
In the proceedings of the 22nd International Conference on Computer Design (ICCD 2004), October 2004

1

In-System FPGA Prototyping of an Itanium Microarchitecture

Roland E. Wunderlich and James C. Hoe
Computer Architecture Laboratory at Carnegie Mellon

{rolandw, jhoe}@ece.cmu.edu

Abstract

We describe an effort to prototype an Itanium mi-
croarchitecture using an FPGA. The microarchitecture
model is written in the Bluespec hardware description
language (HDL) and supports a subset of the Itanium
instruction set architecture. The microarchitecture model
includes details such as multi-bundle instruction fetch,
decode and issue; parallel pipelined execution units with
scoreboarding and predicated bypassing; and multiple
levels of cache hierarchies. The microarchitecture model
is synthesized and prototyped on a special FPGA card
that allows the processor model to interface directly to
the memory bus of a host PC. This is an effort toward
developing a flexible microprocessor prototyping
framework for rapid design exploration.

1. Introduction

Until recently, only relatively simple microprocessor
designs have been prototyped using FPGAs [5, 6, 7, 11,
12, 14]. This can be attributed to the limited capacity of
older FPGAs and the high level of effort associated with
conventional hardware design flows. In this paper, we
describe an FPGA processor prototyping effort that
leverages both high-level hardware design technologies
and the growing capacity of new FPGAs. In this effort,
we used the Bluespec HDL [2] to prototype a subset of
the Merced Itanium microarchitecture. The prototyped
microarchitecture is mapped onto a special FPGA
hardware that permits the processor model to execute in a
real PC system environment.

Our case study illustrates the costs and capabilities of
hardware prototyping as compliments to existing
microarchitecture design techniques. While simulation-
based studies are effective tools, they are not capable of
predicting all microarchitectural issues related to final
physical design. We were able to evaluate relative circuit
area and cycle time metrics for design alternatives using
our implementation of a functioning Itanium processor.
The processor model was developed with tractable design

effort, and its primary components were calibrated for
effective performance modeling.

We present the details of this work in the following
sections. Section 2 describes the Bluespec HDL used for
microarchitecture modeling. Section 3 presents the
Itanium microarchitecture model in detail. Section 4
describes our FPGA prototyping platform and its
operation. Finally, Section 5 presents an assessment of
the prototyped processor model and the results from a
microarchitecture design study. We offer our conclusions
in Section 6.

2. Bluespec HDL

Bluespec is a synthesizable high-level HDL for rapid
ASIC development [2]. A key advantage of Bluespec is
the ability to describe hardware designs clearly and
concisely, leading to fewer errors and faster design
capture. Despite the language’s use of high-level
synthesis, Bluespec produces high quality output
comparable with hand coded RTL [1]. Two important
features of Bluespec are its operation-centric semantics
and functional programming constructs.

2.1. Operation-centric semantics

In a Bluespec hardware description, state elements
such as registers, arrays, and FIFOs, are declared
explicitly. Unlike standard synchronous RTL languages,
however, operation-centric state transitions are abstractly
represented as a collection of atomic predicated actions
known as “rules.” Each Bluespec rule is comprised of a
guarding predicate condition and a set of actions that
update affected state elements. When a rule’s predicate is
satisfied, all of the rule’s actions are carried out simulta-
neously and instantaneously; if multiple rules’ predicates
are simultaneously satisfied only one (nondeterministic-
cally chosen) rule’s actions are carried out. Thus, an
execution of a Bluespec description corresponds to
discrete steps of atomic rule applications, where each rule
produces a state that satisfies the next rule’s predicate
condition.

In the proceedings of the 22nd International Conference on Computer Design (ICCD 2004), October 2004

2

A simple example below shows how the operation-
centric semantics can be helpful in our description of the
Itanium pipeline. A rule can specify far-reaching actions
that logically pertain to the same event but are physically
distributed over the datapath. In a pipelined processor
design, actions associated with a branch misprediction
recovery entail state modifications to numerous portions
of the pipeline. In Bluespec, all such actions can be
gathered and stated in a single rule guarded to take place
only when encountering a branch misprediction. Given
the atomic semantics of rule execution, the consequences
of this rule are easy to understand, even in the context of
other rules with conflicting actions.

2.2. Language features

Bluespec’s original syntax1 was derived from the
Haskell functional programming language [10]. Bluespec
applies object-oriented programming concepts to support
clean and composible modular design partitioning.
Functional programming constructs in Bluespec further
allow concise specifications of combinational logic in a
rule’s predicate condition and state update expressions.
For example, the use of list structures and lambda
expressions allow more flexible and powerful combina-
tional logic descriptions than the simple loops provided
by standard HDLs. Moreover, Bluespec offers an
extensive type system that is significantly more compre-
hensive than conventional HDLs. This type system
enables the declaration of elaborate state-storage ele-
ments. Static type checking during compilation helps to
eliminate a large class of errors at compile time.

2.3. Bluespec compiler

The Bluespec Compiler (BSC) produces the RTL-
level Verilog description of an optimized synchronous
implementation. Bluespec’s atomic and sequential
abstract semantics do not preclude a correct implementa-
tion from executing multiple rules per cycle. During
compilation, the Bluespec compiler identifies “conflict-
free” rule pairs (i.e. rules that can be safely executed in
the same clock cycle to produce a combined state
transition that is correct with respect to Bluespec’s atomic
and sequential semantics) [9]. The Bluespec compiler
then synthesizes a synchronous implementation that
executes as many conflict-free rules as possible each
cycle. BSC Verilog output can be integrated with other
components described by conventional HDLs for
simulation and synthesis. BSC can also generate a cycle-
accurate C simulator of the design.

1 The current Bluespec revision [3] extends support to SystemVerilog.

3. Itanium model development

The goal of this project is to model a realistic proces-
sor microarchitecture for FPGA prototyping and design
explorations. One of the key challenges is maintaining a
balance between the level of modeling detail and the
implementation effort. Below, we first give an overview
of the Itanium microarchitecture and then describe the
details of our Bluespec model.

3.1. Overview of the Intel Itanium architecture

The Intel Itanium Architecture is a 64-bit “EPIC”
(explicitly parallel instruction-set computing) architecture
[8]. Reminiscent of Very Long Instruction Word (VLIW)
architectures, Itanium instructions are formatted as 128-
bit bundles of three RISC-like instructions. The Itanium
instruction set architecture (ISA) supports explicit
demarcation of data-independent groups (ranging from
one instruction to several bundles in length) in the
instruction sequence. This explicit data-dependence
encoding allows the Itanium ISA to be efficiently
supported by straightforward VLIW-like microarchitec-
tures. The Itanium ISA also incorporates other distinc-
tively VLIW-like features such as a large rotating register
file and predicated instructions. The first generation Intel
Itanium processors (code named Merced) ran at 733 and
800 MHz and use an 8-stage core pipeline [16]. This
first-generation microarchitecture are based on a “2-
bundle” wide datapath; that is, the datapath can decode
and issue up to two bundles, or six instructions, per cycle.

3.2. Modeled ISA subset

Presently, we support only a subset of the Itanium
ISA in our Bluespec microarchitecture model. The
chosen subset constitutes approximately one-third of the
instruction encodings in the Itanium ISA (not including
IA-32 compatibility modes). This subset concentrates on
user-level integer, memory, and control flow instructions,
which constitute the vast majority of integer instructions
generated by the Intel Itanium C++ compiler. For
example, the subset is sufficient to execute the Dhrystone
integer benchmark [17]. Examples of omitted user-level
integer instructions include vector operations, multiproc-
essor related operations, speculative and advanced loads,
etc. Floating-point instructions, multimedia instructions,
and privileged instructions are also not currently sup-
ported. The model obeys the true bit-encodings defined
by the Itanium ISA. This requirement introduces some
complexity in the decoding stages of the microarchitec-
ture model, but we deem this necessary for a faithful
prototype. This also allows us to use stock Itanium
assemblers to produce executable binaries.

In the proceedings of the 22nd International Conference on Computer Design (ICCD 2004), October 2004

3

3.3. Modeled microarchitecture details

The Itanium microarchitecture captured in our
Bluespec model is primarily based on published descrip-
tions of the first-generation Itanium microarchitecture
[16]. A block diagram of the modeled microarchitecture
is shown in Figure 1. Certain stages in the front of the
pipeline differ from the published details to permit a more
straightforward description under the Bluespec frame-
work. For example, our model utilizes a single decoding
stage, rather than distributing the decoding functionality
across expand and rename stages. Below, we briefly
describe the microarchitectural details included in our
Bluespec model.

The fetch stage uses a two-level adaptive branch pre-
dictor to generate instruction fetch addresses to the
instruction cache. This predictor has a 512-entry, 4-way
associative per address BHT of 4-bit entries, 128 16-entry
per address PHTs of 2-bit saturating counters, and a 64-
entry branch target buffer. An instruction cache hit
returns up to two bundles (depending on alignment) to the
decoding stage. The decoding stage passes partially
decoded instructions in the same instruction group to the
dispersal stage. The dispersal stage attempts to issue as
many instructions from the same instruction group as
possible. The decode and dispersal stages can process up
to 2 bundles per cycle, but only 1 instruction group per
cycle. Like in a real Itanium, there is no out-of-order
instruction issue.

The stack stage renames the effective register name
to a real register name according to a simple offset in the
circularly indexed rotating register file. We implement a

simple register stack engine that blocks the pipeline to
service compulsory stack spills and fills. Next, the
register read stage fetches operand values from the
register files. Instructions are stalled in the register fetch
stage if non-bypassable read-after-write hazards are
detected between instructions in different instruction
groups.

The execution stages comprise of three types of exe-
cution pipelines: branch, integer, and memory/integer.
The branch units determine the outcome of a branch
instruction based on a predicate register value, possibly
forwarded from the integer execution units. The branch
outcome is compared to the predicted outcome, and
mispredictions cause the pipeline control module to be
notified. The resulting control module action flushes the
wrong-path instructions, and corrects branch predictor
entries and the current instruction pointer. The integer
execution units (including the memory/integer units) are
fully bypassed and support 64-bit arithmetic and logical
operations as well as fixed-point multiply. The bypass
control is predicated allowing speculative execution and
forwarding of predicated results. The memory units
perform reads and writes against the L1 data cache.
Finally, the write-back stage commits register updates to
the appropriate register file.

The cache hierarchy consists of three levels, separate
16 KB L1 instruction and data caches, a 96 KB L2 unified
cache, and a 4 MB L3 cache. The L1 caches are both
4-way set associative with 32-byte lines and 2 cycle load
latencies. The L2 is 6-way set associative, has 64-byte
lines, and a 6-cycle load latency. The L3 is 4-way set
associative with 64-byte lines and a 21-cycle load latency.
Main memory latency is implemented to be 100 cycles.

3.4. Model development

The behavior of the microarchitecture model is de-
scribed as 90 rules in about 9,500 lines of Bluespec code.
Approximately one-third of the description is devoted to
the decode and execution stages. Both stages are
conceptually simple, but require extensive descriptions
due to the elaborateness of the Itanium ISA encodings.

The operation-centric semantics and functional lan-
guage syntax of Bluespec are very effective in reducing
the development time of the Itanium microarchitecture
model. Language features such as static type checking
and terse functional language descriptions of combina-
tional logic lead to fewer bugs. The atomic descriptions
of control operations, as well as the ability to compose
operations easily, made the Bluespec description simpler
and clearer for corner case behaviors.

In return for the convenience of Bluespec’s high-
level design abstraction, we give up some control over the
exact implementation details. This presents a number of
problems in prototype development. First, a hidden

Figure 1. Bluespec Itanium microarchitecture model

In the proceedings of the 22nd International Conference on Computer Design (ICCD 2004), October 2004

4

danger in (all) high-level synthesis is the ability to imply
huge combinational logic blocks unintentionally from
seemingly short and simple expressions. This is particu-
larly problematic when several valid coding options lead
to drastically different circuit sizes (revealed only after
synthesis). Similarly, since the description’s high-level
constructs are further removed from the final synthesized
physical designs, it is more difficult to trace timing and
space problems from the synthesized circuit back to a
particular site in the Bluespec source code. Finally,
Bluespec’s abstract timing model improves operation
composibility within the language environment but
demands special care when attempting to interface with
synchronously-timed external systems.

4. FPGA prototyping

Our FPGA prototyping platform enabled rapid devel-
opment of a functional Itanium model with low latency
and high bandwidth access to large memory resources.
Figure 2 gives an overview of the key components and
workflow of our FPGA prototyping system.

4.1. FPGA prototyping hardware

Our Itanium model is prototyped on a custom FPGA
board provided by Intel for research use. The FPGA
board connects a Xilinx Virtex-II XC2V6000-5 to the
front-side bus (FSB) of a Pentium III motherboard via a
Slot 1 edge connector [13]. Through the FSB, the FPGA
can directly reference the main memory of a host PC.
Operating at 100 MHz, the FSB interface provides the
FPGA with a peak memory bandwidth of 800 MB/sec and
a typical round-trip time of less than 150 ns.

The FPGA board has two banks of 256K×4 byte syn-
chronous SRAM modules. The two-cycle pipelined
SRAM modules operate at up to 166 MHz, for a sustained
bandwidth of 667 MB/sec.

In our current setup, the FPGA board replaces one of
the Pentium III processors in a dual-processor PC host.
The remaining Pentium III processor runs a uniprocessor
Linux operating system out of the lower half of the
physical memory (1 GB). The upper 512 MB of physical
memory is used by the FPGA-prototyped processor. The
host Pentium III can read and write the upper 512 MB
region through a special /dev/mem file handle. Thus, the
Pentium III can communicate with the FPGA-prototyped
processor via uncached shared-memory operations. The
Pentium III can also issue low-level control messages to
the FPGA by writing to special physical addresses
snooped by the FPGA’s FSB interface logic.

4.2. FPGA design instantiation

To instantiate a Bluespec microarchitecture model on
the FPGA, the BSC-generated Verilog source code is
combined with a VHDL wrapper code that implements
the FSB interface. The FSB interface code enables the
FPGA to participate as a master in uncached read and
write bus transactions and as a passive snoop agent.

The combined Verilog and VHDL source files are
compiled using Synplify Pro 7.3 to produce EDIF files
required by Xilinx’s Integrated Software Environment
(ISE) 5.2. Xilinx ISE is used to map, place-and-route,
and generate the FPGA configuration bit stream. We
configure the FPGA using the ACE CompactFlash
interface. By providing standalone power and configura-
tion clocking to the FPGA board, we are able to program
the FPGA prior to powering up the PC-host; this greatly
simplifies the host boot-up processes.

In addition to the raw read-write FSB interface de-
scribed in VHDL, we implement a three-level cache
hierarchy model in Bluespec. The L1 caches are imple-
mented using the Xilinx Virtex’s internal block select
RAMs. To achieve a dual-ported 4-way set associative
L1 data cache we implemented the cache logic in a
separate clock domain that ran at double the speed of the
rest of the processor model. The 100 MHz FSB clock
drove the cache clock domain directly, and a clock divider
fed the remainder of the processor model with a 50 MHz
clock signal.

The two lower levels of the cache hierarchy were too
large to be implemented onboard the FPGA. Thus, we
used the external SRAM to provide tag and data storage
for the L2 cache, and tag storage for the L3 cache. The
L3 cache model consults this SRAM tag storage to
determine hit or miss status, but always fetches cache
lines directly out of main memory. On a L3 hit, the cache
line is be available to the core within 8 processor cycles

Figure 2. FPGA prototype system and workflow

In the proceedings of the 22nd International Conference on Computer Design (ICCD 2004), October 2004

5

(at 50 MHz), thus the request is artificially delayed to
mimic the desired 21 cycle load latency. Main memory
requests are also delayed before being placed on the FSB
to allow modeling of the correct relative speed between
the processor core and main memory.

Our current Itanium microarchitecture model utilizes
approximately 40% of the resources available on the
Xilinx XC2V6000, while the FSB interface wrapper
consumes an addition 4% of available resources. The
current Itanium microarchitecture model and FSB
interface synthesizes to 50 MHz.

4.3. Prototyped processor execution

The FPGA prototyped processor executes Itanium
binary executables out of the reserved upper 512 MB
region of the host-PC’s main memory. We use the Intel
Itanium C++ Compiler 7.0 to generate object files from
C++, C, and Itanium assembly programs. The object files
are decoded using the objdump utility software and
reformatted by a Python script to produce executables for
the FPGA prototyped processor.

Prior to execution, the memory space for the FPGA
prototyped processor is initialized by the Pentium III host
processor. The host processor uses uncached writes to
load the executable binary and program data to a known
location in the FPGA processor’s address space. The host
processor initiates the FPGA prototyped processor’s
execution by writing to a memory-mapped address
snooped by the FPGA’s FSB controller. The FPGA
prototyped processor terminates execution by writing out
relevant processor state (register file contents, program
counter, and performance counters) to physical memory
where they can be examined by monitoring software
running on the host processor.

5. Model calibration & experimental results

Our FPGA prototype is designed to realistically
model the details of an Itanium processor and to support
microarchitectural design explorations. We evaluate
these two goals by first calibrating our model’s IPC
performance to a real Itanium processor. Next, we apply
the calibrated model to investigate the performance and
implementation tradeoffs from reducing the data bypass
network.

5.1. Performance calibration

We used two types of software benchmarks to com-
pare and tune the performance of our FPGA model to an
Itanium processor. First, we specifically designed
microbenchmarks to exercise various features of the
processor pipeline (as in [3]). We also measured overall

performance using the Dhrystone benchmark as an
inclusive integer workload.

Execution pipeline. We first focused on the execution
portion of the pipeline, verifying that the dispersal
through write-back stages performed correctly for general
ALU instructions. We generated Itanium assembly
comprised of ALU instructions with random register
operands. We varied the average size of the generated
instruction groups (dependence free instructions) to
exercise the different behaviors of the dispersal stage.
Specifically, we tested how the dispersal stage handles
split-issues when an insufficient number of execution
pipelines are available. The results of executing this
microbenchmark on our model and an Itanium processor
are shown in Figure 3 as a plot of IPC vs. mean group
size. Since this portion of the prototype model was based
on detailed documentation of the Itanium processor, our
model performed almost identically to the actual proces-
sor.

It is clear from Figure 3 that neither the Itanium nor
our prototype model ever exceeds three instructions per
cycle, regardless the of mean group size. This is a real
phenomenon caused by Itanium’s issue policy, which
does not permit instructions decoded in different cycles to
be issued in the same cycle. When presented with the
first two decoded bundles of an infinitely long instruction
group, a 2-bundle wide microarchitecture with four
integer execution units can issue four independent integer
instructions in one cycle. In the next cycle, however, only
the remaining two instructions from the two decoded
bundles are issued because the issue policy does not
further consider subsequent bundles. This caps the peak
IPC at 3.0 for program segments of purely integer
instructions (unless carefully padded with NOP instruc-
tions). Our prototype model reflects this performance
characteristic accurately.

Memory system. The second portion of our model that
we calibrated was the memory system. We tested the

0.0

0.5

1.0

1.5

2.0

2.5

3.0

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

Mean Group Size

IP
C

FPGA Itanium 50MHz

Itanium 733 MHz

Figure 3. ALU microbenchmark performance

In the proceedings of the 22nd International Conference on Computer Design (ICCD 2004), October 2004

6

prototype model using a microbenchmark that performs
loads and stores to memory regions of varying size for a
spectrum of strides [15]. This benchmark produces a
characteristic graph that reveals the details of the cache
hierarchy when access latency is plotted as a function of
stride and region size. Using this microbenchmark, we
were able to verify that the basic caching behavior of our
prototype model closely matches the Itanium processor.

System performance. To establish overall performance
we compared the IPC of the Dhrystone benchmark on the
Itanium processor with our prototype model. Initially, we
had only implemented a single-ported L1 data cache to
avoided introducing a second clock domain (see Section
3.3). For the Dhrystone benchmark, even with the
calibrated execution pipeline, our prototype model with
only a single-ported L1 data cache had a 34% error in
IPC, relative to the real Itanium processor (0.94 vs. 1.43).
Introducing the dual-ported L1 data cache reduces the IPC
error to 11%.

There remain several aspects of the Itanium microar-
chitecture that we do not implement fully, which contrib-
utes to the remaining IPC error. For example, our
prototype model currently only implements the primary
branch predictors, but not other supporting mechanisms
such as the target address registers, the multi-way branch
prediction table, branch correction for modulo-scheduled
loops and static prediction hints. To reduce the absolute
IPC error further would require increasingly more details
to be modeled precisely in the prototype, at which point
the prototyping effort approaches that of a production
development effort. Given the desire to reduce develop-
ment effort, it is unrealistic to expect a prototype model to
agree absolutely with a production design. What the
prototype enables us to do is to quickly explore different
design options and measure the effects in not only
performance but also implementation metrics.

5.2. Microarchitecture exploration

In this study, we use the prototype model to investi-
gate the effects of abbreviating the bypass network that
connects the integer pipelines. As in the real Itanium, our
baseline model has a full bypass network that connects
the output from the integer/memory execute stages to the
operand inputs of both the read and execute stages. One
could consider reducing the complexity of this network by
allowing forwarding among a subset of the pipelines.
Reducing the bypass network negatively affects the
processor’s IPC, but when moving to a wider microarchi-
tecture a partially bypassed network is an important
strategy to reduce implementation area and impact on
cycle time.

Starting from our baseline prototype model, we can
modify the high-level Bluespec description to derive
alternative microarchitectures to investigate the impact of
a partial bypass network. In a “1-way” configuration,
each pipeline forwards results only to itself. The “2-way”
and “3-way” configurations forward results to additional
adjacent pipelines. To support a partial bypass network,
we also have to modify the register scoreboard logic
accordingly to account for the limited data forwarding.

Figure 4 plots the changes in IPC when the integer
instruction microbenchmark is executed on prototype
models with different bypass configurations. As ex-
pected, IPC performance decreases as the degree of
bypass in network is reduced. An interesting behavior in
the partial bypass networks is that group sizes beyond a
threshold can actually come to negatively impact IPC.
This behavior is caused by the increased probability of
dependencies between consecutive groups in the micro-
benchmark. Notice that this evaluation is based on
microbenchmarks of controlled instruction group sizes. A
comprehensive study on the impact of partial bypass
networks must also expose this microarchitecture feature
to the compiler and consider the compiler interactions.

Besides IPC performance trends, the implementation
impact of the design can be studied by synthesizing the
prototype model. Table 1 reports the reduction in area
and critical delay path (in the bypass network) when the
different prototype models are synthesized for a 0.18µm
standard cell library.

Table 1. Bypass network impact study

Bypass Area reduction (mm2) Critical path (ns) Dhrystone IPC
Full — 4.29 1.27

3-way 0.35 3.99 1.21
2-way 0.53 3.76 1.15
1-way 0.68 3.57 1.09

0.0

0.5

1.0

1.5

2.0

2.5

3.0

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

Mean Group Size

IP
C Full bypass

3-w ay

2-w ay

1-w ay

Figure 4. ALU microbenchmark performance

In the proceedings of the 22nd International Conference on Computer Design (ICCD 2004), October 2004

7

6. Conclusions

Simulation-based microarchitecture studies are pow-
erful tools, but they can fail to uncover critical issues
related to the final physical implementation. Prototyping
helps to expose these issues and provides implementation
estimates such as relative circuit area and cycle time
metrics. In this paper, we described the FPGA prototyp-
ing of an Itanium processor. The processor model
accurately recreates the primary components of the
Itanium microarchitecture to provide an effective
performance model. This prototype is also capable of
providing supporting implementation metrics through
synthesis. We intend to develop this platform further as a
flexible prototyping system for application specific
processor design.

Acknowledgment

We would like to thank Steve Haynal, Shih-Lien Lu,
Konrad Lai, and Kevin Rudd for their feedback and
assistance in this study. Funding for this work is provided
by the Integrated Circuits and Systems Research program
of the Semiconductor Research Corporation. We thank
Bluespec Inc. for providing the Bluespec compiler and
Intel Corporation for providing the FPGA platform.

References

[1] Arvind, R.S. Nikhil, D.L. Rosenband, and N. Dave, High-
level synthesis: An Essential Ingredient for Designing
Complex ASICs, Memo 473, Computation Structures
Group, Massachusetts Inst. of Technology, 2004.

[2] L. Augustsson, J. Schwartz, and R.S. Nikhil, Bluespec
Language Definition, Sandburst Corp., 2001.

[3] B. Black and J.P. Shen, “Calibration of Microprocessor
Performance Models,” Computer, vol. 31, iss. 5, May 1998.

[4] Bluespec™ SystemVerilog Version 3.8 Reference Guide,
Bluespec Inc., 2004.

[5] R. Brown, J. Hayes, and T. Mudge, “Rapid Prototyping and
Evaluation of High-Performance Computers,” Proc. Conf.

on Experimental Research in Computer Systems, NSF Ex-
perimental Systems, June 1996.

[6] J. Gaisler, LEON/AMBA VHDL model description,
European Space Agency, 2000.

[7] M. Gschwind, V. Salapura, and D. Maurer, “FPGA
Prototyping of A RISC Processor Core for Embedded Ap-
plications,” IEEE Trans. on Very Large Scale Integration
(VLSI) Systems, vol. 9, no. 2, Apr. 2001.

[8] J. Huck, D. Morris, J. Ross, A. Knies, H. Mulder and
R. Zahir, “Introducing the IA-64 Architecture,” IEEE Mi-
cro, vol. 20, iss. 5, Sept./Oct. 2000.

[9] J.C. Hoe and Arvind, “Synthesis of Operation-Centric
Hardware Descriptions,” Proc. Int’l Conf. on Computer
Aided Design (ICCAD-2000), Nov. 2000.

[10] S.P. Jones and J. Hughes, Haskell 98: A Non-strict, Purely
Functional Language, tech. report YALEU/DCS/RR-1106,
Yale Univ., 1999.

[11] Y.G. Kim and T.G. Kim, “A Design and Tool Reuse
Methodology for Rapid Prototyping of Application Specific
Instruction Set Processors,” Proc. IEEE Int’l Workshop on
Rapid System Prototyping (RSP1999), June 1999.

[12] K. Oh, S. Yoon, and S. Chae, “Emulator Environment
Based on an FPGA Prototyping Board,” Proc. IEEE Int’l
Workshop on Rapid System Prototyping (RSP2000),
June 2000.

[13] P6 Family of Processors – Hardware Developer’s Manual;
http://www.intel.com/design/PentiumII/manuals/244001.htm.

[14] W.B. Puah, B.S. Suparjo, R. Wagiran, and R. Sidek,
“Rapid Prototyping Asynchronous Processor,” Proc. IEEE
Int’l Conf. on Semiconductor Electronics (ICSE2000),
Nov. 2000.

[15] R.H. Saavedra-Barrera, CPU Performance Evaluation and
Execution Time Prediction Using Narrow Spectrum
Benchmarking, PhD Dissertation, Univ. of California,
Berkley, May 1992.

[16] H. Sharangpani and H. Arora, “Itanium Processor
Microarchitecture,” IEEE Micro, vol. 20, iss. 5,
Sept./Oct. 2000.

[17] R.P. Weicker, “Dhrystone: A Synthetic Systems Program-
ming Benchmark,” Comm. of the ACM, vol. 27, no. 10,
Oct. 1984.

