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Abstract 

We describe an effort to prototype an Itanium mi-
croarchitecture using an FPGA.  The microarchitecture 
model is written in the Bluespec hardware description 
language (HDL) and supports a subset of the Itanium 
instruction set architecture.  The microarchitecture model 
includes details such as multi-bundle instruction fetch, 
decode and issue; parallel pipelined execution units with 
scoreboarding and predicated bypassing; and multiple 
levels of cache hierarchies.  The microarchitecture model 
is synthesized and prototyped on a special FPGA card 
that allows the processor model to interface directly to 
the memory bus of a host PC.  This is an effort toward 
developing a flexible microprocessor prototyping 
framework for rapid design exploration. 

1. Introduction 

Until recently, only relatively simple microprocessor 
designs have been prototyped using FPGAs [5, 6, 7, 11, 
12, 14].  This can be attributed to the limited capacity of 
older FPGAs and the high level of effort associated with 
conventional hardware design flows.  In this paper, we 
describe an FPGA processor prototyping effort that 
leverages both high-level hardware design technologies 
and the growing capacity of new FPGAs.  In this effort, 
we used the Bluespec HDL [2] to prototype a subset of 
the Merced Itanium microarchitecture.  The prototyped 
microarchitecture is mapped onto a special FPGA 
hardware that permits the processor model to execute in a 
real PC system environment. 

Our case study illustrates the costs and capabilities of 
hardware prototyping as compliments to existing 
microarchitecture design techniques.  While simulation-
based studies are effective tools, they are not capable of 
predicting all microarchitectural issues related to final 
physical design.  We were able to evaluate relative circuit 
area and cycle time metrics for design alternatives using 
our implementation of a functioning Itanium processor.  
The processor model was developed with tractable design 

effort, and its primary components were calibrated for 
effective performance modeling. 

We present the details of this work in the following 
sections.  Section 2 describes the Bluespec HDL used for 
microarchitecture modeling.  Section 3 presents the 
Itanium microarchitecture model in detail.  Section 4 
describes our FPGA prototyping platform and its 
operation.  Finally, Section 5 presents an assessment of 
the prototyped processor model and the results from a 
microarchitecture design study.  We offer our conclusions 
in Section 6. 

2. Bluespec HDL 

Bluespec is a synthesizable high-level HDL for rapid 
ASIC development [2].  A key advantage of Bluespec is 
the ability to describe hardware designs clearly and 
concisely, leading to fewer errors and faster design 
capture.  Despite the language’s use of high-level 
synthesis, Bluespec produces high quality output 
comparable with hand coded RTL [1].  Two important 
features of Bluespec are its operation-centric semantics 
and functional programming constructs. 

2.1. Operation-centric semantics 

In a Bluespec hardware description, state elements 
such as registers, arrays, and FIFOs, are declared 
explicitly.  Unlike standard synchronous RTL languages, 
however, operation-centric state transitions are abstractly 
represented as a collection of atomic predicated actions 
known as “rules.”  Each Bluespec rule is comprised of a 
guarding predicate condition and a set of actions that 
update affected state elements.  When a rule’s predicate is 
satisfied, all of the rule’s actions are carried out simulta-
neously and instantaneously; if multiple rules’ predicates 
are simultaneously satisfied only one (nondeterministic-
cally chosen) rule’s actions are carried out.  Thus, an 
execution of a Bluespec description corresponds to 
discrete steps of atomic rule applications, where each rule 
produces a state that satisfies the next rule’s predicate 
condition. 
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A simple example below shows how the operation-
centric semantics can be helpful in our description of the 
Itanium pipeline.  A rule can specify far-reaching actions 
that logically pertain to the same event but are physically 
distributed over the datapath.  In a pipelined processor 
design, actions associated with a branch misprediction 
recovery entail state modifications to numerous portions 
of the pipeline.  In Bluespec, all such actions can be 
gathered and stated in a single rule guarded to take place 
only when encountering a branch misprediction.  Given 
the atomic semantics of rule execution, the consequences 
of this rule are easy to understand, even in the context of 
other rules with conflicting actions. 

2.2. Language features 

Bluespec’s original syntax1 was derived from the 
Haskell functional programming language [10].  Bluespec 
applies object-oriented programming concepts to support 
clean and composible modular design partitioning.  
Functional programming constructs in Bluespec further 
allow concise specifications of combinational logic in a 
rule’s predicate condition and state update expressions.  
For example, the use of list structures and lambda 
expressions allow more flexible and powerful combina-
tional logic descriptions than the simple loops provided 
by standard HDLs.  Moreover, Bluespec offers an 
extensive type system that is significantly more compre-
hensive than conventional HDLs.  This type system 
enables the declaration of elaborate state-storage ele-
ments.  Static type checking during compilation helps to 
eliminate a large class of errors at compile time. 

2.3. Bluespec compiler 

The Bluespec Compiler (BSC) produces the RTL-
level Verilog description of an optimized synchronous 
implementation.  Bluespec’s atomic and sequential 
abstract semantics do not preclude a correct implementa-
tion from executing multiple rules per cycle.  During 
compilation, the Bluespec compiler identifies “conflict-
free” rule pairs (i.e. rules that can be safely executed in 
the same clock cycle to produce a combined state 
transition that is correct with respect to Bluespec’s atomic 
and sequential semantics) [9].  The Bluespec compiler 
then synthesizes a synchronous implementation that 
executes as many conflict-free rules as possible each 
cycle.  BSC Verilog output can be integrated with other 
components described by conventional HDLs for 
simulation and synthesis.  BSC can also generate a cycle-
accurate C simulator of the design. 

                                                
1 The current Bluespec revision [3] extends support to SystemVerilog. 

3. Itanium model development 

The goal of this project is to model a realistic proces-
sor microarchitecture for FPGA prototyping and design 
explorations.  One of the key challenges is maintaining a 
balance between the level of modeling detail and the 
implementation effort.  Below, we first give an overview 
of the Itanium microarchitecture and then describe the 
details of our Bluespec model. 

3.1. Overview of the Intel Itanium architecture 

The Intel Itanium Architecture is a 64-bit “EPIC” 
(explicitly parallel instruction-set computing) architecture 
[8].  Reminiscent of Very Long Instruction Word (VLIW) 
architectures, Itanium instructions are formatted as 128-
bit bundles of three RISC-like instructions.  The Itanium 
instruction set architecture (ISA) supports explicit 
demarcation of data-independent groups (ranging from 
one instruction to several bundles in length) in the 
instruction sequence.  This explicit data-dependence 
encoding allows the Itanium ISA to be efficiently 
supported by straightforward VLIW-like microarchitec-
tures.  The Itanium ISA also incorporates other distinc-
tively VLIW-like features such as a large rotating register 
file and predicated instructions.  The first generation Intel 
Itanium  processors (code named Merced) ran at 733 and 
800 MHz and use an 8-stage core pipeline [16].  This 
first-generation microarchitecture are based on a “2-
bundle” wide datapath; that is, the datapath can decode 
and issue up to two bundles, or six instructions, per cycle. 

3.2. Modeled ISA subset 

Presently, we support only a subset of the Itanium 
ISA in our Bluespec microarchitecture model.  The 
chosen subset constitutes approximately one-third of the 
instruction encodings in the Itanium ISA (not including 
IA-32 compatibility modes).  This subset concentrates on 
user-level integer, memory, and control flow instructions, 
which constitute the vast majority of integer instructions 
generated by the Intel Itanium C++ compiler.  For 
example, the subset is sufficient to execute the Dhrystone 
integer benchmark [17].  Examples of omitted user-level 
integer instructions include vector operations, multiproc-
essor related operations, speculative and advanced loads, 
etc.  Floating-point instructions, multimedia instructions, 
and privileged instructions are also not currently sup-
ported.  The model obeys the true bit-encodings defined 
by the Itanium ISA.  This requirement introduces some 
complexity in the decoding stages of the microarchitec-
ture model, but we deem this necessary for a faithful 
prototype.  This also allows us to use stock Itanium 
assemblers to produce executable binaries. 
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3.3. Modeled microarchitecture details 

The Itanium microarchitecture captured in our 
Bluespec model is primarily based on published descrip-
tions of the first-generation Itanium microarchitecture 
[16].  A block diagram of the modeled microarchitecture 
is shown in Figure 1.  Certain stages in the front of the 
pipeline differ from the published details to permit a more 
straightforward description under the Bluespec frame-
work.  For example, our model utilizes a single decoding 
stage, rather than distributing the decoding functionality 
across expand and rename stages.  Below, we briefly 
describe the microarchitectural details included in our 
Bluespec model. 

The fetch stage uses a two-level adaptive branch pre-
dictor to generate instruction fetch addresses to the 
instruction cache.  This predictor has a 512-entry, 4-way 
associative per address BHT of 4-bit entries, 128 16-entry 
per address PHTs of 2-bit saturating counters, and a 64-
entry branch target buffer.  An instruction cache hit 
returns up to two bundles (depending on alignment) to the 
decoding stage.  The decoding stage passes partially 
decoded instructions in the same instruction group to the 
dispersal stage.  The dispersal stage attempts to issue as 
many instructions from the same instruction group as 
possible.  The decode and dispersal stages can process up 
to 2 bundles per cycle, but only 1 instruction group per 
cycle.  Like in a real Itanium, there is no out-of-order 
instruction issue. 

The stack stage renames the effective register name 
to a real register name according to a simple offset in the 
circularly indexed rotating register file.  We implement a 

simple register stack engine that blocks the pipeline to 
service compulsory stack spills and fills.  Next, the 
register read stage fetches operand values from the 
register files.  Instructions are stalled in the register fetch 
stage if non-bypassable read-after-write hazards are 
detected between instructions in different instruction 
groups. 

The execution stages comprise of three types of exe-
cution pipelines: branch, integer, and memory/integer.  
The branch units determine the outcome of a branch 
instruction based on a predicate register value, possibly 
forwarded from the integer execution units.  The branch 
outcome is compared to the predicted outcome, and 
mispredictions cause the pipeline control module to be 
notified.  The resulting control module action flushes the 
wrong-path instructions, and corrects branch predictor 
entries and the current instruction pointer.  The integer 
execution units (including the memory/integer units) are 
fully bypassed and support 64-bit arithmetic and logical 
operations as well as fixed-point multiply.  The bypass 
control is predicated allowing speculative execution and 
forwarding of predicated results.  The memory units 
perform reads and writes against the L1 data cache.  
Finally, the write-back stage commits register updates to 
the appropriate register file. 

The cache hierarchy consists of three levels, separate 
16 KB L1 instruction and data caches, a 96 KB L2 unified 
cache, and a 4 MB L3 cache.  The L1 caches are both 
4-way set associative with 32-byte lines and 2 cycle load 
latencies.  The L2 is 6-way set associative, has 64-byte 
lines, and a 6-cycle load latency.  The L3 is 4-way set 
associative with 64-byte lines and a 21-cycle load latency.  
Main memory latency is implemented to be 100 cycles. 

3.4. Model development 

The behavior of the microarchitecture model is de-
scribed as 90 rules in about 9,500 lines of Bluespec code.  
Approximately one-third of the description is devoted to 
the decode and execution stages.  Both stages are 
conceptually simple, but require extensive descriptions 
due to the elaborateness of the Itanium ISA encodings. 

The operation-centric semantics and functional lan-
guage syntax of Bluespec are very effective in reducing 
the development time of the Itanium microarchitecture 
model.  Language features such as static type checking 
and terse functional language descriptions of combina-
tional logic lead to fewer bugs.  The atomic descriptions 
of control operations, as well as the ability to compose 
operations easily, made the Bluespec description simpler 
and clearer for corner case behaviors. 

In return for the convenience of Bluespec’s high-
level design abstraction, we give up some control over the 
exact implementation details.  This presents a number of 
problems in prototype development.  First, a hidden 

 
 

Figure 1. Bluespec Itanium microarchitecture model 
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danger in (all) high-level synthesis is the ability to imply 
huge combinational logic blocks unintentionally from 
seemingly short and simple expressions.  This is particu-
larly problematic when several valid coding options lead 
to drastically different circuit sizes (revealed only after 
synthesis).  Similarly, since the description’s high-level 
constructs are further removed from the final synthesized 
physical designs, it is more difficult to trace timing and 
space problems from the synthesized circuit back to a 
particular site in the Bluespec source code.  Finally, 
Bluespec’s abstract timing model improves operation 
composibility within the language environment but 
demands special care when attempting to interface with 
synchronously-timed external systems. 

4. FPGA prototyping 

Our FPGA prototyping platform enabled rapid devel-
opment of a functional Itanium model with low latency 
and high bandwidth access to large memory resources.  
Figure 2 gives an overview of the key components and 
workflow of our FPGA prototyping system. 

4.1. FPGA prototyping hardware 

Our Itanium model is prototyped on a custom FPGA 
board provided by Intel for research use.  The FPGA 
board connects a Xilinx Virtex-II XC2V6000-5 to the 
front-side bus (FSB) of a Pentium III motherboard via a 
Slot 1 edge connector [13].  Through the FSB, the FPGA 
can directly reference the main memory of a host PC.  
Operating at 100 MHz, the FSB interface provides the 
FPGA with a peak memory bandwidth of 800 MB/sec and 
a typical round-trip time of less than 150 ns. 

The FPGA board has two banks of 256K×4 byte syn-
chronous SRAM modules.  The two-cycle pipelined 
SRAM modules operate at up to 166 MHz, for a sustained 
bandwidth of 667 MB/sec. 

In our current setup, the FPGA board replaces one of 
the Pentium III processors in a dual-processor PC host.  
The remaining Pentium III processor runs a uniprocessor 
Linux operating system out of the lower half of the 
physical memory (1 GB).  The upper 512 MB of physical 
memory is used by the FPGA-prototyped processor.  The 
host Pentium III can read and write the upper 512 MB 
region through a special /dev/mem file handle.  Thus, the 
Pentium III can communicate with the FPGA-prototyped 
processor via uncached shared-memory operations.  The 
Pentium III can also issue low-level control messages to 
the FPGA by writing to special physical addresses 
snooped by the FPGA’s FSB interface logic. 

4.2. FPGA design instantiation 

To instantiate a Bluespec microarchitecture model on 
the FPGA, the BSC-generated Verilog source code is 
combined with a VHDL wrapper code that implements 
the FSB interface.  The FSB interface code enables the 
FPGA to participate as a master in uncached read and 
write bus transactions and as a passive snoop agent. 

The combined Verilog and VHDL source files are 
compiled using Synplify Pro 7.3 to produce EDIF files 
required by Xilinx’s Integrated Software Environment 
(ISE) 5.2.  Xilinx ISE is used to map, place-and-route, 
and generate the FPGA configuration bit stream.  We 
configure the FPGA using the ACE CompactFlash 
interface.  By providing standalone power and configura-
tion clocking to the FPGA board, we are able to program 
the FPGA prior to powering up the PC-host; this greatly 
simplifies the host boot-up processes. 

In addition to the raw read-write FSB interface de-
scribed in VHDL, we implement a three-level cache 
hierarchy model in Bluespec.  The L1 caches are imple-
mented using the Xilinx Virtex’s internal block select 
RAMs.  To achieve a dual-ported 4-way set associative 
L1 data cache we implemented the cache logic in a 
separate clock domain that ran at double the speed of the 
rest of the processor model.  The 100 MHz FSB clock 
drove the cache clock domain directly, and a clock divider 
fed the remainder of the processor model with a 50 MHz 
clock signal. 

The two lower levels of the cache hierarchy were too 
large to be implemented onboard the FPGA.  Thus, we 
used the external SRAM to provide tag and data storage 
for the L2 cache, and tag storage for the L3 cache.  The 
L3 cache model consults this SRAM tag storage to 
determine hit or miss status, but always fetches cache 
lines directly out of main memory.  On a L3 hit, the cache 
line is be available to the core within 8 processor cycles 

 
 

Figure 2. FPGA prototype system and workflow 
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(at 50 MHz), thus the request is artificially delayed to 
mimic the desired 21 cycle load latency.  Main memory 
requests are also delayed before being placed on the FSB 
to allow modeling of the correct relative speed between 
the processor core and main memory. 

Our current Itanium microarchitecture model utilizes 
approximately 40% of the resources available on the 
Xilinx XC2V6000, while the FSB interface wrapper 
consumes an addition 4% of available resources.  The 
current Itanium microarchitecture model and FSB 
interface synthesizes to 50 MHz. 

4.3. Prototyped processor execution 

The FPGA prototyped processor executes Itanium 
binary executables out of the reserved upper 512 MB 
region of the host-PC’s main memory.  We use the Intel 
Itanium C++ Compiler 7.0 to generate object files from 
C++, C, and Itanium assembly programs.  The object files 
are decoded using the objdump utility software and 
reformatted by a Python script to produce executables for 
the FPGA prototyped processor. 

Prior to execution, the memory space for the FPGA 
prototyped processor is initialized by the Pentium III host 
processor.  The host processor uses uncached writes to 
load the executable binary and program data to a known 
location in the FPGA processor’s address space.  The host 
processor initiates the FPGA prototyped processor’s 
execution by writing to a memory-mapped address 
snooped by the FPGA’s FSB controller.  The FPGA 
prototyped processor terminates execution by writing out 
relevant processor state (register file contents, program 
counter, and performance counters) to physical memory 
where they can be examined by monitoring software 
running on the host processor. 

5. Model calibration & experimental results 

Our FPGA prototype is designed to realistically 
model the details of an Itanium processor and to support 
microarchitectural design explorations.  We evaluate 
these two goals by first calibrating our model’s IPC 
performance to a real Itanium processor.  Next, we apply 
the calibrated model to investigate the performance and 
implementation tradeoffs from reducing the data bypass 
network. 

5.1. Performance calibration 

We used two types of software benchmarks to com-
pare and tune the performance of our FPGA model to an 
Itanium processor.  First, we specifically designed 
microbenchmarks to exercise various features of the 
processor pipeline (as in [3]).  We also measured overall 

performance using the Dhrystone benchmark as an 
inclusive integer workload. 

 
Execution pipeline.  We first focused on the execution 
portion of the pipeline, verifying that the dispersal 
through write-back stages performed correctly for general 
ALU instructions.  We generated Itanium assembly 
comprised of ALU instructions with random register 
operands.  We varied the average size of the generated 
instruction groups (dependence free instructions) to 
exercise the different behaviors of the dispersal stage.  
Specifically, we tested how the dispersal stage handles 
split-issues when an insufficient number of execution 
pipelines are available.  The results of executing this 
microbenchmark on our model and an Itanium processor 
are shown in Figure 3 as a plot of IPC vs. mean group 
size.  Since this portion of the prototype model was based 
on detailed documentation of the Itanium processor, our 
model performed almost identically to the actual proces-
sor. 

It is clear from Figure 3 that neither the Itanium nor 
our prototype model ever exceeds three instructions per 
cycle, regardless the of mean group size.  This is a real 
phenomenon caused by Itanium’s issue policy, which 
does not permit instructions decoded in different cycles to 
be issued in the same cycle.  When presented with the 
first two decoded bundles of an infinitely long instruction 
group, a 2-bundle wide microarchitecture with four 
integer execution units can issue four independent integer 
instructions in one cycle.  In the next cycle, however, only 
the remaining two instructions from the two decoded 
bundles are issued because the issue policy does not 
further consider subsequent bundles.  This caps the peak 
IPC at 3.0 for program segments of purely integer 
instructions (unless carefully padded with NOP instruc-
tions).  Our prototype model reflects this performance 
characteristic accurately. 

 
Memory system.  The second portion of our model that 
we calibrated was the memory system.  We tested the 
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Figure 3. ALU microbenchmark performance 
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prototype model using a microbenchmark that performs 
loads and stores to memory regions of varying size for a 
spectrum of strides [15].  This benchmark produces a 
characteristic graph that reveals the details of the cache 
hierarchy when access latency is plotted as a function of 
stride and region size.  Using this microbenchmark, we 
were able to verify that the basic caching behavior of our 
prototype model closely matches the Itanium processor. 

 
System performance.  To establish overall performance 
we compared the IPC of the Dhrystone benchmark on the 
Itanium processor with our prototype model.  Initially, we 
had only implemented a single-ported L1 data cache to 
avoided introducing a second clock domain (see Section 
3.3).  For the Dhrystone benchmark, even with the 
calibrated execution pipeline, our prototype model with 
only a single-ported L1 data cache had a 34% error in 
IPC, relative to the real Itanium processor (0.94 vs. 1.43).  
Introducing the dual-ported L1 data cache reduces the IPC 
error to 11%. 

There remain several aspects of the Itanium microar-
chitecture that we do not implement fully, which contrib-
utes to the remaining IPC error.  For example, our 
prototype model currently only implements the primary 
branch predictors, but not other supporting mechanisms 
such as the target address registers, the multi-way branch 
prediction table, branch correction for modulo-scheduled 
loops and static prediction hints.  To reduce the absolute 
IPC error further would require increasingly more details 
to be modeled precisely in the prototype, at which point 
the prototyping effort approaches that of a production 
development effort.  Given the desire to reduce develop-
ment effort, it is unrealistic to expect a prototype model to 
agree absolutely with a production design.  What the 
prototype enables us to do is to quickly explore different 
design options and measure the effects in not only 
performance but also implementation metrics. 

5.2. Microarchitecture exploration 

In this study, we use the prototype model to investi-
gate the effects of abbreviating the bypass network that 
connects the integer pipelines.  As in the real Itanium, our 
baseline model has a full bypass network that connects 
the output from the integer/memory execute stages to the 
operand inputs of both the read and execute stages.  One 
could consider reducing the complexity of this network by 
allowing forwarding among a subset of the pipelines.  
Reducing the bypass network negatively affects the 
processor’s IPC, but when moving to a wider microarchi-
tecture a partially bypassed network is an important 
strategy to reduce implementation area and impact on 
cycle time. 

Starting from our baseline prototype model, we can 
modify the high-level Bluespec description to derive 
alternative microarchitectures to investigate the impact of 
a partial bypass network.  In a “1-way” configuration, 
each pipeline forwards results only to itself.  The “2-way” 
and “3-way” configurations forward results to additional 
adjacent pipelines.  To support a partial bypass network, 
we also have to modify the register scoreboard logic 
accordingly to account for the limited data forwarding.  

Figure 4 plots the changes in IPC when the integer 
instruction microbenchmark is executed on prototype 
models with different bypass configurations.  As ex-
pected, IPC performance decreases as the degree of 
bypass in network is reduced.  An interesting behavior in 
the partial bypass networks is that group sizes beyond a 
threshold can actually come to negatively impact IPC.  
This behavior is caused by the increased probability of 
dependencies between consecutive groups in the micro-
benchmark.  Notice that this evaluation is based on 
microbenchmarks of controlled instruction group sizes.  A 
comprehensive study on the impact of partial bypass 
networks must also expose this microarchitecture feature 
to the compiler and consider the compiler interactions. 

Besides IPC performance trends, the implementation 
impact of the design can be studied by synthesizing the 
prototype model.  Table 1 reports the reduction in area 
and critical delay path (in the bypass network) when the 
different prototype models are synthesized for a 0.18µm 
standard cell library. 

Table 1. Bypass network impact study 
 

Bypass Area reduction (mm2) Critical path (ns) Dhrystone IPC 
Full — 4.29 1.27 

3-way 0.35 3.99 1.21 
2-way 0.53 3.76 1.15 
1-way 0.68 3.57 1.09 
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Figure 4. ALU microbenchmark performance 
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6. Conclusions 

Simulation-based microarchitecture studies are pow-
erful tools, but they can fail to uncover critical issues 
related to the final physical implementation.  Prototyping 
helps to expose these issues and provides implementation 
estimates such as relative circuit area and cycle time 
metrics.  In this paper, we described the FPGA prototyp-
ing of an Itanium processor.  The processor model 
accurately recreates the primary components of the 
Itanium microarchitecture to provide an effective 
performance model.  This prototype is also capable of 
providing supporting implementation metrics through 
synthesis.  We intend to develop this platform further as a 
flexible prototyping system for application specific 
processor design. 

Acknowledgment 

We would like to thank Steve Haynal, Shih-Lien Lu, 
Konrad Lai, and Kevin Rudd for their feedback and 
assistance in this study.  Funding for this work is provided 
by the Integrated Circuits and Systems Research program 
of the Semiconductor Research Corporation.  We thank 
Bluespec Inc. for providing the Bluespec compiler and 
Intel Corporation for providing the FPGA platform. 

References 

[1] Arvind, R.S. Nikhil, D.L. Rosenband, and N. Dave, High-
level synthesis: An Essential Ingredient for Designing 
Complex ASICs, Memo 473, Computation Structures 
Group, Massachusetts Inst. of Technology, 2004. 

[2] L. Augustsson, J. Schwartz, and R.S. Nikhil, Bluespec 
Language Definition, Sandburst Corp., 2001. 

[3] B. Black and J.P. Shen, “Calibration of Microprocessor 
Performance Models,” Computer, vol. 31, iss. 5, May 1998. 

[4] Bluespec™ SystemVerilog Version 3.8 Reference Guide, 
Bluespec Inc., 2004. 

[5] R. Brown, J. Hayes, and T. Mudge, “Rapid Prototyping and 
Evaluation of High-Performance Computers,” Proc. Conf. 

on Experimental Research in Computer Systems, NSF Ex-
perimental Systems, June 1996. 

[6] J. Gaisler, LEON/AMBA VHDL model description, 
European Space Agency, 2000. 

[7] M. Gschwind, V. Salapura, and D. Maurer, “FPGA 
Prototyping of A RISC Processor Core for Embedded Ap-
plications,” IEEE Trans. on Very Large Scale Integration 
(VLSI) Systems, vol. 9, no. 2, Apr. 2001. 

[8] J. Huck, D. Morris, J. Ross, A. Knies, H. Mulder and 
R. Zahir, “Introducing the IA-64 Architecture,” IEEE Mi-
cro, vol. 20, iss. 5, Sept./Oct. 2000. 

[9] J.C. Hoe and Arvind, “Synthesis of Operation-Centric 
Hardware Descriptions,” Proc. Int’l Conf. on Computer 
Aided Design (ICCAD-2000), Nov. 2000. 

[10] S.P. Jones and J. Hughes, Haskell 98: A Non-strict, Purely 
Functional Language, tech. report YALEU/DCS/RR-1106, 
Yale Univ., 1999. 

[11] Y.G. Kim and T.G. Kim, “A Design and Tool Reuse 
Methodology for Rapid Prototyping of Application Specific 
Instruction Set Processors,” Proc. IEEE Int’l Workshop on 
Rapid System Prototyping (RSP1999), June 1999. 

[12] K. Oh, S. Yoon, and S. Chae, “Emulator Environment 
Based on an FPGA Prototyping Board,” Proc. IEEE Int’l 
Workshop on Rapid System Prototyping (RSP2000), 
June 2000. 

[13] P6 Family of Processors – Hardware Developer’s Manual; 
http://www.intel.com/design/PentiumII/manuals/244001.htm. 

[14] W.B. Puah, B.S. Suparjo, R. Wagiran, and R. Sidek, 
“Rapid Prototyping Asynchronous Processor,” Proc. IEEE 
Int’l Conf. on Semiconductor Electronics (ICSE2000), 
Nov. 2000. 

[15] R.H. Saavedra-Barrera, CPU Performance Evaluation and 
Execution Time Prediction Using Narrow Spectrum 
Benchmarking, PhD Dissertation, Univ. of California, 
Berkley, May 1992. 

[16] H. Sharangpani and H. Arora, “Itanium Processor 
Microarchitecture,” IEEE Micro, vol. 20, iss. 5, 
Sept./Oct. 2000. 

[17] R.P. Weicker, “Dhrystone: A Synthetic Systems Program-
ming Benchmark,” Comm. of the ACM, vol. 27, no. 10, 
Oct. 1984. 

 


