
Dual Use of Superscalar Datapath for Transient-Fault Detection and Recovery

Joydeep Ray, James C. Hoe and Babak Falsafi
Computer Architecture Laboratory

Carnegie Mellon University
Pittsburgh, PA 15213

fjray, jhoe, babakg@ece.cmu.edu

Abstract

Diminutive devices and high clock frequency of future
microprocessor generations are causing increased concerns
for transient soft failures in hardware, necessitating fault
detection and recovery mechanisms even in commodity pro-
cessors. In this paper, we propose a fault-tolerant exten-
sion for modern superscalar out-of-order datapath that can
be supported by only modest additional hardware. In the
proposed extensions, error-detection is achieved by verify-
ing the redundant results of dynamically replicated threads
of executions, while the error-recovery scheme employs the
instruction-rewind mechanism to restart at a failed instruc-
tion. We study the performance impact of augmenting su-
perscalar microarchitectures with this fault tolerance mech-
anism. An analytical performance model is used in conjunc-
tion with a performance simulator. The simulation results
of 11 SPEC95 and SPEC2000 benchmarks show that in the
absence of faults, error detection causes a 2% to 45% re-
duction in throughput, which is in line with other proposed
detection schemes. In the presence of transient faults, the
fast error recovery scheme contributes very little additional
slowdown.

1 Introduction

Following the current trends in transistor size, volt-
age and clock frequency, future microprocessors will be-
come increasingly susceptible to transient hardware failures
(a.k.a. single-event upsets (SEU) or soft errors) [3, 7]. Re-
cently, researchers have proposed techniques to make use
of inherent hardware redundancies of multithreaded and
chip-multiprocessor architectures in concurrent error detec-
tion [14, 15, 19]. In this paper we present a transient-
fault tolerant design that takes advantage of the redundan-
cies found in superscalar processors. In addition to concur-
rent error detection, we propose to make use of pre-existing
“instruction-rewind” mechanisms for recovery. A fault-

tolerant superscalar processor is in an important design
space because a microprocessor that can deliver maximum
single-thread performance at a given cost will continue to
be the mainstay in commodity PC and embedded processor
markets. Backed by tremendous economic momentum, a
single design that can deliver maximum everyday-use per-
formance and alternatively provide mission-critical reliabil-
ity will have a profound impact on the affordability of reli-
able computing. On the one hand, high-reliability servers
and mainframes could leverage the economy of scale of
mass-market PC processors. While on the other hand, ev-
eryday PC users can have the option of selectively trad-
ing off performance for reliability depending on their cus-
tomized usage and requirements.

The same mechanisms for speculative out-of-order su-
perscalar execution, common in the current generation of
microprocessors, can also be applied to both detection and
recovery of transient faults. Figure 1 illustrates the actions
of error detection and recovery in a superscalar datapath.
(1) By adapting register renaming capabilities, instructions
fetched from a single stream can be issued redundantly as
two or more data-independent threads in the dynamic exe-
cution path. (2) For error detection, the redundantly com-
puted results from multiple threads can be checked against
each other prior to committing the effect of an instruction.
(3) Any inconsistency between the redundant results trig-
gers the instruction-rewind mechanism to restart program
execution from the failed instruction; the execution can be
continued in a seamless, timely fashion if the error is non-
recurring.

This paper explores the above fault-tolerant framework
in depth and pays particular attention to the issues of
transient-fault recovery. Earlier work on fault-tolerant su-
perscalar design (such as [8]) concentrates on concurrent
error detection of irrecoverable hard failures and does not
consider the possibility of using instruction-rewind as a re-
covery mechanism. The more recent efforts in the mul-
tithreaded/multiprocessor contexts also do not discuss the
mechanisms for efficiently recovering from a transient fault



Figure 1. The three steps of fine-grain concurrent error detection and recovery on a superscalar
processor.

and instead rely on coarse-grain checkpointing. Coarse-
grain recovery schemes severely disrupt program progress
and are only acceptable for non-interactive data-processing
applications. Furthermore, in our proposed fault-tolerant
superscalar design, once concurrent error detection is in
place, recovery can be implemented at nearly no hardware
or performance cost.

When the proposed fault-tolerant mechanism is in ef-
fect, some fraction of the original processor throughput is
lost to redundant processing, but when protection is not
needed, the modified datapath can still be returned to the
performance of an optimally-tuned superscalar design be-
cause our extension requires only small deviations from a
standard design. To better understand the performance cost
of reliability, we have developed both a simple analytical
model and a SimpleScalar-derived performance simulator.
In most cases, the performance loss in a two-way redundant
execution is much less than 50% compared to normal non-
redundant executions on comparable hardware resources.
For the 11 SPEC95 and SPEC2000 benchmarks we stud-
ied, the throughput (IPC) penalty due to two-way redundant
execution ranges from 2% to 45% (32% average) on an 8-
way superscalar datapath. This throughput penalty is in line
with other reported results for concurrent error detection by
redundant instruction processing. We have determined that
the overall throughput remains unaffected by even a high
frequency of faults because of the low cost of rewind-based
recovery. In this paper, we also discuss the trade-offs and
the range of applicability of different implementation deci-
sions.

Paper Outline: The remainder of this paper is organized
as follows. Section 2 provides additional background on
the nature of transient faults and relates our effort to prior

work in fault-tolerance (both hard and soft errors). Sec-
tion 3 presents the details of our proposed transient fault
detection and recovery mechanisms. Section 4 presents a
simple analytical performance model for a fault-tolerant su-
perscalar processor and applies it in an analysis. Section 5
presents the results of our simulation-based performance
evaluations. Section 6 summarizes the contributions of this
paper and discusses future directions of our efforts.

2 Background

2.1 Transient Hardware Faults

Transient faults have traditionally been associated with
the corruption of stored data values. This phenomenon has
been reported as early as 1954 in adverse operating condi-
tions such as near nuclear bomb test sites and later in space
applications [22, 12]. Since 1978, dense memory circuits,
both DRAM and SRAM, have been known to be suscepti-
ble to soft errors caused by alpha-particles from IC packag-
ings [10] and cosmic rays [21]. By definition, a hardware
device can recover its full capability following a transient
failure, but such failures are no less catastrophic for the cor-
rect execution of a program because a corrupted intermedi-
ate value, if not handled, can corrupt all subsequent com-
putations. Over the years, measures to protect against soft
errors in memory devices have evolved to include physi-
cal techniques in cell/gate design [1] and packaging materi-
als [9], as well as error correction codes (ECC). Today, these
techniques are commonplace even in commodity PC mem-
ories, but, except in extremely critical applications, protec-
tion against transient failures has received little commercial
attention outside of the memory subsystem. Soft-error rates



vary greatly depending on device types and operating con-
ditions, but current estimates are typically on the order of
one failure per one million hours.

In an effort to keep up with Moore’s Law, microproces-
sor implementations have required ever decreasing feature
size and supply voltage. As a consequence of the reduced
capacitive node charge and noise margin, even flip-flop cir-
cuits will inevitably become susceptible to soft-errors [6].
The high clock rate of modern processors further exacer-
bates the problem by increasing the probability of a new
failure mechanism where a momentarily corrupted combi-
national signal is latched by a flip-flop. These necessary
evils of continually pushing the processor performance en-
velope will shortly place us in an unfamiliar realm where
logically correct implementations alone cannot ensure cor-
rect program execution with sufficient confidence.

2.2 Fault-Tolerant Computing

It should not be surprising that even today no commer-
cial ICs are guaranteed to operate “perfectly”. In fact, in-
ternational standards exist to prescribe what is an accept-
able, albeit a very low, frequency of failure [18]. When
additional confidence in reliability is called for, vendors
of high-availability platforms have long incorporated ex-
plicit error detection and correction techniques in their ar-
chitectures. The basic techniques involve information re-
dundancy, space redundancy and time redundancy.

Protecting data words with information redundant cod-
ing, such as parity or Hamming code, allows some number
of bit errors to be detectable or correctable. Information
redundancy comes at the cost of additional storage for the
coding overhead, as well as the cost of the encoding and
checking logic. Memory arrays can be ECC-protected rela-
tively efficiently because the cost of the coding logic can be
amortized over the array. Applying ECC to individual reg-
isters in a processor requires an exorbitant amount of over-
head and also increases the critical path delay. Typically,
information redundancy is reserved for memory, caches and
perhaps register files, whereas space and time redundant
techniques are employed elsewhere in the processor.

Space redundancy is achieved by carrying out the same
computation on multiple independent hardware at the same
time. Errors are exposed by corroborating the redundant re-
sults. For systems with triple (or higher) redundancy, a cor-
rect answer can be obtained by a majority election scheme
in certain failure modes. For duplex systems, computa-
tion must be restartable in order to recover from an error.
To avoid the large hardware overhead of space redundancy,
an alternative is time redundancy where redundant compu-
tation is obtained by repeating the same operations multi-
ple times on the same hardware. Time redundancy has the
shortcoming that persistent hardware faults may introduce

identical errors to all redundant results, making errors in-
discernible. A proposed workaround involves transforming
the input operands (such as rotating the operands for bit-
wise logical operations) between redundant executions to
expose a persistent fault [13]. Space redundancy has a com-
plementary shortcoming that a transient failure mechanism
may affect the space redundant hardware identically, again
making errors indiscernible.

Due to the high cost of fault tolerance and the relatively
low likelihood for errors in present-day technologies, fault-
tolerant processor designs have only been justified in spe-
cialty systems and very high-end mainframes/servers in-
tended for mission-critical applications. Examples of com-
mercial fault-tolerant systems are IBM z900 [16] and Com-
paq NonStop Himalaya [5]; both employ a combination of
redundancy techniques described above.

IBM z900 (previously S/390) employs extensive fault-
tolerant mechanisms throughout the system, accounting for
approximately 20% to 30% of all logic. In particular, since
G4, microprocessors for IBM mainframes have employed
two fully-duplicated lock-step pipelines. When the two
pipelines disagree in an instruction’s result, the processor
reverts to millicode to carry out extensive hardware checks,
and, on transient errors, it can restore the program state from
a special hardware checkpoint module. The whole process
can take up to several thousand processor cycles. Although
these processors offer superb fault-tolerance, they are high-
end specialty items because their design trade-offs are sub-
stantially different from commodity microprocessors.

Compaq NonStop Himalaya comprises of two stock Al-
pha processors running the same program in locked step.
Faults are detected by comparing the output of the two pro-
cessors at the external pins on every clock cycle. The two
processors are halted immediately if they disagree to pre-
vent errors from corrupting the memory and storage sub-
systems. Although Compaq is able to leverage their com-
modity workstation processors in their NonStop Himalaya
systems, they are not able to provide hardware support for
seamless recovery following a transient failure.

2.3 Related Work in Transient-Fault Tolerance

In the coming paragraphs, we describe some recent work
in addressing the problem of transient-faults in future com-
modity processors. Our work shares many of the common
elements examined by these closely-related efforts. How-
ever, our investigation, based on a superscalar datapath, at-
tempts to provide a design that can optionally divert its full
resources toward single-thread performance or reliabil-
ity. Our work also integrates recovery into fault tolerance
with very little additional cost.

The inherent hardware redundancy in simultaneous mul-
tithreading (SMT) [20] and the chip multi-processor (CMP)



architectures make them ideal bases for space and time re-
dundant fault-tolerant designs. However, in normal oper-
ation, these multithreaded/multiprocessor architectures are
throughput-optimized and depend on the existence of multi-
ple threads for maximum performance. We believe the ratio
of single-thread performance over cost will remain an im-
portant factor in PC and embedded markets. Rotenberg is
the first to suggest using an SMT architecture to execute
two copies of the same program for fault-tolerance [15].
The two copies, known as the A-thread and the R-thread,
proceed with a slight lag. Mechanisms are introduced to
verify the outcome of the two threads on an instruction-
by-instruction basis. In the same paper, Rotenberg also
describes mechanisms to reduce the throughput penalty of
redundant execution by expediting the R-thread using A-
thread-assisted control and data predictions. The paper did
not discuss the means for recovery. A later paper develops
similar concepts in the context of CMPs [19].

Reinhardt and Mukherjee have improved upon SMT-
based fault-tolerant designs by checking only instructions
whose side-effects exit the processor core, permitting looser
coupling between the redundant threads [14]. They have
also suggested mechanisms to speedup the delayed threads
using information from the leading thread. No recovery
scheme is suggested to complement this coarse-grain de-
tection scheme. Their paper presents a thorough examina-
tion of the issues in SMT-based fault-tolerance. In partic-
ular, they describe the concept of sphere of replication for
aiding the design and discussion of fault-tolerant proces-
sors. In short, the parts of the processor that fall outside
of the sphere are not replicated and must be protected via
means such as information redundancy; components inside
the sphere must either be physically replicated for space re-
dundancy or logically replicated via time redundancy.

Austin proposes a very different fault-tolerant scheme in
the DIVA architecture [2]. DIVA comprises of an aggres-
sive out-of-order superscalar processor and, on the same
die, a simple in-order checker processor. The checker pro-
cessor verifies the output of the complex out-of-order pro-
cessor and triggers a recovery action when an inconsis-
tency is found. Besides transient fault-tolerance, assum-
ing the simple DIVA checker processor is free of errors,
it is also able to correct errors due to design mistakes in
the aggressive front-end processor. DIVA offers an interest-
ing solution to combat processor design complexity, but the
static nature of its hardware redundancy prevents it from re-
gaining additional performance when reliability is not war-
ranted.

3 Transient-Fault Tolerant Superscalar

This section presents our proposal for a fault-tolerant
superscalar processor. (In the rest of this paper, we use

fault tolerance to mean transient-fault tolerance.) Our ob-
jective is to develop a set of extensions that leverage pre-
existing speculative out-of-order hardware and minimizes
disturbances to modern superscalar designs.

3.1 Baseline Processor and Assumptions

Earlier proposals for aggressive superscalar designs
have employed centralized bookkeeping structures such as
RUU [17]. Most recent implementations have adopted a
more decentralized organization with distributed reserva-
tion stations, reorder buffer (ROB) and rename register file.
Our proposal is compatible with both schemes. In the fol-
lowing paragraphs, we briefly describe the main architec-
tural assumptions for the baseline superscalar processor.

For concurrent error detection, we rely on register re-
naming hardware to temporarily split an instruction stream
into multiple data-independent threads. In our baseline ar-
chitecture, rename registers reside with ROB entries; specu-
lative values are transferred to a separate committed register
file upon an instruction’s retirement. A map table main-
tains mapping from logical register names to physical reg-
ister locations. We will also consider the alternative where
renaming is carried out by associatively searching the “log-
ical destination” column of ROB and the case where com-
mitted registers and rename registers are held in a common
pool of physical registers.

For error recovery, we rely on speculative execution
hardware to maintain both in-order (or committed) and out-
of-order (or speculative) states such that the processor can
always revert to the known-to-be-good committed state af-
ter encountering an exception. In our baseline architecture,
ROB records all outstanding instructions in program order
and tracks their execution status. While in ROB, instruc-
tions are considered speculative; their side-effects on com-
mitted program states are delayed in ROB until retirement.
Although instruction executions are dynamically reordered,
instructions retire from ROB in strict program order.

In coming microprocessor generations, memory cell ar-
rays are likely to experience an unacceptable rate of tran-
sient failures sooner than the rest of the processor. There-
fore we anticipate all or most of the on-chip storage arrays
to be ECC protected. In this paper, we assume ECC pro-
tection is viable for all simple array structures, i.e., ones
that only support basic indexed read and write access to a
whole entry. In particular, we assume all committed pro-
gram states (including register files, caches, main memory
and TLBs) are ECC protected. Internal processor state reg-
isters and complex-access structures like ROB cannot be
efficiently ECC protected. Thus, unlike the O3RS reli-
able superscalar architecture proposed by Mendelson and
Suri [11], speculative state and intermediate execution re-
sults in our design are covered by either space or time re-



dundant processing. In short, the sphere of replication in
our design separates committed program states from specu-
lative execution states.

3.2 Fault Tolerance Mechanisms

The proposed fault tolerance extensions consist of three
parts: instruction injection (replication), fault detection and
transient fault recovery.

Instruction Injection

The instruction injection logic in the decode stage temporar-
ily creates multiple redundant threads from a single instruc-
tion stream. Standard superscalar designs can decode and
dispatch multiple instructions concurrently. The same ca-
pability could be borrowed to redundantly decode and dis-
patch the same instruction R number of times, where R is
the desired degree of redundancy. The R decoded copies
of the same instruction are allocated to consecutive ROB
entries.

The complication in this step is in separating the data de-
pendence between the R threads. By always storing redun-
dant copies of an instruction in consecutive ROB entries, if
the ROB size is a multiple of R, we can insist two active
ROB entries with indices i and j belong to the same thread
only if i � j (mod R). Thus, if renaming is achieved by
associatively searching the “logical destination” column of
ROB then the above condition can be added to the match
criteria. If an operand of entry i is renamed to the instruc-
tion result in entry j, and i � j � 0 (mod R), then the
corresponding operand of entry i + k must be renamed to
the entry j+k for 0 < k < R. In other words, for each new
instruction, we only need to rename the operands for the
first copy, and the rename tags for the remaining copies can
be deduced by adding an offset k. Thus, only one map table
is needed regardless of R. The contents of the sole rename
table must be protected by ECC, however. In some archi-
tectures, both the committed registers and rename registers
are held in a common pool of physical registers. In this
case, copies of the same instruction need to be allocated an
aligned block of consecutive rename registers.

When redundant instruction injection is in effect, the ef-
fective dispatch bandwidth of a processor is reduced by a
factor of R, and the effective capacities of ROB and the re-
name register file are similarly reduced by a factor of R.
Furthermore, the peak execution stage throughput is also
reduced by approximately a factor of R because each in-
struction is executed R times. The effective throughput,
however, degrades by a lesser amount if some functional
unit types (integer ALUs, memory port, etc.) were not fully
utilized in normal (non-redundant) operation due to lim-
ited instruction-level parallelism. In general, increasing R

reduces performance but provides better coverage against

transient faults. We expect R to be either 2 or 3 in most
designs. Sections 4 and 5 discuss the performance impact
of redundant instruction injection in greater detail.

Fault Detection

The redundancy between threads only exists temporarily
during speculative execution — the threads are re-merged
into a single committing instruction stream before updat-
ing the committed program state. After redundant copies of
the same instruction are injected during decode, their exe-
cutions proceed normally until the commit stage. When all
copies of the same instruction have been executed and are
the oldest entries in ROB, the R entries are cross-checked.
If all entries agree, then they are freed from ROB, retiring a
single instruction. If any fields of the entries disagree, then
an error has occurred and recovery is required. Under our
current proposal, checks are only performed when the en-
tries are retiring. There is a small performance advantage
to detect and recover from a fault sooner, such as right af-
ter all copies of an instruction have been executed but are
not yet the oldest. However, the improvement is too small
at any reasonable error rate to justify the drastic increase in
hardware complexity, and furthermore, the copies of an in-
struction must still be rechecked at commit time in case a
value becomes corrupted while waiting to commit.

Control flow instructions are also redundantly issued,
but as soon as one copy of a branch instruction evaluates
and disagrees with the predicted branch direction or tar-
get, branch rewind is triggered immediately based on this
singular result. Only redundant copies of a correctly pre-
dicted branch, or a corrected branch, will eventually reach
the commit stage. At which point, the redundantly evalu-
ated branch decisions and targets are cross-checked. To en-
sure the correctness of control-flow, an ECC-protected reg-
ister must hold the next-PC of the last committed instruction
as part of the committed program state. Every retiring in-
struction’s PC must be checked against the last committed
next-PC.

To corroborate the retiring results, R accesses to ROB is
needed to retire a single instruction, and thus the effective
commit/retire bandwidth is reduced by a factor of R. The
memory and register file write ports may become under-
utilized relative to the rest of the system because we only
perform one write per R retiring ROB entries. However,
the number of register file and memory ports cannot be re-
duced since the overall processor design must remain bal-
anced for normal operation in the unprotected mode. When
a physical register file is used for both committed registers
and rename registers, corroborating the results of different
threads requires R additional register file read accesses per
retiring instruction. In addition, the redundant rename regis-
ters cannot be easily coalesced into one committed register.
Thus, the performance of fault-tolerant superscalar derived



from a microarchitecture with a common physical register
pool will be slightly lower then reported in Section 5.

Recovery

Once the concurrent error detection mechanism is in place,
recovery can be achieved at nearly no cost, in terms of both
hardware and performance, using the pre-existing execu-
tion rewind mechanism. After an inconsistency is detected
between redundantly executed copies of a retiring instruc-
tion, the default action is to completely rewind the ROB,
i.e. discard the entire ROB contents and restart execution
by refetching from the committed next-PC register. If the
error is non-persistent, the program execution can proceed
correctly on the next attempt. A rewind-based recovery only
introduces a penalty on the order of tens of cycles and has
a negligible effect on throughput for even the highest ex-
pected error rate.

For designs with R � 3, inconsistency between redun-
dant copies of a retiring instruction could also be resolved
by a majority election. Under this scheme, an extra degree
of design choice is the correctness acceptance threshold, i.e.
how many copies must agree before one accepts the major-
ity result as correct. If an acceptable majority exists, then
an instruction is allowed to commit even if discrepancies
are detected; otherwise a complete rewind is invoked. In
Section 5, we will show that an ‘R=3’ design with major-
ity election performs better than an ‘R=2’ rewind-based de-
sign only when the error rate is exceedingly high. Thus we
conclude ‘R>2’ designs are only useful in increasing the
confidence in fault coverage.

3.3 Implementation Costs

Figure 2 shows the hardware modifications required by
our scheme. New datapath elements – instruction replica-
tion logic, result comparison logic and a new PC register –
are highlighted in grey. Pre-existing structures that must be
ECC protected are drawn with double-lines. As discussed
above, the bus width and the number of access ports of pre-
existing structures do not need to be increased. The new
datapth elements do not represent a significant increase in
hardware. If instruction decoding is in the critical path, the
extra delay of the instruction replication logic should be on
the order of one additional level of multiplexing. The re-
sult comparison logic should not affect the commit stage’s
path delay because it can be carried out concurrently with
other commit operations. The majority of implementation
overhead, both in terms of area and timing budgets, is most
likely to be associated with adding ECC protection to the
register file and the register rename table.

Figure 2. Hardware modifications to imple-
ment transient-fault detection and recovery.

3.4 Fault Coverage

This fault-tolerant superscalar design assumes the com-
mitted processor states are protected by traditional informa-
tion redundant techniques. Assuming the committed states
are adequately protected, a single-event upset within the
speculative portions of a processor can always be corrected
by reverting to a known-to-be-correct committed previous
state.

Instruction replication begins at decode, and indepen-
dence between the redundant copies is maintained through-
out until the temporary threads are re-merged into a sin-
gle committing stream in the commit stage. All informa-
tion between the decode stage and the commit stage are
R-redundant in storage and computation. In other words,
every intermediate result is represented by and stored as R
separate copies. The R copies are the results of R space-
independent or time-independent computations, and the re-
dundant computations do not share any common input. A
single-event upset that causes an intermediate error with an
observable end effect will be detected during corroboration
against other unaffected threads in the commit stage. Only
“proven”-to-be-good results are allowed to update the com-
mitted states.

An instruction leaves the protection of ECC-protected I-
cache at fetch time. There is a window of vulnerability be-
tween fetch and decode, while an instruction resides in the
fetch queue. Due to the simple nature of fetch queue ac-
cesses and its essentially RAM-based implementation, it is
feasible to use ECC to protect the buffer contents. Trace
caches also falls in the same category and must be ECC
protected as well. Another point of vulnerability is the PC



register which is not duplicated. However, any error in a
program’s control flow sequence would be detected at re-
tirement because we check the control flow relationship be-
tween every pair of consecutive retiring instructions. For
the same reason, BTB arrays do not need to be protected.

3.5 Other Design Considerations

Below we discuss some of the issues that are considered
but not incorporated into our design.

Granularity of Error Checking: The proposed fault-
tolerant superscalar design is based on fine-grain checking
at the commit stage of every instruction such that the execu-
tion of redundant threads are tightly coupled. In the context
of an SMT architecture, Reinhardt and Mukherjee proposed
to let the redundant threads run unchecked except when
information is about to exit the processor core [14]. The
advantage of this coarse-grain SMT-based approach is that
threads do not need to be synchronized in the pipeline and
the register files do not need to be ECC protected. However,
much additional hardware is needed to reconcile the results
between two far flung threads. Recovery (not specified in
the paper) for this scheme would conceivably require an
elaborate process involving a large amount of history. The
coarse-grain model is natural for SMT-based designs, but
the extra hardware requirement to support multiple truly-
independent thread contexts conflicts with the goal to pre-
serve maximum normal single-thread performance.

Staggered Thread Executions: Reinhardt and Mukher-
jee also suggested that allowing the execution of the redun-
dant threads to be staggered over time can improve per-
formance over more tightly coupled executions. The per-
formance gain of staggered execution does not come from
smoothing contentions for a particular functional unit type;
sufficiently large reservation stations (instruction queues)
can serve that purpose. Rather, in an SMT-based redundant
scheme, the improvement is due to reduced cache misses
and branch mispredictions in the delayed thread. A fault-
tolerant superscalar does not need to recover the cost asso-
ciated with redundant instruction fetches, and, thus, it does
not need to use prioritized scheduling to create an artificial
stagger between the redundant threads.

Multi-cycle and Correlated Faults: Transient faults that
last multiple cycles could cause identical errors to time-
redundant operations, leaving the error indiscernible. In-
creasing the stagger between time-redundant operations
gives additional safe-guards against this failure mode. Al-
though radiation and noise-related faults typically do not
lead to this failure mode, this is a conceivable scenario for

failure mechanisms with slower transients (such as over-
heating). Our design limits the amount of drift between the
redundant threads, but this coupled execution style can be
used to our advantage by co-scheduling redundant copies
of the same instruction such that they are executed on dif-
ferent physical functional units whenever possible.

4 Performance Implications

The IPC penalty of fault-tolerant superscalar executions
can be attributed to two sources:

1. Steady state penalty due to redundant instruction pro-
cessing

2. Error recovery overhead that is a function of transient
failure frequency

In this section, we develop analytical models to understand
and predict the performance cost of reliability. In the mod-
els, R is the degree of redundancy; IPCo is IPC of the
unmodified superscalar datapath; and IPCR is IPC of the
same datapath modified to support R redundant threads.
CPIo and CPIR are defined correspondingly.

4.1 Steady State Penalty

To the first order, IPCR can be approximated by IPCo
R

.
In other words, the throughput of the processor is reduced
by a factor of R when each instruction must be processed
R times and therefore consumesR times as much resources
and bandwidth. In practice, IPCR sometimes fares bet-
ter than IPCo

R
because IPCo is not always limited by the

peak throughput of the processor. IPCo achieved by an
application is also strongly determined by the application’s
instruction-level parallelism (ILP). When we create R data-
independent threads from a single instruction stream, we
have effectively increased the available ILP by a factor of
R. Ideally, until the processor resources become saturated,
the extra data independent operations consume the previ-
ously unused capacities and incur little cost. This can be
captured by the following equation,

IPCR = IPCo �max
�
R�IPCo�B

R
; 0
	

where the subtrahend corresponds to the redundant process-
ing penalty.1 The term B represents the first resource bot-
tleneck exercised by an application, typically the number of
functional units of a particular type.

1Simply put, if IPCo< B
R

then IPCR=IPCo else IPCR=B
R

.



Figure 3. IPC vs. fault frequency for p = 20

4.2 Recovery Penalty

In the following discussion, let f be the average tran-
sient failure frequency (in terms of failures per instruction 2)
for an unmodified superscalar datapath. Converting to an
R-redundant superscalar datapath, the average frequency at
which one of the R copies of an instruction becomes cor-
rupted is R�f . Whenever the redundant copies disagree, the
processor must discard its speculative state and rewind to
the known-to-be-good committed state. Let p be the aver-
age rewind penalty in terms of the number of cycles added
to the execution. On average, a superscalar processor in
fault-tolerant mode will take p more cycles to commit 1

R�f

instructions. Thus, CPIR as a function of f can be approx-
imated by

CPIR(f ) = CPIR�ss +
p
1

R�f

whereCPIR�ss is the error-free steady-state CPI discussed
in Section 4.1. Converting CPIR(f ) to IPCR(f ), we get,

IPCR(f ) = IPCR�ss
1+p�R�f �IPCR�ss

These equations are not accurate for very high error fre-
quency (i.e. 1

f
� p) because at such frequencies, rapid suc-

cessions of faults may only incur one rewind penalty.

4.3 Applying the Models

Figure 3 plots idealized IPCR=2(f ) and IPCR=3(f )
where we assume IPCo=B and is normalized to 1.
IPCo=B represents the case when single-thread executions
already have sufficient ILP to saturate the bottleneck B and
thus IPCR= IPCo

R
. Both R=2 and R=3 use rewind for re-

covery, and p is assumed to be 20 cycles in both cases. From
2In other words, we expect 1 instruction execution to produce an incor-

rect result in 1

f
instructions.

Figure 4. IPC vs. fault frequency for p = 2000

Figure 3, we see that IPC of ‘R=2’ and ‘R=3’ stays relative
constant until 1

f
is within two orders of magnitude of p, at

which point rewind penalties constitutes a significant frac-
tion of the total execution time. We do not intend our design
to be operated under such high error rates. A third curve
shows IPCR vs. f for a ‘R=3’ design that uses majority-
election as well as rewind.

Figure 4 plots the same information as Figure 3 except p
has been increased to 2000 cycles to reflect a much coarser
grain error detection and recovery scheme. Comparing Fig-
ures 3 and 4, p has only a minimal effect on the average
IPC for any reasonable values of f . However, p has an-
other important effect if a processor needs to maintain a
real-time guarantee of executing a certain number of in-
structions within some window of time. A large p can only
be amortized over a correspondingly large window, making
fine-grain real-time guarantees impossible.

5 Performance Simulation and Evaluation

In this section, we present a more detailed performance
evaluation based on performance simulations of 11 bench-
marks from the SPEC95 and SPEC2000. We begin by de-
scribing the simulation environment, simulated microarchi-
tectures and selected benchmarks.

5.1 Experimental Setup

5.1.1 Performance/Functional Simulator

We used a modified version of SimpleScalar [4] for both
performance and functional simulations. We modified the
stock out-of-order simulator to implement instruction repli-
cation, fault detection and recovery schemes as described
in Sections 3. We also introduced a “fault injection” mod-
ule that can randomly corrupt some instructions based on



Fetch/Decode/Dispatch/ 8
Issue Width
RUU/LSQ size 128/64
Branch Predictor Combined predictor that selects be-

tween a 2K bimodal and a 2-level
predictor. The 2-level predictor
consists of a 2-entry L1 (10-bit his-
tory), an 1024-entry L2, and 1-bit
xor. One prediction per cycle.

Instruction L1 cache 64 KBytes, 2 way associative.
Data L1 cache 32 KBytes, 2-way associative, 2

R/W ports.
Unified L2 cache 512 KBytes, 4-way associative.
Functional Unit Mix 4 Int ALU, 2 Int Mult, 2 FP Add

and 1 FP Mult/Div.
All FU operations are pipelined
except for division.

Table 1. sim-outorder machine parameters for
the baseline superscalar model

a user-specified probability distribution function. Because
our fault injection module may decide to corrupt some part
of an instruction at any stage of the pipeline, significant
changes had to be made to the stock sim-outorder’s instruc-
tion rewind code to allow rewinds to be decided later than
the decode stage.

Our modified simulator maintains two sets of commit-
ted register file and memory state. One set is updated by
instructions that have successfully graduated through the
commit stage after faithfully passing through the out-of-
order pipeline. The other set, concurrently maintained as
a sanity check, is updated by executing the program in an
in-order, non-speculative manner. During simulations, we
have the option to periodically drain the pipeline to compare
the two sets of states to ensure our error detection scheme
has captured the randomly injected faults and the recovery
scheme has correctly restored the processor to a good state
after an injected fault.

5.1.2 Simulated Machine Parameters

For our main performance results, we simulated three ma-
chine models. The baseline machine (SS-1) is a single-
thread out-of-order, superscalar processor simulated using
the stock sim-outorder simulator. The salient machine pa-
rameters are summarized in Table 1. The parameters are
chosen to reflect an aggressive but contemporary proces-
sor design point. The same machine descriptions are given
to our modified simulator to simulate a 2-way-redundant
fault-tolerant superscalar processor (SS-2). To ensure a fair
comparison, extra resource usages are carefully accounted

for as to not exceed the capacity available to the baseline
model. In the redundant execution of memory instructions
(both loads and stores), the memory addresses are computed
redundantly, but only one memory access is performed.
The last model (Static-2) in our study reflects a statically-
redundant processor with two identical and independent
pipelines that run two copies of the program in locked-step
(such as IBM G4/G5/G6). Static-2 is modeled using the
stock sim-outorder simulator with half of the resources (ex-
cept caches and BP hardware) as in Table 1. This corre-
sponds to statically dividing the baseline resources equally
into two pipelines.3

5.1.3 Benchmarks

The simulation results are based on 11 benchmarks selected
from SPEC95 and SPEC2000. The benchmarks are com-
piled for PISA ISA using gcc -O2 -funroll-loops.
The reference inputs are used for each benchmark. For each
benchmark measurement, the results typically are averaged
over a 1-billion-instruction simulation (after skipping the
first 1 billion instructions when appropriate). Table 2 gives
a summary of the benchmarks in terms of their dynamic in-
struction mix.

5.2 IPC Performance Comparisons

Figure 5 compares IPC of the three processor models
(SS-1, Static-2 and SS-2) for each of the 11 benchmarks.
On average, the 2-way dynamic redundant superscalar (SS-
2) achieves 30% lower IPC than the baseline processor (SS-
1). For comparable hardware configurations, SS-2 should
perform comparably to the results reported for the SMT-
based fault-tolerance with slack-fetch and branch-outcome
queue [14]. Overall, the 2-way dynamic redundant su-
perscalar (SS-2) performs comparably to the static two-
pipeline processor (Static-2). For fpppp, swim, and art
Static-2 significantly out performs SS-2 due to the extra FP
Mult/Div unit.

The benchmarks ammp, go and vpr suffer less IPC
penalty in SS-2 then the rest of the benchmarks. To help
understand this, we test the benchmark’s sensitivity to vary-
ing numbers of functional units (0.5x, 2x, infinite) and RUU
sizes (0.5x, 2x, infinite). From the results of these exper-
iments, we are able to determine that these other bench-
marks with higher IPC penalties are already functional-
unit limited in the baseline configuration. (swim is also
RUU-limited.) In other words, the single-thread through-
put (IPCo) is already exercising some hardware bottleneck
(B). Therefore, injecting a second thread has a big impact
on the effective IPC (IPCR). On the other hand, go and vpr

3Each redundant pipeline has an FP Mult/Div unit. Thus, Static-2 in
effect has the advantage of an extra FP Mult/Div unit.



Benchmark Inst Inst % % % % %
Skipped Simulated Mem Ops Int Ops. FP Add FP Mult FP Div

gcc 1B 1B 74.55 25.45 0 0 0
vortex 1B 1B 54.56 45.44 0 0 0

go 1B 1B 29.49 70.50 0 0 0
bzip 1B 1B 29.84 70.16 0 0 0
ijpeg 0 1B 26.06 73.94 0 0 0
vpr 1B 1B 31.30 63.61 3.57 1.38 0.15

equake 1B 1B 34.55 52.82 6.06 6.41 0.16
ammp 1B 1B 41.35 56.64 1.49 0.50 0.02
fpppp 1B 1B 52.43 15.03 15.53 16.84 0.16
swim 1B 1B 32.71 37.41 19.31 10.12 0.47

art 1B 268M 35.29 43.50 11.07 8.39 1.36

Table 2. Summary of Benchmark Characteristics

Figure 5. Steady-State IPC Comparison

are almost insensitive to the amount of resources available.
This is an indication that their IPCo is determined by ILP,
and therefore the extra ILP from the second thread has free
use of previously under-utilized resources. ammp is an ex-
treme case where its IPCo is limited by a large number of
divisions in its critical path.

5.3 Fault Recovery Performance

This section presents the recovery costs of fault-tolerant
superscalar execution. For these experiments, the fault-
injection module in our modified simulator is enabled to
randomly corrupt some instructions at varying frequencies.
Using the same machine parameters as in Table 1, we have
simulated two designs with R=2 and R=3, respectively. For
the ‘R=3’ design, majority-election is used to recover from
a corrupted instruction whenever possible.

Figure 6 compares the observed IPCR for fpppp on the
two designs over different fault frequencies. The X-axis is
the average fault frequency given in faults per one million

Figure 6. IPC vs. fault-frequency for fpppp

instructions, while the Y-axis is the corresponding IPCR.
This plot corresponds closely to the analytical model in
Section 4.2. As expected, IPC of the ‘R=2’ design drops
sharply when faults are sufficiently frequent for recovery
penalties to be a significant part of the execution time. Typ-
ical recovery costs observed in fpppp simulations are around
30 cycles. IPC of the ‘R=3’ design is lower but remains un-
affected until much higher frequencies because there is no
rewind penalty until 2 out of 3 copies of an instruction are
corrupted. IPC of the more efficient ‘R=2’ design eventu-
ally drops below the ‘R=3’ design, but the cross-over oc-
curs at a much higher fault frequency than what our design
is intended for. (At such high fault-frequencies, fundamen-
tally different solutions in terms of architecture or imple-
mentation technology is called for.) In our intended range
of error frequency, ‘R=2’ offers a clear performance advan-
tage. ‘R=3’ designs are only applicable if extra redundancy
is desired for higher confidence in fault-coverage, or if the
application cannot tolerate even the small performance hic-
cups of rewind recovery.



6 Conclusions

The push toward deep submicron devices is a key en-
abler in the continued exponential increase in microproces-
sor performance. Given the anticipated feature size, noise
margin and clock rate, it is inevitable that processors will
begin to experience an unacceptable level of transient hard-
ware faults in both logic and memory. An effective mi-
croarchitectural counter-measure must include both detec-
tion and recovery.

In this paper, we have presented an efficient fault-
tolerance technique for current out-of-order superscalar mi-
croarchitectures. The proposal relies on three key elements
to provide transient-fault tolerance through hardware redun-
dancy: (1) dynamic instruction injection that creates redun-
dant threads of executions, (2) value synchronization that
compares redundantly executed instruction results to de-
tect errors, and (3) recovery by reverting to a known-to-be-
correct previous state using the same rewind mechanism as
precise exceptions. These new functionalities require only
minimal extensions to pre-existing mechanisms that already
serve other useful purposes. Redundant instruction execu-
tion incurs a noticeable performance penalty but the results
are in line with other redundant execution techniques. The
performance penalty of rewind-based error recovery is neg-
ligible until exceedingly high error rates.

This current design is most useful during a transitional
period when transient failure rates are only beginning to be
unacceptable for some applications. The flexibility of this
fault-tolerant approach allows increased protection when re-
liability is absolutely critical but at the same time allows
the hardware to return to full performance for gaming and
multimedia scenarios. We plan to expand our investiga-
tion to include fault-tolerance techniques that are applica-
ble to superscalar microarchitectures and threaded architec-
tures such as SMT and CMP. The goal is to develop a fam-
ily of soft-error protection mechanisms that can be com-
bined or applied independently to ensure optimal instruc-
tion throughput under different reliability requirements and
varying fault frequencies.

References

[1] L. Anghel, M. Nicolaidis, and I. Alzaher-noufal. Self-
checking circuits versus realistic faults in very deep submi-
cron. In Proceedings of the 18th IEEE VLSI Test Symposium,
April/May 2000.

[2] T. M. Austin. DIVA: A reliable substrate for deep submi-
cron microarchitecture design. In Proceedings of the 32nd
International Symposium on Microarchitecture, November
1999.

[3] S. Borkar. Design challenges of technology scaling. IEEE
Micro, 19(4):23–29, July-August 1999.

[4] D. Burger and T. M. Austin. The SimpleScalar tool set, ver-
sion 2.0. Technical Report 1342, University of Wisconsin-
Madison, Computer Sciences Technical Report, 1997.

[5] Compaq Computer Corp. Data integrity for Compaq Non-
Stop Himalaya servers. http://nonstop.compaq.com, 1999.

[6] F. Faccio, et al. Single event effects in static and dynamic
registers in a 0:25�m CMOS technology. IEEE Trans-
actions on Nuclear Science, 46(6):1434–1439, December
1999.

[7] M. J. Flynn, P. Hung, and K. W. Rudd. Deep-submicron mi-
croprocessor design issues. IEEE Micro, 19(4):11–22, July-
August 1999.

[8] M. Franklin. A study of time redundant fault tolerant tech-
niques for superscalar processors. In Proceedings of IEEE
International Workshop on Defect and Fault Tolerance in
VLSI Systems, 1995.

[9] A. Hasnain and A. Ditali. Building-in reliability: Soft er-
rors - a case study. In Proceedings of the 30th International
Reliability Physics Symposium, April 1992.

[10] T. C. May and M. H. Woods. A new physical mechanism for
soft errors in dynamic memories. In Proceedings of the 16th
International Reliability Physics Symposium, April 1978.

[11] A. Mendelson and N. Suri. Designing high-performance and
reliable superscalar architectures: The out of order reliable
superscalar (O3RS) approach. In Proceedings of the Inter-
national Conference on Dependable Systems and Networks,
June 2000.

[12] E. Normand. Single event upset at ground level. IEEE
Transactions on Nuclear Science, 43:2742–2750, 1996.

[13] J. H. Patel and L. T. Fung. Concurrent error detection in
ALU’s by recomputing with shifted operands. IEEE Trans-
actions on Computers, 31(7):589–595, July 1982.

[14] S. K. Reinhardt and S. S. Mukherjee. Transient fault de-
tection via simultaneous multithreading. In Proceedings of
the 27th International Symposium on Computer Architec-
ture, June 2000.

[15] E. Rotenberg. AR-SMT: A microarchitectural approach to
fault tolerance in microprocessors. In Proceedings of the
29th International Symposium on Fault-Tolerant Computing
Systems, June 1999.

[16] T. J. Slegel, et al. IBM’s S/390 G5 microprocessor design.
IEEE Micro, 19(2):12–23, March/April 1999.

[17] G. S. Sohi. Instruction issue logic for high-performance
interruptible, multiple functional unit, pipelined computers.
IEEE Transactions on Computers, 39(3), March 1990.

[18] STACK International. General Requirements for Integrated
Circuits, 2001.

[19] K. Sundaramoorthy, Z. Purser, and E. Rotenberg. Slipstream
processors: Improving both performance and fault toler-
ance. In Proceedings of the 33rd International Symposium
on Microarchitecture, December 2000.

[20] D. M. Tullsen, S. J. Eggers, and H. M. Levy. Simultaneous
multithreading: Maximizing on-chip performance. In Pro-
ceedings of the 22nd International Symposium on Computer
Architecture, June 1995.

[21] J. F. Ziegler and W. A. Landford. Effect of cosmic rays on
computer machines. Science, 206, 1979.

[22] J. F. Ziegler, et al. IBM’s experiments in soft fails in com-
puter. IBM Journal of Research and Development, 40(1),
1996.


