarchitectuies8[ 46]) directly building a large parallel
CRC circuit [5] capable of compressing at least one 64-bitdwo one cycle is prohibitive in both
area and cycle time. A 64-bit input CRC-16 unit costs more@adhan “matching” pipeline com-
ponents such as an optimized 64-bit adder and exhibits s@gnily longer latency characteristics.
Furthermore, while CRC circuits can be pipelined to meetecyime requirements, the pipelined

42



—— e e e % e

.

ég%%\&\

Figure 11: The area-delay curves for parallel N-bit input pa  rallel CRC-16 units. Logarithmic

scales are used on both axes to capture the full range.

implementation incurs multiple stages of XOR trees thatespeoportionally with the maximum
ngerprint interval (in communications terms, this compesds to the message size) and the area
overhead remains. Pipelined implementations are noteslusibeci cally in this work; however,
Walma [116] compares the area and latency of pipelined anepipelined parallel CRC designs.

The units are synthesized using Synopsys Design Compilease 2005.09, mapping to an
Artisan/TSMC 0.18um low-power standard cell library [9]h& Synopsys DesignWorks library is
con gured to choose the best adder implementation for treckéum units (therefore, internally
the selected adder implementation can change). Mapping®for both area and timing were set
to “high” and the input clock rate was varied from an empificaeterminedFax to ve times
slower, to produce the area-latency Pareto style curves.

Figure 11 shows the cost, over a range of different paraligliti sizes for a sixteen-bit CRC
computation using the CCITT-16 polynomiak® + x2 + x> + 1 [47].1 The single-bit input
corresponds to a simple linear-feedback shift registeiSR}; where the cost is dominated by the
sixteen latches and the combinational logic comprises thrige XOR gates. As the input size
reaches sixteen parallel inputs, the XOR network beginsotoidate the area and latency costs.

Area and cycle time continue to grow linearly with largerungizes. At 64-bit parallel inputs, the

10ther sixteen-bit primitive polynomials that exhibit slenialiasing, area, and latency properties exist. The same
general properties hold for other primitive polynomials.

43



Figure 12: The scalable hash architecture consists of two st ages: space compaction and
time compaction. Space compaction independently shrinks i nstruction results, while time
compaction shrinks across instructions. The above archite cture is shown for a four-wide
superscalar pipeline.
cost rivals the best synthesized 64-bit adders, but is aktiares slower (the reference adders are
shown in a later section). At 256-bit parallel inputs, thesaand latency is similar to a 64-bit output
multiplier implemented in the same process. In generaljrmim latency and area grow linearly,
but optimized implementations show signi cantly higherngiaal area costs for each additional bit.
The take-away message of Figure 11 is that a direct CRC ingitation is expensive in terms
of area and is also infeasible because of latency requiresndfor scalar pipelines, such as the
Sun Niagara T1, a 64-bit input parallel CRC-16 rivals theaakits 64-bit carry-lookahead adder.
Therefore, a 64-bit parallel CRC-16 unit has a high costdafes cores. For a four-wide superscalar
pipeline, the 256-bit input parallel CRC-16 unit must bec&led several times slower than the rest

of the core. Therefore, latency requirements mean thatal@lainput CRC is impractical for wide-

issue pipelines.

4.3.3 A Scalable Hash Architecture.

This section proposes a hash architecture that can sireoltisty meet aliasing, area, and la-
tency requirements. The architecture consists of two stdlystrated in Figure 12: space com-
paction and time compaction. The space compaction stagpdsts tree-like combinational path
that takes results from individual instructions and contpdlcem to a narrower value. The time

compaction stage is a combinational path that rst comp#wsspace-compacted results of each

44



instruction, in sequence, and then stores the result inca.lah multiplexor (not shown) selects
between outputs if only a subset of the retirement buses irparscalar processor are used in a
given cycle.

The basic concept of combined space and time compactionligmavn in the eld of man-
ufacturing test to reduce comparison bandwidth and regpstasage requirements [93]. However,
these designs are typically applied to compact unstrugtareays of scan chains into a hash. This
thesis applies space-time compactor concept to seleatbdtemntural state. Unlike manufacturing
test, where the meaning of the input state is largely irexiéto the compactor, this compactor archi-
tecture produces a hash of architectural state updateis tbetefully constructed to be independent
of the underlying microarchitecture.

This section now brie y discusses the aliasing, area, atehtzy properties of the compactor
architecture (aliasing properties can only be truly disedsafter introducing properties of the com-

pactors in Section 4.4).

Aliasing. The aliasing properties in this architecture are a funatiboonstituent space and time
compaction components. In particular, the overall compaaiiases if there is aliasing in either the
space or the time compactors. In general, the overall aigsiobability is not as simple as the cal-
culating the joint probability of the constituent compastim isolation. The simple joint probability

does not hold because the distribution of bit errors chafrpes the input of the space compactor
to the input of the time compactor. Therefore, the aliasingppbilities between the space and
time compactors are dependent. This dependence lead®testing (and convenient) properties
that are not be available if independence were preserved. ré$ult is discussed quantitatively in

Section 4.4.

Area. Compared to a single, wide parallel input CRC unit the tintTagaction has signi cant area
savings, because it must only compact one fourth as many Ibitgeneral, the space compactors
are also smaller than the portion of the parallel input CRE tinat they replace. The costs are
guanti ed for speci ¢ instances in Section 4.5. The aredesavith the following equation, where

PipelineWidth represents the width of the superscalar pipeline:

45



Area = PipelineWidth (Areaspace_compactor + Ar€atime _compactor) + Ar€@atches

Latency. The latency is improved over a single, wide parallel inputCimit because the design
is amenable to trivial pipelining. The space compactorsaeatiecoupled from the time compaction,
and because they occur independently, can be internalglipgal. Parity trees generally are not so
deep as to require this and the pipeline latch overhead @amate any potential savings. Fur-
thermore, in a superscalar compactor, space compactiamsoiccparallel for each instruction. By
contrast, the time compaction depends upon the previods'sy@lues to compute the current cy-
cle's values. Therefore, the time compaction componeatsncy increases with the superscalar
pipeline width. The latency of an unpipelined compactohdecture, illustrated by the dotted

critical path in Figure 12 follows this equation:

Latency = Latencyspace_compactor + Plp6|ln8WIdth Latencynme _Compactor + Latency|atches

This high-level analysis shows that for wider-issue pipedi, the latency of the time compaction
increasingly dominates. Therefore, to support these ipg®l low-latency temporal compactors

must be investigated.

4.4 Hash Structures

This section introduces the logical structure of the spatia temporal compactors and their

analytic aliasing properties.

4.4.1 Spatial Compactors

This section considers two spatial compactors: an intesléparity tree and X-Compact-based
tree [69]. The spatial compactors reduce sixty-four bitsplit data to sixteen bits of output through
a tree of carefully arranged XOR gates and preserve all dlassd most class 2 errors. Because
spatial compactors operate on individual instruction lissalass 3 errors are not relevant to spatial

compaction.
46



Figure 13. Diagram of a sixty-four to sixteen parity tree-ba sed spatial compactor.

Parity tree. The interleaved parity tree is shown in Figure 13. A parigetsimply computes
the XOR of groups of input bits directly into an output bit. &nparity tree, each input bit is
represented in exactly one output bit. This instantiatibra garity tree XORs every sixteenth
input bit. The interleaved arrangement provides the saat&stital aliasing protection as a parity
tree that XORs four contiguous input bits together, howderinterleaved parity tree speci cally
provides protection against a common error pattern wherevan number of contiguous bits are
simultaneously ipped. Such error patterns can be expewafigtnl single-event upsets that have a
spatial correlation, such as multi-bit upsets from radrastrikes [8, 61].

The interleaved parity tree preserves all single-bit andHoitl errors. The tree also preserves
all contiguous bit errors, except those affecting exadilytyt-two bits. However, it cannot detect
all bits ipped and has notably poor performance with snradieen-bit errors, particularly two-bit
errors.

Implementation is inexpensive, as the circuit can be bgit balanced, shallow tree Rf log N
XOR gates, wher® is the ratio of the outputs to inputs (always less than oney.skxty-four to

sixteen bits, this requires three two-input XOR gates p#puiuarranged two levels deep.

X-Compact tree. The X-compact parity tree [69] is based on error correctimges and improves
preservation of even-bit errors. The tree is described emadttically by an MxN generator matrix
which maps a multiplication in GF(2) of M input bits by the mato N output bits. Logically, each
one in the matrix represents an XOR operation of an inputh(eaw) to produce an output (each
column). An example eight-bit input, ve-bit output X-coragt tree is shown in Figure 14, along

with its generator matrix. As proposed, the X-compact pdrie is also known as avdd-weight

a7



Figure 14: Diagram of an eight-to- ve bit X-compact spatial compactor and its correspond-

ing generator matrix.

column codg79].2 The output is wider than the minimal parity tree con guratjdut sixteen bits
is still suf cient to preserve the important aliasing projies of the structure. Unlike the parity tree,
each input is represented in at least two outputs; furthespm@ output contains the same pair of
inputs as another output. These properties guarantee dhadinof bits can cancel each other in
the output, and hence provides detection of two-bit errdilse necessary condition comes from

error-correcting code theory [69, 79]:
Every row of the generator matrix must be non-zero, distiactl have odd weight.

The X-compact matrix preserves all single-bit, double-duid odd-bit errors, as well as contigu-
ous bit errors of any size. Later in this section, the dearitis extended to provide 2 (P 1) aliasing
for even-bit errors in @-bit output compactor.

Implementation is more expensive than a parity tree becafuseditional levels of XORs. Fur-
thermore, for a given number of inputs and outputs, the plesgienerator matrix is not unique, in
general (for example, the eight-to- ve matrix in this gudkffers from the eight-to- ve matrix in
Mitra's X-compact design but has equivalent detection bdipies [69]). Furthermore, as observ-
able in Figure 14, not all paths in the tree are balanced:ublipP1 has four input bits, while other
outputs have ve input bits). Therefore, the X-Compact tierot balanced.

In the next section, this thesis investigates an X-Compaetwith sixty-four inputs and sixteen
output bits. In this tree, the outputs each combine betwiggriex=n and twenty-one input terms for

each output and the weight of each generator matrix row is Meis tree uses ve levels of two-

2In information theory, the termveightrefers to the number of ones in a binary number.

48



input XOR gates. As a point of comparison, the single errtectedouble error detect (SEC/DED)
ECC logic used in the OpenSPARC T1's computes an eight-bidrmme for a sixty-four bit word,
with a range of eight to thirty- ve inputs per output bit. Tthi@ee requires an additional level of
XOR gates.

The selected X-Compact tree is also not minimal, given ai6&BC/DED ECC code needs
only eight syndrome bits and a similar X-compact tree neéus bits (an X-compact matrix also
guarantees detection of one and two-bit errors in the poesehone unknown value, although this
property is not needed for in this thesis). Instead, the @mtagp needs sixteen bits of output to feed
the temporal compactor and maintain the desired level asialg.

Simply making the generator matrix rows wider, while kegpthe weight constant does not
guarantee an improved level of aliasing (a trivial examphere this is true is by adding a column of

zeros). To build this compactor, the necessary conditiomgexétended with the following condition:
Every column of the generator matrix must be non-zero artthdts

This condition is implicitly satis ed for minimal-sized dputs using the prior conditions. How-
ever, by requiring the columns to be non-zero, this ensurasthe output detects some errors
(otherwise, the output yields no new information). By reung the columns to be distinct, each
additional column adds further detection capabilities. uplitate column means two outputs are
always be the same, giving no new detection for the additiongput, while the distinction re-
quirement provides proportionally stronger detectiontbeowise-aliased even-bit errors, reaching

2 (P D for even-bit errors in a compactor withoutputs.

4.4.2 Temporal Compactors

This section considers four temporal compactors: XOR+aake, checksum, multiple-input
shift register (MISR), and cyclic redundancy check (CRQ)eTompactors preserve all class 1,
virtually all class 2, and varying degrees of class 3 erréigure 15 illustrates the combinational
logic form of each compactor and uses the following notatlgnfor then input bits from a spatial
compactor,P, for the n input bits from a previous stage (either registers storirttash from a
previous cycle or a combinational stage from another tealpampactor), an@®,, for then output

bits.
49



)

(c) (d)

Figure 15. Diagram of temporal compactors.

XOR-and-rotate. The XOR-and-rotate unit is illustrated in Figure 15(a). Nahatically, this
unit can be thought of as a shift register with a generatoyrohial ofx6 + 1.

Because it is based on a simple XOR function for each bit, eitiraparound for the shift out,
the class 2 error pattern of all ones is always aliased irctirigpactor. All other class 1 and 2 errors
are preserved. Although the class 3 aliasing rate doesualgntonverge t® (P D | this is only
true when most instructions in the interval contain err®stformance is particularly poor if only a
few instructions are in error.

The cost of implementation is simply a single XOR gate folhdgaput, plus wiring to implement
the rotation. This compactor is the least expensive of tles @onsidered and requires only a single

level of XOR gates.

MISR. The multiple-input shift register (MISR) has a similar sttwre to the XOR-and-rotate

compactor, as illustrated in Figure 15(b). Unlike the poegi compactor, this compactor uses the

50



well-known CCITT 16-bit primitive polynomial to computedmext hash. Other primitive polyno-
mials give comparable performance for a given MISR width.

Unlike XOR-and-rotate, the MISR preserves all class 2 errdrhis situation is recti ed be-
cause in the all one's error case, while the wraparound litela the least-signi cant input bit,
the remaining terms in the generator polynomial are alserted. Hence, the error is preserved in
the MISR. For class 3 errors, the MISR shows weaknessesasitniKOR-and-rotate, particularly
with small numbers of bit errors, however it quickly conesgo2 (P 1 . This weakness occurs
because an error in one cycle can exactly cancel with a édtatror pattern in a subsequent cycle's
input, before the previous error has been “distributeddtighout the hash by the wraparound in the
most-signi cant bit.

The implementation cost is similar to the XOR-and-rotatat, \with an additional cost of an
XOR-gate for each term in the generator polynomial. As sitaan be implemented in two levels

of two-input XOR gates.

Checksum. The checksum unit consists of a combinational adder whichsstine spatial input
and the previous checksum to create a new checksum, asatktin Figure 15(c). The adder's
carry out bit can be stored as input to a later checksum oaxtisd.

The implementation that ignores the carry out bit can detbdass 2 errors, which can be al-
gebraically veri ed by adding any single error pattern te thput and showing that the subsequent
output always differs by an amount equal to the error pastealue. By contrast, the implementa-
tion with a carry out aliases when the error-free input i®zerd the error pattern is all ones. Class
3 errors for both forms of the checksum show performancdairta the MISR for two instances of

burst errors over a ngerprint interval, but converge2td average aliasing rate with further errors.

CRC. The cyclic redundancy check (CRC) unitis a combinationalization of the familiar linear
feedback shift register (LFSR), unrolled over fér steps, one for each input bit, as illustrated in
Figure 15(d). As with the MISR, this study uses the CCITT-b6/pomial as a basis for the CRC.
The CRC preserves all class 1 and 2 errors. Furthermoreubeevery error bit reaches the
high-order bit position and is spread throughout the hasbrbesubsequent inputs are added, the

CRC has strong and consistent properties for class 3 ewbish are uniformly2 ® 1)

51



The CRC does not come without cost, however. To the rst qritex CRC costs roughlij¥l
times as much as an equivaléwtbit MISR with the same primitive polynomial. The compambl
logic depth is roughly thirty-two two-input XOR gates foretiCRC-16 and is dif cult to optimize,

which makes it the most expensive of the hashes both in tefiar®a and latency.

4.5 Evaluation

This section empirically evaluates the aliasing propsnithe spatial and temporal compactors.
First, the compactors are considered separately, therothbination of spatial and temporal com-
pactors are evaluated together. This section concludésangynthesis-based evaluation of the full

compactor area and latency properties for scalar and fade-superscalar pipelines.

45.1 Methodology

The compactors in this thesis are evaluated using a C-lgegpeogram that models the re-
tirement stage of a pipeline and the architectural ngerpdompactor. The retirement stage is
assumed to retire uniform random values to its architecregisters. Both golden (error-free) and
error-injected inputs are fed to the compactor model and thsults are compared after a chosen
ngerprint interval.

Architectural errors are modeled as bit ips uniformly spdeacross the input bits. The number

of bit ips in the output is speci ed for each run. The progranjects error of a speqj' ed iize

n
(e.g., number of bit ips) uniformly across input words. Fexample, a two-bit error h%) 2
2

possible error patterns over arbit input. Because the crossproduct of the possible inguodserror
patterns is enormoud(® trials are run for each combination of compactor and numbipait bits
in error. While this is only a sampling of the possible errpace,10° trials yields results within
5% with 95% con dence for all results. Note that most other slingpexperiments in this thesis
can achieve similar levels of statistical con dence witldens of magnitude fewer trials, however
as the probability of aliasing approaches zero, the numbiteiats increases dramatically.
For synthesis results, each compactor is modeled in Vevilitig a single sixteen-bit register

to store the result. For four-wide superscalar pipelingsj@ity-encoded mux is also included to

52



Table 5: Aliasing properties for spatial compactors with un iform random bit errors over a
64-bit word. For reference, 2 P 1 0:0000305Zor p = 16.

1-bit 2-bit Odd-bit Even-bit > 4  All bits
Interleaved Parity Tree 0 0.0476 0 < 20D 1
X-Compact Tree 0 0 0 2D 0

select between the four possible instruction outputs, dipg on the state of the retirement valid

signals. The synthesis methodology is the same as desaénil@sttion 4.3.2.

4.5.2 Empirical Aliasing Properties

Aliasing in spatial compactors. First, this section evaluates the aliasing properties ®fodh-to-
16 bit spatial compactors. Table 5 shows the probabilityliakang for the interleaved parity tree
and X-Compaction tree for error classes 1 ( rst column) arnde2naining columns) over a 64-bit
word. Because spatial compactors have no memory of preuistrsictions, class 3 errors are not
relevant.

As expected, both compactors preserve all class 1 erroraievtw, the interleaved parity tree
shows poor performance with two-bit errors, aliasing ne&8b. Aliasing occurs on any pattern
where two bits in an interleaved group of four are in error.rges even-bit errors range from
that value to 2 (P D (with four and sixty-two-bit errors being the worst). By ¢ast, the X-
Compact's performance for all sizes of even-bit errors issistently at 2 (P 1 . For those
readers who are now reaching for a calcula®ort®  0:00003052and2 16  0:00001526 Note
that the even-bit errors cover half the possible input srraccounting for the odd-bit errors—
which are always preserved—still yields the overall aligdimit of 2 P for p output bits in both

compactors.

Errors in output.  Next, this section investigates the number of output bas differ with respect
to an error-free output (termealitput bits in erroj. The purpose of this result will be clear only
after presenting the aliasing properties of the tempornalp=axtors.

Figure 16 shows the probability density function for therage number of output bits in error

over the entire space of errors, consisting of equally-tteid instances of single-bit up to sixty-

53



Figure 16: PDF of the number of bit errors generated by the spa tial compactors for a uniform
random incidence and placement of bit errors.

four bit errors for each compactor. The left extreme lefipp@zero bits in error), shows the overall
aliasing probability (0.017 an@ P for parity tree and X-Compact, respectively). The X-Conipac
curve centers around eight bits in error. By contrast, thigypiaee is heavily biased towards smaller
numbers of bit errors in its output, because each input deamis to exactly one output. As a
digression, the X-Compact curve roughly follows, but doesperfectly ta Gaussian distribution
with a mean of eight and sigma of 2.1. This is because 64-mt®always produce a six-bit output
error in this tree, which induces a small bias towards six.

The take-away message from Figure 16 is that the X-Compeetampli es all error classes
into many-bit errors, while the parity tree hash exhibitghar aliasing and produces more few-bit
errors for the same input patterns. This property will befulser temporal compactors that are
strong in preserving many-bit errors and relatively pogoraserving few-bit errors.

Another way to view this data is by the average number of barerpropagated to the output
as a function of the bit errors in the input. Ideally, for wnih random inputs, the outputs should
also demonstrate uniform random outputs—on average hatiarm and half correct—which yields
eight bits for these compactors. The actual performanceeotbmpactors is shown in Figure 17.
This gure shows that for single-bit errors (extreme lefietparity tree produces a single-bit error

in output while the X-Compact tree produces exactly ve lnitgrror. These values, unsurprisingly,

54



Figure 17: The number of bits propagated in error output as a f unction of the number of bits

in error in the input for spatial compactors.

match the weight of the generator matrices for each compad¢hat is, each input bit is connected
to exactly one and ve outputs, respectively. More intaragy, the X-Compact tree quickly adds
and maintains more output bits in error with additional esrim the input. By contrast, the parity
tree retains fewer average output bits in error than the Xa@arct tree in the ranges (@; 16] and

[48; 64]input bits in error. Therefore, the parity tree is weakenttiee X-Compact tree at preserving
many-bit errors in the output. Finally, the plateau at elujtst is expected, because the sixteen output

bits are essentially uniform random and thus each bit @pr@bability of aliasing.

Aliasing in Temporal compactors. This section now evaluates the aliasing properties of time te
poral compactors. Class 1 and 2 errors were described sxadllytin the previous section and are
therefore their properties are not repeated here. Insthadsection concentrates on class 3 errors
over different ngerprint intervals. Because the compagtioave different behaviors for class 3 er-
rors, depending on how many errors have propagated in tira@xtreme cases are examined rstto
establish bounds on the behaviors. In all cases, ngerjmietvals of ten instructions are studied,
because the aliasing results showed no change with larggwats (e.g., 100-1,000 instructions).
Instruction words and bits are selected for error injectiandomly, with a uniform distribution

across the ngerprint interval.

55



Table 6: Aliasing properties for temporal compactors with u niform random bit errors over
two 16-bit words. For reference, 2 P 1 0:0000305Xor p = 16.

1-bit 2-bit Odd-bit Even-bit > 4 All bits
XOR 0.0625 0.0084 0.0019 0.0038 1
Checksum 0.0332 0.0026 2 (D 2 (P D 2 (P D
MISR-CCITT 0.0482 0.0054 2 (D 2 (P D 0
CRC-CCITT 0 2 (P D 2 (D 2 (P D 0
Table 7: Aliasing properties for temporal compactors with u niform random bit errors over

ten 16-bit words. For reference, 2 (P 1 0:00003052and 2 P  0:000015260or p = 16.

1-bit 2-bit Odd-bit Even-bit > 4 All bits
XOR 0.0006 2 (D 2 (P 1 2 (D 1
Checksum 0.0001 2P 2P 2P 2 (P D
MISR-CCITT 0.0003 2 (P 1D 2 (P 1) 2 (P 0

CRC-CCITT 2 (D 2 (D 2 (P 1 2 (D 0

First, consider the case where precisely two instructionthe interval have errors. Table 6
shows the aliasing probability for two instances ofNafbit error over the interval. For two instances
of single-bit errors, the XOR, checksum, and MISR all showrpaliasing performance. In these
designs, a single input bit error can produce a single birernr the output. A subsequent single-
bit error in a following instruction can then cancel the ara error, thus causing aliasing. The
checksum and MISR circuits perform better than the XOR be&edle initial error can also cause
multiple bit ips (through a carry, or by being spread afteaching the most signi cant bit position,
respectively), which explains their better performandatige to the XOR. The CRC preserves all
two-bit errors if the total number of input bits is less tHh 1 [84] (512 instructions).

For two-bit and larger errors, the likelihood of a subsedquezror exactly canceling the initial
error is lower (because the probability of matching the astor pattern decreases combinatorially).
For all bits in error, the XOR compactor exactly cancels thergatterns, while the MISR and CRC
always detect these burst patterns.

The result from Table 6 shows a weakness among the XOR, almeclesd MISR for few-bit er-
rors. This observation motivates the need for spatial cahops that generate many-bit differences

in their output.

56



Table 8: Overall Aliasing properties. For reference, 2 (° 1) 0:00003052nd 2 P 0:00001526
for p=16.

Compactor 1-bit 2-bit Odd-bit Even-bit > 4  All bits
Class 1/2 errors
Parity Tree - * 0 0.0476 0 0.0022 1
X-Compact - * 0 0 0 2D 0
Class 3 — Two instructions in error
Parity Tree - XOR 0.0625 0.0098 0.0002 0.0004 1
Parity Tree - Checksum  0.0332 0.0046 0.0001 0.0002 1
Parity Tree - MISR 0.0482 0.0072 0.0002 0.0003 1
Parity Tree - CRC 0 0.0024 2 "1 0.0001 1
X-Compact - XOR 0.0028 0.0001 2 (D 2D 0.1777
X-Compact - Checksum  0.0006 2D 2P 2P 0.0156
X-Compact - MISR 0.0001 2D 2 (D 2D 0
X-Compact - CRC 0 2D 2 (D 2D 0
Class 3 — All instructions in error
Parity Tree - XOR 0.0006 0.0001 2 (D 2D 1
Parity Tree - Checksum  0.0001 2P 2P 2P 1
Parity Tree - MISR 0.0003 2D 2 (D 2D 1
Parity Tree - CRC 2D 2D 2 (D 2D 1
X-Compact - XOR 2D 2D 2 (P D 2D 0
X-Compact - Checksum 2 P 2P 2P 2P 0.0038
X-Compact - MISR 2D 2D 2 (D 2D 0
X-Compact - CRC 2D 2D 2 (D 2D 0

Next, this section studies the other extreme case whenesallictions in the interval experience
anN -bit error. Table 7 shows the aliasing properties for the fammmpactors. As with two instruc-
tion errors, the same compactors show relatively weakiatiggerformance for single-bit errors.
However, the likelihood of aliasing drops to the theordtimanimums with larger-scale error pat-
terns. This result is consistent with the results in therpiable and again indicates that many-bit
errors are better protected (with the exception of XOR) UuRgedetween the two extreme cases con-
verge quickly (within 3% for longer ngerprint intervals)f ¢he values in Table 7 and are omitted

from this document because little additional informati@m @e learned from them.

Combined Spatial-Temporal Compactor Aliasing. This section now evaluates the overall alias-
ing properties of compactors with the combined spatial @mdporal compactors. Errors are in-
jected into the spatial compactor inputs and the temporapeztor's nal output. The nal hash is

compared with the equivalent error-free hash.

57



ft 4

v

e ee—

Figure 18: The area-latency curves for a range of reference s ixty-four bit adder implementa-
tions.

Table 8 summarizes the results. For class 1 and 2 errorsliglseng properties are determined
entirely by the spatial compactor. This is true becauseisasisised earlier, the temporal compactors
have strong preservation properties for class 1 and 2 earshown in the table, the X-Compact-
based units show signi cantly better performance than @étyptrees for even-bit errors.

For class 3 errors, the results are again divided by the nuailiestruction words in error within
the ngerprint interval. First, for two instruction words ierror, the X-Compact-based compactors
are consistently better than the parity tree-based comysaety orders of magnitude for single
and double-bit errors. In addition, the spatial compastsekew towards many-bit errors helps the
inexpensive MISR-based compactor achieve average aiggrformance nearly identical to the
CRC. Similar results are evident in the last section of tihéetavhere all instruction words contain
errors. Here, the X-Compact-based compactors are alsdydbedter. Furthermore, all the temporal
compactors have strong aliasing performance, with theksliee having half the aliasing of the

others.

4.5.3 Synthesis Results for latency and area

This section now studies the area-latency tradeoffs fodifferent compactors. Figure 18 shows
a reference plot for several different sixty-four bit addehe adder serves as a useful reference

58



.....

"

(@) (b)

(c) (d)
Figure 19: The area-latency curves for (a) a scalar pipeline with parity tree compaction, (b)
scalar pipeline with X-Compact compaction, (c) four-wide s uperscalar pipeline with parity
tree compaction, and (d) four-wide superscalar pipeline wi th X-Compact compaction.
because it matches the width of the pipeline that architactngerprints protect. Note that Design
Compiler is instructed to choose a particular adder, but thaps to the ASIC library and applies
further optimizations that can change the nal adder desi§or comparison purposes with the
remainder of this section, the best adder latency is roughgs (carrying a corresponding area of
22,050 2), while the best area is 9,556. In the checksum designs, Design Compiler chooses a
sixteen-bit carry-lookahead adder implementation as &séslior synthesis.

Figure 19 shows a Pareto-style curve for area versus laten@ach of the compactor combi-
nations in both scalar and four-wide superscalar con dganst Comparing the graphs horizontally,
the X-Compact incurs roughly a double area overhead cordparparity trees, although the best
latency values are still comparable. As expected, the XQRNMISR designs closely follow each
other in all area-latency tradeoffs because their implaéaiem differs only by a handful of XOR

59



gates. Based upon the aliasing evidence, this indicateéshitaaMISR is a clear win for virtual no
additional area or latency costs.

The checksum and CRC tend to have similar area-latencydifagdalthough both implementa-
tions are consistently larger and slower than the XOR andR8signs. As predicted analytically,
the area costs scale roughly in proportion to the pipelindttwi That is, the superscalar pipeline
units are consistently four times the area and latency o$¢aéar pipeline units.

The X-Compact/MISR scalar pipeline implementation is tia# size of the reference adder
and has equal latency. Hence, this hash design is affordabkralar pipeline implementation.
The CRC and checksum-based units are roughly the same stzat aggni cantly slower than, the
reference adder.

For the superscalar pipeline, the area and latency diffeseamong the compactor units are
more apparent. The X-Compact/MISR unit is roughly twice tbst of the reference adder (the
comparable pipeline is more than four times the area and lexityof a scalar pipeline, therefore
the relative overhead is lower). Latency scales with thenley of the time compactor, which for-
tunately, is small. Therefore, the best compactor latesa@dbPo longer than the best adder latency;
however, a pipeline between the spatial and temporal comzacan bridge this gap. By contrast,
the CRC-based compactors are nearly four times the sizeeofdder and over three times the
latency. This gap cannot be recovered by pipelining.

The take-away result from this evaluation is that the MISRdal temporal compactors provide
the best area-latency tradeoffs. Furthermore, the X-CothdéSR combination has comparable

aliasing properties to a CRC, however with several timesfamvea and latency.

Pipelined Compactors. Next, pipelined compactors are investigated using syighes single
pipeline stage is added between the spatial compactorshengémporal compactors. This stage
maintains the same overall throughput as the original catopahowever, the required cycle time
decreases. These latches increase area marginally, Wwhilaibimum clock period decreases. The
pipeline introduces no change in the aliasing propertigh@tompactor.

The area-latency tradeoff with a pipeline stage is preseint€igure 20. The parity tree results
show little change in latency from the added pipeline stageause the parity tree is already shallow

and its latency roughly equals the latency overhead of theregisters. By contrast, the X-Compact

60



(@) (b)

(©) (d)
Figure 20: The area-latency curves for pipelined compactor s with (a) a scalar pipeline with
parity tree compaction, (b) scalar pipeline with X-Compact compaction, (c) four-wide su-
perscalar pipeline with parity tree compaction, and (d) fou r-wide superscalar pipeline with
X-Compact compaction.
tree is deep enough to provide some bene t. Surprisingly sttalar version has both better latency
and marginally lower area for the checksum and CRC desigs\hthout a pipeline. The area is
roughly half a reference adder and the latency matches ther.atihe most encouraging gains are in

the superscalar case, where the XOR and MISR-based compataich the latency of the adder,

still with twice the area cost.

4.6 Conclusion

This chapter investigates the implementation of hash itéréor architectural ngerprints along

error coverage, area, and latency axes. A scalable haskeatare is presented that allows latency

61



and area-ef cient implementations. The ASIC synthesis @mdr injection simulation results from
this study show that a hash architecture using a combinatidaCC-like X-Compact trees and
MISRs, commonly applied to scan chain compaction in the raaturing test domain, can accept
the architectural state retirement bandwidth of modernevisgdue superscalar processors, while

maintaining the near-ideal error coverage of a CRC.

62



Chapter 5

Reunion

5.1 Introduction

Chip multiprocessors (CMPs) have emerged as a promisingagip to give computer archi-
tects scalable performance and reasonable power consunmpiihin a single chip [15, 64, 77].
However, increasing levels of integration, diminishingdaaapacitance, and reduced noise mar-
gins have led researchers to forecast an exponential seliaahe soft-error rate for unprotected
logic and latch circuits [48, 97]. Recent work [40, 72, 11dyacates leveraging the inherent repli-
cation of processor cores in a CMP for soft-error toleradtinelant execution by pairing cores and
checking their execution results.

Because CMP designs maintain the familiar shared-memargramming model, multicore
redundant architectures must provide correct and ef aixeicution of multithreaded programs and
operating systems. Furthermore, redundant execution naisihtroduce signi cant complexity
over a non-redundant design. Ideally, a single design aang® a dual-use capability by supporting
both redundant and non-redundant execution.

Redundant designs must solve two key problems: maintaidirgtical instruction streams and
detecting divergent execution. Mainframes, which haveviged fault tolerance for decades, solve
these problems by tightly lockstepping two executions [li@l]. Lockstep ensures both proces-
sors observe identical load values, cache invalidatiomd external interrupts. While conceptually

simple, lockstep becomes an increasing burden as devitiegscantinues[18, 66].

63



Researchers have proposed several alternatives to Ipokdtten the context of CMPs. Both
Mukherjee et al. [72] and Gomaa et al. [40] use a custom l@ddevqueue (LVQ) to guarantee
that redundant executions always see an identical view ofiong A leading core directly issues
loads to the memory system, while a trailing core consumeserd of load values from the LVQ.
Although the LVQ produces an identical view of memory fortbekecutions, integrating this strict
input replication into an out-of-order core requires sigamt changes to existing highly optimized
microarchitectures [72].

Strict input replication forbids using existing cache hiehies for the redundant execution and
requires changes to critical components of the processeraial cache hierarchy. In contrast, re-
laxed input replication permits redundant executions $aesindependently memory operations to
existing cache hierarchies. This thesis observes that,fevshared-memory parallel programs, re-
laxed input replication produces the correct result inualty all cases. In the case when load values
differ between the redundant cores, called input incoleemechanisms for soft error detection
and recovery can correct the difference [88].

This thesis proposes the Reunion execution model, whicloigspelaxed input replication for
soft-error tolerant redundant execution across coreslé/Reunion allows redundant cores to issue
memory operations independently, Reunion designs areepriovthis chapter to maintain correct
execution with existing coherence protocols and memongistency models. Reunion provides
detection and recovery from input incoherence using a coatioin of architectural ngerprints and
the existing precise exception rollback—the same mechenigeded for soft-error tolerance.

The following contributions are made:

Input incoherence detection. This thesis observes that light-weight detection meclasis
for soft errors can also detect input incoherence. Thisrehien enables a single recovery

strategy for both soft errors and input incoherence.

Reunion execution model.This thesis presents formal requirements for correct rédnin
execution using relaxed input replication in a multipremes These requirements do not

change the existing coherence protocol or memory consigtedel.

Serializing check overhead.This thesis observes that checking execution at instrucge

tirement incurs stalls on serializing events, such as trapsnory barriers, and non-idempotent
64



instructions. Architectures that encounter frequentadieing events will suffer a substantial

performance loss with any checking microarchitecture.

This thesis evaluates Reunion in a cycle-accurate fulesysCMP simulator. The Reunion
execution model is demonstrated to have an average 9% ancB88&6rpance impact on commer-
cial and scienti ¢ workloads, respectively, with a 5-6% foemance overhead from relaxed input

replication.

Chapter Outline. Section 5.2 presents background on soft error detectiomezhchdant execu-
tion. Section 5.3 presents the Reunion execution modelevehCMP implementation is discussed
in Section 5.4 and its performance is evaluated in Sectidn Fhis chapter concludes in Sec-

tion 5.6.

5.2 Background

This section covers background topics on soft error totemaicroarchitectures. The section
rst introduces the fault model assumed for the Reunion BE¥ea Model, then provides a brief
overview of existing work in this space. The section alsoodtices the fundamental requirements

for redundant execution and the concept of input incoherenc

5.2.1 Fault Model

The fault model targets soft errors that cause silent dataugtion, such as transient bit ips
from cosmic rays or alpha particles. This work assumes tieaptocessor's datapath is vulnerable
to soft errors from fetch to retirement, but that the leskerable control logic [97] is protected by
circuit-level techniques. Designers already protect eaainays and critical communication buses
with information redundancy (e.g., ECC) [101]. Howeveg ttomplex layout and timing-critical
nature of high-performance processor datapaths precthdes codes within the pipeline.

This thesis investigates microarchitectures that detattracover from virtually all soft errors,
but in very infrequent cases, can leave them undetectedamriatted. Architects design micro-
processors to meet soft error budgets [71] and this desigrbeangineered to meet the desired

budget.
65



Array protection. Unretired speculative pipeline state, such as a specelghiysical register le
and the issue queue, can remain unprotected. Howevercpooteon retired architectural state
arrays, such as the architectural register le and nonidpége store buffer, depends upon the
desired soft error protection budget and is independeriteoReunion Execution Model.

The level of protection on architectural arrays can rangenfcompletely unprotected to full
ECC protection. For example, if the desired soft error btiggemits detected, uncorrectable errors
in these structures, but silent data corruption is unaabdpt parity protection is acceptable. While
this design point is cheaper and easier to implement than, B@Cdesign point means that “safe
state” (as de ned in Section 5.3) can contain detectablé,ubgorrectable errors. Alternatively,
if single-bit errors in the register le must be correctalgeents in the soft error budget, then the
register le must also include SECDED ECC protection.

Protection of the small, performance-critical architeat@arrays is not without silicon area and
timing costs. Several recent industrial designs have aeddhese implementation costs and chose
to include parity on the register le [64, 8], store bufferdd], or even ECC on the register le [113]
and L1 caches [6, 8].

5.2.2 Redundant Execution

The "sphere of replication” de nes three general desigrunemments for all systems with re-
dundant execution [88]. First, all computation within thghere must be replicated. Second, all
inputs entering the sphere must be replicated for each #gacuFinally, all outputs leaving the
sphere must be checked to prevent errors from propagatisgdeuhe sphere.

This thesis now discusses the two dominant forms of redureda@tution in microprocessors in

industry and research communities: lockstep and multittirey.

Lockstep. Classical lockstep redundant execution where identicalgssing elements are tightly-
coupled on a cycle-by-cycle basis has long existed in meimés such as HP NonStop [16] and IBM
zSeries [101]. However, lockstep in general-purpose di@tencounters signi cant roadblocks in
future process technologies. First, individual cores ket to operate in separate clock domains
for dynamic frequency control, while execution must stiltch precisely in time despite asyn-
chronous inputs and physical distances between the ca8e$¢]. Second, increasing within-die

66



MAI=0 |  M[AJ=L — time
- 1
| branch N
: tW l Code
|
P I ! ! divergent! i
° R0 MR beq R1, target 9 R1U M[A]
‘ I | | not taken T beq R1, target
Po | I
\ | RIUM[A]  beq R1, target ) ltarget
|
] . —
|
Pl I
M[A]U 1

Figure 21: Input incoherence: redundant cores Po and P{ observe different values for mem-

ory location M [A] because of an intervening store.

device- and circuit-level variability [22] leads to devats from precise lockstep because, even in

the absence of errors, cores will no longer have identiogihty properties or execution resources.

Third, lockstep requires precise determinism and idehiiggalization across all processor com-

ponents, including in units that do not affect architedtyreorrect execution (e.g., branch predic-

tors [73]). As a result, redundant execution models thaidaleekstep are highly desirable.
Lockstep meets the sphere of replication requirements Iogtoaction. Execution between

lockstepped units is redundant, all inputs must be re@icat order to maintain the lockstep, and

outputs are trivially compared.

Multithreading. Recent proposals investigate using independent redunldezds within a si-
multaneous multithreaded (SMT) core [88, 115] or acrosgsan a CMP [40, 72, 114]. Unlike
lockstep, the threads execute independently and the thexadherefore bound by architectural re-
guirements rather than microarchitectural timing comstsa Threads synchronize as outputs from
the core (e.g., store values or register updates) are cechpbut remain coupled within a short
distance to limit the storage needed for input replicatiod eutput comparison.

Redundant multithreading permits a range of designs that the sphere of replication require-

ments. These designs are explored in the following text.

67



5.2.3 Input Incoherence

Multithreading introduces a problem for redundant execubiecause the threads independently
execute and issue redundant memory requests. When exgshtined-memory parallel programs,
the threads can observe different values for the same dgraad, which we term input incoherence
due to data races. Figure 21 illustrates this situatiorsehaces arise between one execution's read
of a cache block and the redundant partner's corresponéiag; Writes from competing cores will
cause input incoherence. This occurs in ordinary code ssispia-lock routines.

To avoid input incoherence, several prior proposals [12488, 115] enforce strict input repli-
cation across the redundant threads, where a leading @éxeciet nes the load values observed by
both executions. Strict input replication can be achiewedither locking cache blocks or recording
load values.

The active load address buffer (ALAB) [88] tracks cache kéolwaded by the leading thread
and prevents their replacement until the trailing thredole® its corresponding load. The ALAB
adds multiported storage arrays to track accessed cachksblmgic to defer invalidations and
replacements, and deadlock detection and retry mechanidmsALAB must be accessed on each
load and external coherence request. Furthermore, thistgte requires signi cant changes to the
out-of-order core's memory interface and pipeline conlmgic.

The LVQ is a FIFO structure, originally proposed as a simpl&rnative to the ALAB, which
records load values in program order from a leading execuwiwd replays them for the trailing
execution [88]. Architecting an LVQ within a CMP involvegysi cant local and global changes to

the processor core and CMP design, including:

1. Modi cations to the existing, heavily optimized processofcache interface. The trailing
thread must bypass the cache and store buffer interfacevim €& the LVQ, which adds
bypass paths on the load critical path and additional fonetiunit resources schedule within

the pipeline.

2. Modi cations to out-of-order scheduler. The trailing thread only reads values in program
order, which is a major policy change in front-end and outwfer scheduling logic. The
alternative, an out-of-order issue LVQ, eliminates theesithing restriction, but has a similar

complexity and area overhead as a multiported store bufigr [
68



3. High-bandwidth cross-core datapath. Across processor cores, the LVQ requires a high-
bandwidth path to transfer all load values and addressesrdir to avoid becoming a new
performance bottleneck, this path must at least match tipeggte L1 cache read bandwidth.
Furthermore, for the in-order version of the LVQ, the outesnof all resolved branches
must also be recorded and transferred for ef cient, norcslative re-execution. The LVQ
datapath cannot use existing on-chip memory interconnleetause they are tuned to support
L1 miss and on-chip coherence traf ¢, which is signi cantlyss than the aggregate L1 hit

traf c.

The LVQ also limits error coverage of memory operationsrehs no way to verify that load
bypassing and forwarding completed correctly becauser#i@g execution relies upon leading

thread load values.

Relaxed Input Replication. Alternatively, in relaxed input replication, redundantehds inde-
pendently send load requests to caches and store buffénsa @®n-redundant design. This avoids
the added complexity of strict input replication and pr@adietection for soft errors in load for-
warding and bypass logic. However, this means that reduredatutions are susceptible to input
incoherence.

There are two general methods for tolerating input incategein relaxed input replication:
robust forward recovery and rollback recovery. Prior wonkrests a robust checker—a checker
that is immune to faults—to resolve input incoherence. kangle, DIVA checkers with dedicated
caches [10] and slipstreamed re-execution [120] both ath@¥eading threads' load values to differ
from the trailing threads'. However, these proposals doattress the possibility of data races
in shared-memory multiprocessors and require complextiaddi(checker or slipstreamed cores)
to support redundant execution. Alternatively, the naméback solution—simply retrying upon
error detection—uses existing hardware support, but®fferforward progress guarantee. Because
incoherent cache state or races can persist in the memdgnsythe same incoherent situation can

occur again during re-execution. The Reunion executionahaddresses this problem.

69



5.2.4 Output Comparison

The sphere of replication's boundary determines whereutsigre compared. Two main choices
have been studied in CMPs: (1) comparing outputs beforertihétectural register le (ARF), and
(2) comparing before the L1 cache [40, 72]. In both casesestand uncached load addresses
require comparison. For detection before the ARF, eaclhuictsbn result must also be compared.
The chosen design affects performance and the needed dearpbandwidth.

Output comparison affects performance at retirement. atbarig instructions, such as traps,
memory barriers, and non-idempotent instructions, stather execution until the serializing in-
struction has been compared. Both executions must comgueteompare the serializing instruc-
tion before continuing.

Comparison bandwidth is another design factor in supeasgabcessors because multiple in-
structions may need comparison each cycle. Prior work m@gptechniques to reduce bandwidth
requirements. Gomaa et al. compare only instructions thdtdependence chains in a lossless
detection scheme [40]. They report bandwidth savings ofjmbutwenty percent over directly
comparing each instruction result.

This thesis studies output comparison using architectag@rprints. This study is limited to
systems with comparison before the ARF because existinggerexception support [103] can then
be used to recover before outputs become visible to otherepsors. Architectural ngerprints
address the comparison bandwidth factor by compactingngtvalues into a small hash value

(e.g., 16 bits) with a negligible loss in coverage.

5.2.5 Fingerprints over On-Chip Interconnects.

This chapter evaluates ngerprints in Reunion using botkedxatency, pipelined dedicated
channels between pairs of cores and the on-chip memoncarteect to transfer ngerprints for
comparison. Dedicated channels provide a predictable rpye comparison latency and avoid
affecting the performance and operation of other systempooients, however they do have draw-

backs:

Dedicated channels have an area cost in terms of globalcooegorts and buses, which are

unused in a non-redundant CMP.
70



Dedicated channels limit the assignment of core pairs.ddwgldedicated channels between
all pairs of cores increases quadratically with additioc@mles and is, therefore, unscalable

and expensive in future CMPs. Instead, cores must be pdatidadly at design time.

As observed in LaFrieda et al. [56], the static core assignithas broad system-level implica-
tions. “Dynamic core coupling” in redundant execution on Edtan alleviate many of these issues.

System-level limitations of the static assignment include

Inef cient pairing of cores based on cross-die variabiliyere higher performance can be

obtained by matchin§max within a pair.

Reduced tolerance to manufacturing defects and deviceoweaone defective core also
disables chosen cores its statically chosen partnercatiy reducing the effective lifetime

of the overall chip.

Limitations on run-time thermal and power management—al gair can exceed the desired

thermal or power envelope, particularly if they are in clpseximity to each other.

Therefore, there is strong motivation for investigatingadative, more exible and inexpensive
architectural ngerprint comparison channels, which afocore pairs to be assigned at runtime.

The existing on-chip memory/cache interconnect on redeipt multiprocessors is already op-
timized for short, high-bandwidth, low-latency messagesveen on-chip components (for exam-
ple, the Sun Niagara 2 CMP crossbar is expected to provid&R&of core-cache bandwidth at
1.4GHz [76] and existing crossbars can sustain one meskegi@ation port/core cycle [53]).

As part of a graduate computer architecture class projeudeiuthe direction of Smolens),
Chellappa and de Mesmay study the feasibility of transigrrngerprints between cores over the
existing CMP on-chip memaory/cache interconnect [27]. Iis thesign, ngerprints are transferred
over existing ports and wide datapaths, usually reserveddohe block requests. The messages
containing each ngerprint request compete for bandwidithwexisting cache request and reply
traf c. The bandwidth required depends on the frequency mferprint comparison—a xed in-
struction interval in Reunion. There are two system-lex@fgrmance factors that are affected by
moving ngerprints to the on-chip interconnect. First, #ydsting cache miss traf ¢ must compete

with additional requests, potentially increasing the @ffe on-chip cache latency and decreasing
71



Vocal ]—[ Mute Vocal ]—[ Mute
N\ I l S N\ I = = I S
L1 L1 L1 L1
p— I I -
coherent
syncheplies/
requests
coherent \\ phantom
t t
reques \r\eques Shared L2
\ | J
i i i i
L1 L1 L1 L1
PR | | I — | | -
Vocal ]—[ Mute Vocal ]—[ Mute

Figure 22. The Reunion architecture.

performance due to queuing at the cache controllers. Settumagerprints themselves must travel
on a variable-latency interconnect which can extend regoaccupancy (e.g., reorder buffer) for
instructions waiting to be compared. This thesis showsftirateasonable ngerprint comparison
intervals, the effects of each these two factors can be meglegible. Therefore, memory intercon-

nects are suitable, while dedicated channels are oveneeigid for ngerprint comparison.

5.3 Reunion Execution Model

This section presents a formal set of requirements for thenlRa execution model. The re-
guirements provide redundant execution and relaxed irgplication and allow reasoning about

correctness independent of implementation. Figure 28&tiédes the concepts in this section.

5.3.1 System De nition

De nition 5.1. (Logical processor pair). A logical processor pair consists of two processor cores
that execute the same instruction stream. To provide assmgbut from the sphere of replication,

the logical processor pair presents itself as a singleyetatithe system.

72



The Reunion Execution Model differentiates the two core®obews:

De nition 5.2. (Vocal and mute cores). Each logical processor pair consists of one vocal and
one mute core. The vocal core exposes updated values to stensynd strictly abides by the
coherence and memory consistency requirements speci ébdéopaseline system. The mute core

never exposes updates to the system.

Vocal and mute cores use their existing private cache lileies and on-chip coherence protocol
as in a non-redundant design. De nition 5.2 permits the nuate to write values into its private
cache hierarchy, provided these values are not commuditaigther caches or main memory.

Reunion uses redundant execution to detect and recoversiofinerrors that occur in program

execution. We formally de ne safe execution as follows:

De nition 5.3. (Safe execution). Program execution is safe if and only if (1) all updates to
architecturally-de ned state are free of soft error effg¢R) all memory accesses are coherent with
the global memory image, and (3) the execution abides bydkeline memory consistency model.

Execution that is not safe is deemed unsafe.
The state that results from safe execution is:

De nition 5.4. (Safe state). The architectural state de ned by the vocal core at a spegomt in
time is considered safe state if and only if it is free of sofoes; otherwise, the architectural state

is deemed unsafe state.

5.3.2 Execution Model

De nition 5.2 requires that only the vocal abide by cohemr@nd consistency requirements.
Ideally, the mute core always loads coherent data valueswemer, precisely tracking coherent
state for both vocal and mute is prohibitively complex (etlge coherence protocol must track two
owners for exclusive/modi ed blocks).

Instead, Reunion maintains coherence for cache blockscal waches, while allowing incoher-
ence in mute caches. The mechanism for reading cache blackéhe mute cache hierarchy is the

phantom request, a non-coherent memory request:

73



De nition 5.5. (Phantom request). A phantom request returns a value for the requested block

without changing coherence state in the memory system.

The phantom request does not guarantee that the mute cdreewdbherent with the vocal,

potentially leading to input incoherence within a logicabgessor pair:

De nition 5.6. (Input incoherence). Input incoherence results when the same dynamic load on

vocal and mute cores returns different values.
Reunion requires vocal and mute to compare execution segsitfollows:

De nition 5.7. (Output comparison). Vocal and mute cores must compare all prior execution

results before a value becomes visible to other logicalgssar pairs.
Lemma 5.1. In the absence of soft errors, input incoherence cannotir@sunsafe execution.

Proof. If no soft error occurred during program execution, condit{1) of safe execution (De ni-
tion 5.3) is satis ed. If input incoherence occurred, thgiseer updates and memory writes on the

vocal still satisfy conditions (2) and (3). Therefore, satecution results. O

Only undetected soft errors can result in unsafe state. Bt incoherence and soft errors
can lead to divergent execution that must be detected amdoted. However, Lemma 5.1 proves

that input incoherence alone cannot result in unsafe state.

5.3.3 Recovery

De nition 5.8. (Rollback recovery). When output comparison matches, the vocal's architectural
state de nes a new safe state that re ects updates from thgpaced instruction results; otherwise,

rollback recovery restores architectural state to prite state.

Because only the vocal core's architectural state de nes safe state, Reunion requires a

mechanism to initialize the mute core's architectural segs to match the vocal core.

De nition 5.9. (Mute register initialization). The vocal and mute cores provide a mechanism to

initialize the mute core's architectural register le wittalues identical to the vocal's.

74



In the presence of input incoherence, naive retry cannatgtee forward progress because the
condition causing input incoherence can persist. Incatiezache blocks in the mute's hierarchy
can cause input incoherence until replaced by coherentsyaReunion addresses this problem with

the synchronizing request:

De nition 5.10. (Synchronizing request). The synchronizing request returns the same, coherent

value to both cores in the logical processor pair.

This de nition differs from the original Reunion paper [104vhich states that the synchronizing
request must returresinglecoherent value to both cores”. This more relaxed de nitidaves for
simpler implementations of the synchronizing request.dxample, an implementation can attempt
to return the same value to both cores using incoherent pimargquests and replies, as opposed to
a requiring the same value to always be returned to both cores

Mute register initialization and the synchronizing requase combined to construct the re-
execution protocol and then prove that the protocol guaemntorward progress following rollback

recovery.

De nition 5.11. (Re-execution protocol). After rollback recovery, the mute architectural register
le is initialized to the values from the vocal. The logicalgeessor pair then executes subsequent
instructions non-speculatively (single-step), up to amduding the rst load or atomic memory
operation. This operation is issued by both cores usingythelsonizing request. After successful

output comparison following this instruction, the logigalir resumes normal execution.

Lemma 5.2. (Forward Progress). The Reunion re-execution protocol always results in fodvar

progress.

Proof. Rollback recovery is triggered either by a soft error, whiles not persist, or by input
incoherence, which can persist. In the rst case, re-exesutliminates the error and results in
successful output comparison. In the second case, the sgigtar initialization and synchronizing

request guarantee safe execution and safe state to theacht | O

This proof depends upon the synchronizing request proyidiguarantee of forward progress.

Simpler implementations of the synchronizing request &e eonsidered in Section 5.4. These

75



Fetch Decode/ Execute Retire: Retire:

rename Mis-spec detect | Arch writeback

(a)
Send
fingerprint

Fetch Decode/ Execute Retire: Check: Compare Retire:

rename Mis-spec detect fingerprint Arch writeback
(b) Receive /

fingerprint
Figure 23. (a) Baseline pipeline and (b) a pipeline ngerpri nt checks before retirement.

simpler implementations have a high probability of suc@ggdout cannot provide a complete guar-
antee.

An implementation must provide the required behaviors efakecution model, but the system
designer has latitude to optimize. In Section 5.4, a fagietution protocol implementation han-
dles common case re-execution, while a slower version im@ies the rarely needed register le

copy. The high-level tradeoffs for checkpoint and recouerglementation are also discussed.

5.4 Reunion Microarchitecture

This section rst describes the baseline CMP and procesdoroarchitecture. The section
continues with the changes required to implement the Raugxecution model in a shared cache

controller and processor core.

5.4.1 Baseline CMP

Cache Hierarchy. This chapter assumes a baseline CMP with caches similarramtii [15].

A shared cache backs multiple write-back L1 caches privateath processor core. The shared
cache controller accepts memory requests from all coresdomtes on-chip coherence for blocks
in private caches, and initiates off-chip transactions.e Reunion execution model can also be
implemented at a snoopy cache interface for microarchitestwith private caches, such as Mon-

tecito [64].

76



Processor Microarchitecture. This chapter assumes the simpli ed out-of-order procepguline
illustrated in Figure 23(a). Instructions are fetched aadodied in-order, then issued, executed, and
written back out-of-order. In-order retirement stagep@us instructions for branch misspeculation
and exceptions, and write instruction results to the aechitral register le, as in the Pentium-
M [94] described in Section 3.1. Stores initially occupy aagative region of the store buffer. At
retirement, the stores transition to a non-speculativeoregf the store buffer and drain to the L1
cache.

This chapter assumes single-threaded processor coresioRaian bene t from the ef cient
use of otherwise idle resources in simultaneous multittedadesigns; however, cores must run

only vocal or mute threads to prevent vocal contexts fronsaaoring incoherent cache blocks.

5.4.2 Shared Cache Controller

The shared cache controller is responsible for implemgnkia vocal and mute semantics, phan-
tom requests, and synchronizing requests. As in non-rethiraesigns, the shared cache controller
maintains coherence state (e.g., ownership and sharsi)sftisall vocal cores.

Because coherence is not necessary in mute caches, shsterseler include mute caches
and mute caches can never become exclusive or modi ed blaciers. The coherence protocol
behaves as if mute cores were absent from the system. Tonprelees generated by mutes from
being exposed to the system, the shared cache controll@eigall eviction and writeback requests

originating from mute cores.

Phantom requests. All non-synchronizing requests from the mute to the shaesghe controller
are transformed into phantom requests. The phantom repreiices a reply, although the value
need not be coherent, or even valid. Phantom replies graie parmission within the mute hierar-
chy.

The phantom request allows several strengths, dependihgwrdiligently it searches for co-
herent data. The weakest phantom request strengthll @hantom request, returns arbitrary data
on any request (i.e., any L1 miss). While trivial to implerjemull has severe performance im-
plications. Asharedphantom request returns an existing cache block value tsiimithe shared
cache, but returns an arbitrary value on misses. Finalygltbbal phantom request achieves the

e



Figure 24. Three forms of synchronizing request.

best approximation of coherence. This request not onlykshéte shared cache, but also private
vocal caches and issues read requests to main memory fohipfinisses. In terms of complexity,
this is a small departure from existing read requests. Wrodserwise noted, this chapter assumes

global phantom requests.

Synchronizing Requests

This section now presents several possible instantiabbtize synchronizing request and their
tradeoffs. The key task of a synchronizing request is to ét)rn the same, coherent value to
both the vocal and mute cores and (2) ush the incoherentecltbck from the mute cache. The
synchronizing requests described in this section domitteeecovery latency and are generally
comparable to a shared cache hit in terms of latency.

The Reunion paper originally speci ed the bilateral symtizing request, however industry
feedback indicated that simpler mechanisms are greatfenat@e and very rare failures can be

acceptable [83].

Bilateral Synchronizing request. The bilateral synchronizing request uses the shared cache c
troller to enforce coherence between the vocal and mutescaeeillustrated in Figure 24(a). The
bilateral request rst ushes the block from private caclieturning the vocal's copy to the shared
cache, while discarding the mute's). When both requests haen received at L2, the shared cache
controller initiates a coherent write transaction for taeflee block on behalf of the pair. This obtains
suf cient permission to complete instructions with bottatband store semantics. After obtaining

the coherent value, the shared cache controller atomicgljes to both the vocal and mute cores.

78



This form of the synchronizing request requires unique tionality in the shared cache con-
troller to (1) wait for an unsolicited request message fratother core and (2) atomically send two
replies to a pair of cores. The former requires careful aesigavoid races with other concurrent
requests for the same cache block, which increases the eritypbf the shared cache controller.
This feature also increases the validation effort of theesdhaache controller. The latter feature is a
small change from existing shared cache controller funetity, because messages sent to multiple

destinations are already necessary for sending invadidagquests on shared blocks.

Unilateral Synchronizing Request. Unlike the bilateral request, the unilateral synchrorgzie-
guest comprises a single request and an atomic reply pititéal solely by the vocal core (shown
in Figure 24(b)). The request causes the block to be usheau the vocal's caches, while the reply
ushes the value from the mutes'. The mute core must storeaply until it has reached the point
at which it can consume the value.

The intent of this request is to simplify the implementatairthe synchronizing request at the
shared cache. Instead, the unilateral request moves cxityit@vards the processor core, although
the change is arguably limited in scope. The addition istth@mute core must accept and buffer an
unsolicited reply message. Because only one synchronigiggest can be outstanding per logical
processor pair, this buffer need only be one entry. Howdemrause mute's execution progress can
race with this reply message (e.g., the mute re-executinrag@e at the rst load before or after

the reply has been received), this value must be carefuliyeded to the appropriate instruction.

Null Synchronizing Request. An alternative approach—which ts cleanly into the spiritthe
Reunion execution model—is the null synchronizing requébts request uses the existing coherent
load from the vocal core. The mute core, in contrast, issisEgjaence of a ush request to remove
the incoherent block from its private caches, followed Bytyipical phantom request to return the
block to the mute's cache.

The key advantage of this synchronizing request is its saityl It uses mechanisms already
needed to implement Reunion. However, the null synchrogizequest cannot guarantee that it
will always return the same value to both cores. Therefdiie,dynchronizing request may have to

be invoked multiple times in the case of persistent datasranéheavily contended blocks. This has

79



been shown possible with tightly coded micro-benchmarls sirort shared cache latencies (e.g.,
deadlock only occurs if the L2 access latency is dialed daworie cycle), but in practice works
well on both commercial and scienti ¢ workloads.

The evaluation in this thesis shows that not only are datesreare, but also that repeated races
are rare, therefore a slow mechanism for recovery is adoleptad retry mechanism can include
exponential back-off to avoid repeated races. Alternbtivee “hammer” technique can guarantee
forward progress. For example, the shared cache contrdiertemporarily block new requests
from other cores in order to avoid further races. Thus, threroon case synchronizing request is

fast, while the uncommon case of repeated races can be @dsuivrectly.

5.4.3 Processor Pipeline

This section now describes the processor pipeline charmgedhd Reunion execution model,

output comparison, and recovery.

Safe state. The vocal processor core maintains safe state in the ARFspeculative store buffer,
and memory. Safe state can always be reached by the voca) tstifihg all instructions that have
completed output comparison without error to the architedtregister le and the non-speculative
store buffer and (2) ushing all uncompared instructionsnfrthe pipeline (e.g., precise exception

rollback).

Output comparison. Instruction outputs must be compared before retiring thitactural state.
The key addition is an in-order retirement stage called Ichas shown in Figure 23(b). Check
rst generates a ngerprint a hash of instruction resultanfrthe entering instructions [105]. Check
then compares its ngerprint with the partner core's ngenp to detect differences. A matching
ngerprint comparison retires the instruction and writbe instruction results to safe state in the
architectural register le. A mismatch invokes recovergstructions cannot enter check specula-
tively; they must be guaranteed to retire if the instructiesults match.

Logically, the ngerprint captures all register updatesiich targets, store addresses, and store

values. The number of instructions summarized by each mgetris a design parameter called the

80



Recovered Recovered

Yes Yes

Error Rollback + No| Copy vocal ARF No[
> > Failure
Detected Sync Read to mute, retry

Figure 25. The re-execution protocol.

ngerprint interval; longer comparison intervals needpodionally less comparison bandwidth. At
the end of each ngerprint interval, each core sends its npgi@t to the partner core for comparison.

An analytic performance model of the microarchitecturé¢es of the ngerprint interval and
ngerprint comparison latency is presented later in thistie®m. The model and empirical evidence
show that the performance difference between interval®iefamd fty instructions is insigni cant
in our workloads, despite increased resource occupancguse useful computation can continue
to the end of the interval.

The time required to generate, transfer, and compare thétectural ngerprint is combined
into a parameter called the comparison latency. Becauseoidted and mute cores swap nger-
prints, the comparison latency is the one-way latency betweores. This latency overlaps with
useful computation, at the cost of additional resource panay. The observed comparison latency,
however, can be extended because the two cores are onlyylmuggled in time. While the vo-
cal and mute execute the same program, their relative gegran drift slightly in time, due to

contention accessing shared resources (e.g., the L2 cactig@ifferent private cache contents.

Re-execution. Upon detection of differences between the vocal and muéelatical processor
pair starts the re-execution protocol illustrated in Fgg@b. To optimize for the common case,
the protocol is divided into two phases. The rst handleseded soft errors and detected input
incoherence errors. The second phase addresses the dytraraease where results of undetected
input incoherence retire to architectural registers.

Both vocal and mute cores invoke rollback-recovery usingcige exception support and, in
the common case, restore to identical safe states in thehitectural register les. Both cores
then non-speculatively single-step execution up to thé nnemory read. Each core then issues
a synchronizing memory request eliminating input incoheeefor the requested cache block and

compares a ngerprint for all instructions in the interv&ollowing comparison, the re-execution

81



protocol has made forward progress by at least one ingtructihe cores then continue normal
speculative, out-of-order execution.

If the rst phase fails output comparison, the second phéeestiss The vocal copies its architec-
tural register le to the mute and the pair proceeds withxeegition, as in the rst phase. Because
the vocal core always maintains safe state in the absena#tadrsors, this will correctly recover
from all incoherence errors. If the cause was a soft errosexidy ngerprint aliasing, the proto-
col cannot recover safe state and therefore must triggeluagfde.g., detected, uncorrectable error

interrupt). The re-execution protocol can be implementeahicrocode.

External interrupts.  External interrupts must be scheduled and handled at the pamt in pro-
gram execution on both cores. Fingerprint comparison ges/a mechanism for synchronizing the
two cores on a single instruction. Reunion handles extemetrupts by replicating the request
to both the vocal and mute cores. The vocal core chooses aprigeinterval at which to ser-
vice the interrupt. Both processors service the interréter @omparing and retiring the preceding

instructions.

Hardware cost. Fingerprint comparison requires queues to store outsigndgerprints, a chan-

nel to send ngerprints to the partner core, hash circudng a comparator. The ngerprint queues
can be sized to balance latency, area, and power. The chagk deélays results being written into
the architectural register le. The results can be storea @ircular buffer during the check stage or

read again at retirement.

5.4.4 Serializing Check Overhead

Instructions with serializing semantics such as traps, argrbarriers, atomic memory oper-
ations, and non-idempotent memory accesses impose armparfoe penalty in all redundant ex-
ecution microarchitectures that check results beforeemaent. Serializing instructions must stall
pipeline retirement for an entire comparison latency, beed1l) all older instructions must be com-
pared and retired before the serializing instruction catete and (2) no younger instructions can

execute until the serializing instruction retires.

82



Upon encountering a serializing instruction, the ngenprinterval immediately ends to allow
older instructions to retire. The ngerprint is updated telude state that must be checked before
executing the serializing instruction (e.g., uncachedde addresses). Once the older instructions
retire, the serializing instruction completes its exemutnd check. This comparison exposes timing
differences between the cores (due to loosely-coupleduived and the entire comparison latency.

Normal execution continues once the serializing instanctetires.

5.4.5 Fingerprint comparison interval and latency: analyic model

This section presents an analytical model that explaingp#rrmance impact of adding ar-
chitectural ngerprint comparison and the instruction ckastage to a modern wide-issue pipeline.
The independent ngerprint design parameters in the mogketi@e ngerprint comparison latency
(Ltp) in clock cycles and the ngerprint comparison intervéjy() in instructions. This analysis
assumes dedicated, pipelined ngerprint comparison cblanmith a xed transmission and com-
parison latency. Furthermore, the model assumes the fedgle $ aggressive enough to saturate
the re-order buffer and that serializing instructions drseat.

The model depends on several pipeline parameters:

ROBSize: the number of instructions in the re-order buffer

L pipe: the length of the pipeline for which instructions occupy BRéntries (including retire-

ment and check stages). This parameter is xed@e = 5 stages in this studly.

R: the average instruction retirement rate in a pipeline @uthngerprint comparison (a

property of the workload and the pipeline width).

This thesis rst derives two performance models to accoontlie ngerprint comparison la-
tency and interval separately. Next, this thesis presesitsgge model accounting for both parame-
ters.

A performance model for a pipeline with ngerprint compamson every instructionlf, = 1)
is derived. Because ngerprint comparison can only slow d@mgle-threaded execution, perfor-

mance is bounded by the minimum of performance derived fratfels Law (relating population

Five stages matches the CMP simulator's minimum pipelingttdeexcluding the in-order fetch/decode/rename
stages and is representative of the out-of-order sectement industry pipelines.

83



in instructions and occupancy time to throughput) and thgiral program's IPC without nger-
print comparison. In this model, performance is only lirditghen the ROB llIs with instructions
waiting for retirement or the ngerprint comparison.

ROBSize

IP C min _interval = Min m; R (5.2)

Next, a performance model for a pipeline that comparesvaterof instructions, but has an
instantaneous latency for ngerprint comparisan = 0) is derived. If the ngerprint comparison
interval (¢, ) is greater than one instruction, older instructions extt¢he check stage but cannot be
compared until enough subsequent younger instructionseal®r check and complete the interval.
For a program nominally executirig instructions per cycle, this additional wait ad'% cycles to

execution.

ROBSI
ize o

't

IP C min _latency = MiN o
L pipe + &~

(5.2)

Note that this model is accurate only fiap 's that are divisors oROBSize. There is a sig-
ni cantly more complicated relationship for ngerprintiarvals that do not cleanly tin the ROB.
Unfortunately, while this is trivial to simulate, a closéatm algebraic relationship that can lend
insight towards the pipeline's performance is not known.

Finally, the added instruction occupancy contributionbath factors are combined in the com-

prehensive performance model shown below.

IPC = min ROBSize —iR (5.3)
Lpipe + Ltp + &

The results of this model are illustrated in Figure 26 forrfaide pipelines with ROB sizes of
64 and 256 entries, running a workload that can saturateipiedine. This model is also limited to
l+p that evenly divide th(ROBSize. The results show that as the ngerprint comparison latency
increases, it dominates performance, while the ngerpromparison interval's effect is dampened
because it adds latency more slowly.

Furthermore, the right-hand gure shows that the 256-urcdton ROB provides suf cient buffer-

ing to hide virtually all performance effects of ngerprinbmparison for reasonable on-chip trans-

84



@) (b)

Figure 26: Analytic performance model of the effects of nge rprint comparison for a 4-wide
pipeline with Lppe =5 cycles, R =4 IPC and ROB sizes of (a) 64 and (b) 256 entries.

mission and comparison latencies (10's of cycles) and agra@hgngerprint intervals. By contrast,
the left-hand gure shows signi cant sensitivity to both gerprint comparison latency and inter-
val. With long latencies or intervals, the entire ROB endduffering completed instructions that
are waiting to be checked. However, in practice, the effé¢these results on the 64-entry ROB
are tempered because, despite the availability of fouewpighelines, many real-world workloads
only achieve IPCs of 0.2-2 [3, 14, 31] and typically only opgismall fractions of the ROB. These
workloads already typically (1) can overlap the additiotciaécking latencies caused by ngerprint
comparison and (2) leave adequate buffering for instroativzecking. Therefore, the actual impact
of architectural ngerprints—even with smaller ROBs—igigally small. This result is empirically
shown in Section 5.5.

Finally, these results have been validated against a siimlenodel, showing performance re-
sults within 1% over practical ranges for these paramelatsncies from 0 - 1,024 cycles, intervals

from 1 toROBSize).

5.4.6 Lock Primitive Implementation

This section describes the implementation of lock prineiin a Reunion design. The imple-
mentation of atomic memory operations such as Sun's reatifyaarite (RMW), compare-and-
swap, test-and-set, and fetch-and-increment is rst diesdr followed by the special considera-

tions required for two-phase locking primitives, such a$*®k load-locked and store-conditional

85



Lock cache block in vocal L1
Phantom requests allowed

A
e N
(@) Read Modify Retire write
. memory value to memory
RMW-like
primitives _ Send_ _Recelv_e
fingerprint fingerprint
Vocal ARF is sole copy on mismatch
r A N\
(b) Load-locked, Store- Copy ARF
Load-Locked other code Conditional if mismatch
StOI’e-Condltlonal Send Receive Sen\ Receive
fingerprint fingerprint  fingerprint fingerprint

Figure 27. Lock implementation.

(LL/SC) instruction pair.

Atomic memory operations. Atomic memory operations consist of three basic tasks tbatiro
atomically, as observed by other processors through shmesdory: (1) one or more loads from
memory, (2) an equality test or arithmetic operation on daeled value, and (3) a store to memory
and memory barrier. In order to succeed, the tasks must adthout any intervening store by
other processors in the system. Unlike non-redundant pna@iessors, where the determination of
whether the locks primitives succeed (or fail by succumlding data race) can be made locally at a
single processor core, this process is distributed achesgdcal and mute cores in Reunion. Hence,
the implementation must ensure that both the vocal and naresagree on the outcome of the
operation before it is exposed to other logical processivs pg the vocal core. This requirement is
relaxed in the discussion of the LL/SC implementation.

The key problem for atomic operations introduced by the R@uexecution mode is that the
ngerprint comparison adds latency between tasks (2) ahda@illustrated in Figure 27(a). The
instruction must complete a ngerprint comparison befdrean complete task (3), because that
action architecturally exposes results to other procesddre Reunion execution model introduces
a new requirement in the lock's execution: both tasks andrtgerprint comparison must be per-

formed without permitting intervening stores from otheogqessors, as this extends the window of

86



vulnerability during ngerprint comparison.

The solution to the window of vulnerability during atomicesgtions proposed and evaluated
in this work is to lock the vocal L1 cache during the atomicrapien. L1 cache locking involves
delaying the processing of external requests for the catiek lluring the ngerprint compari-
son. Cache locking—globally, on a set, or on a single blodishais a well-known technique for
temporarily preventing other processors from accessingally cached blocK. Locking within a
single on-chip cache has been part of the Pentium Pro [62kapgdort continues in today's mi-
croarchitectures [45].

Locking the cache in a redundant system is not without dandewever. Because both the
vocal and mute cores must read the same value—and the vpdade L1 cache can supply that
value to the mute—it is possible to create a deadlock saeifafie vocal's L1 cache is locked too
early. This situation arises if the mute L1 does not conthi lilock (and therefore, must issue
a phantom request) and the vocal L1 contains exclusive @hipeof the block and has locked
out external requests. The cycle is as follows: the vocat edh not unlock until the ngerprint
comparison completes, while the partner mute core canmat aengerprint until its phantom
request to the locked cache has completed.

The deadlock can be avoided in at least two ways. First, areagige implementation of the L1
cache controller can continue processing phantom requessages while the cache is locked. Be-
cause phantom requests do not change coherence state artlcamon-coherent values, they can
be safely processed at any time. This prevents the circelagmtlence between the mute's phantom
request and ngerprint comparison. Alternatively, thedleak can be avoided entirely by immedi-
ately replying to phantom requests targeting a locked caitiean arbitrary (poisoned) value. This
incurs a ngerprint mismatch, but does not require the cachprocess phantom requests when

locked. In the remainder of this work, we evaluate Reuniangighe rst implementation.

Load-locked and store-conditional. Several prominent instruction sets choose to provide an
LL/SC instruction pair as the architected synchronizagoimitive [68, 30]. Unlike the Pentium
Pro, processors implementing this primitive shun lockimg ¢ache to avoid memory requests from

other processors, preferring instead to set a (unfortlynatemed in this context) “lock bit” upon

2If ngerprinting across the interconnect is used, we asstima¢ ngerprint messages continue to be processed out-
of-band, while the cache is locked.

87



Table 9. Outcomes for different races during the store-cond itional phase of an LL/SC pair.

Vocal Mute Outcome

Fails Fails Fingerprint matches, no race

Fails Succeeds Fingerprint mismatch; fails architeclyrabpy vocal ARF
Succeeds Fails Fingerprint mismatch; succeeds archigdigticopy vocal ARF

Succeeds Succeeds Fingerprint matches, no race

executing a load-locked instruction. The lock bit is resetihy intervening external access to the
load-locked's effective address before a correspondiogestonditional instruction (the store is ar-
chitecturally converted to a NOP if the bit has been resaireahe store commits). Because these
architectures avoid locking the cache for synchronizapamitives, the technique described for
atomic memory operations cannot be applied.

Instead, an alternative approach can apply the princiglédsedreunion execution model to the
lock's execution, but trades soft error vulnerability areffprmance to avoid the hardware cost of
cache locking. This approach takes advantage of an outcbthe wocal core: that in the absence
of soft errors, the vocal core always performs cache-colered memory model-consistent actions
(Lemma 5.1). This allows the vocal to determine solely thieame of the LL/SC operation.

The approach is illustrated in Figure 27(b). Before exequthe store-conditional, the results
of the load-locked instruction and following instructioage compared via ngerprint comparison.
This ensures that both vocal and mute cores loaded the sdueearal checks the execution of the
body of the lock code. Second, the store conditional is eeglcand committed on both cores and
the result of that operation—whether the store conditigralcceeded or failed—is compared via

ngerprint between the two cores. The store conditional ningscommitted, because its condition
is only known once the instruction commits.

The cores can agree or disagree on the outcome. The casewarerated in Table 9. If the
cores agree, redundant execution can continue. Howetlee, cores disagree, Lemma 5.1 is applied
to restore consistent architectural state to both core®pyirg the vocal's architectural register le
to the mute, as done in the second phase of the recovery plotoeffect, this approach allows the
vocal core to perform the store-conditional and inform th&erof the outcome. Furthermore, this

approach provides the same forward progress guaranteles ladeline system when using LL/SC.

88



However, this approach opens a soft error vulnerabilityirduthe period in which the vocal
executes the store-conditional. If a soft error were tocaffiee vocal's operation during this time,
the execution can result in detectable, uncorrectableaoosilent data corruption. Because this
period is only a small fraction of overall execution timestts unlikely to have a signi cant impact
on the overall system's soft error vulnerability.

This approach can also be adapted for use with atomic menpenatons with the same trade-
offs on soft error vulnerability and performance. Becatigdinpact of data races is shown to be rare
in the evaluation, this thesis does not separately evatbatperformance effect of this approach.

Another option for implementing LL/SC is to depend solelynghe vocal core to determine
the outcome of the SC, transmit this information to the more @n a ngerprint, and have it mirror
the execution of the SC request (this information is imglidiransferred in the approach discussed
above). This process simpli es lock implementation andvjes the same soft error vulnerability
as the previously discussed approach. Because the voed cutcome will be used regardless
input incoherence or a soft error—both schemes are vulleetalundetected soft errors during the
SC execution on the vocal—there is no reliability bene t tiecking the mute's execution of the

SC.

5.4.7 Checkpointing and Re-execution

This section explores the high-level performance tradefaff various checkpoint and recov-
ery models. Checkpoint mechanisms are explored along tes: ake scope of the checkpoint—
local per-processor and system-wide global checkpointsd-tiae checkpoint interval length—short
ROB-sized checkpoints of tens to hundreds of instructiorslang checkpoints containing thou-
sands of instructions. Two workload classes are explorbdse@d workloads such as barrier-based
scienti ¢ programs and decision support queries and plesseworkload such as OLTP [42] and
web server commercial workloads. The tradeoffs are ilfustt graphically in Figure 28. Experi-
ences with Reunion suggest that the desirable third quadilanal checkpoints with short compar-
ison intervals—are both practical with today's microatebiures and provide a low execution time

overhead.

89



Long interval

Rollback single core, Rollback all cores,

High recovery cost, High recovery cost,
One-time race Races recur

Local Global
checkpoint checkpoint
Rollback single core, Rollback all cores,
Low recovery cost, Low re-execution cost,

One-time race Races recur

Short interval
Figure 28: The tradeoffs in the checkpoint and recovery desi gn space. Local checkpoints
with short checkpoint intervals provide the lowest overall recovery overhead.
Checkpoint scope. Local checkpoints are attractive if recovery is frequemeré are a large num-
ber of processors, or if the recovery process is likely teatp

With global checkpoints, the state of all processor corélsarsystem is simultaneously recorded,
while with local checkpoints, the architectural state afiidual processor cores is separately
stored. Global checkpoints linearly increase the cost obvery. As the system size increases,
global checkpoint recovery requires discarding and theexeeuting proportionally more work. By
contrast, local checkpoints require discarding and rexgtieg the work of only a single processor
core.

Furthermore, global checkpoints restore the entire sys$temn state that was previously en-
countered. In the case of recovery due to races in phasedibasrkloads, this a particularly
unfortunate situation. Phase-based workloads can exk@ditde ned points in execution where
input incoherence-causing data races are likely to reroddthen a data race occurs in a global
checkpoint-based system, all processors are recoveredidetical point prior to the race. Unfor-
tunately, this also recreates the precise conditions #orabe to recur (this can also affect phase-less
workloads which are otherwise unlikely to repeatedly emteuthe same race again). With the Re-
union re-execution protocol as stated above, this procesfipes one additional load's worth of
forward progress, and then the race scenario repeatsatgli! This situation has the compound
cost of repeated recovery, each time discarding the workl gfracessors and can greatly affect

performance [56].

90



By contrast, local checkpoints only discard the work of widlial processor cores—qgreatly re-
ducing the amount of work that needs to be recomputed dugaogvery. Furthermore, recovery
does not recreate the same global race situation as bef@mrceHthe recovery with local check-
points is cheaper and less likely to be repeated (partiguiarphase-less workloads where the

operations on other processors are uncorrelated with doyeeng processor).

Checkpoint interval. As with the checkpoint scope, the interval between checkpalso de-
termines the amount of work that must be discarded and ratsedollowing a recovery. Short
checkpoint intervals incur a small tolerable penalty, @langer intervals can signi cantly increase
the recovery overhead (particularly if races recur) [56].

The checkpoint interval is primarily determined by the sost error detection and taking a
checkpoint. For atraditional out-of-order superscalacpssor such as Pentium-M, a per-instruction
checkpoint granularity is feasible because of existingigeeexception support, which already re-
quires the processor to stop architectural execution airestguction boundary.

Checkpoint intervals must be equal to or longer than the @wrs@n intervals. This is because,
for the purposes of error detection, no additional beneresaccrued from checkpointing more fre-
quently than errors are detected because intermediat&pbiats will never be used for recovery.
For architectural ngerprint-based error detection, thenary system-level limit is the bandwidth
required for transferring ngerprints between cores [105Yith dedicated comparison channels,
comparison can feasibly done every two to four instructiovisile with ngerprints over an inter-
connect, the interval must be longer to minimize the pertoroe impact on the on-chip memory
system.

Alternatively, checkpoint interval can be driven by a moxpensive checkpoint mechanism,
such as copying the register le (as with Intel's C6 architeal checkpoints [35] or academic
proposals [51, 56, 108]). In these designs, the checkpai@tvial must be increased to amortize the

time spent stopping the system while creating the checkpoiperforming error detection.

91



Table 10. Simulated baseline CMP parameters.

Processor cores 4 logical processors, UltraSPARC Il ISA
4 GHz 12-stage pipeline; out-of-order
4-wide dispatch / retirement
256-entry RUU; 64-entry store buffer

L1 cache 64KB split1/D, 2-way, 2-cycle load-to-use,
2 read, 1 write ports, 64-byte lines, 32 MSHRs
Shared L2 16MB uni ed, 4 banks, 8-way,
Cache 35-cycle hit latency, 64-byte lines,
crossbar to L1s, 64 MSHRs
ITLB 128 entry 2-way; 8K page
DTLB 512 entry 2-way; 8K page
Memory 3GB, 60ns access latency, 64 banks

5.5 Evaluation

This thesis evaluates Reunion using Flexus, which prowgele-accurate, full-system simula-
tion of a chip multiprocessor [118]. Flexus extends Virtht&imics with cycle-accurate models of
an out-of-order processor and memory system.

A CMP with four logical processors is simulated: four corasrion-redundant models and eight
cores for redundant models. On-chip cache bandwidth israss$uo scale in proportion with the
number of cores. The CMP model uses a cache hierarchy ddrivedPiranha [15]. For Reunion,
the vocal and mute L1 cache tags and data are independerdigi@do System parameters are listed
in Table 10.

Table 11 lists the commercial and scienti ¢ applicationtsuiAll workloads run on Solaris 8.
The commercial workloads include TPC-C v3.0 OLTP on two caruial database management
systems, IBM DB2 v8 Enterprise Server Edition, and Oraclg Ef@terprise Database Server. The
database is tuned to maximize performance of the non-reshirsystem model.

Three representative queries from the TPC-H decision suggstem (DSS) workload are se-
lected, showing scan-dominated, join-dominated, and dnbaehavior. Web server performance is
evaluated with the SPECweb99 benchmark on Apache HTTP iSe?v@ and Zeus Web Server
v4.3. The server performance of web servers saturated l@aratepclients over a high-bandwidth
link is reported. The scienti ¢ workloads are four paralared-memory scienti ¢ applications

that exhibit a range of memory access patterns.

92



Table 11. Simulated workload parameters.

Commercial Workloads
DB2 OLTP 100 warehouses (10GB), 64 clients, 2GB BP
Oracle OLTP 100 warehouses (10GB), 16 clients, 1.4GB SGA
DB2 DSS Qry 1 (scan); Qry 2 (join); Qry 17 (balanced)
100 warehouses (10GB), 2GB BP
Apache Web 16K connections, fastCGl, worker thread model
Zeus Web 16K connections, fastCGl
Scienti ¢ Workloads
em3d 768K nodes, degree 2, span 5, 15% remote
moldyn 19,652 molecules, boxsize 17, 2.56M max iters.
ocean 258x258 grid, 9600s relax, 20K res., errtol le-7
sparse 4096x4096 matrix

This evaluation employs a sampling approach that draws rheaeffmeasurements over 10 to
30 seconds of simulated time for OLTP and web applicatioms,complete query execution for
DSS, and a single iteration for scienti ¢ applications. 95%# dence intervals of +/-5% error on
change in performance are targeted using matched-pairarsop [118]. Measurements launch
from checkpoints with warmed caches and branch predictioes, run for 100,000 cycles to warm
pipeline and queue state prior to 50,000 cycles of measuremggregate user instructions com-
mitted per cycle are reported as the performance metricgtwisi proportional to overall system
throughput. Fingerprints are compared on every instrocti®oft faults are not injected, however

input incoherence events, output comparison, and recarerynodeled in detail.

5.5.1 Baseline Performance

This section evaluates the baseline performance of redumacution in a CMP for a repre-
sentative system using strict input replication (“Strjc@hd Reunion.

Strict models a system with strict input replication, ngent comparison across cores for
error detection, and recovery within the ROB (as descrilmedRieunion in Section 5.4.3). Strict
serves as an oracle performance model for all strict inpplication designs with recovery. It
imposes no performance penalty for input replication (éogkstepped processor cores or an LVQ
with no resource hazards). However, the model includes émalpes from buffering instructions
during check. The Reunion model demonstrates the perfarenahrelaxed input replication and

ngerprint comparison and recovery. To support recoveryhimi the speculative window, both
93



M Strict [JReunion

1.0 - I I
I E3
£ 08
S 06 -
N
w 0.4 -
£
g 0.2
0.0 ~
Apache Zeus | DB2 |Oracle| DB2 | DB2 | DB2 | em3d moldyn ocean sparse
Q1 Q2 Q17
Web OLTP DSS Scientific

Figure 29: Baseline performance of redundant execution wit h strict input replication and
Reunion, normalized to a non-redundant CMP, with a 10-cycle comparison latency.

systems check instruction results before irrevocablyingtithem to the architectural register le
and non-speculative store buffer.

Figure 29 shows the baseline performance of both modelsalized to the performance of a
non-redundant baseline CMP, with a ten-cycle comparistantéy between cores. As compared
to the non-redundant baseline, the strict model has a 5% #né\v&rage performance penalty
for commercial and scienti ¢ workloads, respectively, VehiReunion shows 10% and 8% average
respective performance penalties. The low performanceheael of Reunion demonstrates that
relaxed input replication is a viable redundant executiadeh. In the following sections, explore

the performance of these execution models is explored i metail.

5.5.2 Checking Overhead

This section rst examines the performance of Strict to usténd the performance penalties of
checking redundant executions across cores in a CMP. s@rghlizing instructions cause the entire
pipeline to stall for the check because no further instaindican execute until these instructions
complete. The check fundamentally extends this stall pgnas the comparison latency increases,
the retirement stalls must also increase. Second, pipetinepancy increases from instructions in
check occupying additional ROB capacity in the speculatwedow. For workloads that bene t
from large instruction windows, this decreases oppotigemito exploit memory-level parallelism

(MLP) or perform speculative execution.

94



() (b)
Figure 30: Performance sensitivity to the comparison inter val of (a) strict input replication
with ngerprint comparison and (b) Reunion's relaxed input replication with ngerprint com-
parison.

Figure 30(a) shows the average performance impact fromkatgem Strict for each workload
class over a range of on-chip comparison latencies, nazethlio a non-redundant baseline. At a
zero-cycle comparison latency, the workloads do not shotatsscally signi cant performance
difference from non-redundant execution. The performara®lty increases linearly with increas-
ing comparison latency. Both commercial and scienti ¢ wodds exhibit similar sensitivity to the
comparison latency; however, the mechanisms are different

In commercial workloads, the dominant performance effeches from frequent serializing
instructions. With increased comparison intervals, thaloer of these events remains constant, but
the stall penalty increases. At forty cycles, the averagfbpaance penalty from checking is 17%.

In contrast, the scienti ¢ workloads suffer from increasedrder buffer occupancy because
they can saturate this resource, which decreases MLP. Anpaison latency of forty cycles, the
average performance penalty is 11%. Larger speculatiodamia (e.g., thousands of instructions,
as in checkpointing architectures [4]) completely elinténtine resource occupancy bottleneck, but

cannot relieve stalls from serializing instructions.

5.5.3 Reunion Performance

This section now evaluates the performance penalty of edléxput replication under Reunion
and explores Reunion’s sensitivity to comparison latesidignlike the strict input replication model,

vocal and mute execution in Reunion is only loosely coupless the cores. For non-serializing

95



instructions, these differences can be absorbed by boudf@mnithe check stage. However, serializing
instructions expose the loose coupling because neither cam make further progress until the
slower core arrives at and compares the instruction. Thisdoces additional retirement stalls that
affect both cores, on top of the comparison overheads disduabove. Figure 30(b) shows the
performance of Reunion for a range of comparison latenétesnion's performance is determined
by checking overheads, loose coupling, and input incoleeren

The rst observation from Figure 30(b) is that, unlike StriReunion has a performance penalty
from loose coupling and relaxed input replication at a zZgrae comparison latency. For commer-
cial workloads, the serializing events expose the looselowy because one core must wait for its
partner to catch up before comparing ngerprints. For sttiemworkloads, contention at the shared
cache increases the effective memory latency, decreasirigrmance. This result shows that the
baseline performance penalty of Reunion's relaxed inpplication is small on average, 5% and
6% for commercial and scienti ¢c workloads, respectively.

The second observation in Figure 30(b) is that at non-zengpamison latencies, performance
converges towards the limits set by the strict input refibceamodel. As the comparison latency
grows, the comparison overhead and resource occupancigsate the performance, because more
time is spent waiting on the comparison than resolving loomgpling delays. At a forty-cycle
comparison latency, the average performance penalty is€22P4.3% for commercial and scienti ¢
workloads, respectively, which closely follows the Stricbdel's trend. This result shows that the
primary performance impact with larger comparison lates@omes from fundamental limits of
checking and recovery, instead of relaxed input replicatio

Figure 31 shows an execution time breakdown for the lock&®lP baseline normalized to
unity and Reunion, at a 10-cycle ngerprint comparisonate(unlike the normalized IPC graphs,
higher bars indicate slower execution in this chart). THiedinces between the two bars shows
the contribution of performance factors for each worklostdsting with time where the cores are
busy, waiting on memory requests (loads or stores), orlggnigatomic or side-effect instructions.
Reunion introduces two new categorizes: time spent wherdRDB is full and cannot drain be-
cause of a pending ngerprint comparison and time spent &brecution stalls because of pending
ngerprint comparison of serializing instructions.

For the commercial workloads, the primary performancesfambmes from increased time spent
96



Figure 31. Execution time breakdown for the baseline CMP (B) and Reunion (R).

waiting for ngerprint comparisons during serializing tnsctions. The ngerprint comparison am-
pli es the time spent on each atomic instruction. Becaugeaverage time spent on each atomic
instruction differs across workloads, the relative impzfahis comparison also differs across work-
loads.

For the scienti ¢ workloads, the primary performance factomes from increased time spent
on memory operations. Memory latency increases due tovoast contention within the shared
cache coherence controller. This is particularly evidenttfie workloads with high off-chip miss
rates: em3d and moldyn. Contention arises because thedstecke controller serializes on-chip
and off-chip coherence operations on a cache-block basmrticular, when a mute request requir-
ing coherence reaches the controller before the vocal stdoethe same cache block, the cache
controller issues an off-chip phantom request for the blbtdwever, because the request is a phan-
tom, it is incoherent and therefore cannot be utilized bylater vocal request. Hence, the vocal
request must repeat the off-chip request, in effect doghtie off-chip memory latency when the
vocal loses the race. In contrast, when the vocal wins the, the result will be consumed by the

mute through faster on-chip coherence operations.

5.5.4 Input Incoherence

Next, this section provides empirical evidence to demastthat input incoherence events in

Reunion are uncommon. Table 12 shows the frequency of immoherence events per million

97



Table 12: Input incoherence events for each phantom request strength, TLB miss frequency.

Per 1M instructions

Input incoherence

Workload Global Shared Null TLB Misses Atomic Instructions

Apache Web 0.9 3,818 8,620 1,973 747
Zeus Web 0.2 1,818 5,456 1,654 903
DB2 OLTP 0.7 5,340 16,197 2,492 896
Oracle OLTP 0.6 4578 17,140 3,297 366
DB2 DSS Q1 21.1 1,909 4,004 207 547
DB2 DSS Q2 0.7 4,852 7,991 1,040 583
DB2 Q17 1.5 4,863 10,466 1,089 833
Avg. Scientic 0.4 17,406 22,607 239 0.22

retired instructions in Reunion for all three phantom rejserengths, with a ten-cycle comparison
latency. As a point of comparison, the input incoherencentsvare juxtaposed with another com-
mon system event with a comparable performance penaltytrdhslation lookaside buffer (TLB)
miss.

Reunion is rst considered with global phantom requestscdRdhat global phantom requests
initiate on- and off-chip non-coherent reads on behalf efrtiute. As shown, the workloads en-
counter input incoherence events infrequently with glgbelntom requests, while data and instruc-
tion TLB misses generally occur orders of magnitude morgueatly. From this data indicates that
input incoherence events are, in fact, uncommon in theskleass. Furthermore, even with relaxed
input replication, the penalty of recovery is overshadolwgather system events.

Next, this section investigates whether choices for wepkantom requests from Section 5.4.2
are effective. The data for shared and null phantom requredtable 12 show that input incoher-
ence events are three to four orders of magnitude more fnédlo@n with global phantom request
strengths and in both cases are more frequent than TLB miggesse high frequencies indicate
that recovery from input incoherence can become a bottlewéb weaker phantom requests.

Figure 32 compares the performance of the three phantonesegtrengths with a 10-cycle
comparison latency, normalized to the non-redundant ineseBoth shared and null phantom re-
quests incur a severe performance impact from frequenveeies. Shared phantom requests cap-
ture most mute L1 misses because of the high shared-caadfaehiOne notable exception is em3d,

whose working set exceeds the shared cache and therefqueifitty reads arbitrary data instead of

98



b

Figure 32: Reunion performance with different phantom requ est strengths at a 10-cycle
comparison latency.
initiating off-chip reads. The null phantom request poli@s a severe performance impact for all
workloads because each L1 read miss is followed by inputh@@nce rollbacks.

The analysis of input incoherence in this section showsgludital phantom requests are effec-
tive in reducing input incoherence events to negligibleelsun the workloads. Furthermore, the
weaker phantom request strengths increase the frequerniogudfincoherence to levels that cause

a severe performance impact.

5.5.5 Synchronizing request type

Next, this section evaluates the practical performancdidgamons of synchronizing request im-
plementations. Figure 33 shows the performance of botlelb#band null synchronizing requests.
There is virtually no sensitivity to the synchronizing regtitype in any of the workloadsThis re-
sult is expected because, (1) the cost of performing a bdlater unilateral) synchronizing request
is similar to that of a null synchronizing request, (2) thadyonizing requests are infrequent, and
(3) null synchronizing requests are not expected to repige.oBoth request types are dominated
by the shared L2 cache access, therefore have similar &acagss latencies. Synchronizing re-
guests occur infrequently (already demonstrated in Tad)eHinally, the simulation results indicate
thatnoneof the null synchronizing requests encountered a persister, therefore in practice, no

null synchronizing requests needed to repeat. This rasdicates that simple synchronization re-

3A t-test indicates that statistically signi cant claimsnret be made about the small performance difference in DSS
query 1.

99



Figure 33: Performance of Reunion with bilateral and null sy nchronizing requests at a 10-
cycle comparison latency.

guest mechanisms are suf cient for good performance oristaaworkloads. Furthermore, even if
a “hammer” mechanism is needed to guarantee forward pgtesill not be invoked frequently;

therefore, it can be simple and slow without incurring adapgrformance burden.

5.5.6 Serialization Overhead

Next, the importance of architecturally de ned serialzimstructions to redundant execution
performance is identi ed. In this system, serializing nustions are traps, memory barriers, and
non-idempotent memory requests. Many of these events hezeint in the workloads, such as
memory barriers needed to protect critical sections, wdthers, such as system traps, are speci ed
by the instruction set architecture.

The results presented up to this point in the chapter haneirelied the dominant source of
system-speci c traps in the baseline UltraSPARC Il aretitire: the software-managed TLB miss
handler. In commercial workloads, the fast TLB miss handi@nvoked frequently (see Table 12),
due to their large instruction and data footprints. The leamfdinction includes two traps, for entry
and exit, and executes three non-idempotent memory reqgteshe memory management unit
(MMU).

Figure 34 contrasts the average performance of commeroiddeads with a hardware-managed
TLB model and the architecturally-de ned UltraSPARC llifsmsare-managed TLB handler. As the
comparison interval increases, the contribution of thebeing checks is readily apparent increas-
ing the performance impact to 28% at a forty-cycle comparisdency. While this result is from

Reunion, a comparable impact also occurs with strict inpplication.

100



"

8- # $ % !

Figure 34: Reunion's average performance for commercial wo rkloads with hardware and
software TLBs. Scienti ¢c workloads have infrequent TLB mis ses and are therefore show no
sensitivity to TLB implementation.

Strong memory consistency models can also affect checlarfgnonance. In contrast with Sun
TSO, the Sequential Consistency (SC) memory consistencghptaces memory barrier semantics
on every store (5-10% of the dynamic instructions in the \aa#ls). Hence, every store serializes
retirement. An average performance loss of over 60% is gbdeat 40 cycles due to store serial-
ization with SC.

The results in this section underscore the importance ofidering serializing instructions,

especially architecture-speci ¢ ones, in the performamfoedundant execution microarchitectures.

5.5.7 Fingerprinting interval and ngerprints on the inter connect

This section now brie y evaluates the performance impaatoking architectural ngerprint
comparison from dedicated channels to the on-chip memadgyconnect.

Architectural ngerprints are modeled as an additionallEcequest that consumes a port on
the snoop channel. The snoop channel is a high-priority riélathat bypasses the L1 cache and is
typically used for acknowledging invalidation and dowrdgacoherence requests. The ngerprint
message traverses the core-12 cache crossbar twice, vathiag and processing delay at the L2 of

four cycles.

101



| .‘.,.-—--_:=:="
‘..’ . _—x'.-
| - A ——
'.’ B —.
—
. ——
,':
4
7>‘<
Figure 35: Performance of Reunion as the ngerprint compari son interval is varied for ded-
icated comparison channels (solid lines) and on-chip memor y interconnects (dashed lines)

normalized to non-redundant baseline.

Figure 35 shows the performance of Reunion with ngerpriotsdedicated channels with a
xed ten-cycle latency (solid lines) and the on-chip intemoect (dashed lines) over a range of
ngerprint intervals, normalized to a non-redundant basel* Workloads have been combined
into their respective classes to simplify presentatione fiésults are equivalent to those presented
in [27], however the implementation in this thesis is wntiadependently, the full set of workload
checkpoints further tightens the con dence intervals, trabaseline is a non-redundant CMP.

The results show little sensitivity to the ngerprint inted with dedicated interconnects. This
result is expected from the both results of the analyticatlehdor the ngerprint interval in Sec-
tion 5.4.5 and the fact that only the scienti ¢ workload Ogexercises the maximum retirement
bandwidth of the four-wide processor core, therefore arhpféering opportunity exists within the
ROB. This result shows that the predictions of the analltiwadel for the ngerprint comparison
interval also hold for realistic workloads—there is litHensitivity.

By contrast, the on-chip interconnect shows a drastic (p@xfjormance loss with a ngerprint

“Fingerprint intervals range from a minimum of one ngerpriper instruction to one ngerprint per sixty-three
instructions. In this implementation, large numbers of semutive stores—e.g., more than sixty-four—will cause a
deadlock unless the interval is less than or equal to the stoffer size. Such bursts occur in Solaris context switch
routines.

102



comparison on every instruction. This performance lodative to a 10-cycle dedicated channel, is
almost eliminated as the ngerprint interval increasesikbegn instructions. The scienti ¢ work-
loads show the most signi cant performance sensitivityhwginaller ngerprint intervals, primarily
due to cache port contention in ocean, which already hasMigh and IPC near four. The other
extreme, the OLTP workloads have low IPCs of 0.3 to 0.5 duedmory stalls. These workloads
place an order of magnitude less pressure on the ports ardannects, and therefore are signi -
cantly less affected by contention on cache ports and theamehierarchy. Compared to dedicated
channels at an interval of one instruction, the average Ichedransaction latency increases by
220%. However, this latency is only 13% at a sixteen-ingimancinterval and just 4% at a 63-
instruction interval. Therefore, the latency impact carebiminated by choosing the appropriate
interval. These results (and further analysis in [27]) stioat transmitting architectural ngerprints
over the on-chip interconnect is viable—and comparableeirigpmance to a dedicated 10-cycle

comparison latency—for both commercial and scienti ¢ wWoeds.

5.6 Conclusion

Designs for redundant execution in multiprocessors mudtesd input replication and output
comparison. Strictinput replication requires signi cahianges to the pipeline. This thesis observes
that the input incoherence targeted by strict input repbecais infrequent. This thesis proposes
the Reunion execution model, which uses relaxed inputaaqdin, backed by light-weight error
recovery within the processor's speculative window. Thedelqreserves the existing memory
system, including the coherence protocol and memory cemsig model. The results show that the
overhead of relaxed input replication in Reunion is only 58d 6% for commercial and scienti ¢

workloads, respectively.

103



Chapter 6

Microarchitectural Fingerprints

Recent studies have shown that the vast majority of erroretlaffect architectural state, there-
fore looking only at architectural results misses mostrsrfé3, 117]. For faults that worsen with
time, such as device wearout, detecting early evidenceeaf ¢xistence (even if architectural state
is currently unaffected) is valuable for predicting anctkiag future growth. An ideal detection
mechanism compares every sequential node with a erromfieel on each clock cycle. While
manufacturing test approaches this limit by using expentasters coupled with full-hold scan ar-
chitectures [55], this solution is impractical for in- eldetection where testers are unavailable. As
a further constraint, the detection mechanism must (1)dafadse positives from non-determinism
in microarchitectural sources such as oating tri-statesdsuand asynchronous interfaces, both of
which carry architecturally-important important outpuasid (2) operate at-speed to detect errors
that are timing-dependent.

This chapter introduces the conceptroicroarchitectural ngerprints Microarchitectural n-
gerprints detect errors that are visible in microarchiteadt state, even if these errors do not prop-
agate to architectural state. In- eld detection of emeggdevice wearout is one application for
microarchitectural ngerprints. This application, call&IRST, differs from soft error detection—
where it is suf cient to check only retired architecturabt®. Instead, FIRST requires detecting
errors that are architecturally masked during normal dperand therefore do naurrently affect
correct execution but, given time, will develop into errararchitectural state in normal operation.

Because the basic metrics only differ slightly from arottiieal ngerprints, this chapter is

structured assuming an understanding of the discussiorhapt€r 2. Section 6.1 introduces the
104



fault model for microarchitectural ngerprints. Sectior2@lescribes microarchitectural ngerprints
in detail. Section 6.3 explains the metrics as they applyitwaarchitectural ngerprints, followed
by a hardware design in Section 6.4. The soft error coverdgeiaoarchitectural ngerprints is

brie y evaluated in Section 6.5 and then the chapter coregud

6.1 Fault Model

Microarchitectural ngerprints deteghicroarchitectural errors Microarchitectural errors are
deviations from the implemented microarchitecture—tlaesin internal latches—of a processor
caused by an underlying fault. Microarchitectural ngenps must are still subject to logical mask-
ing, which hides some internal errors. However, becauseoanichitectural ngerprints inspect
internal state that is not always visible architecturatgse ngerprints do not suffer from architec-
tural masking. This thesis does not evaluate latch-windogvedectrical masking.

The fault model targeted by microarchitectural ngerpsing the same as for architectural n-
gerprints as de ned in Section 2.1 (that is, soft errors amdak wearout). However, for practical
reasons explained later in this chapter, microarchitattumgerprints are not well suited for soft

error detection applications.

6.2 Microarchitectural Fingerprints

This section introduces microarchitectural ngerprinkdicroarchitectural ngerprints capture
a reproducible, deterministic hash of internal microaeattural state during execution to detect
differences with respect to a reference execution. Miatugectural ngerprints leverage built-in
observe-only test and debug hardware, knowsigsature-mode scangub accumulate a concise
summary of microarchitectural state throughout the pemesScanout consists of chains of special
observe-only latch cells added to a design [24].

Traditionally, signature-mode scanout has been of littkcfical use outside of manufacturing
test and debug due the indiscriminate selection of scarallg within the design which capture
non-deterministic values and consequently renders thetiregs hash useless. The proposed design

provides limited tolerance of non-determinism on moniionedes, while maintaining coverage of

105



known-deterministic values on those nodes. This desigeréges the logic designer's knowledge
of the functionality to sample selectively values with smatnonly when the values are known to
be deterministic. While traditional signature-mode seamyoduces a single continuous hash for
the entire microprocessor, the proposed design also petemiporal and spatial error localization
by collecting the scanout chain output in small (16-bitehn feedback shift registers (LFSR) or
multiple-input shift registers (MISR). This localizatioanformation can be useful for applications
such as graceful degradation so that error detection caimoenafter units have already failed in

the eld [111].

6.3 Metrics

As with architectural ngerprinting, detection latencyraparison bandwidth, and error cover-

age remain the key evaluation metrics. However, the spacdeoffs change in this domain.

Detection latency. Detection latency scales with the length of the scanoutnshifiat can easily
reach thousands of nodes in industrial designs. Howevsratency can be ameliorated by break-
ing long chains into several smaller chains and combinimgrésulting chains in parallel. While
the detection latency is bounded, the latency may be too toqgrmit timely recovery with soft
error detection. However, because microarchitecturakenpgints are intended to detect emerging

errors—not soft error recovery—the detection latency pritm serves to reduce the test time.

Comparison bandwidth. Microarchitectural ngerprints compact data into signasiover space
and time. Each chain generates one bit per cycle, which cdadbmto a hash circuit. As with
architectural ngerprints, the hash is sampled periodicdherefore the comparison bandwidth is
primarily a function of the ngerprint comparison intervddecause microarchitectural ngerprints
operate below the level of instruction sets and architetstructures, microarchitectural ngerprint

comparison intervals are measured in cycles rather thamations.

Error coverage. Error coverage is limited by logical and electrical maskinghe circuit be-
ing observed. Furthermore, the location and number of stamades and degree of determinism
determine how widely and how often values can be sampleddoyosit.

106



>l

Figure 36: The scanout cell and its logical operations. Load and Shift are external control
signals that allow sampling of the monitored Dataln input an d shifting of the Shiftin input.

6.3.1 Discussion

The long detection latency (thousands of cycles) and détém requirements can make mi-
croarchitectural ngerprints unattractive for runtimetsarror detection. Unlike architectural nger-
prints, microarchitectural ngerprints do have the ragtdn that execution must be cycle-for-cycle
deterministic. Furthermore, the internal state of the oponcessor must be carefully initialized be-
fore collecting a microarchitectural ngerprint. Thesatréctions limit the instances when microar-
chitectural ngerprints can be applied—for example, synoctizing replicated inputs between two
distant processor cores, and even local units, is incrglgsitif cult [18, 66]. Therefore, unlike ar-
chitectural ngerprints, which are expected to operatenvaitbitrary workloads, microarchitectural
ngerprints are realistically limited to executing conllexl workloads in deterministic processor

test modes [75].

6.4 Hardware Design

Microarchitectural ngerprints are assembled using a cimration of scanout cells to monitor

individual nodes and LFSRs or MISRs to compress the outpert gpace and time.

107



Figure 37. Scanout cells applied in a digital circuit.

Scanout Chains. Scanout cells are observe-only latches attached to cofrdgnagdand sequential
nodes in the design that are selected by design engineertavg®d manufacturing test and silicon
debug. The scanout cell and its functions are shown in Fig6ré24, 55]. The cell can load
monitored values into its latch and shift values from a masicell. In addition, the scanout cell
has a “signature mode” operation that performs a logical X@Rrevious values in the chain
with the currently-monitored value, producing a continsiiash—a ngerprint—of current values
combined with prior cycles' state. The scanout cells arkelthtogether as a long scanout chain,
similar to traditional scan architectures and as illustlah Figure 37. However, unlike traditional
scan chains, because the scanout chains do not feed intgsigns circuit logic, they can passively
monitor the circuit as it operates without changing itstiwled behavior.

Because designers aggressively add scanout cells to #egns to aid test and debugging, the
scanout chains in actual designs commonly include normdétestic values (referred to as an "X")
in the scanout signatufeUnfortunately, the presence of a single non-deterministloe anywhere
along the scanout chain can result in false-positive mictatectural error detection and the loss of
signature-mode scanout coverage for the entire chain., Rmmsdeterminism becomes a key factor
that limits the usefulness of scanout chains in commerasignhs.

In current designs, the non-determinism problem is p&rtedldressed by globally disabling
loads on pre-determined cycles or disabling entire chadiasvever, this masking requires knowing,
a priori, the time and location of non-determinism and theksacan only be applied on a limited

number of cycles per execution.

1Sources of non-determinism include oating values on tats buses, uninitialized state following reset, unpre-
dictable external inputs, and marginal timing.

108



eee

Figure 38: The design of microarchitectural ngerprints: e ach module contains a scanout

chain and local LFSR. The values of each module's LFSRs are sa  mpled and shifted out to
internal registers or the test access port (TAP).

Microarchitectural Fingerprints.  Microarchitectural ngerprints overcome non-determmigrob-
lem of scanout chains, while preserving observability ¢éiinal nodes in the circuit. Microarchi-
tectural ngerprints take advantage of the fact that desigrhave selected nodes for observation
and know the node's intended function. This information barexploited to avoid sampling nodes,
on a ne granularity when determinism cannot be guaranteed.

The proposed hardware design for microarchitectural pgaets is illustrated in Figure 38.
Individual scanout nodes can be locally disabled for all atipns of a scanout chain by control-
ling the ScanLoad signal (the chain still shifts valuesgejmehdent of the ScanLoad). This allows
individual signals on scanout nodes to be dynamically diézhduring cycles when the nodes are
known or suspected to be non-deterministic. For example,imstance where this is particularly
useful is on tri-state nodes: these nodes typically inciuggortant datapath values. Furthermore,
these nodes can be triggered by existing enable signalstfiernontrol path that indicate cycles
when the tri-state bus is being driven.

Because microarchitectural ngerprints are intendedrield error detection, expensive testers—
with their associated high external pin bandwidth—wiill thet available. With traditional testers,
full state of the chip can be scanned out for diagnosis of lvimmdules are failing and when,
which is important for isolating failures. However, the satachniques cannot be performed in the
eld. The design for microarchitectural ngerprints preses spatial and temporal error locations,
as shown with the global load signal. Within each modulealldd-SRs collect the output of the

local scanout chains. These values are periodically tearesf out over a global scanout chain to

109



an architecturally-visible debug register or the test as@®rt. At this point, the microarchitectural
ngerprint is compared with known-good values for the sameaaition. This design has the ad-
vantage of bounding the microarchitectural error detectatency to the length of the chain and,
therefore, the comparison interval. Furthermore, the @iapn bandwidth required scales with the

number of modules and the hash size, not the total numbetslbeing monitored.

6.5 Soft Error Injection Evaluation

This section evaluates the coverage of soft errors for raictatectural ngerprint and compares

them to architectural ngerprints in the OpenSPARC T1 RTLdab

6.5.1 Methodology

The statistical error injection experimental frameworthis same as described in Chapter 3.4 for
architectural ngerprints, except for the addition of a noiarchitectural ngerprint model. A cus-
tom Verilog PLI module simulates the scanout chains and L$=S9Wicroarchitectural ngerprints
are applied recursively to all registers in the chosen éwell module, in addition to a boundary
scanout chain on the outputs of the module. Bit ips injechei pipeline latches are not regis-
tered as microarchitectural errors in the scanout chaiassnihe erroneous value propagates to a
subsequent consuming latch without being logically masKédde microarchitectural ngerprint is
compared once after the chain has been fully shifted into®R_at the end of each test program

execution.

6.5.2 Results

Figure 39 shows the baseline coverage of architectural acrdanchitectural ngerprints using
the methodology outlined above. Each bar reports the fnaadf soft errors injected that were
detected as errors by the respective detection mechanismindividual architectural results are
identical to those presented in Chapter 3.4, thereforedibiussion is limited to new results with

microarchitectural ngerprints and a comparison of the ®voor detection mechanisms.

110



. A

Figure 39. Soft error injection detection results.

Logical masking. Logical masking in the RTL model prevents microarchiteatungerprints
from reaching 100% coverage. This error masking is paditylcute in the load-store unls(l )
and trap logic unittfu ), where complicated control paths and datapaths handkpégoal con-
ditions, but are largely unused during common-case exatutBy contrast, the bypass network
(byp) has a high error detection rate, because it holds operamtiseaults for instructions on ev-
ery active cycle. Furthermore, the bypass unit is dominbtechuxes that select three independent
operands from a single set of source values. This desigadres the likelihood of propagating the
error on at least one path, hence its relatively high fautecage. Overall, due to the high level of
logical masking during program execution, only 55% of thjecgted errors are detected as errors by
microarchitectural ngerprints on the full-core model.

The microarchitectural ngerprint masking is not compdesato the 85% average level of mask-
ing at the microarchitecture level reported by Wang et al17]1 This is because Wang inspects
microarchitectural state (all latches) at the end of progexecution, where erroneous values can
be masked by execution in subsequent cycles. By contrastoanchitectural ngerprints preserve
errors that occur temporarily in the middle of executiorgreif they are logically masked in sub-
sequent cycles. Therefore, microarchitectural ngengriare more sensitive to microarchitectural

errors.

Architectural masking. The difference between microarchitectural and architattmgerprint
bars in Figure 39 indicates the contribution of architesitunasking in the design. The individual

units architecturally mask 77% of the microarchitecturabes, on average, with the thread switch

111



logic being the notable exception. This level is higher tlogyical masking, where errors need only
propagate to a monitored latch.

This result provides motivation against using microaesttiiral ngerprints for soft error de-
tection. The demands of soft error tolerance are satis eddhitectural execution remains correct.
Therefore, because microarchitectural ngerprints shtrarg) sensitivity to microarchitectural soft
errors that never affect architecturally correct executiad the microarchitectural ngerprint pro-
vides no indication of whether the microarchitectural ewdl be masked architecturally, this detec-
tion mechanism needlessly detects errors that should la¢edef73]. By contrast, for applications
where there is temporal correlation between instancesaila(e.g., emerging wearout detection),

detecting architecturally masked errors provides a useditator of more widespread future faults.

6.6 Conclusion

In closing, microarchitectural ngerprints provide higtbservability of the internal microar-
chitectural state; however, they are limited by the deteisn requirement. Microarchitectural

ngerprints are further evaluated for emerging wearouedgon in Chapter 7.

112



Chapter 7

FIRST

7.1 Introduction

This chapter introduces a process for early detection ofrginge wearout faults in processor
cores called Fingerprinting In Reliability and Self-TeStRST).

As CMOS feature sizes continue to shrink, transistor aret@ainnect reliability worsens [65].
While numerous physical phenomena will account for futuegick failures, the overall system-
level impact is shorter and less predictable lifetimes farraprocessors [110].

Unlike traditional manufacturing defect and single-evgmset fault models (e.g., stuck-at faults
and transient bit ips, respectively), wearout-relatedlfs in future process technologies will ap-
pear with gradual onset and will rst affect device timing0[639]. Designers conservatively add
timing and voltage slack—known as a guardband—to ensutddtjia meets latch setup times and
to provide noise margins. As logic devices transition méwe/ly over their lifetime, combinational
logic paths will eventually fail to meet timing requiremsrdnd encroach on the design's guard-
band [58]. Initially faults will appear intermittent, depding on speci ¢ operating conditions (e.g.,
voltage, temperature, circuit inputs, etc.), but evemyuasult in permanent failure through hard
breakdown. The number of potential critical paths in compmlesigns—particularly those due to
rising within-die and across-die static variations [22]-akas the task of predicting the rst paths
to develop wearout dif cult.

Recent work advocates detecting and recovering from ecaused by wearout as they occur
during normal operation. This thesis refers to such tealascagust-in-time error detectionPrior

113



proposals integrate carefully designed error detectionhagisms into existing designs, but face
signi cant challenges from the increasing number of unprdble critical paths [19], need custom

latch designs [2, 33] or require integration with resourciesluling mechanisms [98]. Bower et

al. [23] avoid the challenges of circuit-level test, butuigq extensive design changes to support
instruction-level checking.

This thesis proposesarly error detectionwith FIRST: Fingerprinting in Reliability and Self
Test. FIRST uses infrequent, periodic (e.g., once dailsfirig where application and system soft-
ware are suspended from a core, and the core is subjectedrginadaperating conditions while
running special test programs to detect the onset of weaellRST reduces the processor's ef-
fective guardbands to expose marginal critical paths wefibile developing wearout faults affect
normal operation on those paths.

This thesis evaluates detection two mechanisms for use RIS T: microarchitectural and
architectural ngerprints. Microarchitectural ngermts provide a lightweight signature of mi-
croarchitectural state updates using existing test harwahile architectural ngerprints sum-
marize architectural state updates with dedicated haehadded at the retirement stages. Both
techniques allow detection of growing wearout faults agrib® processor core without requiring
advance knowledge of which devices will fail.

The contributions of this work are:

FIRST: This thesis introduces the idea of reducing guardbandsowide early runtime de-

tection of device wearout.

Wearout fault model: This thesis presents a path delay fault-based model of wetrat is

fast enough to simulate unit-wide faults, with FIRST, on-filip RTL.

Detection mechanism evaluationThis thesis evaluates coverage of wearout detection mech-
anisms over a range of representative units in full-chip Rirhulation using the FIRST
procedure. The results show that microarchitectural pgets provide high coverage for
isolated wearout, while architectural ngerprints are asprful as microarchitectural nger-

prints for detecting widespread development of wearout.

114



This chapter is organized as follows. Section 7.2 provigekground on wearout faults. Sec-
tion 7.3 introduces the FIRST concept and implementati@ctiGn 7.4 presents a simulation model
for wearout faults. This thesis evaluates the simulatiomehand FIRST procedure with nger-

prints in Section 7.5 and then concludes.

7.2 Background

Sources of device wearout include gate oxide breakdowngcdmoter injection, negative-bias
temperature instability (NBTI), and electromigration [65The onset and end stages of device
wearout (soft breakdown and hard breakdown, respectivaly® been studied extensively in device
reliability literature using accelerated wearout testechniques. The effects of device wearout are
expected to worsen with process technology scaling [65].

During gate oxide soft breakdown, transistor switchingespbdecreases for a given operating
voltage [58]. The logical operation of the transistor isentheless maintained [11]. This behavior
means logic gate outputs transition more slowly as the getikilown progresses. Similar results
have been shown for NBTI [87] and hot-carrier injection [28]

In light of this behavior, wearout manifests as slow risimgadling transitions on the affected
devices [25]. For example, a NAND gate with a failing NMOSsBstor experiences a slowdown
for the falling output, while a failing PMOS transistor exgsces a slow rising output transition.
Depending on the precise fault location in a logic gate, dppe are also possible [89], however
slow-downs still dominate performance and are decidedigatable.

While today's designs have multiple statically known c@ti paths, increasing within-die vari-
ation associated with process scaling means that a pautidid's critical paths are not necessarily
known at design time [21]. Furthermore, experiments shawgtvitching speed decreases dramati-
cally during soft breakdown [87], which means that existinigjcal paths lengthen and new critical
paths can arise. While growing levels of process variati@amthat some devices are inherently
more likely to fail than others, the development of wearauilts is also strongly temperature and
voltage-dependent [19, 65, 109, 110] and therefaidespreadnstances of faults can develop con-
currently within the same unit. This is shown in simulatisaised studies of NBTI [78] and gate

oxide breakdown [19]. Because of these issues, predictiagdcation and number of wearout

115



faults is dif cult and detection mechanisms must look bryaatross the design to detect the timing
changes.

Although device wearout is gradual and the precise failocations are unpredictable, the fail-
ure rate is shown to t time-dependent distributions (elgg-normal and Weibull [58, 111]) and
the failure rate is known to increase with time. Furthermampirical evidence shows that once
a device has begun the failure process, the degradatiomcaigase with time and is also strongly
affected by operating conditions (e.g., exponentiallatesdl to supply voltage) [60]. With typical
operating conditions, the soft breakdown occurs graduaily progressively over days or weeks.

Thus, there is opportunity for early detection of devices thegin soft breakdown.

7.3 Detection with FIRST

Based on the observation that common wearout faults exhigiadual onset, this thesis pro-
poses the FIRST (Fingerprinting In Reliability and Self fjeaethodology for early detection of
device wearout. The key idea behind FIRST is to test peradigiche processor core in near-
marginal conditions to expose changes in timing that itjtiaside inside the processor's frequency
and voltage guardbands. FIRST can utilize both architettngerprints (described in Chapter 2.2)
and microarchitectural ngerprints (described in Chapieto compact and ef ciently compare the
outcome of each test.

Effective early wearout detection demands (1) mechanisnisduce marginal operation that
exposes wearout faults in the processor core and (2) ex&ensizerage of circuit nodes to detect
the developing marginal faults.

The FIRST procedure performs in- eld wearout detection mgessor cores. To start a test
period, the operating system temporarily takes the corsmefand places it in a deterministic test
mode. The core then loads deterministic functional tesgnarms that exercise logic transitions
within control logic and datapaths. While the programs eiecthe core generates an at-speed

ngerprint of execution that summarizes internal micrdatectural or architectural state updates.
The core repeats the same programs and ngerprint colleettooperating conditions are gradually
moved to less-conservative operating corners (e.g., bgriog supply voltage or increasing clock

frequency) which effectively reduces the frequency antagal guardbands.

116



When the recorded ngerprint no longer matches those ofexagkecutions with more conser-
vative conditions, the frequency guardband has been ezdesud the test period ends. A nger-
print mismatch at progressively more conservative opggatonditions in subsequent test periods
(e.g., over several days) indicates the onset of wearow.appearance of a small number of faults
presages extensive future failures from hard breakdowrsevere soft breakdown. The early warn-
ing allows time for scheduled replacement or removal of g processor.

The ngerprint for a suite of tests programs and informat@mnwhen they begin to differ can
be stored over time by the operating system or in the BIOSgusiachine check storage [82].
The long-term storage and analysis of this information yobe the scope of this work; however,
trending algorithms such as those utilized by Blome et al §8& potentially be applied to identify

and track the onset of wearout or extend the lifetime of theegssor.

7.3.1 Inducing Marginal Operation

Several knobs are already available for arti cially prothgca near-marginal operating envi-
ronment in the processor core, including voltage reguatdth dynamic voltage scaling, dynamic
clock frequency and width controls, and thermal monitor@mgl control [37]. These mechanisms

are discussed below.

Dynamic voltage scaling. Modern processors request changes in the voltage reguatput

to save power [46]. Lower voltages cause slower switchirggdp that also serve to reduce the
guardbands for a given clock frequency. Wearout faults teeen empirically shown to increase
frequency sensitivity to operating voltages [87]. This headsm provides a safe and practical

procedure for inducing marginal operation.

Dynamic frequency scaling. Processors also include clock frequency scaling capasilib re-
duce power consumption during periods when the procesatieisT his capability can be employed
to decrease the core's clock cycle time and consequentlycesthe guardband. Some processors
also allow regional adjustment of clock skew and tempordrgse shrinking and stretching [92],
which can isolate sections of the design for testing. Teslaa@lso provide deterministic opera-

tion of the processor core, although sometimes only at eeswbigpossible clock rates [113]. This

117



mechanism provides a way to reduce directly the frequenaydipands, but the mechanism may be

constrained by the design's power envelope.

Thermal scaling. On the monitoring side, processors contain thermal dicolesdasure temper-
atures across the die. Coupled with functional test progrémat run power-consuming instruction
sequences, the diodes can help establish a desired corertgorp. Given the well-known relation-
ship between switching speeds and temperature in CMOSaittisr also temporarily reduces the
guardband and exposes wearout faults. As with dynamicgelsaaling, this mechanism indirectly
reduces the frequency guardband, but as with dynamic fregugcaling, may also be constrained
by the design's power envelope.

While all three methods discussed in this section will redtiee guardband, dynamic voltage
scaling is the safest procedure for long-term reliabilltynlike dynamic voltage scaling, dynamic
frequency and thermal scaling both have the potential toepdtra thermal stress on the processor,

which accelerates wearout.

7.4 Wearout Fault Modeling

A key challenge in evaluating microarchitecture-levelidewvearout detection methodologies
such as FIRST is accurately modeling the effects of weagsults. This section outlines the wearout

fault injection study and simulation framework.

7.4.1 Wearout Fault Injection Study

The overall goal is to understand the fault coverage chaniatits of a range of in- eld wearout
fault mechanisms. Detection mechanisms range from sintpgling the output of functional test
programs to detailed observation of internal microarchiteal state.

Integral to the study of wearout faults is a model of weameffect on logic. This thesis
models wearout faults as path delay faults [102], a modelithased in manufacturing tests to
exercise critical paths [74]. Because wearout faults apasancreased switching times, the path
delay model applies to modeling the effects of wearout. A pgia sequence starting at a primary

input (the output of a latch), through a sequence of cellg, poimary output (the input of a latch).

118



The path's delay determines how long a transition on thetigbihe path takes to propagate to
the output. When the delay along the path exceeds the clad& tiyne, the values in the primary
outputs may be latched incorrectly, resulting in errors #pgear as bit ips in digital circuits.

This model allows investigation of wearout faults in a bametircuit with pre-determined path
delays. While this represents a static view of a circuit'thpdelays, the simulation environment
controls the clock period to model the application of FIR®Tatprocessor with a xed degree
of wearout. The framework is extended to inject errors dug/éarout into speci ¢ paths in the
microprocessor logic. This framework allows investigatiof wearout detection techniques over

different instances of wearout.

7.4.2 Wearout Fault Simulation

The path delay values are easily generated from synthedisaambe simulated ef ciently in an
RTL model. In this test, the circuit's critical paths arentieed and logic transitions are monitored
for triggering conditions. On a matching transition duripate-level simulation, the affected logic
is forced to an erroneous value to model the activated fault.

To maintain reasonable simulation speed and to supporga laumber of simulations, faults
should be simulated in RTL (register-transfer level) iast@f gate-level models. However, RTL
generally models combinational and sequential logic witle@counting for delay. Given wearout's
similarities to path delay faults, delay fault simulatidrosld provide an accurate model of wearout
faults for coverage evaluation. A technique similar to tsgd in SpeedGrade [50] is implemented
to achieve the accuracy of gate-level simulations for pafhaydfaults, but with simulation of RTL

and wearout fault trigger conditions.

Fault Simulator Wearout faults are modeled using the ow shown in Figure 48e Thput is an
RTL description of the circuit to be analyzed, a test programd a selected clock frequency that
determines the slack in the guardband. The output condisistigation statistics for wearout fault
sites and error coverage of the detection mechanism.

From an RTL description, ASIC synthesis with a standard ldslhry generates a list of path
delays in the circuit. The path delay list contains timingreates for both rising and falling input
transitions, based upon the standard cell library's charaation for each pair of primary inputs

119



Figure 40. The tool ow for modeling wearout faults.

and outputs that form a path. This information is used torddtee when a particular path is a
candidate for missing timing in a baseline model of the éiraithout wearout. For each circuit,
the path delay list is static and only needs to be computed.dHee path delay list's delays can be
altered later to model the onset of wearout in a once-goad uni

Next, an RTL simulator is augmented with a custom wearout fajection and scanout chain
model. The RTL simulator is a commercial Verilog simulatehile the fault simulator and scanout
chains are C-language based libraries that communicate that simulator through the Verilog
programming language interface (PLI). The fault simulatmrks as follows. The path delay list
is read for the circuit. The selected guardband, speci ed akck period in this model, is used
to eliminate paths from consideration in later simulati¢int can be determined that the selected
clock period meets timing for all possible input transisoon a path, the path is eliminated from
consideration.

On each simulated clock cycle, the fault simulator idergiteansitions on primary inputs that
potentially cause the primary output to miss timing. If timing is misstétk combinational logic
driving the primary output should behave as if the primapuinhad never transitioned (i.e., stuck
at the previous cycle's value). In this situation, the priynautput determined by the RTL simulator
needs to be recomputed with respect to the fault model.

This process, however, is not as simple as ipping the ouiist however. Because the primary

input may not be a controlling value, the primary output sty be unaffected by the path delay

120



fault. To determine the correct values for primary outptiis,fault simulator temporarily rolls back
the input transition (by forcing the previous cycle's vatuethat node) and steps the Verilog model
to update the corresponding primary outputs. The updatethpy outputs are then compared with
the original fault-free output to determine whether theoemas masked by a controlling input
or propagated to the primary output. The simulator therorestthe original primary inputs for
unaffected paths. If the affected primary output does dliffee simulator forces the primary output
to its erroneous value. The simulator then advances thd.cldbe fault simulator also collects
statistics for each path, including tracking whether aiggering conditions occurred and whether
the induced errors propagate to a primary output or are rdaske

Instances of wearout are modeled by applying a distributibadded delay along paths in a
path delay model for selected units. In this study, a unifoamdom delay of up to 10% is added
to the original delays (estimated by synthesis) acrossailiin the selected unit. This process
is repeated with different random seeds to model differezdiraut patterns that can occur in each
processor core over its lifetime. Averages over all of thestances are reported to estimate the

behaviors over a population of processors affected by wéaro

7.5 Evaluation

This section characterizes the wearout fault model andiated FIRST's detection capabilities
using architectural and microarchitectural ngerprin®he objectives of these experiments are to
demonstrate and compare the detection capabilities oftactiliral and microarchitectural nger-
prints for the early stages of wearout.

This evaluation is structured as follows: a preliminarydstshows the baseline feasibility of
FIRST using microarchitectural ngerprints. Next, ar@dtural ngerprints and microarchitectural
ngerprints are compared for widespread wearout acrossititethese results are further analyzed
to identify instances where silent data corruption result€inally, the detection mechanisms are
compared for a single instance of a wearout fault.

The wearout fault modeling tool ow from Section 7.4 is aglito several representative units
of the Sun OpenSPARC T1 release 1.4 [113] with architectumdl microarchitectural ngerprints
added, as described in Chapters 2 and 6. The OpenSPARC T1lukidhreaded, multi-core chip

121



design, made available in synthesizable Verilog RTL. Trawated units are listed in Table 13 and
their functions are brie y described here. The units areseld to evaluate a range of representa-
tive circuit types in a typical processor core. Note thatghethesis does not count SRAMs and
supporting logic (due to a lack of a memory compiler), and falth counts and maximum paths
across modules are unavailable for the full core model mgkinthesis ow. Finally, the individual
units represent a sampling of the entire core; therefoeestim of the measures for each unit does

not match the total for the core.

The execute bypasbyp ) logic is pure datapath circuitry which contains the opagafor-
warding and bypass network for the ALU and load values, a$ ageECC computation for
results being written to the integer register le. The cii paths are clustered in the pipelined

ECC generation logic.

The execute ALUéxu _alu ) unit contains the datapath for the pipeline's 64-bit ALWan
logical operations. The critical path, however, is in erdetection for invalid virtual ad-
dresses. Because the test programs used to evaluate FNR&/E aise valid virtual addresses,
the effective critical path for this study is on the bus liletween datapath operand inputs

and operand outputs.

The fetch control logicf€l ) contains the control path for the instruction cache, fatelye,
and program counter/next program counter managementdagritire pipeline. The critical

path is in trap/exception determination for fetching thetrmycle's instruction.

The fetch datapathfdp ) is the datapath controlled Hgl . It contains fetched instruction
bits, program counters for the entire pipeline, as well as4#é&nd PC+branch offset com-
putations (48-bit adders), similar to tlesu _alu . The critical path is in the next fetch PC

selection and computation.

Finally, the thread select logic\Wl ) contains a set of nite state machines that control the
ready-to-execute state across four threads and selectbreae to issue on each cycle, based
upon readiness, fairness, and pipeline structural hazatdscritical path is in the next state

selection.

122



Table 13: Structural information for the studied microarch itectural units studied in the
OpenSPARC. These measures include the small additional log ic required to integrate ar-
chitectural ngerprints into the pipeline.

Unit Name Registers  Latch Area Standard Paths Maximum
Bits ( 9 Cells path (ps)
Execute bypasdip) 110 708 141,767 5,450 19,783 769
Execute ALU éxu _alu ) 377 2,198 48,881 1,734 26,887 1,337
Fetch control pathf¢l ) 135 280 51,033 2,698 11,323 826
Fetch data pathfdp ) 31 1,358 177,077 8,463 41,210 800
Thread select logics{vl ) 80 190 39,733 2,193 7,061 993
Full core 2,827 22,095 3,209,188 127,325 — —

Due to the lack of a memory compiler, timing estimates for $3RBased structures such as the
register le or TLB cannot be determined; however, the dathportions of these structures are

similar in nature to the bypass network.

7.5.1 Feasibility of FIRST

This thesis rst evaluates the potential of microarchiteat ngerprints for detecting the timing
faults that are crucial to the effectiveness of FIRST.

The path delays are calculated using the Synopsys Desigmi@snmapping to the Arti-
san/TSMC 0.18um low-power standard cell library [9]. Irstekperiment, the statistics differ from
Table 13 because this evaluated unit lacks architecturgérprint support (this difference does not
affect the conclusions of this experiment). The longestditaon delay in the unit is estimated to
be 951ps over 6,929 paths between 186 latch bits. The unmddhread switch logic is simu-
lated using Synopsys VCS. The scanout chains are modeled Msrilog PLI and accumulated
in a 16-bit LFSR. The circuit is exercised with uniform ramd@put vectors at the module level
for 10,000 input vectors following a reset sequence (amfufiti input vectors do not signi cantly
change the observed results) and a cool-down time to shifairéng values out of the scanout
chain. The modeled operating frequency is varied betwe@p®and 955ps. The baseline circuit
delay, without wearout, is employed for this result.

The fault activation results are summarized in Table 14. oted number of potentially sensi-
tized paths is listed in the second column. As discusseddtid®e’.4, path delays that are shorter

than the clock period are discarded from consideratiometbee, the number of sensitized paths

123



Table 14. Fault activation results for the thread scheduler over a range of clock periods.

Clock Possible Activated Propagated

Period (ps) Paths Paths Paths
955 0 0 0
950 4 1 0
945 9 1 0
940 14 2 0
935 22 2 0
930 33 3 0
925 51 6 1
920 73 12 4
915 99 16 4
910 137 20 6
905 181 25 7
900 207 28 9

increases with shorter clock periods. The third columnaatéis the activated paths. Activation oc-
curs when there is a transition at the primary input of a patiwben two consecutive input vectors.
For most paths in this circuit, no transitions are obsertedeaprimary inputs that activate the fault.
Furthermore, because of logical masking even fewer of @&l paths sensitize and propagate an
incorrect value at the primary output (shown in the nal aol). The baseline circuit has 6,929
total paths, of which 2,459 and 1,029 can be activated angagiated, respectively. As shown in
the table, the vast majority of these paths are shorter th@p€® One important result of this ex-
periment is that the statically determined longest patheataecessarily determine the minimum
usable clock period, even if activating transitions can teelpced at primary inputs.

The nal column in Table 14 indicates when timing faults nfast as microarchitectural errors.
The rst such failure occurs at 925ps. The microarchiteatungerprints accumulated over each
test period correctly distinguished executions whereiallng has been met (over 925ps) from
those where an error had been propagated to a primary o@pbpg and below). That is, as the
clock period is decreased, the tested ngerprint beginsitmmatch with the error-free ngerprint at
925ps, just as the rst error propagates to a latch.

This result shows that microarchitectural ngerprintsfeiifeven when only a single path de-

lay fault has caused a path delay error during the test. Theoarichitectural ngerprints clearly

124



Table 15. OpenSPARC processor parameters.

Core Single 64-bit 6-stage scalar pipeline

4-way hardware multithreaded

1 ALU, 3 read, 2 write port ECC-protected RegFile

1 load, 1 store cache ports

1GHz core frequency
L1 Cache 16KB I-cache, parity-protected

8-KB D-cache, write-through, parity-protected
L2 Cache 3MB 12-way associative, 4-banks

Uni ed, ECC-protected, 7-cycle hit latency
Memory  256MB 400MHz DDR2 DRAM

128 cycle latency

identify when one or a small number of paths in the designroieginiss timing. Therefore, microar-

chitectural ngerprints do provide the high fault obseriliy needed for the FIRST methodology.

7.5.2 \Wearout Detection with FIRST

The previous section established that microarchitectingérprints are clearly suf cient for
detecting errors from timing faults in the thread switchidoglhe next question is whether archi-
tectural ngerprints on a processor core running test paogy are also suf cient for error detection

with device wearout.

Methodology

This section describes the methodology for comparing tletecnechanisms using validation
test programs running on a single processor core. The mocesrameters match those of the
shipping Sun Niagara T1 processor and are summarized ie Tabl

Because the number of combinations of faults and procesatassis enormous, a sampling
methodology is employed to estimate the behavior of diffedetection mechanisms over a range
of wearout scenarios and test programs. Wearout faultsimrdated in the baseline path timing
for each unit to produce sixty-four instances of wearoutjescribed in Section 7.4 (each instance
starts with a different random seed and adjusts the delayl paths in the unit). Error injection
is enabled as the processor entersrtteen function of each test program, following execution of

reset and initialization code.

125



Table 16. The test programs used to evaluate FIRST.

Name Dynamic Test Description
instructions

dram _mt_4th _loads 3,610 DRAM load/store misses

_attrib - _many
exu _rf _local 39,538 Local windowed registers and bypass network
mt_alu _ldx 1,264 Combination of ALU, load, and endian programs
mtblkldst  _loop 2,564 Back-to-back block loads/stores
mt _Ifill L2 1,582 I-cache lls/misses
mt_raw 2,018 Combination of read-after-write programs
tr _tixccO 4,232 Integer condition code traps

Each of these wearout instances is executed with seventihned#tded validation test programs
supplied with OpenSPARC T1. These programs, summarizeahkile1.6, are selected to test arange
of units in the processor. The test programs are written ifcinigectural veri cation. While they
focus on exposing improper operation architecturally,tést programs are not speci cally written
to activate and propagate all possible errors to architelcgtate. Therefore, with more targeted
test programs, wearout faults could potentially be aaivatt lower degrees of stress and additional
faults can be directed towards architectural state. Inghistion, architectural ngerprints can
improve their coverage, approaching that of microarchitet ngerprints.

For executions where all threads of the program complegecdmparison of ngerprints with
a error-free model is reported after the last thread complahd the scanout chains have shifted out
completely. Microarchitectural ngerprints are gatherad all latches within the unit, as well as
a boundary scan on all outputs of the speci ed unit. Archited ngerprints are gathered on all
architectural register and store value/address retire&snas described in Chapter 3. For executions
where the processor ceases executing on at least one threa@sults of ngerprint comparison
(both architectural and microarchitectural) are repoftéidwing a timeout of 10,000 clock cycles
of inactivity, which is well beyond the maximum latency erpaced by normal on-chip or off-
chip operations. The timeout condition, which is a trividi#t sometimes effective—detection

mechanism, is also reported separately.

126



Baseline wearout error detection

The detection coverage is evaluated for three error detectiechanisms: microarchitectural
ngerprints, architectural ngerprints, and a simple time.

Figure 41 reports the results for the test programs, avdrager a range of wearout conditions.
Along the horizontal axis, the processor is stressed byedsang the clock period. The level of
stress ranges from zero, where the clock period is equakttigest path in the unit, up to 200ps.
The vertical axis indicates the fraction of executions irickiran error was detected by each detec-
tion mechanism. This measure is the coverage of the detettrhanism over these test programs
and faults. This fraction is out of 448 runs per clock periodédach unit (sixty-four instances of
wearout and seven test programs).

In each plot, the microarchitectural ngerprint curve alsstablishes the bound for “perfect”
error detection. Microarchitectural ngerprints have Iigbservability of errors propagating to
a latch. In practice, these ngerprints show the same behaas perfect detection, modulo the
extremely rare instance of aliasing. This behavior has bedred in the simulator, where software
can distinguish between masked and true activations &rareach fault.

The microarchitectural ngerprint curve is not constantuatty because, although path delay
faults can be activated at a longer clock period, they cam laéslogically masked and therefore
produce the same ngerprint as an error-free execution,emsomstrated in the previous section.
Hence, the curve should monotonically increase from zerada#ional faults activate at higher
stress levels. Furthermore, other detection mechanisittsjmperfect coverage, will fall below—
or at best, match—the microarchitectural ngerprint curve

The high-order result to observe from each of these graptimisrst, with the exception of
exu _alu unit, the architectural ngerprint curve maintains only mal gap between itself and
the microarchitectural ngerprint curve. Second, the &eatiural ngerprints quickly converge to
the high level of coverage of microarchitectural ngergsinThis result indicates that architectural

ngerprints are as effective as microarchitectural ngengs in detecting wearout in the FIRST
framework. That is, for the same level of stress, architattungerprints are as effective as mi-

croarchitectural ngerprints in detecting wearout.

127



s

b

(a) byp (b) exu _alu

LB
LB

(c) fel (d) fdp

'

¥

'

(e) swil

Figure 41: Baseline wearout fault detection coverage for mi croarchitectural ngerprints,

architectural ngerprints, and timeout mechanisms. As eac h unit's clock period is reduced,
the number of wearout fault paths increases. Coverage is mea sured as the fraction of total
executions where the mechanism detected an error.

Next, this thesis examines each unit's results in detailr tRe execute bypass unit in Fig-

ure 41(a), wearout directly corrupts architectural statkies within the bypass network. Archi-

128



IR

Figure 42: Wearout fault coverage for architectural ngerp rints and the exu.alu unit, sepa-
rated by test program. The mtblkldst _loopand mt_I Il _L2 fail to activate any true faults in this

unit, while the remaining programs activate true wearout fa ults at varying levels of stress.
tectural ngerprints capture virtually all detectable @s with a low level of stress. This will be
further analyzed in the following section. The lack of tim&until high levels of stress also indi-
cates that the processor continues to run the test progréimsilent data corruption effects, despite
the injected errors.

Similar results are shown for the execute ALU unit in Figui€b). Timeouts are simply not
triggered at all for faults within the tested clock periodga on this unit. However, this unit shows
two other interesting behaviors. First, no faults are &iggl at less than 50ps of stress. This implies
that the longest paths in the design are not true criticdigathey cannot be logically activated,
or at least cannot be activated with these test programs sibest logic paths are used to check
for valid virtual memory addresses for calculated load aedgskes (architecturally, this logic checks
the so-called “VA-hole” in SPARC v9 [113]). The path lengihsthe baseline case for this logic
span to over 75ps before another exercised path is uncovBehuse the selected test programs
purposefully generate valid virtual memory addresses, [tigic is never activated. The next true
longest paths are operand datapaths, starting at 50-75ps8 thee longest paths. These paths are
exercised by the test programs.

Second, the execute ALU unit exhibits a stair step-like blmdor the architectural ngerprint

coverage. This behavior is strongly correlated with theviddal test programs. To analyze this
129



further, Figure 42 shows the architectural ngerprint ad¢ien coverage for the execute ALU unit,
separated by program. Most of the programs show the faniikdwavior of sharply increasing
coverage after a speci c stress level. However, as showmeirgure, two programsmt _Ifill 12
andmtblkldst  _loop , are unable to propagate any true fault activations to tctiral state,
regardless of the evaluated stress levels.

The stair step behavior for the execute ALU unit is not, havea de ciency in architectural
ngerprint coverage. Only if the coverage were zero ovetedt programs should this be a concern.
For error detection to succeed, ordgeprogram is necessary to activate and propagate each fault
site. Furthermore, this situation can be recti ed by wigtimore effective test programs that trigger
the critical paths to architectural state when coveragews |

The fetch control logic shown in Figure 41(c) differs frone tbrior two units because itis a pure
control path. In this unit, the microarchitectural and @&exttural ngerprints closely follow each
other in fault coverage. Because errors in the fetch stagdilaly to directly affect architectural
state. Furthermore, beginning at 50ps below the longeksptineouts are observed as well. This
indicates the occurrence of deadlocks in the processoghaghiould be unsurprising because the
fetch control logic is critical to fetching and executingtructions.

The fetch datapath unit shown in Figure 41(d) behaves diypila the exualu datapath logic.
Microarchitectural and architectural ngerprints showang equal coverage. However, because
every program necessarily utilizes PC+4 and PC+branctetolfgjic, there is no stair step be-
havior evident in this unit. Furthermore, the processottinoes fetching instructions—at invalid
addresses—without immediately incurring deadlocks. Qmifen the processor is stressed hard
enough (past 150ps) does the fetch logic fail badly enouglatse timeouts.

Finally, the thread switch logic shown in Figure 41(e) shodentical behavior for all three
of the detection methods. This behavior results becauspraictice, the thread switch logic is
extremely sensitive to timing faults. The switch logic csts of multiple sparsely encoded state
machines holding thread state (runnable, stalled, didald&.) which can be easily corrupted
by any propagated error. Unknown states are not handledeirRif.; therefore, the processor
simply ceases scheduling the thread when it reaches ardirstate. Hence, the processor reaches
a deadlock scenario almost instantly. This situation ifyedstected by both types of ngerprints

and by a simple timeout. This result differs from the prioctg® because new critical paths are
130



formed with wearout, thus affecting execution even at lol@eels of stress.

In summary, architectural ngerprints maintain coveragemmnthat of microarchitectural n-
gerprints for at least one test program in all studied urfistthermore, architectural ngerprints
converge to the same coverage as microarchitectural migpsp making them as powerful as mi-

croarchitectural ngerprints for widespread wearout déte.

Detecting Silent Data Corruption

Next, this thesis analyzes the wearout detection resulis.previous section shows that errors
can be detected by timeouts alone in most units, if the peaceis stressed hard enough. An
interesting question is how far along will the processotticare retiring values architecturally under
stressed conditions—potentially with silent data coriupt This separates out the situations where
architectural and microarchitectural ngerprints are ae@from where a simpler mechanism, such
as waiting for a timeout, suf ces.

Figure 43 shows the contribution of architectural ngenpsi marked with triangles, when silent
data corruption has been detected through a direct artalnigéécngerprint mismatch rst, but ex-
cludes other cases. The excluded cases are when procesesiatilt in execution (e.g., deadlocks
on at least one thread) or the processor executes moredtsirsi than expected (e.g., enters an
in nite loop). This separates the sole contribution of stldata corruption detected by architectural
ngerprints. The microarchitectural ngerprint, unchaed from the prior gure, again serves as
perfect detection, while timeouts which are also unchangkeow a simpler detection method.

The results are divided into two distinct camps. First, tkecate bypass, execute ALU and
fetch datapath results in Figure 43(a)/(b)/(d) show no gkan the coverage of architectural nger-
prints. This result is expected because errors in thess argthighly likely to rst result in retiring
incorrect data values without initially affecting the canit ow of the program—and consequently,
the number of instructions retired.

By contrast, the fetch control logic and thread select lagi€igure 43(c)/(e) both show a steep
decrease in the coverage of architectural ngerprints wibeking solely at silent data corruption.
For the fetch control logic, this occurs in tandem with theerin detected timeouts. The rise of
architectural ngerprint detection indicates that the ggssor rst shows moderate levels of silent

data corruption in one test program, but as the stress lemedases, the processor instead succumbs
131



st ¥

(a) byp (b) exu _alu

4

. M_/J—‘OJ

(c) fel (d) fdp

$ 4o

P

(e) swil

Figure 43: Coverage of wearout faults where the contributio n of silent data corruption de-
tection with architectural ngerprints is isolated. Micro architectural ngerprints and timeout
results are unchanged.

to timeouts. For the thread switch logic, because the psotds so sensitive to changes in this

logic, timeouts dominate. The small fraction of programat tthow silent data corruption occur

132



only because timing faults affect the stall signal pathsictvtemporarily re-enables the thread.
However, the affected programs universally end in a timeout

In summary, these results show that the strong detectiattsder architectural ngerprints are
only partly due to directly detecting silent data corruptidhe contribution of architectural nger-
print mismatches due to “collateral damage”, where theljpipeenters a timeout, is an important
source of mismatches at the end of execution. While thesetefican be detected by a simple
mechanism such as an instruction timeout, detecting gileta corruption provides the earlier ob-
servation of wearout-induced timing faults at lower levelisstress that is needed to match high

observability mechanisms such as microarchitectural rpgats.

Detection with Architectural Test Programs

Because of the promising device wearout detection restitts avchitectural ngerprints for
wearout detection, this thesis now explores whether theshetection can be performed by simply
looking at architectural outputs of a program. This mode mération has the advantage that, if
the architectural state can be easily exposed for compaissoftware, this technique can be used
on existing processors without additional hardware (engerprint compaction). While simpler,
the main disadvantage of software-based architecturat detection is additional masking by the
program. Because there are intermediate results in epeetiialues later overwritten in registers
and memory—the nal architectural state is subject to pangilevel masking. Therefore, the cov-
erage of software-based architectural error detectionldHze strictly less than or equal to that of
architectural ngerprints, differing by the degree of pram-level masking.

A second disadvantage of the software-based archite@rtnal detection is that in order to per-
form the comparison, the architectural registers and megmmust remain accessible by software.
However, the nature of the FIRST procedure can make thisaatigal. If the core has deadlocked
after attempting to run a test program in marginal cond#tjahe core may require a reset before
registers and memory can be read for comparison. Unfoelypaieset procedures typically cause
the processor to run initialization code that overwritegtipas of architectural registers and mem-
ory. Therefore, this low-cost error detection mechanisny beimpractical. However, to determine
error detection capabilities of this mechanism, this eatidun optimistically assumes that the com-

plete, nal architectural register and memory state rermaiccessible following the test.
133



For this evaluation, the nal architectural register andnnoey state of the program (either by
timeout or by completing execution) is assumed accessipke $oftware comparison mechanism
that compares the processor's architectural state to-Bgereference outputs. A C program accu-
mulates the register updates produced by the OpenSPAREgz@mrtunder the range of stress levels
into architectural registers and a memory image and corsjihet image with the same program's
architectural output during error-free operating colais.

Figure 44 shows the coverage of device wearout over the sgeedoads and instances of
wearout using the three detection mechanisms presentét ead the additional proposed software-
based architectural error detection mechanism. As expettie coverage is consistently less than
or equal to architectural ngerprint coverage for a giveress level. For the fetch control logic,
fetch datapath, and thread switch logic, the detectionhilifies are almost identical to architec-
tural ngerprints. This outcome is unsurprising becausesthunits produce serious control ow
errors in execution when subjected to faults. By contr&gt,ypass and execute units continue to
execute the program with SDC when subjected to faults. Isgtlmmits, the nal architectural results
are more clearly masked by the test programs. For exampietvamtest programs manage to avoid
partially program-level masking with the execution unitii§ difference can be largely eliminated
by re-writing test programs that program level masking.(dag preserving intermediate values in
memory) at the cost of longer execution time and a largeragfgiut for comparison at the end of
execution.

In summary, this result shows that software-based ar¢hit@cerror detection is almost as ef-
fective as architectural ngerprints for early widespredel/ice wearout detection. The results can

be further improved with test programs that avoid masking.

7.5.3 The Persistent Nature of Wearout Faults

While radiation-induced soft errors exhibit high degreésasking on architectural, microar-
chitectural, and logical levels in RTL simulation, weardatilt models show high coverage with
architectural detection mechanisms. This section quively discusses the differences between
the two fault models and explains the disparity in architestevel fault coverage.

The wearout faults have two key properties that make themere@msdetect architecturally than

radiation-induced soft errors: higher spatial distribatiof faults and higher temporal repetition
134



$ft o
L

(a) byp (b) exu _alu

kot

LI

"‘?‘M"/J—‘“

(c) fel (d) fdp

LS A

(e) swil
Figure 44: Coverage of wearout faults with software-based a rchitectural error detection.
Microarchitectural and architectural ngerprints and tim eout results are unchanged.
of the same underlying fault. The wearout faults are bestrided asintermittentfaults in the
literature [12]. The intermittent faults repeat, given tiwerect environmental conditions and input

stimulus. This behavior is in contrast to radiation-indiie®ft errors that strike once and affect a

135



L L

Figure 45. The number of true activated paths as a function of stress level for each unit.

small number of state bits.

Spatial distribution. Because modern designs typically have several critichispsiat are similar

in length and levels of wearout are thought to be roughlyarnifacross a unit, multiple fault sites
can appear simultaneously when reducing the guardband.iridieases the chance that at least one
erroneous path remains unmasked.

Figure 45 quanti es the average number of unique paths tieaéwruly activated for each unit
as a function of stress level. As the stress level increadlasnits show a clear trend of increasing
numbers of paths that fail to meet timing. This number quigkiows to hundreds of paths with
small levels of stress, which greatly increases the chaoicas error being made visible architec-

turally.

Temporal Repetition. Wearout faults are also activated when the environmenthlagical con-
ditions are ful lled—situations that can occur repeatedlying execution. This repetition provides
further opportunities for the errors to avoid further magkon logical and microarchitectural levels.
Figure 46 shows, for all true activated errors in each uhig, distribution of time between
successive activations for a stress level of 200ps. Thisureandicates the frequency at which

faults are reactivated. In stark contrast to soft errorsgr@hadiation-induced errors are typically

136



i

(a) byp (b) exu _alu

(c) fel (d) fdp

(e) swl
Figure 46: Histograms showing the distribution of activati ons (in cycles) between succes-
sive true activations of the same path over all test programs , Separated by unit.

single-event upsets, a majority of wearout errors reocadthinv16 cycles. This provides repeated

opportunities for an error that may have been masked to apgesn architectural error.

137



Figure 47: Detection coverage for a single wearout error sit e in each unit for microarchitec-
tural and architectural ngerprints.

7.5.4 Isolated Wearout Faults

Section 7.2 outlines an argument for expecting multiplejespread wearout faults to grow
concurrently within a processor. However, it is fair to askatvcoverage is possible if only one
device initially experiences wearout. This study brie yathcterizes the detection coverage for a
single wearout fault.

Figure 47 shows the detection coverage for microarchitact@nd architectural ngerprints
monitoring a single wearout fault. In each simulation (otrex same set of tests as in the prior
section), a single path is chosen to be the most critical jpattie unit, uniformly selected over all
paths in the unit. The stress conditions are set to trigghrthat path; however, the fault may be
activated repeatedly during execution. The gure only mpouns where an error is truly activated
by the test programs, therefore microarchitectural ngierg are guaranteed to have observed the
error. This ltering procedure eliminates the quality oktkest program as a factor in the result.
When a single error exists, the test program must exercesedirect transition without logical
masking to activate the fault. However, these test programasot designed to activate specic
fault sites, therefore a majority of the executions in thigeziment fail to produce errors.

The results in Figure 47 show coverage of the single weanwoat &r microarchitectural and
architectural ngerprints. Each bar indicates the fractad errors that are detected by each detection
mechanism. The microarchitectural ngerprints are gutgad to observe the errors, except in the
unlikely event of aliasing. By contrast, the architecturgjerprints observe the same errors only

48% of the time, on average. This indicates that architattagerprints are less powerful than

138



microarchitectural ngerprints when only one fault is pees and activated. However, this should
not be taken as a blanket conclusion that architectural rpigets are ineffective in this scenario.
Instead, higher-quality test programs that are speciyoallitten to propagate a wide range of errors
to architectural state can improve the coverage of theseseris is commonly done for functional

tests in manufacturing test.

7.6 Conclusion

This thesis proposed FIRST, an early wearout detectiorepitre. FIRST avoids the complex or
area-inef cient detection mechanisms associated withkijusime error detection by running func-
tional tests and exposing faults by changing the operatimranment (e.g., voltage, frequency,
temperature) of the processor to expose marginal circhisdre affected by the early stages of
wearout. Through an RTL fault injection-based evaluativar@ selection of representative units,
this thesis shows that microarchitectural ngerprints eiffective at detecting errors from both iso-
lated and widespread wearout. Furthermore, architectngarprints are as effective as microar-

chitectural ngerprints for detecting errors from widespd wearout.

139



Chapter 8

Related Work

This chapter places the work from this thesis in the contéx¢lated work and products in the
areas of reliable computer system design using redundactuggan for concurrent error detection
and wearout detection. The ngerprint concept studied is thesis provides lightweight error
detection for errors affecting the processor pipeline ugtoef cient compaction and comparison
of carefully constructed hashes that represent the acthiitd or microarchitectural state updates
produced by a processor over an interval of execution. Fomiges provide a timely and bandwidth-
ef cient mechanism for comparing large amounts of statejsasecessary for making error-free
checkpoints, and checking or testing the correct operati@processor.

This chapter is organized by the applications of ngerminthe Reunion execution model in
Chapter 5 proposes a complexity-effective set of changexisiing non-redundant multiproces-
sor designs that allow concurrent error detection and ergousing architectural ngerprints for
lightweight error detection. Recent developments in comeu error detection and reliable system
design are discussed. The FIRST procedure in Chapter %igwies the use of architectural and
microarchitectural ngerprints for early device wearougtelction by tracking the development of
timing faults by periodically testing processor cores \fithctional tests in marginal operating con-
ditions. The FIRST procedure is compare to recent propdealsompeting and complementary

wearout detection techniques.

140



8.1 Concurrent Error Detection

Concurrent error detection with lockstep. Traditional approaches to concurrent error detec-
tion originate from mainframe designs. Recent IBM zSerigsnfntame designs detect datapath
errors using custom dual-lockstepped pipelines whosdtseare directly compared on every in-
struction [101]. This con guration reaches the ideal lisnitf an architectural ngerprint—minimal
error detection latency, ample on-chip bandwidth, and resibdity of aliasing because values are
directly compared.

The Tandem NonStop approach uses lockstepped commeroizdgsors with chip-external
comparison on the memory bus to detect errors and initidleaak-recovery [16]. Because of
the unbounded detection latency associated with chipreadteletection, the NonStop systems rely
upon software checkpoints of the system state, which regurcustom operating system and ap-
plications.

Instead of requiring custom software for rollback-recgydhe lockstepped Stratus ftServer
supports commodity operating systems on commodity procgds/ performing forward error re-
covery [112]. With this recovery the system can avoid chealys and thus tolerates long detection
latencies; however, the system's integrity is criticallgpéndent upon the existing error detection
hardware to identify correctly the failing unit. Error detien and isolation in the ftServer is per-
formed through a combination internal processor erroragye.g., parity detection) and output
comparison at I/O requests. The system pauses executiomamdetection and continues ex-
ecution with the remaining units, following isolation. Ilhet absence of an error signal or clear
diagnostic evidence of the failing unit, which is likely wisoft errors, the correct execution can
only be determined through voting with triple modular redancy. Such a solution incurs at least
50% higher system hardware costs than dual-modular redtisgistems.

Maintaining lockstep in future systems, even on a singlp,aleiquires ghting increasingly bur-
densome technology trends, with concerns over wire detaggss variations, and defects making
lockstep dif cult to maintain [66]. Furthermore, lockstepquires deterministic execution, which
has increasing validation expenses as systems evolve.eWitahufacturing test typically drives
validation for determinism today, the needs of manufantutest are limited to a relatively short

runtime and a predetermined set of applications under wlgrefontrolled conditions. System-

141



wide validation of asynchronous interfaces, shared compisn(e.g., buses and interconnects), er-
ror handling and correction routines, and thermal contnoddke lockstep increasingly dif cult to

maintain [18].

Redundant Multithreading. In an effort to relax the lockstep requirements, industrd ae-
searchers have investigated a wide variety of redundarntitimebded (RMT) execution. In these
systems, two or more threads execute the same program @adiynah time or space, but do not
require microarchitectural determinism, as is neededdokdtep. Instead, the redundant threads
are required to produce the same architectural resultsidiutecessarily in the same way. The key
differences in these proposals lie with 1) coordinatindiceped inputs across the redundant exe-
cutions and 2) comparing the outputs with error detectiosharisms. Architectural ngerprints
are appropriate for RMT approaches because they only eequihitectural determinism—that re-
dundant executions produce the same results—but spelgi alibw those results to be produced
through different methods.

Within industry, the Tandem NonStop Advanced Architect(M&AA) has moved from lock-
stepped redundant execution to RMT across loosely couptambpsor pairs [18]. NSAA replicates
processors and memory across physically separate unitsoamgares execution through 1/0 trans-
actions at a custom /O controller. As with prior NonStopteyss, a custom operating system
coordinates delivery of external interrupts to the prooesand recovery occurs through software
checkpoints. To keep the redundant executions synchmbmizthe 1/0 level, the processors' spec-
ulation support is disabled to prevent the processors frovdyzing different page faults (which
would appear as erroneous outputs at the 1/O controllerhallyj this system does not support
shared memory.

Marathon everRun servers implement RMT with commodity afieg systems by using virtual
machine monitors to hide the input replication and outputjgarison [63]. The virtual machine co-
ordinates external interrupt delivery by single-steppimgprocessors to predetermined time quanta
and delivering the interrupts only at these points. Erreesdetected at I/O requests, which are
trapped and compared by the virtual machine. As with thedtegped Stratus machines, diagnos-
tics are used to determine the failing unit and executiotshat if possible, continues with working

units.

142



The Marathon, Stratus and the NonStop systems have the comdvantage that they can use
existing commodity microprocessor designs. However, ibssilts in the common drawback that
none can conclusively determine, at a given point in exeaytivhether undetected errors exist in
the core's architectural output because of the unbounded @etection latency. Thus, they depend
on software recovery mechanisms or forward error recov@aydre tolerant of long error detection
latencies, but require custom operating systems or higihwae costs to protect against soft errors
in the pipeline. By contrast, architectural ngerprintsopide a light-weight architectural mecha-
nism to ef ciently and quickly detect pipeline errors at aed point in execution, as is needed for
producing error-free checkpoints. This enables RMT witk-grained hardware-based checkpoint
recovery and OS-transparent redundant execution witloolstep.

Research proposals investigate RMT in two main contextesst,Fiedundant threading within
a single core is studied heavily in recent research [36, I288, 88, 90, 106, 115]. These sys-
tems reuse existing microarchitectural throughput meishas) such as multithreading and specu-
lation to provide redundant execution and recovery in aeshaipeline. The load inputs are typi-
cally replicated through a load value queue (LVQ) which rdsa sequence of loads and replays
them for a consuming thread [88] and outputs are comparedighr direct comparison of stores
(if just detection is desired) or architectural registeluea and stores (if recovery is also desired).
Two main drawbacks of these techniques are the microacthitd implementation complexity and
its resulting validation issues—these techniques and W@ &ll require signi cant changes to an
already-complicated out-of-order processor core—an®€h80% performance penalty of redun-
dant execution on a shared pipeline [106].

Second, researchers investigate redundant executiossames in a chip multiprocessor (CMP) [40,
56, 72, 114], including the Reunion proposal in Chapter 5cdwmpared to within-core RMT, these
proposals have the added burden of replicating inputs antgpaong outputs across physically-
distributed cores. Both of these tasks require signi canss-core bandwidth, matching the band-
width of the L1 cache ports and architectural register lectpy inputs from one core and replay
them for the other, while comparing the architectural otgpiHowever, existing datapaths do not
support this level of cross-core bandwidth, so expensiveée Wwuses must be added and each core
must be modi ed to support the strict input replication (Ly&hd direct output comparison [40, 72].

Furthermore, none of these proposals address redundanitiexein shared memory, which is now
143



a necessary feature for mainstream computer systems.

The Reunion proposal from this thesis addresses the inplitagon, output comparison, and
shared memory problems. Reunion is predicated on the aigenthat in the common case, even
for shared memory programs, two redundant executions agékive the same load values. In the
uncommon case, soft error detection already observesithétisn and rollback-recovery can re-
solve the difference. This leads to a complexity-effectiesign that provides redundant execution
without changing the complicated parts of the microarciitee. Furthermore, with architectural
ngerprints, the error detection latency is timely enougtpermit ne-grained recovery with exist-
ing speculation mechanisms, while the bandwidth overheadbe satis ed with existing on-chip
interconnects. The design presents a single logical psocés the system, which means that soft-
ware changes are not necessary to permit redundant execktiwally, because the microarchitec-
ture requires small changes to portions of the pipeline actie off the critical path, the design also

allows a dual-use redundant and non-redundant design ittighihcremental hardware cost.

Comparison Bandwidth Reduction. Researchers have looked at reducing the comparison band-
width. For detection-only operation, researchers havpgsed directly comparing store addresses
and values [72, 88]. Alternatively, for recovery, the deatid dependence-based checking elision
(DDBCE) compression in [40] follows errors that propagdietgh architectural data dependen-
cies. Only results terminating a dependence chain must bgpa@d. However, chains can be
ended early by instructions that potentially mask an erttwgrefore, the authors are only able to
elide about 20% of instruction comparisons in SPEC CPU 208@hitectural ngerprints eas-

ily reduce comparison bandwidth by orders of magnitudeutjnocompaction within and across

instruction results. This compaction enables comparisonsa cores within and across chips.

Self-checking and hardened logic. An alternative to redundant execution for soft error priec

is to build structures that are more resilient. As early a&1850's, architects have implemented
various forms of self-checking such as parity predictiod egsidue codes in arithmetic units and
processor logic of mainframe systems [100]. These teclesiguovide protection for speci ¢ logic
units within the pipeline. However, such designs prove topeasive for commodity processors

because of their impact on clock frequency and area overhead

144



Circuit-level protections, such as soft error-tolerarithes, also provide protection across the
pipeline with minimal timing overhead by time-shifting cbmational logic outputs across two
latches [70]. However, this design provides protectiondiidches that propagate to latches in the
pipeline and can more than double the latch area overhead.

By contrast, architectural ngerprints, which inspecttstat the retirement stages of the pipeline,
provide comprehensive detection of architectural erdoas dccur within the pipeline without unit-
speci ¢ protection. The cost of this protection, however,that redundant execution support is

necessary.

Signature-based error detection. Researchers have looked at using signatures of control ow
for microprocessor error detection [119]. This technigepahds upon compiler-inserted data to
compute signatures of legal control ow graphs, along witlvatchdog processor that does an on-
line comparison of actual control ow to that speci ed in tisggnature. Unfortunately, this work
cannot easily be extended to data values, because comgélerenly determine allowable data
values in limited situations. Architectural ngerprintsy contrast, are generated by hardware at
runtime, and are compared with a redundant unit and canftinerdetect errors in both control
and data ow. In both cases, the signature-based detectemhamisms require determinism on the

architectural level to avoid false mismatches.

Architectural Fingerprints. The TRUSS project at Carnegie Mellon University uses agchit
tural ngerprints to compare redundant processors in ailliged shared memory machine [39].
Recently, other researchers have also applied archiggcngerprints to allow aggressive over-
clocking [41] and to allow redundant core pairs to be decedi@nd separated across cores in
Reunion-based process in a CMP [56]. These techniques siloultaneous improvements in reli-

ability and single-thread performance over non-redundgsitems.

8.2 Wearout Detection

This section discusses the related work in early wearoeictieh and processor manufacturing
test. Existing design-for-test (DFT) hardware addresga®hlem similar to that faced by nger-

prints, namely ef cient compaction of large amounts of etiat allow ef cient and fast detection of
145



errors within that state. The wearout error detection gitsrto nd evidence of faults in a processor
core, as done in traditional manufacturing test, exceptdbemust occur at runtime in a customer

environment instead of in a high-volume tester.

Scan and scanout. Modern microprocessors include full-hold scan and pacti@ scanout tech-
nology [55]. The scanout hardware forms the basis of theoaichitectural ngerprints discussed
in Chapter sec:mf. Full-hold scan chains link all pipeliaéches in a chain that can then create
a snapshot of the global latch state, which is then scannedTtwe scan operation provides high
observability of internal state and is used in manufactutést and debug, however it is destructive
(the core clock is paused, original latch values are ovéewriand execution cannot continue), re-
quires expensive testers to control the test, and has higiiwbdth and storage overheads. Scanout
chains are added to existing logic, providing a non-destrei@and compact summary of execu-
tion over time [24, 55]. Scanout can operate without a testhich enables runtime applications.
However, even with highly controlled environments and endted testers, non-determinism in the
circuit under test can cause both scan and scanout to faleelgre an error [80].

Researchers have also looked at scanout-like devices flinemrror detection [107]. Unlike
microarchitectural ngerprints, this techniqgue compasesonstant stream of monitored nodes to a

reference model. Hence, this technique cannot toleratedhaleterminism that plagues scanout.

Output compaction and non-determinism. Researchers have investigated output compaction
and non-determinism tolerance techniques in the contertasfufacturing test. With these tech-
niques, the system under test runs pre-determined tesirgemt functional tests in an automated
tester. Test output is typically compacted with parity {lige structures [86], LFSRs, and MISRs [13,
52]. By determining a priori when non-determinism will behiited in output sequences, non-
deterministic signals can be masked out [80] or correcteti t&chniques derived from coding
theory [69] if the test output is known and the number of netedministic signals is small. Mi-
tra and Sup Kim's X-compact technique is applied in this ihes a strong spatial compactor for
architectural ngerprints, without taking advantage af ¢orrection properties.

Compaction researchers also study designs that guarameeallasing in the signature output.

Chakrabarty et al. investigate spatial output compactiah mero aliasing [26]. A key limitation

146



to this work, however, is that the error space must be knowar fi the test in order to achieve the
guarantee, a task that becomes dif cult when large numbieesrors are expected concurrently.
The key difference between these compaction techniquesrécrdarchitectural ngerprints
is using the designer's knowledge of the circuit to mask eslthat are non-deterministic before
they reach the compaction stage. The output masking andatimm techniques focus on blocking
non-deterministic inputs at the input to the compactor gipecial masks for each test. If non-
deterministic sites are identi ed beforehand, microamttural ngerprints can eliminate the non-

determinism without needing customization for each test.

Wearout detection. Recently there has been much activity in the area of predjiend detecting
the onset of wearout. Srinivasan etal. [111] propose anrirafly derived environmental model for
predicting circuit failure and enabling spare units. Erngairmodels provide a statistical prediction
of wearout's onset; however, they do not directly observanmet on the core and therefore may
be overly conservative. Techniques such as sparing caroirphe useful operating lifetime of a
processor by replacing failing units with spare, undamagets.

Techniques such as Razor [33] and circuit failure predicf} allow circuits to monitor them-
selves constantly for timing violations at runtime using@pl double-sampling latches. The Razor
technique allows dynamic voltage scaling to reduce powdt the circuit begins to produce in-
correct results. Circuit failure prediction aims to extgmdcessor lifetimes by gradually increasing
the frequency guardband when device wearout begins to ,atuig absorbing the slowdown and
preserving correct operation.

Blome et al. [19] inserts delay detection units throughbet pipeline to sample, measure, and
track the progression of delay from device wearout. In paldir, this technique presents a simple
hardware monitor that accumulates and averages delayssattr® chip to identify gradual slow-
down. Similar work has been proposed with canary circuité #re designed to fail before other
devices on the chip [87], however these techniques rely®ndhary circuit to be stressed as heavily
as the rest of the chip. Furthermore, the canary circuit mxjs¢rience the same degree of wearout
as the most vulnerable devices in the design.

Built-in self-test (BIST) techniques implement test haadevdirectly in the design, avoiding the

need to propagate errors to external pins and reducing fiendence on external testers [1]. These

147



structures constitute a xed hardware overhead that iscallyi only used during manufacturing
test and is otherwise disabled at runtime. Therefore, igales that can reuse these structures at
runtime are extremely attractive.

Shyam, et al. [98] recently proposed a continuous onlineTBtSdetect failures in the eld
using distributed test vectors that are pushed throughmnajroarchitectural components on idle
cycles. Their technique requires custom BIST hardwaretoact®ons and test vector ROMs to be
designed for each piece of the design. While microarchitatt ngerprinting requires designer
knowledge for each unit, it also has a common architectuaedan be used throughout the design.
This allows a single common set of rules for design engintefsliow.

Li et al [59] propose using existing scan chains and extbrsabred tests to periodically run
thorough structural and functional tests on the core miclotecture at runtime in a procedure
called CASP (Concurrent Autonomous chip self-test usirayesk test Patterns). The procedure is
initiated similar to FIRST by periodically taking cores -difie and running self-test programs and
structural test patterns through scan chains, using ardaddecontroller. Because testing runtime
is more relaxed than in high-volume manufacturing testsedected tests can have high coverage
that meets or exceeds that of traditional manufacturing t#&s proposed, CASP does not reduce
the frequency or voltage guardbands, as is done in FIRSTevewdoing this could improve timely
detection of wearout before it affects execution at nornparating frequencies and voltages.

The FIRST procedure presented in this thesis provides amative and potentially comple-
mentary method for identifying and predicting wearout. Wrectural and microarchitectural n-
gerprints provide a compact method for storing the outcofreetest, which avoids program-level
masking and speeds the execution of functional tests. FiR®E identify developing faults earlier
and more precisely by proactively removing the guardbasag@osed to waiting for runtime latch
timing failures) and looking broadly across the design fual microarchitectural and architectural
errors (as opposed to sampling a small number of signalsih€mmore, analysis and storage of test
results from FIRST can be stored and processed in softwéiehwimpli es long-term tracking of
device wearout.

When comparison is performed with architectural ngerpsiar architectural state comparison,
FIRST is limited to running functional test programs. Thisitation has the drawbacks associated

with functional test fault coverage, which is traditiowalbwer than structural tests in the manufac-
148



turing test regime. However, this concern may be unjustifethstead of emerging as isolated path
delays, wearout appears a widespread slowdown simultalyeaffiecting a multiple paths at once.
In this situation, as shown in Chapter 7, even a small numbshart functional veri cation tests

are effective at revealing widespread device wearout tctuirally.

149



Chapter 9

Conclusion

As CMOS technology continues scaling to smaller dimensiaggressive processor designs
are widely expected to confront increasing rates of both ewbrs and device wearout. Without
techniques to detect and recover from these errors, mimcepsors will become increasingly unre-
liable. This thesis develops the concept of ngerprintsetedt soft errors and device wearout in the
processor pipeline. Architectural ngerprints are sigmas of in-order architectural state updates
collected during execution by a small unit added at theawtemt stages of the pipeline. These

ngerprints provide lightweight detection of architecalierrors over a chosen interval of execution
by a simple comparison. Microarchitectural ngerprintdiné existing design-for-test hardware to
collect an in-depth summary of internal microarchitedtstate updates. These signatures provide a
higher level of coverage for internal nodes as comparedduaitactural ngerprints; however, with
more stringent requirements for determinism.

This thesis investigates the design and implementatiorcbitaectural ngerprints in detail. The
key results of this study show that architectural ngerpsiprovide effective lightweight detection
architectural errors through soft error injection in a coenomal processor RTL model. Furthermore,
synthesis results demonstrate that hardware for archisdcngerprints requires less than 4% of
the logic area of an already-simple commercial scalar pipelA hash design study shows that the
combination of an X-compact-like spatial compactor and &Rltemporal compactor yield an area
and timing-ef cient implementation with aliasing propes approaching those of an ideal cyclic

redundancy check.

150



This thesis also shows two applications for ngerprintstthelp preserve reliability in micro-
processors. The Reunion execution model provides a formaaidwork for complexity-effective
redundant execution in shared memory systems to provideeswoir tolerance. This study shows
that the same mechanism needed for soft error detectiorhitectural ngerprints—can be ap-
plied to detect input incoherence during redundant execufrurthermore, with simple changes to
the operation of the cache controllers, the execution mpeehits correct redundant execution in
designs with shared memory, while avoiding changes to thepticated system components such
as the out-of-order execution, cache coherence protoedlreemory consistency model. A cycle-
accurate simulation-based evaluation of a chip multissce shows that Reunion incurs a modest
5-6% performance overhead over more complicated conduereor detection designs with strict
input replication.

Finally, this thesis proposes and evaluates the FIRST duweeto detect early signs of de-
vice wearout. FIRST places the processor in marginal ojpgraonditions to identify changes,
over time, in the speed of devices in the pipeline. Fingatprprovide a fast, bandwidth-ef cient
mechanism for comparing the results of these repeatedderistime. The results show that mi-
croarchitectural ngerprints are effective at observingthb single and widespread wearout fault
development, while architectural ngerprints are as dffecas microarchitectural ngerprints for

detecting widespread wearout fault development.

9.1 Future Work

The work presented in this thesis opens new questions thatpa for investigation by future

researchers.

Reunion. The Reunion execution model has been thoroughly investigir parameters on to-
day's and near-future chip multiprocessors with shorteites between cores and precise-exception
rollback. However, the design tradeoffs can change in aygiem architectures, such as distributed
shared memory systems. In such systems, the latency befweesssors is orders of magnitude
higher, while the bandwidth is lower, therefore ngerprastmparison intervals must grow commen-

surately. Furthermore, when processors include checkpapabilities they can potentially execute

151



more instructions between comparisons, which opens updhsilplity for additional data races
and the need for ef cient rollback-recovery protocols. e evidence that indiscriminate appli-
cation of the unoptimized Reunion recovery protocol seffipimpacts performance [56], however
appropriate changes to checking and recovery should ba@bleninate this loss.

Reunion is primarily motivated by the need for reliable axem. However, the current im-
plementation will roughly require double the processor poludget and yield less than half the
performance of two individual cores. Paceline [41] invgstes over-clocking redundant cores in a
slipstream-like con guration to improve performance. Re&un can be applied to do similar aggres-
sive execution at different voltage and frequency cornéfalving the dynamic power at constant
performance, to match non-redundant power, is an unrieadjetil, but the overhead need not be
twice the non-redundant power.

Correlated failures in redundant cores with aggressivewgian are also a concern. However,
the cores need not be identical for several reasons. Thesdisiolg trend of within-die variability may
be a blessing in disguise, heterogeneous chip multiprocessan naturally avoid some correlated
failures, and sparing mechanisms for lifetime reliabilibay provide enough diversity to avoid
correlated failures. Furthermore, running one core withievamnservative margins than the other
will reduce power saving, but can also change the intermtittgilures enough to be consistently
detectable. If these failures are reproducible, predicadso may be used to indicate when more
conservative execution is needed. The correlated failwasant further studies to characterize

how processors actually fail—gracefully degrade or failugitly—in marginal conditions.

FIRST. FIRST has a number of avenues for future work. The generalamion between wearout
onset and changing architectural ngerprints has been nradkis thesis. However, the model
can be strengthened to yield actual predictions about ttenerf wearout, time left before hard
breakdown, both inferred from changes in the ngerprinthitime and environmental settings.

In addition to predictions about failure time, the inforinatgained from FIRST can potentially
extend the lifetime of failing processor components. Thawgin of many wearout faults has been
shown to be dependent on environmental conditions (e.dtage and temperature). Therefore,

when developing wearout faults are detected, the procesatage and frequency can be dropped

152



to more-conservative set points. In this way, performarmecebe traded for longer processor lifetime
from both the combined bene ts of both an increased guardizend slower fault growth rates.

FIRST with microarchitectural ngerprints depends hegwh the microarchitecture remaining
a constant over time (except for wearout). However, lifetiend defect-aware processors will
change over time as spare units are swapped in for failing.ulMiethods need to be developed for
tolerating a microarchitecture that recon gures with tiche to repair. By contrast, for architectural
ngerprints, the FIRST procedure should be cognizant ofroacchitectures that contain spare units
and ensure that errors in redundant and spare units can éetetkt The impact on FIRST of a
microarchitecture that changes over time should be iryaistd.

More information on wearout of non-critical paths can beagkd from FIRST than just the
initial change in a ngerprint's signature at speci c cotidn. The proposed FIRST procedure
only stresses the processor core until the rst mismatchvéier, there may also be “plateaus” of
path lengths where, at a stress level higher than the rstatige mismatch, the ngerprint again
becomes a stable value—different from the error-free valyet still stable. Assuming variability
does not destroy this opportunity; additional evidence efmut can be ascertained for shorter

paths that never slow down enough to become critical patttssédoentering hard breakdown.

153



References

[1] Miron Abramovici, Melvin A. Breuer, and Arthur D. Friedam. Digital Systems Testing and

Testable DesignlEEE Press, revised printing edition, 1990.

[2] Mridul Agarwal, Bipul C. Paul, Ming Zhang, and Subhashditra. Circuit failure prediction
and its application to transistor aging. Rroceedings of the 25th Annual IEEE VLSI Test
Symposium (VTS-0MWay 2007.

[3] Anastassia Ailamaki, David J. DeWitt, Mark D. Hill, andaid A. Wood. DBMSs on a
modern processor: Where does time go?Tthe VLDB Journalpages 266-277, September
1999.

[4] Haitham Akkary, Ravi Rajwar, and Srikanth T. Srinivasa@heckpoint processing and re-
covery: Towards scalable large instruction window progcess In Proceedings of the 36th

Annual IEEE/ACM International Symposium on Microarchitee (MICRO 36) Dec 2003.

[5] Guido Albertengo and Riccardo Sisto. Parallel CRC gatien. IEEE Micro, 10(5):63-71,
Oct 1990.

[6] AMD Corp. BIOS and Kernel Developer's Guide for AMD NPT Family OFh Ryssors
revision 3.04 edition, Dec 2006.

[7] AMD Corp. AMD Opteron Processor Product Data Sheetvision 3.23 edition, Mar 2007.

[8] Hisashige Ando, Ken Seki, Satoru Sakashita, Masatostard, Ryuji Kan, Kenji Imada,
Masaru Itoh, Masamichi Nagai, Yoshiharu Tosaka, Keiji Tagka, and Kichiji Hatanaka.
Accelerated testing of a 90nm sparc64 v microprocessordatran ser. IrProceedings of

the 3rd IEEE Workshop on Silicon Errors in Logic — SystemdiféSELSE-3)Apr 2007.
154



[9] Artisan ComponentsTSMC 0.18 m Process 1.5-Volt (Low-Voltage) SAGE-X Standard Cell
Library Databook 3.0 edition, Feb 2002.

[10] Todd M. Austin. DIVA: A reliable substrate for deep suienon microarchitecture design. In
Proceedings of the 32nd Annual IEEE/ACM International Sysiyom on Microarchitecture
(MICRO 32) November 1999.

[11] Alejandro Avellan and Wolfgang H. Krautschneider. laaep of soft and hard breakdown on
analog and digital circuitdEEE Transactions on Device and Materials Reliabjldy4).676—

680, Dec 2004.

[12] Algirdas Avizienis, Jean-Claude Laprie, Brian Ralidand Carl Landwehr. Basic concepts
and taxonomy of dependable and secure computBBE Transactions on Dependable and

Secure Computindl(1):11-33, Jan-Mar 2004.

[13] Carl Barnhard, Vanessa Brunkhorst, Frank Distler, @#warnsworth, Brion Keller, and
Bernd Koenemann. OPMISR: the foundation for compressedGAVéctors. InProceed-

ings of the 2001 International Test Conferen@etober 2001.

[14] Luiz Andre Barroso, Kourosh Gharachorloo, and Edouudnion. Memory system char-
acterization of commercial workloads. Rroceedings of the 25th Annual International Sym-

posium on Computer Architecture (ISCAages 3—14, June 1998.

[15] Luiz Andre Barroso, Kourosh Gharachorloo, Robert Moidaa, Andreas Nowatzyk, Shaz
Qadeer, Barton Sano, Scott Smith, Robert Stets, and Berh&seg Piranha: A scalable
architecture base on single-chip multiprocessing?rioceedings of the 17th Annual Interna-

tional Symposium on Computer Architectutane 2000.

[16] Joel Bartlett, Jim Gray, and Robert Horst. Fault tolee in tandem computer systems.
Technical Report TR-86.2, HP Labs, 1986.

[17] Robert Baumann. Soft errors in advanced computer systedEEE Design and Test of

Computerspages 258-266, May-June 2005.

155



[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

David Bernick, Bill Bruckert, Paul Del Vigna, David Gaa, Robert Jardine, Jim Klecka, and
Jim Smullen. Nonstop advanced architecturePtac. Intl. Conf. Dependable Systems and

Networks Jun 2005.

Jason Blome, Shuguang Feng, Shantanu Gupta, and Sebtké! Self-calibrating online
wearout detection. IRProceedings of the 40th Annual IEEE/ACM International Sgsmm
on Microarchitecture (MICRO 4Q)Dec 2007.

Darrell Boggs, Aravindh Baktha, Jason Hawkins, DehofaMarr, J. Alan Miller, Patrice
Roussel, Ronak Singhal, Bret Toll, and K. S. Venkatramar rhifcroarchitecture of the intel

pentium 4 processor on 90nm technologytel Technology JournaB(1), Feb 2004.

Shekhar Borkar. Design challenges of technology sgaliEEE Micro, 19(4):23-29, Jul-
Aug 1999.

Shekhar Borkar. Designing reliable systems from uabdé® components: the challenges of

transistor variability and degradatiolEEE Micro, 25(6):10-16, Nov-Dec 2005.

Fred A. Bower, Daniel J. Sorin, and Sule Ozev. A mecharifisr online diagnosis of hard
faults in microprocessors. Iroceedings of the 38th Annual IEEE/ACM International Sym-

posium on Microarchitecture (MICRO 38pec 2005.

Adrian Carbine. Scan mechanism for monitoring theestt internal signals of a VLSI

microprocessor chip. US Patent 5,253,255, Oct 1993.

Jonathan R. Carter, Sule Ozev, and Daniel J. Sorin. u@ilevel modeling for concurrent
testing of operational defects due to gate oxide breakdowrProceedings of the Design,

Automation and Test in Europe Conference and ExhibitionT®/A5), 2005.

Krishendu Chakabarty and John P. Hayes. Test respanspaction using multiplexed parity
trees.|IEEE Trans. Computer-Aided Design of Integrated Circuitsl &ystemsl5(11), Nov
1996.

Srinivas Chellappa, Frédéric de Mesmay, Jared C.I&mspBabak Falsa , James C. Hoe, and
Ken Mai. Fingerprinting across on-chip memory intercongedn Proceedings of the 3rd

IEEE Workshop on Silicon Errors in Logic — System Effectd (8=3) Apr 2007. (poster).
156



[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

Jone F. Chen, Jiang Tao, Peng Fang, and Chenming HuorRewfice and reliability com-
parison between asymmetric and symmetric LDD devices agid fmates.IEEE Journal of

Solid-State Circuits34(3), March 1999.

SELSE Organizing Committee. Selse-Il reverie. Aroceedings of the 2nd Workshop on

System effects of Logic Soft Errors (SESLEADY 2006.

Compaqg Computer CorporatioAlpha 21264 Microprocessor Hardware Reference Manual

July 1999.

Zarka Cvetanovic. Performance analysis of the Alphz62tbased HP GS1280 multiproces-
sor. InProceedings of the 30h Annual International Symposium amier Architecture

pages 218-229, June 2003.

Edward W. Czeck and Daniel P Siewiorek. Effects of transgate-level faults on program
behavior. InDigest of Papers 20th Annual International Symposium oritFealerant Com-

puting (FTCS'90) Jun 1990.

Dan Ernst, Nam Sung Kim, Shidhartha Das, Sanjay ParjgeRd&rao, Toan Pham, Conrad
Ziesler, David Blaauw, Todd Austin, Krisztian Flautnergafrevor Mudge. Razor: A low-
power pipeline based on circuit-level timing speculatiomProceedings of the 36th Annual

IEEE/ACM International Symposium on Microarchitecturel (O 36) December 2003.

Keith | Farkas, Norman P. Jouppi, and Paul Chow. Regisedesign considerations in
dynamically scheduled processors. Technical Report 9®ifital Western Research Labo-

ratory, Nov 1995.

Stephen Fischer. Technical overview of the 45nm neregation intel core microarchitecture

(penryn). Inintel Developer ForumApr 2007.

M. Franklin. A study of time redundant fault tolerantkmiques for superscalar processors.

In Proceedings of IEEE Intl. Workshop on Defect and Fault Tavlee in VLS| System$995.

Simcha Gochman, Avi Mendelson, Alon Haveh, and Efraiotd®n. Introduction to intel

core duo processor architecture. Technical report, 12G6.

157



[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

Simcha Gochman, Ronny Ronen, Ittai Anati, Ariel BerikeyTsvika Kurts, Alon Naveh, Ali
Saeed, Zeev Sperber, and Robert C. Valentine. The intelupemh processor: Microarchi-

tecture and performance. Intel Technology Journalvolume 7, May 2003.

Brian T. Gold, Jangwoo Kim, Jared C. Smolens, Eric S. @hwasilis Liaskovitis, Eriko
Nuvitadhi, Babak Falsa, James C. Hoe, and Andreas G. NokatZTRUSS: a reliable,
scalable server architecturkEEE Micro, 25:51-59, Nov-Dec 2005.

Mohamed Gomaa, Chad Scarbrough, T. N. Vijaykumar, aitld Pomeranz. Transient-fault
recovery for chip multiprocessors. Rroceedings of the 30h Annual International Sympo-

sium on Computer Architecturdune 2003.

Brian Greskamp and Josep Torrellas. Paceline: Impmwgingle-thread performance in
nanoscale CMPs through core overclocking.Phoceedings of the 16th International Con-

ference on Parallel Architectures and Compilation Teches (PACT,)Sept 2007.

Richard Hankins, Trung Diep, Murali Annavaram, Briamasho, Harald Eri, Hubert Nueckel,
and John P. Shen. Scaling and characterizing databaseoadskIBridging the gap between
research and practice. Rroceedings of the 37th Annual IEEE/ACM International Sgsmp
sium on Microarchitecture (MICRO 3/pages 151-162, Dec 2003.

C-K. Hu, D Camaperi, S. T. Chen, and et al. Effects of ay@rs on electromigration
reliability improvement for cu/low k interconnects. 42nd Annual International Reliability

Physics Symposium (IRR2P04.

Intel Corporation.lA-32 Intel Architecture Software Developer's Manual, Mole 1. Basic

Architecture 2004.

Intel Corporation. Intel 64 and IA-32 Architectures Software Developer's ManWolume
3A, May 2007.

Intel Corporation. Intel Core 2 Duo Processors and Intel Core 2 Extreme Proasskn

Platforms Based on Mobile Intel 965 Express Chipset Fgmilyg 2007.

International Telecommunications UnionTU-T X.25: Data Networks and Open System

Communication1997.
158



[48] T. Juhnke and H. Klar. Calculation of the soft error rafesubmicron cmos logic circuits.

IEEE Journal of Solid State Circuit80(7):830-834, July 1995.

[49] Jeffrey W. Kellington, Ryan McBeth, Pia Sanda, and Rdis Kalla. IBM POWERG pro-
cessor soft error tolerance analysis using proton irreiain Proceedings of the 3rd IEEE

Workshop on Silicon Errors in Logic — System Effects (SERGEpr 2007.

[50] Kee Sup Kim, Rathish Jayabharathi, and Craig Carst&meedGrade: an RTL path delay

fault simulator. InProceedings of the 10th Annual Asian Test Sympagsiow 2001.

[51] Meyrem Kirman, Nevin Kirman, and José F. Magz. Cherry-MP: correctly integrating
checkpointed early resource recycling in chip multipreces. InProceedings of the 38th

Annual IEEE/ACM International Symposium on Microarchitee (MICRO 38) Dec 2005.

[52] Bernd Koenemann, Joachim Much, and Gunther ZwiehoffiltBn logic block observation

techniques. IiProceedings of the 1979 IEEE Test Conferer®eptember 1979.

[53] Poonacha Kongetira, Kathirgamar Aingaran, and Kurllgk@un. Niagara: A 32-way mul-

tithreaded sparc processdEEE Micro, 25(2):21-29, Mar-Apr 2005.

[54] Smita Krishnaswamy, Igor L. Markov, and John P. Hayeshew are multiple gate errors
signi cant in logic circuits? InProceedings of the 2nd Workshop on System effects of Logic

Soft Errors (SESLE-2April 2006.

[55] Ravishankar Kuppuswamy, Peter DesRosier, Derek &mlthRehan Sheikh, and Paul
Thadikaran. Full hold-scan systems in microprocessorsi/Bene t analysisintel Technol-

ogy Journa) 8(1), February 2004.

[56] Christopher LaFrieda, Engipek, José F. Maiiez, and Rajit Manohar. Utilizing dynami-
cally coupled cores to form a resilient chip multiprocesdorinternational Conference on

Dependable Systems and Netwotkse 2007.

[57] Shih-Chang Lai, Shih-Lien Lu, Konrad Lai, and Jih-Kw®wir. Ditto processor. liPro-
ceedings of the International Conference on Dependablee®gsand Networks (DSN)un
2002.

159



[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

Yung-Huei Lee, Neal Mielke, Marty Agostinelli, SukirGupta, Ryan Lu, and William
McMahon. Prediction of logic product failure due to thintgaxide breakdown. IfPro-

ceedings of the 44th Annual International Reliability AbgsSymposiumune 2006.

Yanjing Li, Samy Makar, and Subhasish Mitra. CASP: agment autonomous chip self-
test using stored test patterns. Rroceedings of the Design, Automation and Test in Europe

Conference and Exhibition (DATE'08008.

Barry P. Linder, James H Stathis, David J Frank, Saheatmmbardo, and Alex Vayshenker.
Growth and scaling of oxide conduction after breakdownPioceedings of the 41st Annual

International Reliability Physics SymposiuAugust 2003.

Jose Maiz, Scott Hareland, Kevin Zhang, and Patrick #¢rong. Characterization of multi-
bit soft error events in advanced srams. IBEE International Electron Devices Meeting

(IEDM), Dec 2003.

Deborah T. Marr, Subrananian Natarajan, ShreekarnitKdraand Richard Zucker. Multipro-

cessor validation of the pentium pro. IBEE ComputerNov 1996.
Marthon Technologies CorporatioMarathon everRun FT whitepapez007.

Cameron McNairy and Rohit Bhatia. Montecito: A duakeodual-thread Itanium processor.

IEEE Micro, 25(2), March 2005.

Joseph W. McPherson. Reliability challenges for 45mad beyond. InProceedings for the
43rd Annual Design Automation Conference (DAfne 2006.

Patrick J. Meaney, Scott B. Swaney, Pia N. Sanda, aral&jminhower. IBM z990 soft error
detection and recoverylEEE Trans. device and materials reliabiljtyp(3):419-427, Sept
2005.

Avi Mendelson and Neeraj Suri. Designing high-perfamoe and reliable superscalar ar-
chitectures: The Out of Order Reliable Superscalar O3R%oaph. InProceedings of the
International Conference on Dependable Systems and NkswBISN) Jun 2000.

160



[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

MIPS Technologies IncMIPS R10000 Microprocessor User's Manugersion 2.0 edition,
1996.

Subhasish Mitra and Kee Sup Kim. X-Compact: an ef cieesponse compaction tech-
nique. IEEE Transactions on Computer-aided Design of Integratéduits and Systems

23(3):421-432, March 2004.

Subhasish Mitra, Ming Zhang, Saad Wagas, Norbert 8eiBalkaran Gill, and Kee Sup
Kim. Combinational logic soft error correction. FProceedings of the 2006 International

Test Conference (ITCDct 2006.

Shubhendu S. Mukherjee, Joel Emer, and Steven K. Relhharhe soft error problem:
An architectural perspective. IRroceedings of the Eleventh IEEE Symposium on High-

Performance Computer Architecture (HPCA&gb 2005.

Shubhendu S. Mukherjee, Michael Kontz, and Steven KniRedt. Detailed design and
evaluation of redundant multithreading alternativesPioceedings of the 29th Annual Inter-

national Symposium on Computer Architecture (IS@Agy 2002.

Shubhendu S. Mukherjee, Christopher T. Weaver, JoarE8teven K. Reinhardt, and Todd
Austin. A systematic methodology to compute the architettuulnerability factors for a
high-performance microprocessor. Rnoceedings of the 36th Annual IEEE/ACM Interna-

tional Symposium on Microarchitecture (MICRO 3B)ec 2003.

Suriyaprakash Natarajan, Srinivas Patil, and Sr&#jdkravarty. Path delay fault simulation
on large industrial designs. Broceedings of the 24th IEEE VLSI Test Symposiingust
2006.

Umesh Gajanan Nawathe, Mahmudul Hassan, Lynn WarriKieg Yen, Bharat Upputuri,
David Greenhill, Ashok Kumar, and Heechoul Park. An 8-c@4sthread, 64-bit, power
ef cient SPARC SoC (Niagara 2). IRroceedings of the International Solid-State Circuits

Conference (ISSCClreb 2007.

Umesh Gajanan Nawathe, Mahmudul Hassan, Lynn WarrkKielg Yen, Bharat Uputuri,

David Greenhill, Ashok Kumar, and Heechoul Park. An 8-cdésthread, 64-bit power
161



[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

ef cient sparc soc (niagara2). IRroceedings of the International Solid-State Circuits €on

ference (ISSCCMar 2007.

Kunle Olukotun, Basem A. Nayfeh, Lance Hammond, Kens@fil, and Kun-Yung Chang.
The case for a single-chip multiprocessor.Pimceedings of the Seventh International Con-
ference on Architectural Support for Programming Langusaged Operating Systems (ASP-
LOS VII) Oct 1996.

Bipul C. Paul, Kunhyuk Kang, Haldun Ku uoglu, Muhammad Alam, and Kaushik Roy.
Negative bias temperature instability: Estimation andigiegor improved reliability of
nanoscale circuits.|IEEE Transactions on Computer-Aided Design of Integratéduts

and System6(4), Apr 2007.

Vera Pless.Introduction to the Theory of Error-Correcting CodewViley-interscience, 2nd

edition, 1989.

Irith Pomeranz, Sandip Kundu, and Sudhakar M. Reddyo@put response compression in
the presence of unknown output values.Piloceedings of the 39th Annual Design Automa-

tion Conference (DAC)Yune 2002.

Zach Purser, Karthik Sundaramoorthy, and Eric Rotemb8lipstream processors: Improv-
ing both performance and fault tolerance. Rroceedings of the 33rd Annual IEEE/ACM

International Symposium on Microarchitecture (MICRO ,33gc 2000.

Nhon Quach. High availability and reliability in thealiium processorlEEE Micro, 20(5),
Sep-Oct 2000.

Nhon Quach. Private TRUSS group presentation, Oct $200

Tenkasi V. Ramabadran and Sunil S. Gaitonde. A tuta@ialCRC computations.|EEE
Micro, 8(4):62—75, Aug 1988.

Joydeep Ray, James C. Hoe, and Babak Falsa . Dual usgefscalar datapath for transient-
fault detection and recovery. IRroceedings of the 34th Annual IEEE/ACM International

Symposium on Microarchitecture (MICRO 3®ec 2001.

162



[86] Sudhakar M. Reddy, Kewal K. Sluja, and Mark G. Karpovskydata compression technique
for built-in self test.IEEE Transactions on Computei37(9):1151-1156, September 1988.

[87] Vijay Reddy, Anant T. Krishnan, Andrew Marshall, JohodRiguesz, Sreedhar Natarajan,
Tim Rost, and Srikanth Krishnan. Impact of negative biaspemature instability on digital

circuit reliability. In40th Annual International Reliability Physics SymposiuRRS) 2002.

[88] Steven K. Reinhardt and Shubhendu S. Mukherjee. Teahfult detection via simultaneous
multithreading. InProceedings of the 17th Annual International Symposium omgliter

Architecture (ISCA)Jun 2000.

[89] R. Rodriguez, J. H. Stathis, and B. P. Linder. Modeling @xperimental veri cation of the
effect of gate oxide breakdown on CMOS inverters4ist Annual International Reliability

Physics Symposium (IRR®ug 2003.

[90] Eric Rotenberg. AR-SMT: A microarchitectural apprbéo fault tolerance in microproces-
sors. InDigest of Papers 29th Annual International Symposium oritFealerant Computing

(FTCS'99) Jun 1999.

[91] Franz X. Ruckerbauer and Greorg Georgakos. Soft eat@srin 65mn srams - analysis
of new phenomena. IRroceedings of the 13th International On-Line Testing Sysym

(ILOTS) July 2007.

[92] Stefan Rusu and Simon Tam. Clock generation and digtob for the rst 1A-64 micropro-
cessor. IrProceedings of the International Solid-State Circuits @oance (ISSCCR000.

[93] Kewal. K. Saluja and M. Karpovsky. Testing computerdveare through data compression

in space and time. IRroceedings of the International Test Confereruages 83—-88, 1983.

[94] John P. Shen and Mikko H. Lipastilodern processor design: fundamentals of superscalar

processors McGraw Hill, 2005.

[95] Larry Sherman. Stratus continuous processing teclyyot the smarter approach to uptime.

Technical report, Stratus Technologies, 2003.

163



[96] P. Shivakumar, M. Kistler, S. W. Keckler, D. Burger, andAlvisi. Modeling the effect of
technology trends on soft error rate of combinational lodicInternational Conference on

Dependable Systems and Netwotkse 2002.

[97] Premkishore Shivakumar, Michael Kistler, Stephen \WWcKer, Doug Burger, and Lorenzo
Alvisi. Modeling the effect of technology trends on the sarfitor rate of combinational logic.
In Proceedings of the International Conference on Dependapstems and Networks (DSN)

Jun 2002.

[98] Smitha Shyam, Kypros Constantinides, Sujay Phadké&eriaBertacco, and Todd Austin.
Ultra low-cost protection for microprocessor pipelines.Proceedings of the Twelfth Inter-
national Conference on Architectural Support for ProgrammgnLanguages and Operating

Systems (ASPLOS Xlct 2006.

[99] Alex Shye, Tipp Moseley, Vijay Janapa Reddi, Josepmitedt, and Danieal A. Connors.
Using process-level redundancy to exploit multiple comstfansient fault tolerance. In

International Conference on Dependable Systems and Nietnhme 2007.

[100] Daniel P. Siewiorek and Robert S. Swarz (EdRkliable Computer Systems: Design and
Evaluation A K Peters, 3rd edition, 1998.

[101] T.J. Slegel, R.M. Averill lll, M.A. Check, B.C. Giamds.W. Krumm, C.A. Krygowski, W.H.
Li, J.S. Liptay, J.D. MacDougall, T.J. McPherson, J.A. NavaE.M. Schwarz, K. Shum,
and C.F. Webb. IBM's S/390 G5 microprocessor desi§EE Micro, 19(2):12—-23, Mar-Apr
1999.

[102] Gordon L. Smith. Model for delay faults based upon patiin Proceedings of the 1983

International Test Conference (ITGPct 1983.

[103] James. E. Smith and Andrew R. Pleszkun. Implementiegige interrupts in pipelined
processorslEEE Transactions on ComputeiG-37(5):562-573, May 1988.

[104] Jared C. Smolens, Brian T. Gold, Babak Falsa , and Ja@eHoe. Reunion: Complexity-
effective multicore redundancy. Proceedings of the 39th ACM/IEEE International Sympo-

sium on MicroarchitectureDecember 2006.
164



[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

Jared C. Smolens, Brian T. Gold, Jangwoo Kim, Babalsa&aldames C. Hoe, and An-
dreas G. Nowatzyk. Fingerprinting: Bounding soft-errotedéion latency and bandwidth. In
Proceedings of the 11th International Conference on Aedtitral Support for Programming

Languages and Operating Systempages 224—-234, Oct 2004.

Jared C. Smolens, Jangwoo Kim, James C. Hoe, and Balls& FEf cient resource shar-
ing in concurrent error detecting superscalar microaechitres. InProceedings of the 37th
Annual IEEE/ACM International Symposium on Microarchitee (MICRO 37) December
2004.

E.S. Sogomonyan, A. Morosov, M. Gossel, A. Singh, arilzkha. Early error detection in
systems-on-chip for fault-tolerance and at-speed debggdin Proceedings of the 19th VLSI
Test SymposiunMay 2001.

Daniel J. Sorin, Milo M. K. Martin, Mark D. Hill, and Dast A. Wood. SafetyNet: improv-
ing the availability of shared memory multiprocessors vgtbbal checkpoint/recovery. In
Proceedings of the 29th Annual International Symposium omgiter ArchitectureJune

2002.

Jayanth Srinivasan, Sarita V. Adve, Pradip Bose, anié A. Rivers. The case for lifetime
reliability-aware microprocessors. Rroceedings of the 31st Annual International Sympo-

sium on Computer Architecture (ISCAune 2004.

Jayanth Srinivasan, Sarita V. Adve, Pradip Bose, amtk A. Rivers. The impact of tech-
nology scaling on lifetime reliability. IProceedings of the International Conference on

Dependable Systems and Networks (QSbijie 2004.

Jayanth Srinivasan, Sarita V. Adve, Pradip Bose, ami@ A. Rivers. Exploiting structural
duplication for lifetime reliability enhancement. Rroceedings of the 32nd Annual Interna-

tional Symposium on Computer Architecture (ISCAne 2005.
Stratus Technologie®ene t from Stratus Continuous Processing Technoldgyy 2007.

Sun MicrosystemsOpenSPARC T1 Microarchitecture Speci cation, Revisigi\hg 2006.

165



[114] Karthik Sundaramoorthy, Zachary Purser, and EriceRbérg. Slipstream processors: im-
proving both performance and fault tolerance. Aroceedings of the Ninth International
Conference on Architectural Support for Programming Laages and Operating Systems

(ASPLOS IX)November 2000.

[115] T. N. Vijaykumar, Irith Pomeranz, and Karl Cheng. Tsamt fault recovery using simulta-
neous multithreading. IRroceedings of the 29th Annual International Symposium am-C

puter ArchitectureMay 2002.

[116] Mathys Walma. Pipelined cyclic redundancy check (GB&culation. InProceedings of the

16th International Conference on Computer Communicatanms NetworksAug 2007.

[117] Nicholas J. Wang, Justin Quek, Todd M. Rafacz, and &adj Patel. Characterizing the
effects of transient faults on a high-performance proaepgmline. InProceedings of the

2004 International Conference on Dependable Systems atvdoes (DSN,) June 2004.

[118] Thomas F. Wenisch, Roland E. Wunderlich, Michael Fead, Anastassia Ailamaki, Babak
Falsa, and James C Hoe. SimFlex: statistical sampling ohgoater system simulation.

IEEE Micro, 26(4):18-31, Jul-Aug 2006.

[119] Kent Wilken and John P. Shen. Continuous signatureitoidmg: Low-cost concurrent de-
tection of processor control errol&EE Transactions on Computer-Aided Desi§(6):629—

641, June 1990.

[120] Huiyang Zhou. A case for fault tolerance and perforogagnhancement using chip multi-

processors. IHEEE Computer Architecture LetterSept 2005.

[121] J. F. Ziegler, et al. IBM's experiments in soft failséiomputer electronics (1978-1994RM

Journal of Research and Developmefd(1), 1998.

166



	1 Introduction
	1.1 Problem and Scope
	1.2 Fingerprints
	1.3 Thesis contributions

	2 Architectural Fingerprints
	2.1 Fault model
	2.2 Architectural Fingerprints
	2.3 Metrics
	2.3.1 Discussion

	2.4 Conclusion

	3 Architectural Fingerprint Implementation
	3.1 Architectural Fingerprints in a Superscalar Out-of-Order Core
	3.1.1 P6 Overview
	3.1.2 Architectural Fingerprint Constraints
	3.1.3 Pentium 4 Architectural Fingerprints
	3.1.4 Evaluation

	3.2 System-level Implementation of Architectural Fingerprints
	3.2.1 OpenSPARC T1 Overview
	3.2.2 System-level Design
	3.2.3 Hardware Design

	3.3 Architectural Fingerprint Synthesis
	3.4 Soft Error Injection Evaluation
	3.4.1 Methodology
	3.4.2 Results

	3.5 Conclusion

	4 Hash Design
	4.1 Introduction
	4.2 Background
	4.3 Hash Architecture
	4.3.1 Design requirements.
	4.3.2 Parallel Input CRC units.
	4.3.3 A Scalable Hash Architecture.

	4.4 Hash Structures
	4.4.1 Spatial Compactors
	4.4.2 Temporal Compactors

	4.5 Evaluation
	4.5.1 Methodology
	4.5.2 Empirical Aliasing Properties
	4.5.3 Synthesis Results for latency and area

	4.6 Conclusion

	5 Reunion
	5.1 Introduction
	5.2 Background
	5.2.1 Fault Model
	5.2.2 Redundant Execution
	5.2.3 Input Incoherence
	5.2.4 Output Comparison
	5.2.5 Fingerprints over On-Chip Interconnects.

	5.3 Reunion Execution Model
	5.3.1 System Definition
	5.3.2 Execution Model
	5.3.3 Recovery

	5.4 Reunion Microarchitecture
	5.4.1 Baseline CMP
	5.4.2 Shared Cache Controller
	5.4.3 Processor Pipeline
	5.4.4 Serializing Check Overhead
	5.4.5 Fingerprint comparison interval and latency: analytic model
	5.4.6 Lock Primitive Implementation
	5.4.7 Checkpointing and Re-execution

	5.5 Evaluation
	5.5.1 Baseline Performance
	5.5.2 Checking Overhead
	5.5.3 Reunion Performance
	5.5.4 Input Incoherence
	5.5.5 Synchronizing request type
	5.5.6 Serialization Overhead
	5.5.7 Fingerprinting interval and fingerprints on the interconnect

	5.6 Conclusion

	6 Microarchitectural Fingerprints
	6.1 Fault Model
	6.2 Microarchitectural Fingerprints
	6.3 Metrics
	6.3.1 Discussion

	6.4 Hardware Design
	6.5 Soft Error Injection Evaluation
	6.5.1 Methodology
	6.5.2 Results

	6.6 Conclusion

	7 FIRST
	7.1 Introduction
	7.2 Background
	7.3 Detection with FIRST
	7.3.1 Inducing Marginal Operation

	7.4 Wearout Fault Modeling
	7.4.1 Wearout Fault Injection Study
	7.4.2 Wearout Fault Simulation

	7.5 Evaluation
	7.5.1 Feasibility of FIRST
	7.5.2 Wearout Detection with FIRST
	7.5.3 The Persistent Nature of Wearout Faults
	7.5.4 Isolated Wearout Faults

	7.6 Conclusion

	8 Related Work
	8.1 Concurrent Error Detection
	8.2 Wearout Detection


