18-643 Lecture 12: Reconfiguration and All That

James C. Hoe Department of ECE Carnegie Mellon University

18-643-F23-L12-S1, James C. Hoe, CMU/ECE/CALCM, ©2023

Housekeeping

- Your goal today: understand reconfiguration behind-the-scene and the unique considerations when designing "soft logic"
- Notices
 - Handout #6: Lab 3, due noon, 10/30 (or 11/3)
 - Handout #7: Paper Review, sign-up due 10/27
 - Midterm in class, Wed 10/25
 - Project proposal due 10/30!!
- Readings (see lecture schedule online)
 - Kuon and Rose, "Measuring ...," ISFPGA, 2006.
 - Papamichael, et al., "CONNECT ...," ISFPGA, 2012.

Midterm Heads Up

- Covers lectures (L1~L13), labs, assigned readings
- Types of questions
 - freebies: remember the materials
 - >> probing: understand the materials <<</p>
 - applied: apply the materials in original interpretation
- **64 minutes, 56 points**
 - 8 short-answer format questions
 - 8 points per answer, best 7 counted
 - start of class on 10/25, in-person on-paper
 - <u>closed book</u>, individual effort

Configuration and Reconfiguration

Recall

1980's Xilinx LUT-based Configurable Logic Block (in a sketch)

- 2 fxns (f & g) of 3 inputs OR 1 fxn (h) of 4 inputs
- hardwired FFs (too expensive/slow to fake)
- Just 10s of these in the earliest FPGAs

Bitstream defines the chip

- After power up, SRAM FPGA loads bitstream from somewhere before becoming the "chip"
 - many built-in loading options
 - non-trivial amount of time; must control reset timing and sequence with the rest of the system
 - forget what it does when powered-off
- Bitstream reverse-engineering ameliorated by
 - proprietary knowledge
 - encryption

Setting Configuration Bits

- Behind-the-scene infrastructure, if used as ASIC
 - doesn't need to be fast (happens "offline")
 - simpler/cheaper the better
- Could organize bits into addressable SRAM or EPROM array
 - very basic technology
 - serial external interface
 to save on I/O pins

Serial Scan

- SRAM-based config. bits can be setup as one or many scan-chains on very slow config. clock
 - no addressing overhead
 - all minimum sized devices

• At power-up config manager handshake externally (various options, serial, parallel ROM, PCI-E, . . .)

Full-fledged config. "architecture" in modern devices to support scale and features

Modern Configuration Architecture [Intel® Stratix® 10 Configuration User Guide]

Table 1. Intel[®] Stratix[®] 10 Configuration Scheme, Data Width, and MSEL

Configuration Scheme		Data Width (bits)	MSEL[2:0]	
Passive	Avalon [®] -ST	32 ¹	000	
		16 ¹	101	
		8	110	
	JTAG	1	111	
	Configuration via Protocol (CvP)	x1, x2, x4, x8, x16 lanes	001 ²	
Active AS - fast mode		4 ¹	001	
	AS - normal mode	4 ¹	011	

Modern Configuration Architecture

Stratix® 10 Secure Device Manager

[Figure 2: "Intel® Stratix® 10 Secure Device Manager Provides Best-in-Class FPGA and SoC Security"]

Role-and-Shell

- Fixed "shell": base NIC fxn & infrastructure wrapper
- Reloadable "roles": network acceleration, local and remote CPU offload, FPGA accelerator plane

Partial Reconfiguration (PR)

- Some regions of fabric retain their configured "personality" while other are reconfigured
 - e.g., keep the external bus interface from babbling while the functionality behind is changed
- The alive part can even control the reconfig.
 - e.g., load the bitstream through the bus
- Basic technology mature but usage not prevalent under the ASIC model
- Essential to FPGA as a flexible, sharable computing device

Static and Reconfigurable Partitions

Concrete Syntax (Xilinx's approach)

module top();

```
foo instance_foo (a1, a2, ...);
bar instance_bar (b1, b2, ...);
```

endmodule

module foo(input a1, a2, ... output ax, ...);

// nothing here

endmodule

18-643-F23-L12-S15, James C. Hoe, CMU/ECE/CALCM, ©2023

Logic region and interface locations for *foo* and *bar* set by floorplanning

At Run Time

- Power up with full-design bitstream
- Partial bitstreams in DRAM or flash memory
- Configuration API driven by ARM or fabric
 - reconfig. time depend on size, as low as msec
 - handshake signals to pause/start partition interface

18-643-F23-L12-S16, James C. Hoe, CMU/ECE/CALCM, ©2023

Today's Practical Constraints

- Number and size of PR partitions fixed apriori
 - too few/too large: internal fragmentation
 - too many/too small: external fragmentation
- Not all PR partitions are equal—even if same interface and shape
 - a module needs a different bitstream for each partition it goes into
 - build and store upto MxN bitstreams for N partitions and M modules
- PR is not all that fast . . .

To be continued on Wednesday

Cost of Reconfigurability: Hard vs soft logic

[Kuon and Rose, 2006]

- Altera Stratix II FPGA, 90nm
 - Quartus II "balanced", "standard fit"
 - hard multipliers and memory blocks
- ST Micro 90nm standard cells
 - Synopsys "high-effort", add scan chain
 - ST Micro memory compiler
 - Cadence place and route
- Basic Results
 - avg 21x/40x in area (w/wo using hard macros)
 - 3~4x critical path
 - ~12x dynamic power

Benchmarking

Table 1: Benchmark Summary						
Design	ALUTs	Total	Memory			
		9X9	Bits			
		Multipliers				
booth	68	0	0			
$rs_encoder$	703	0	0			
cordic18	2105	0	0			
cordic8	455	0	0			
des_area	595	0	0			
des_perf	2604	0	0			
fir_restruct	673	0	0			
mac1	1885	0	0			
aes192	1456	0	0			
fir3	84	4	0			
diffeq	192	24	0			
diffeq2	288	24	0			
molecular	8965	128	0			
$rs_decoder1$	706	13	0			
rs_decoder2	946	9	0			
atm	16544	0	3204			
aes	809	0	32768			
aes_inv	943	0	34176			
ethernet	2122	0	9216			
serialproc	680	0	2880			
fir24	1235	50	96			
pipe5proc	837	8	2304			
raytracer	16346	171	54758			

- Opencores and local designs
 - removed cases where
 FPGA and ASIC are more
 than 5% different in FF
 count (Bias?)
- Metrics evaluated
 - logic density
 - circuit speed
 - power consumption

[Table 1: Kuon and Rose, "Measuring the Gap between FPGAs and ASICs," 2006]

Table 2	: Area	Ratio	(FPGA/A)	(SIC)	
Name	Logic Only	Logic & DSP	Logic & Memory	Logic, Memory & DSP	
booth	33				
$rs_encoder$	36				
cordic18	26				
cordic8	29				
des_area	43				
des_perf	23				
fir_restruct	34				
mac1	50				Differences attributed to
aes192	49				
fir3	45	20			"overhead" surrounding
diffeq	44	13			
diffeq2	43	15			IUTs and FFs
molecular	55	45			
$rs_decoder1$	55	61			
$rs_decoder2$	48	43			
atm			93		
aes			27		
aes_inv			21		
ethernet			34		
serialproc			42		
fir24				9.8	
pipe5proc				25	
raytracer				36	
Geomean	40	28	37	21	

[Table 2: Kuon and Rose, "Measuring the Gap between FPGAs and ASICs," 2006]

Logic,

Memory

& DSP

3.3 3.5 2.0 2.8

Critical Path Ratios

Table 3: Critical Path Delay Ratio (FPGA/ASICFastest Speed Grade

Name	Logic	$\begin{array}{c} \operatorname{Logic} \& \end{array}$	$\begin{array}{c} \operatorname{Logic} \& \end{array}$	Logic, Memorv	-	Name	Logic	$\begin{array}{c} \operatorname{Logic} \& \end{array}$	$\begin{array}{c} \operatorname{Logic} \& \end{array}$
	Only	DSP	Memory	& DSP			Only	DSP	Memory
booth	4.8				-	booth	6.6		
$rs_encoder$	3.5					$rs_encoder$	4.7		
$\operatorname{cordic} 18$	3.6					cordic18	4.9		
cordic8	1.8					cordic8	2.5		
des_area	1.8					des_area	2.6		
des_perf	2.8					des_perf	3.8		
fir_restruct	3.5					fir_restruct	5.0		
mac1	3.5					mac1	4.6		
aes192	4.0					aes192	5.4		
fir3	3.9	3.4				fir3	5.4	4.6	
diffeq	4.0	4.1				diffeq	5.4	5.5	
diffeq2	3.9	4.0				diffeq2	5.2	5.4	
molecular	4.4	4.5				molecular	6.0	6.1	
$rs_decoder1$	2.2	2.7				$rs_decoder1$	3.0	3.6	
$rs_decoder2$	2.0	2.2				$rs_decoder2$	2.7	3.0	
atm			2.7			atm			3.6
aes			3.7			aes			4.9
aes_inv			4.0			aes_inv			5.5
ethernet			1.6			ethernet			2.2
serialproc			1.0			serialproc			1.4
fir24				2.5		fir24			
pipe5proc				2.5		pipe5proc			
raytracer				1.4	_	raytracer			
Geomean	3.2	3.4	2.3	2.1		Geomean	4.3	4.5	3.1

[Table 3&4: Kuon and Rose, "Measuring the Gap between FPGAs and ASICs," 2006]

Table 4: Critical Path Delay Ratio (FPGA/ASIC) Slowest Speed Grade

Dynamic Power Ratios

(FPGA/ASIC)						
Name	Method	Logic	Logic	Logic	Logic,	
		Only	&	&	Memory	
			DSP	Memory	& DSP	
booth	Sim	16				
rs_encoder	Sim	7.2				
cordic18	Const	6.3				
cordic8	Const	6.0				
des_area	Const	26				
des_perf	Const	9.3				
fir_restruct	Const	9.0				
mac1	Const	18				
aes192	Sim	12				
fir3	Const	12	7.4			
diffeq	Const	15	12			
diffeq 2	Const	16	12			
molecular	Const	15	15			
$rs_decoder1$	Const	13	16			
$rs_decoder2$	Const	11	11			
atm	Const			11		
aes	Sim			4.0		
aes_inv	Sim			3.9		
ethernet	Const			15		
serialproc	Const			24		
fir24	Const				5.2	
pipe5proc	Const				12	
raytracer	Const				12	
Geomean		12	12	9.2	9.0	

Table	5:	Dynamic	Power	Consumption	Ratio
(FPGA	A/AS	SIC)			

[Table 5: Kuon and Rose, "Measuring the Gap between FPGAs and ASICs," 2006]

Actual Mileage Varies

- Comparisons strongly affected by
 - exact design, FPGA/ASIC target, methodology, availability/use of macro's
 - comparing less than "best-effort" designs can bias in either direction—same RTL not best for both
 - design is not a point---a full comparison would have to be Pareto-front to Pareto-front
- Either
 - precise in a specific context, or
 - warm-fuzzy rule of thumb (2x<<"~10x"<<100x)
 A moving target with arch and process changes

Design Soft Logic Differently

RTL for FPGA not scaled version of ASIC RTL

- 1. Different relative cost in logic vs. wires vs. mem
- 2. Different relative speed in logic vs. wires vs. mem
- 3. Soft Logic design can change . . .

Design differently for FPGA and use FPGA differently!!

Carnegie Mellon

FPGA Logic Peculiarities

imagine an ASIC RTL designer with no FPGA training

- Logic slower than expected (can put much less between clock edges)
- CLB-mapped logic not divisible for pipelining
 - over-pipeline adds cycles without freq. increase
 - "sweetspot" frequency that is easy to reach but hard to exceed
- Sharp aberrations around hard macro use

e.g., multiply faster than add in Virtex-II

- Design for performance
 - correct and maximal usage of hard macros
 - shallowly pipelined, wide datapath

imagine an ASIC RTL designer with no FPGA training

- Wire delay significant—absolute and relative even short wires
- High true area cost but low apparent cost
 - routing over-provisioned to handle worst case
 - in a "typical" design, wires appear cheaper relative to other resource types

best case is nearest-neighbor, regular grid

- Counterintuitively, you SHOULD use wider busses
 - consume unused "free" wires
 - compensate for lower frequency

FPGA Memory Peculiarities^{RTL designer with} no FPGA training

- Large memory (BRAM) abnormally fast
- Large memory are "free" until your run-out
- Quantized memory options
 - jumps between FF-based vs. LUT-RAM vs. BRAMs
 - optimal choice depends on many factors: size, aspect ratio, contention with other IPs
- Must manage RAM usage
 - don't waste BRAM on small buffers
 - tune buffer sizes to natural granularities, e.g., zero incremental cost to go from 2Kb to 4Kb
 - pack buffers to share same physical array

Soft NoC Case Study [Papamichael, 2012]

FPGA- vs ASIC-tuned RTL on FPGA

- **ASIC RTL** from nocs.stanford.edu/cgi-bin/trac.cgi/ wiki/Resources/Router
- **FPGA RTL** from www.ece.cmu.edu/calcm/connect/

Soft-IPs need not be general purpose

- Reconfigurable fabric provides generality
- Soft-IPs should be maximally specialized to usage

Stop Thinking "Field Programmable"

- "Field Programable" is when we wanted FPGA to be ASIC
 - programmability avoided manufacturing NRE
 - programmability reduces design time/cost (incremental development; at speed testing; field updates, etc.)
 - BUT once programmed at power-on, FPGA is fixed
- Let's use programmability to be more than ASIC
 - repurpose fabric over time, at large and small time scales
 - share fabric by multiple applications concurrently

speedup = 1 / ((1-f) + f/s)

Turn Programmability into Performance

- Amdahl's Law: $S_{overall} = 1 / ((1-f) + f/s_f)$
- $s_{f-ASIC} > s_{f-FPGA}$ but $f_{ASIC} \neq f_{FPGA}$
- f_{FPGA} > f_{ASIC} (when not perfectly app-specific)
 - more flexible design to cover a greater fraction
 - reprogram FPGA to cover different applications

Parting Thoughts

- FPGAs pay an overhead for reconfigurability
 - significant but reducing
 - power and BW bottleneck can compress differences
- FPGAs differ from ASICs in more than then reconfiguration overhead---require distinct architecture and tuning
- FPGA is more than ASIC (more on this next lecture)