
18-643-F23-L14-S1, James C. Hoe, CMU/ECE/CALCM, ©2023

18-643 Lecture 14:
A Study in HLS and Streaming

James C. Hoe
Department of ECE

Carnegie Mellon University

18-643-F23-L14-S2, James C. Hoe, CMU/ECE/CALCM, ©2023

Housekeeping

• Your goal today: see how easy FPGAs are to use nowadays in a design
study applying HLS to streaming data analytics

• Notices
 Handout #6: Lab 3, due noon, 10/30 (or 11/3)
 Handout #7: Paper Review, sign-up due 10/27
 Midterm in class, Wed 10/25
 Project proposal due 10/30!!

• Readings (see lecture schedule online)
 FPGA Optimization Guide for Intel® oneAPI Toolkits
 FPGA for Aggregate Processing: The Good, The Bad, and The Ugly

[Eryilmaz, et al. 2021]

18-643-F23-L14-S3, James C. Hoe, CMU/ECE/CALCM, ©2023

HLS Manifesto

1. On the right problems, HLS CAN produce high quality results
Not all computation run faster in HW (HLS or RTL)

2. By the right designers, HLS CAN match RTL quality
How one writes C code matters (HW or SW)

Performance must be in the program, for HLS to find it.

18-643-F23-L14-S4, James C. Hoe, CMU/ECE/CALCM, ©2023

How hard is it to use FPGA in 2023?

• No harder than using GPGPUs through CUDA or OpenCL
• E.g., Intel DPC++/oneAPI
 single-source heterogenous programming, as simple as,

icpx –fsycl –fintelfpga . . . main.cpp
./a.out

 functionally portable across systems with CPU/GPU/FPGA . . . etc.
 BUT, getting good performance requires human hands

This is always the case, on any platform

• If only I also could write Python and call performance libraries . . .

18-643-F23-L14-S5, James C. Hoe, CMU/ECE/CALCM, ©2023

To Sharpen the Question

• How hard is to get good performance on FPGA?

 for nuts-and-bolts kernel developers

 for application developers using kernels

 in which application domain?

18-643-F23-L14-S6, James C. Hoe, CMU/ECE/CALCM, ©2023

Design Example: Aggregation by Key
• Input: a stream of key-value pairs: (k0,v0), (k1,v1), (kn-1,vn-1)
• Report at the end:
 distinct keys that appeared in stream
 each key’s aggregated summary value (sum, min, average, etc.)

. (k,v)

Map:
allocate
and map

key to
table idx

Table:
accumulate

val by idx
“+”(idx,v)

18-643-F23-L14-S7, James C. Hoe, CMU/ECE/CALCM, ©2023

More Precisely
• Assume
 32-bit int key and value; accumulate by simple addition
 no more than G distinct keys expected (commonly under 64)
 N key-value pairs per cycle throughput desired (e.g., 1~32)

Map:
allocate
and map

key to
table idx

Table:
accumulate

val by idx
“+”

(k,v)0
(k,v)1
. . . .

(k,v)N-1

NR-NW

(idx,v)0
(idx,v)1

. . . .
(idx,v)N-1

18-643-F23-L14-S8, James C. Hoe, CMU/ECE/CALCM, ©2023

Still More Precisely
• Assume
 32-bit int key and value; accumulate by simple addition
 no more than G distinct keys expected (commonly under 64)
 N key-value pairs per cycle throughput desired (e.g., 1~32)

“CAM”
allocate
and map

key to
table idx

1R-1W0“+”
(k,v)0
(k,v)1
. . . .

(k,v)N-1

1R-1W1“+”

1R-1WN-1“+”

...
the hard part

su
m

 a
cr

os
s

at
 re

ad
ba

ck

(idx,v)0
(idx,v)1

. . . .
(idx,v)N-1

18-643-F23-L14-S9, James C. Hoe, CMU/ECE/CALCM, ©2023

1st Try at describing a CAM

• map(), called in a loop, becomes a
pipeline of compiler-tuned depth
‒ for-loops fully unrolled
‒ camKey[] and camValid[] realized

as registers for same-time access to
all entries

‒ new iter starts every cyc; forward
state updates (camValid / camKey/
nextFree) from one iter to next

bool camValid [G] = {}; int camKey [G] = {};
int nextFree = 0;

void map(int key[N], int idx[N]) { // no duplicate keys …
bool hit[N] = {}; // … in same iteration

for (int t = 0; t < N ; t++) { // check all key[N]
for (int g = 0; g < G ; g++) { // against all camKey[G]

if (camValid [g] && (key[t] == camKey [g])) {
idx[t] = g; // mapping found
hit[t] = true; } } }

for (int t = 0; t < N ; t++) {
if (!hit[t]) { // allocate free entry if key not mapped

camValid[nextFree] = true;
camKey[nextFree] = key[t];
idx[t] = nextFree; // new mapping
nextFree++; } } }

}

while(1) {

map(key[N], idx[N]);

}

key pipe in idx pipe out
0

5

10

15

18-643-F23-L14-S10, James C. Hoe, CMU/ECE/CALCM, ©2023

bool camValid [G] = {}; int camKey [G] = {};
int nextFree = 0;

void map(int key[N], int idx[N]) { // no duplicate keys …
bool hit[N] = {}; // … in same iteration

for (int t = 0; t < N ; t++) { // check all key[N]
for (int g = 0; g < G ; g++) { // against all camKey[G]

if (camValid [g] && (key[t] == camKey [g])) {
idx[t] = g; // mapping found
hit[t] = true; } } }

for (int t = 0; t < N ; t++) {
if (!hit[t]) { // allocate free entry if key not mapped

camValid[nextFree] = true;
camKey[nextFree] = key[t];
idx[t] = nextFree; // new mapping
nextFree++; } } }

}

output idx strm

1st Try at describing a CAM
input key stream

check all input keys
against all camKey[]’s

If no match
allocate next free

camKey entry

~6ns
for
N=4,
G=64

0

5

10

15 Started with picture in my
headonly as much detail

as shownthen coded

18-643-F23-L14-S11, James C. Hoe, CMU/ECE/CALCM, ©2023

If no match
allocate next free

camKey entry

output idx strm

2nd Try at describing a CAM
• Large G-entry CAM is slow

‒ better to update CAM one cycle
later to cut critical path

‒ but RAW hazard would stall
pipeline every other cycle

• How about writings updates to
an N-entry scratchpad
‒ actual CAM writes can happen

next iteration
‒ next iteration reads check both

CAM and scratchpad
‒ new cyc time 3.7ns @ N=4, G=64

~ 1 gigapair/sec

input key stream

check CAM
(1 cycle out-of-date)

if not hit,
allocate CAM but
defer key update

check scratch
for last cycle

updates

18-643-F23-L14-S12, James C. Hoe, CMU/ECE/CALCM, ©2023

2nd Try at describing a CAM
bool camValid [G] = {}; int camKey [G] = {};
int nextFree = 0;
// record deferred updates to next iteration
int dfrValid[N] = {}; int dfrKey[N] = {}; int dfrIdx[N] = {};

void map(int key[N], int idx[N]) { // no duplicate keys
bool hit[N] = {}; // in same iteration
// CAM lookup, same as before
for (int t = 0; t < N ; t++) {

for (int g = 0; g < G ; g++) {
if (camValid [g] &&(key[t] == camKey [g])) {

idx[t] = g; // mapping found
hit[t] = true; } } }

for (int last = 0; last < N; last++) { // check deferred
if (dfrValid[last] && (key[t] == dfrKey[last])) {

idx[t]=dfrIdx[last]; // mapping found
hit[t] = true; } } }

// update CAM from deferred
for (UIDX t = 0; t < N; t++) {

if (dfrValid[t]) {
camValid[dfrIdx[t]] = true;
camKey[dfrIdx[t]] = dfrKey[t]; } }

for (UIDX t = 0; t < N; t++) {
if (!hit[t]) {

// save deferred updates to CAM
dfrValid[t] = true;
dfrKey[t] = key[t];
dfrIdx[t] = nextFree;
idx[t] = nextFree;
nextFree++;

} else {
dfrValid[t] = false; } }

}

0

5

10

15

20

25

30

35

Again, started with
the picture then coded

while(1) {

map(key[N],idx[N]);

}

I pipe O pipe

18-643-F23-L14-S13, James C. Hoe, CMU/ECE/CALCM, ©2023

3rd Try at describing a CAM
• In streaming, latency does not matter
 for each iteration, search camKey[] serially in G steps
 overlap G iteration over G stages

• RAW feedback localize to individual camKey[]
 new cyc time under 2ns on Agilex AGF014-2
 freqmax independent of G and N; cost=O(N2+GN)
 Terasic DE10 max out at 21 giga-pair/sec@G=64

stage 0

camKey[0]

re
g

stage 1

camKey[1]

re
g

stage 2

camKey[2]

re
g

stage 3

camKey[3]

re
g

stage G-1

camKey[G-1]

re
g

if (camKey[i] is valid)
check for key match

else if (key still not matched)
allocate this camKey[i]

18-643-F23-L14-S14, James C. Hoe, CMU/ECE/CALCM, ©2023

3rd Try at describing a CAM

• Compiler can turn this into the
intended systolic pipeline

More intricate than you think
• Compiler cannot transform try-1

or try-2 into try-3’s structure and
timing

• Compiler did help me get here
faster by making it not painful to
try out ideas

bool camValid [G] = {}; int camKey [G] = {};

void map(int key[N], int idx[N]) { // no duplicate keys . . .
bool hit[N] = {}; // in same iteration

for (int g = 0; g < G; g++) { // for each camKey stage
if (camValid[g]) { // is a valid camKey stage?

for (int t = 0; t < N ; t++) {
if (key[t] == camKey[g]) {

idx[t] = g; hit[t]=true // matched
}}} else { // not yet allocated camKey stage

for (int t = 0; t < N ; t++) {
if (!hit[t]) { // allocate to first unmapped key

camValid[g] = true;
camKey[g] = key[t];
hit [t] = true; idx [t] = g;
break; // rest continue on next stage } } }

}
}

0

5

10

15

while(1) {

map(key[N],idx[N]);

}

I pipe O pipe

18-643-F23-L14-S15, James C. Hoe, CMU/ECE/CALCM, ©2023

host
CPU

host
memory

device
memory

Devices (FPGA in our case)

USM ld/st

host “pipe”

I/O “pipe”

main.cpp: a View into System and Application

task<N,G>:
while(1) {

map();
}

task<N,G>:
while(1) {

uniquify();
}

task<N,G>:
while(1) {

aggregate();
}

host “pipe”
readback at the end

18-643-F23-L14-S16, James C. Hoe, CMU/ECE/CALCM, ©2023

host
CPU

host
memory

device
memory

Devices (FPGA in our case)

USM ld/st

host “pipe”

I/O “pipe”

main.cpp: a View into System and Application

task<N,G>:
while(1) {

map();
}

task<N,G>:
while(1) {

uniquify();
}

task<N,G>:
while(1) {

aggregate();
}

host “pipe”

task<2,N>:
while(1) {

fork();
}

task<2,N>:
while(1) {

merge();
}

task<N,G>:
while(1) {

map();
}

task<N,G>:
while(1) {

uniquify();
}

task<N,G>:
while(1) {

aggregate();
}

readback at the end

18-643-F23-L14-S17, James C. Hoe, CMU/ECE/CALCM, ©2023

Suppose we want G=1M
• key-value stream is billions long
• keys have temporal locality, e.g., slow drifting “working set” < 512 keys

host
CPU

host “pipe”

host “pipe”

task<4,1>:
while(1) {

binByKey();
}

task<4,1>:
while(1) {

merge();
}

task<1,256>:
while(1) {

map();
}

task<1,256>:
while(1) {

uniquify();
}

task<1,256>:
while(1) {

aggregate();
}

I/O “pipe”“disk”

4x(G=256)
partition

by key

overflow keys

Host just reset/restart when highly-repeated keys appear in overflow

readback prior to reset/restart

18-643-F23-L14-S18, James C. Hoe, CMU/ECE/CALCM, ©2023

host
CPU

host
memory

device
memory

Devices (FPGA in our case)

USM ld/st

host “pipe”

I/O “pipe”

Performance Library for Data Query Processing

host “pipe”

scan

project

join

aggregate

filter scan

join

aggregate

18-643-F23-L14-S19, James C. Hoe, CMU/ECE/CALCM, ©2023

Recap So Far
• Using DPC++/oneAPI for streaming aggregation
 orders of magnitude easier than RTL (but performance never “easy”)
 no practical quality limitations (speed or cost)

Even if you want to finalize in RTL, start from where I left off in SYCL

• Maintainability and reusability of IPs
 conciseness of code, powerful parameterization (thanks to HLS)
 standard interfaces (thanks to pipes)
 plug-and-play modularity (thanks to “software engineering”)

• Supporting application developers with library
 they can read the kernel code (even if they can’t write it)
 trivial to customize value type or aggregation function
 edit main.cpp to build new data-analytic pipeline from kernels??

18-643-F23-L14-S20, James C. Hoe, CMU/ECE/CALCM, ©2023

What is FPGA good for anyways?

Stream data processing is one answer

18-643-F23-L14-S21, James C. Hoe, CMU/ECE/CALCM, ©2023

The Pigasus Saga: Deep Packet Inspection at
100Gbps using 1 FPGA NIC + 1 CPU

FPGA
NIC

core core

core core

… …90+% traffic
cleared by FPGA

under 5usec

100Gbps inbound

[O
SD

I’2
02

0]

lower
bound

measured

Checks every packet
payload byte against
SNORT registered ruleset

18-643-F23-L14-S22, James C. Hoe, CMU/ECE/CALCM, ©2023

A Hard Problem for CPU and GPU

• Check packet payload against a set (10s K) of elaborate rules (e.g.,
string matching and regular expressions)

Fine-grained, irregular parallelism over byte stream
• Performed inline with traffic

Must keep up with line rate
• Stop malicious packet from propagating

Latency matters

Internet
1000001000000010000
0001000100000111100
1000010111………………. Local Network

App...
App...

18-643-F23-L14-S23, James C. Hoe, CMU/ECE/CALCM, ©2023

Found a nice solution using FPGA

Ethernet
100 Gbps

TCP flow
reassembly
100 Gbps

100k flows

“fast
pattern”

matching
100 Gbps

all 30K rules

“non-fast
pattern”
matching
~15 Gbps

<10 rules/pkt

offloading
to CPU

~5 Gbps

regex
matching
(on CPU)

<5 per pkt

~85%
~10%

~5%

Eth
IP

core

pa
ck

et
 b

uf
fe

r

parser flow
table

OOO
linked

list

data
mover

shift-
OR

hash
tables

rule
reduce

block
gen.

FPGA
ring
buf

DMA
PCIe

IP
core

CPU
ring

buf 1port
group
match

TCP assembly Multi-String
Fast Pattern Matcher

check
packet

buf

full
matcher 1

DMA Engine

non-
fast

pattern
match

…

CPU
ring

buf N
full

matcher N

Non-Fast
Pattern Matcher

safe packets
forwarded on

bad

safe
safe

safe
10s K

TCP flows

[OSDI’20, Zhao, et al.]

18-643-F23-L14-S24, James C. Hoe, CMU/ECE/CALCM, ©2023

Pigasus Opensource Experience
https://github.com/crossroadsfpga/pigasus

• Opensourced entire RTL code base in 2020
 many downloads, several recreated “as is”,

couple Xilinx porting attempts
 so far no known continuing work by anyone or ourselves

• What did the project die?
 80k lines of SystemVerilog code
 too hard to understand and too fragile to modify
 requires a high-level of combined algorithm and RTL design expertise

• It *IS* well engineered (parameterized, generated, interfaced, etc.)
 Zhipeng created many derivative designs to study in thesis
 code base effectively abandoned when Zhipeng graduated

18-643-F23-L14-S25, James C. Hoe, CMU/ECE/CALCM, ©2023

Pigasus Rebooted in SYCL HLS
• Status:

• Completed DPI stagessame speed and cost as RTL
• You can understand Pigasus HLS code if you can understand

Hyperscan’s source code
• Useful IPs separable from Pigasus toward a Data Analytic Library
 multistring (10s K) pattern matching: any string anywhere in stream
 multistring signature check: packet contains all strings in signature
 a variety of common utilities

Eth
IP

core
pa

ck
et

 b
uf

fe
r

parser flow
table

OOO
linked

list

data
mover

shift-
OR

hash
tables

rule
reduce

block
gen.

FPGA
ring
buf

DMA
PCIe

IP
core

CPU
ring

buf 1port
group
match

TCP assembly Multi-String
Fast Pattern Matcher

check
packet

buf

full
matcher 1

DMA Engine

non-
fast

pattern
match

…

CPU
ring

buf N
full

matcher N

Non-Fast
Pattern Matcher

not yet
(stay RTL?)

use SCYL
facilities

host and host
interactions

Ethernet/
TCP reassembly

18-643-F23-L14-S26, James C. Hoe, CMU/ECE/CALCM, ©2023

Parting Thoughts

• FPGAs hold tremendous promise in stream data processing
(transformation, inspection, and analytics)

• If FPGAs were easier to use, we have a “killer app”
• Applications people have to want to work with FPGAs
 think Python, not RTL or CUDA/OpenCL/SYCL
 deliver ease and performance through good libraries

• Code base must be maintainable and reusable for efforts to grow
 moving to high-level design is inevitable
 plant “software engineering” into HW language, tool, designer mindset

DPC++/oneAPI is very, very close to being an answer!!

