
18-643-F23-L12-S1, James C. Hoe, CMU/ECE/CALCM, ©2023

18-643 Lecture 12:
Reconfiguration and All That

James C. Hoe
Department of ECE

Carnegie Mellon University

18-643-F23-L12-S2, James C. Hoe, CMU/ECE/CALCM, ©2023

Housekeeping
• Your goal today: understand reconfiguration

behind-the-scene and the unique considerations
when designing “soft logic”

• Notices
– Handout #6: Lab 3, due noon, 10/30 (or 11/3)
– Handout #7: Paper Review, sign-up due 10/27
– Midterm in class, Wed 10/25
– Project proposal due 10/30!!

• Readings (see lecture schedule online)
– Kuon and Rose, “Measuring ...,” ISFPGA, 2006.
– Papamichael, et al., “CONNECT …,” ISFPGA, 2012.

18-643-F23-L12-S3, James C. Hoe, CMU/ECE/CALCM, ©2023

Midterm Heads Up
• Covers lectures (L1~L13), labs, assigned readings
• Types of questions

– freebies: remember the materials
– >> probing: understand the materials <<
– applied: apply the materials in original interpretation

• **64 minutes, 56 points**
– 8 short-answer format questions
– 8 points per answer, best 7 counted
– start of class on 10/25, in-person on-paper
– closed book, individual effort

18-643-F23-L12-S4, James C. Hoe, CMU/ECE/CALCM, ©2023

Configuration and Reconfiguration

18-643-F23-L12-S5, James C. Hoe, CMU/ECE/CALCM, ©2023

1980’s Xilinx LUT-based Configurable
Logic Block (in a sketch)

• 2 fxns (f & g) of 3 inputs OR 1 fxn (h) of 4 inputs
• hardwired FFs (too expensive/slow to fake)
• Just 10s of these in the earliest FPGAs

3-LUT

3-LUT

A
B
C

g(A,B,C)

h(A,B,C,D)

f(A,B,C)

D

FF

X

Y

{2,1,0}

{2,1,0}

{1,0} (also latch mode)

18-643-F23-L12-S6, James C. Hoe, CMU/ECE/CALCM, ©2023

Configurable Routing
(1980s Xilinx simplified)

CLB

Switch Block

Connection Block

CLB

18-643-F23-L12-S7, James C. Hoe, CMU/ECE/CALCM, ©2023

Bitstream defines the chip

• After power up, SRAM FPGA loads bitstream from
somewhere before becoming the “chip”
– many built-in loading options
– non-trivial amount of time; must control reset

timing and sequence with the rest of the system
– forget what it does when powered-off

• Bitstream reverse-engineering ameliorated by
– proprietary knowledge
– encryption

18-643-F23-L12-S8, James C. Hoe, CMU/ECE/CALCM, ©2023

Setting Configuration Bits

• Behind-the-scene infrastructure, if used as ASIC
– doesn’t need to be fast (happens “offline”)
– simpler/cheaper the better

• Could organize bits into addressable SRAM or
EPROM array
– very basic technology
– serial external interface

to save on I/O pins ro
w

column

18-643-F23-L12-S9, James C. Hoe, CMU/ECE/CALCM, ©2023

Serial Scan
• SRAM-based config. bits can be setup as one or

many scan-chains on very slow config. clock
– no addressing overhead
– all minimum sized devices

• At power-up config manager handshake externally
(various options, serial, parallel ROM, PCI-E, . . .)

φ1

φ1’

φ1’

φ1

φ1

φ1’

φ1’

φ1

Full-fledged config. “architecture” in modern
devices to support scale and features

18-643-F23-L12-S10, James C. Hoe, CMU/ECE/CALCM, ©2023

Modern Configuration Architecture
[Intel® Stratix® 10 Configuration User Guide]

18-643-F23-L12-S11, James C. Hoe, CMU/ECE/CALCM, ©2023

Modern Configuration Architecture
Stratix® 10 Secure Device Manager

[Figure 2: “Intel® Stratix® 10 Secure Device Manager Provides Best-in-Class FPGA and SoC Security”]

triple-redundant
secure processor

each sector
managed by
its own
processor

network-on-chip

18-643-F23-L12-S12, James C. Hoe, CMU/ECE/CALCM, ©2023

Role-and-Shell

• Fixed “shell”: base NIC fxn & infrastructure wrapper
• Reloadable “roles”: network acceleration, local and

remote CPU offload, FPGA accelerator plane

1st-gen Stratix V Catapult

18-643-F23-L12-S13, James C. Hoe, CMU/ECE/CALCM, ©2023

Partial Reconfiguration (PR)

• Some regions of fabric retain their configured
“personality” while other are reconfigured
– e.g., keep the external bus interface from babbling

while the functionality behind is changed

• The alive part can even control the reconfig.
– e.g., load the bitstream through the bus

• Basic technology mature but usage not prevalent
under the ASIC model

• Essential to FPGA as a flexible, sharable
computing device

18-643-F23-L12-S14, James C. Hoe, CMU/ECE/CALCM, ©2023

static partition: top

reconfig.
partition:

instance_foo

reconfig.
partition:

instance_bar

Static and Reconfigurable Partitions

m2

m3

m1

A

A

A

A
B

m4

m5

B

B

18-643-F23-L12-S15, James C. Hoe, CMU/ECE/CALCM, ©2023

module m3(
input a1, a2, …
output ax, …);

. . . RTL body . . .

endmodule

module m2(
input a1, a2, …
output ax, …);

. . . RTL body . . .

endmodule

Concrete Syntax (Xilinx’s approach)

module top();
. . . .
foo instance_foo (a1, a2, …);
bar instance_bar (b1, b2, …);
. . . .

endmodule

module foo(
input a1, a2, …
output ax, …);

// nothing here

endmodule

module m1(
input a1, a2, …
output ax, …);

. . . RTL body . . .

endmodule

Logic region and interface locations
for foo and bar set by floorplanning

18-643-F23-L12-S16, James C. Hoe, CMU/ECE/CALCM, ©2023

m1

static partition

reconfig.
partition

reconfig.
partition

m2 m4

m2

m4

m3

m5

At Run Time
• Power up with full-design bitstream
• Partial bitstreams in DRAM or flash memory
• Configuration API driven by ARM or fabric

– reconfig. time depend on size, as low as msec
– handshake signals to pause/start partition interface

m5

DRAM or flash

m3

18-643-F23-L12-S17, James C. Hoe, CMU/ECE/CALCM, ©2023

Today’s Practical Constraints

• Number and size of PR partitions fixed apriori
– too few/too large: internal fragmentation
– too many/too small: external fragmentation

• Not all PR partitions are equaleven if same
interface and shape
– a module needs a different bitstream for each

partition it goes into
– build and store upto MxN bitstreams for N

partitions and M modules

• PR is not all that fast . . .

To be continued on Wednesday

18-643-F23-L12-S18, James C. Hoe, CMU/ECE/CALCM, ©2023

Cost of Reconfigurability:
Hard vs soft logic

18-643-F23-L12-S19, James C. Hoe, CMU/ECE/CALCM, ©2023

[Kuon and Rose, 2006]
• Altera Stratix II FPGA, 90nm

– Quartus II “balanced”, “standard fit”
– hard multipliers and memory blocks

• ST Micro 90nm standard cells
– Synopsys “high-effort”, add scan chain
– ST Micro memory compiler
– Cadence place and route

• Basic Results
– avg 21x/40x in area (w/wo using hard macros)
– 3~4x critical path
– ~12x dynamic power

18-643-F23-L12-S20, James C. Hoe, CMU/ECE/CALCM, ©2023

Benchmarking
• Opencores and local

designs
– removed cases where

FPGA and ASIC are more
than 5% different in FF
count (Bias?)

• Metrics evaluated
– logic density
– circuit speed
– power consumption

[Table 1: Kuon and Rose, “Measuring the Gap between FPGAs and ASICs,” 2006]

18-643-F23-L12-S21, James C. Hoe, CMU/ECE/CALCM, ©2023

Area Ratios

[Table 2: Kuon and Rose, “Measuring the Gap between FPGAs and ASICs,” 2006]

Differences attributed to
“overhead” surrounding
LUTs and FFs

18-643-F23-L12-S22, James C. Hoe, CMU/ECE/CALCM, ©2023

Critical Path Ratios

[Table 3&4: Kuon and Rose, “Measuring the Gap between FPGAs and ASICs,” 2006]

18-643-F23-L12-S23, James C. Hoe, CMU/ECE/CALCM, ©2023

Dynamic Power Ratios

[Table 5: Kuon and Rose, “Measuring the Gap between FPGAs and ASICs,” 2006]

18-643-F23-L12-S24, James C. Hoe, CMU/ECE/CALCM, ©2023

Actual Mileage Varies

• Comparisons strongly affected by
– exact design, FPGA/ASIC target, methodology,

availability/use of macro’s
– comparing less than “best-effort” designs can bias

in either direction—same RTL not best for both
– design is not a point---a full comparison would

have to be Pareto-front to Pareto-front

• Either
– precise in a specific context, or
– warm-fuzzy rule of thumb (2x<<“~10x”<<100x)

A moving target with arch and process changes

18-643-F23-L12-S25, James C. Hoe, CMU/ECE/CALCM, ©2023

Design Soft Logic Differently

18-643-F23-L12-S26, James C. Hoe, CMU/ECE/CALCM, ©2023

RTL for FPGA not scaled
version of ASIC RTL

1. Different relative cost in logic vs. wires vs. mem

2. Different relative speed in logic vs. wires vs. mem

3. Soft Logic design can change . . .

Design differently for FPGA and use FPGA differently!!

18-643-F23-L12-S27, James C. Hoe, CMU/ECE/CALCM, ©2023

FPGA Logic Peculiarities
• Logic slower than expected (can put much less

between clock edges)
• CLB-mapped logic not divisible for pipelining

– over-pipeline adds cycles without freq. increase
– “sweetspot” frequency that is easy to reach but

hard to exceed

• Sharp aberrations around hard macro use
e.g., multiply faster than add in Virtex-II

• Design for performance
– correct and maximal usage of hard macros
– shallowly pipelined, wide datapath

imagine an ASIC
RTL designer with
no FPGA training

18-643-F23-L12-S28, James C. Hoe, CMU/ECE/CALCM, ©2023

FPGA Wire Peculiarities

• Wire delay significantabsolute and relative
even short wires

• High true area cost but low apparent cost
– routing over-provisioned to handle worst case
– in a “typical” design, wires appear cheaper relative

to other resource types

best case is nearest-neighbor, regular grid
• Counterintuitively, you SHOULD use wider busses

– consume unused “free” wires
– compensate for lower frequency

imagine an ASIC
RTL designer with
no FPGA training

18-643-F23-L12-S29, James C. Hoe, CMU/ECE/CALCM, ©2023

FPGA Memory Peculiarities

• Large memory (BRAM) abnormally fast
• Large memory are “free” until your run-out
• Quantized memory options

– jumps between FF-based vs. LUT-RAM vs. BRAMs
– optimal choice depends on many factors: size,

aspect ratio, contention with other IPs

• Must manage RAM usage
– don’t waste BRAM on small buffers
– tune buffer sizes to natural granularities, e.g., zero

incremental cost to go from 2Kb to 4Kb
– pack buffers to share same physical array

imagine an ASIC
RTL designer with
no FPGA training

18-643-F23-L12-S30, James C. Hoe, CMU/ECE/CALCM, ©2023

Soft NoC Case Study [Papamichael, 2012]

flit
buffer

4x
4

Cr
os

sb
ar

Control and Schedule

Tx-link-0
Credit

Tx-link-1
Credit

Tx-link-2
Credit

Tx-link-3
Credit

Rx-link-0
Credit

Rx-link-1
Credit

Rx-link-2
Credit

Rx-link-3
Credit

flit
buffer

flit
buffer

flit
buffer

data (4-20 bytes)

route T L

sum

18-643-F23-L12-S31, James C. Hoe, CMU/ECE/CALCM, ©2023

FPGA- vs ASIC-tuned RTL on FPGA
• ASIC RTL from nocs.stanford.edu/cgi-bin/trac.cgi/

wiki/Resources/Router
• FPGA RTL from www.ece.cmu.edu/calcm/connect/

FPGA Resource Usage
(same router/NoC configuration)

9K

8K

7K

6K

5K

4K

3K

2K

1K

Single Router

LU
Ts

4x4 Mesh NoC

60K

50K

40K

30K

20K

10K

LU
Ts

fix
in

g
ge

ne
ra

l F
PG

A
st

yl
e

gu
id

el
in

es

500

400

300

200

100

Load (in Gbps)

Av
g.

 P
ac

ke
t L

at
en

cy
 (i

n
ns

)

2 4 6 8

Network Performance
(uniform random traffic @ 100MHz)

at same cost
[Papamichael, ISFPGA 2012]

same config

18-643-F23-L12-S32, James C. Hoe, CMU/ECE/CALCM, ©2023

Soft-IPs need not be general purpose
• Reconfigurable fabric provides generality
• Soft-IPs should be maximally specialized to usage

Ring MeshFat Tree High Radix

40

20

Load (in flits/cycle)

La
te

nc
y

(in
 c

yc
le

s)

0.25 0.50 0.75 1

40

20

Load (in flits/cycle)

La
te

nc
y

(in
 c

yc
le

s)

0.25 0.50 0.75 1

Uniform Random Traffic 90% Neighbor Traffic

Ring Fat Tree Mesh High Radix

18-643-F23-L12-S33, James C. Hoe, CMU/ECE/CALCM, ©2023

Stop Thinking “Field Programmable”

• “Field Programable” is when we wanted FPGA to
be ASIC
– programmability avoided manufacturing NRE
– programmability reduces design time/cost

(incremental development; at speed testing; field
updates, etc.)

– BUT once programmed at power-on, FPGA is fixed

• Let’s use programmability to be more than ASIC
– repurpose fabric over time, at large and small time

scales
– share fabric by multiple applications concurrently

18-643-F23-L12-S34, James C. Hoe, CMU/ECE/CALCM, ©2023

Amdahl’s Law
sp

ee
du

p

s
sp

ee
du

p
f

speedup = 1 / ((1-f) + f/s)

1/(1-f)
s @ f=1

18-643-F23-L12-S35, James C. Hoe, CMU/ECE/CALCM, ©2023

Turn Programmability into Performance
• Amdahl’s Law: Soverall = 1 / ((1-f) + f/sf)
• sf-ASIC > sf-FPGA but fASIC fFPGA

• fFPGA > fASIC (when not perfectly app-specific)
– more flexible design to cover a greater fraction
– reprogram FPGA to cover different applications

[based on Joel Emer’s original comment
about programmable accelerators in general]

S ov
er

al
l

fASIC

sf-ASIC

fFPGA at break-even

sf-FPGA

18-643-F23-L12-S36, James C. Hoe, CMU/ECE/CALCM, ©2023

Parting Thoughts

• FPGAs pay an overhead for reconfigurability
– significant but reducing
– power and BW bottleneck can compress

differences

• FPGAs differ from ASICs in more than then
reconfiguration overhead---require distinct
architecture and tuning

• FPGA is more than ASIC (more on this next
lecture)

