18-643 Lecture 11: Memory Bound Designs

James C. Hoe
Department of ECE
Carnegie Mellon University

Housekeeping

- Your goal today: see examples of customizing memory paths to algorithms, and vice versa
- Notices
- Handout \#5: lab 2, due noon, 10/9
- Project status report due each Friday
- Readings (see lecture schedule online)
- Kung, "Memory requirements for balanced computer architectures," ISCA 1986.
- Williams, et al., "Roofline: an insightful . . .," 2008

Topic 1: Arithmetic Intensity

Arithmetic Intensity

- An algorithm has a cost in terms of operation count
- runtime ${ }_{\text {compute-bound }}=$ \# operations / FLOPS
- An algorithm also has a cost in terms of number of bytes communicated (ld/st or send/receive)
- runtime ${ }_{\text {BW-bound }}=$ \# bytes $/$ BW
- Which one dominates depends on
- ratio of FLOPS and BW of platform
- ratio of ops and bytes of algorithm
- Average Arithmetic Intensity (AI)
- how many ops performed per byte accessed
- \# operations / \# bytes

Roofline Performance Model

[Williams\&Patterson, 2006]

AI and Algorithms

harder to speed up
\& harder to scale up
easier

Grids Grids
(Stencils, (Lattice
PDEs) Methods)

[Figure from P\&H CO\&D,
COPYRIGHT 2009 Elsevier.
ALL RIGHTS RESERVED.]

Simple AI Example: MMM

$$
\begin{aligned}
& \text { for }(i=0 ; i<N ; i++) \\
& \qquad \text { for }(j=0 ; j<N ; j++) \\
& \quad \text { for }(k=0 ; k<N ; k++) \\
& \quad C[i][j]+=A[i][k] * B[k][j] ;
\end{aligned}
$$

- N^{2} data-parallel dot-product's
- operation count: N^{3} float-mult and N^{3} float-add
- External memory access (assume 4-byte floats)
- assume N is large s.t. 1 row/col too large for on-chip
- 2N ${ }^{3} 4$-byte reads (of A and B) from DRAM
- . . . N^{2} 4-byte writes (of C) to DRAM . . .
- Arithmetic Intensity $\approx 2 N^{3} /\left(4 \cdot 2 N^{3}\right)=1 / 4$

Less Simple AI Example: MMM

$$
\begin{aligned}
& \text { for (iO=0; iO<N; iO+=N }{ }_{\mathrm{b}} \text {) } \\
& \text { for (j0=0; j0<N; j0+=N }{ }_{\mathrm{b}} \text {) } \\
& \text { for (k0=0; } \mathrm{k} 0<\mathrm{N} ; \mathrm{k} 0+=\mathrm{N}_{\mathrm{b}} \text {) \{ } \\
& \text { for (i=i0;i<i0+N } \mathrm{H}_{\mathrm{b}} ; \mathrm{i}++ \text {) } \\
& \text { for (j=j0;j<j0+N } \left.{ }_{\mathrm{b}} \mathrm{j}+\mathrm{j}+\mathrm{+}\right) \\
& \text { for (} \mathrm{k}=\mathrm{k} 0 ; \mathrm{k}<\mathrm{k} 0+\mathrm{N}_{\mathrm{b}} ; \mathrm{k}++ \text {) } \\
& \text { C[i][j]+=A[i][k]*B[k][j]; }
\end{aligned}
$$

\}

- Imagine a ' $\mathrm{N} / \mathrm{N}_{\mathrm{b}}{ }^{\prime} \mathrm{x}^{\prime} \mathrm{N} / \mathrm{N}_{\mathrm{b}}{ }^{\prime}$ MATRIX of $\mathrm{N}_{\mathrm{b}} \mathrm{x} \mathrm{N}_{\mathrm{b}}$ matrices
- inner-triple is straightforward matrix-matrix mult
- outer-triple is MATRIX-MATRIX mult
- To improve Al , hold $\mathrm{N}_{\mathrm{b}} \times \mathrm{N}_{\mathrm{b}}$ sub-matrices on-chip for data-reuse

Al of blocked MMM Kernel ($\mathrm{N}_{\mathrm{b}} \mathbf{x} \mathrm{N}_{\mathrm{b}}$)

```
for(i=iO;i<iO+N ;ii++)
    for(j=j0;j<j0+N (j;j++) {
    t=C[i][j];
    for(k=k0;k<k0+N ; ; k++)
    t+=A[i][k]*B[k][j];
    C[i][j]=t;
}
```

- Operation count: $\mathrm{N}_{\mathrm{b}}{ }^{3}$ float-mult and $\mathrm{N}_{\mathrm{b}}{ }^{3}$ float-add
- When A, B fit in scratchpad ($2 \mathrm{XN}_{\mathrm{b}}{ }^{2} \times 4$ bytes)
$-2 \mathrm{XN}_{\mathrm{b}}{ }^{3} 4$-byte on-chip reads (A, B) (fast)
$-2 \mathrm{xN}_{\mathrm{b}}{ }^{2}$ 4-byte off-chip DRAM read A, B (slow)
- $2 \mathrm{xN}_{\mathrm{b}}{ }^{2}$ 4-byte off-chip DRAM read/write of C (sldw)
- Arithmetic Intensity $=2 \mathrm{~N}_{\mathrm{b}}{ }^{3} /(\underbrace{4 \cdot 4 \mathrm{~N}_{\mathrm{b}}{ }^{2}})=\mathrm{N}_{\mathrm{b}} / 8$

The Performance Balancing Act

1. Kernels' op/sec requires some byte/sec - a function of algorithm and kernel size
2. On-chip SRAM "filters" kernel byte/sec down to DRAM byte/sec - a function of SRAM capacity
3. DRAM system offers some aggregate byte/sec -a function of access pattern (algorithm)

Some Hints on Lab 3

- Lab 3 kernel's op/sec just need to be fast enough to match memory-bound (op/byte \times byte $/ \mathrm{sec}$)
- Lab 3 emphasis on improving memory-bound
- size tiles and order outer loops for data reuse (don't forget the batch loop!)

Mindful of buffer sizes and degree reuse

- use memory resources efficiently (fit bigger tiles)
- layout data in DRAM for sequential read (don't forget to widen the read path)
- Use DFX to tune the 2 layers differently

Topic 2:
 Data Layout and Access Pattern

Data Layout and Access Pattern: 2D-FFT

- Row-column algorithm:

$$
2 \mathrm{D}-\mathrm{DFT}_{n \times n}=(\underbrace{\mathrm{DFT}_{n} \otimes \mathrm{I}_{n}}_{\text {Column Stage }})(\underbrace{\mathrm{I}_{n} \otimes \mathrm{DFT}_{n}}_{\text {Row Stage }})
$$

Dataset:
(Logical abstraction of the 2D dataset)

Inefficient DRAM Access Patterns

- Row-wise traversal -> Sequential accesses
- Column-wise traversal -> Large strided accesses

DDR2-800 Bandwidth on DE4 (per channel) Bandwidth [GB/s]

Gather-Scatter

Tiled Layout and Access Patterns

What if you only have (k/2).n on-chip buffer?

Design Generator w/ Tensor Formalism

$2 \mathrm{D}_{-\mathrm{DFT}_{n \times n}}=(\overbrace{\mathrm{DFT}_{n} \otimes \mathrm{I}_{n}}^{\text {column stage }} \overbrace{\left(\mathrm{I}_{n} \otimes \mathrm{DFT}_{n}\right)}^{\text {row stage }}$ row-column algorithm

write tiles transpose column-wise and re-tile on-chip

$$
\begin{array}{ccc}
\text { FFT processing } & \begin{array}{c}
\text { linearize } \\
\text { on-chip }
\end{array} & \begin{array}{l}
\text { read tiles } \\
\text { row-wise }
\end{array}
\end{array}
$$

[Akin, et al., FCCM 2012]

Topic 3: Irregular

Irregular: Breadth First Search

Large graph has more than millions of nodes

Breadth-First Search (Pseudo Code)

```
foreach (node n in graph) n.dist= m;
```

worklist $=$ \{root $\}$ root.dist=0;
foreach (node n in worklist) \{
foreach (neighbor of n) \{
if (n.dist $+1<$ neighbor.dist) \{
neighbor.dist $=$ n.dist +1 ;
add neighbor to worklist;
\}
\}

Real Code with CSR Memory Accesses

```
while(wl.mHowmany) { // worklist not empty
    // repeat for each node on frontier
    int curr=wl.mList[wl.mDeq]; // s0
    int myDist=graph->mPerNode[curr].dist; // S1
    int numEdges=graph->mPerNode[curr].fanout; // S1
    int scan=graph->mPerNode[curr].edges; // S1
    { ... dequeue from worklist ...}
    while (numEdges--) {
        // repeat for each neighbor
        int dest=graph->mPerEdge[scan].dest; // S2
        int destDist=graph->mPerNode[dest].dist; // S3
        if ((myDist+1)<destDist) { // S4
        graph->mPerNode[dest].dist=myDist+1; // S4
        { ...enqueue dest to worklist...} // S5
        }
        scan++;
    }
}
```


Compressed Sparse Row (CSR) Adjacency Matrix

\sim dest \rightarrow				
\downarrow	0	1	2	3
0	0	1	0	1
1	1	0	0	-
2	0	1	0	1
3	0	0	1	0

Large graph has millions or more nodes each with may be handful edges per node

Elastic HW Processing Pipeline

BFS Irregular Access Pattern

- Irregular and graph dependent
- S0 read worklist: spatial locality, non-temporal
- S1 read node array (self): no locality
- S2 read edge array: some spatial locality, non-temporal
- S3 read node array (neighbor): no locality
- S4 write node array (neighbor): temporal with S3
- S5 write worklist: spatial locality, non-temporal
- S3 most problematic of all
- S1 and S3 lack locality but S3 repeated per neighbor
- same number of S2 and S3 but S2 has spatial locality
- BTW, S3 and S4 could have RAW hazard
- BTW, all read/write granularity is multi-word

How can "Caching" Help?

- Custom cache for only neighbor distance in hode array (read in S3 written in S4)
- RAW hazard interlock when nodes in pipeljne have same neighbor (stall S3 until conflict-free)
- Coalesces neighbor updates fcollect partial writes to multi-word DRAM block)

Organized and operated unlike an ABC cache!!

How can HBM BW help?

- HBM gives you 512GB/sec
- data partitioned 32 ways
- 100s nsec latency
- 32 byte per fetch
- Partition graph data into 32 banks s.t. maximizing
 non-conflict concurrent accesses across channel
- Per channel, prefetch many 10s of outstanding read requests to cover latency (Little's Law)
- Re-index nodes in graph s.t. maximizing spatial locality of each 32B fetch

Complexity of Sparse Algorithms

- Graph processing expressible using linear algebra primitives: SpMV, SpMSpV, SpMM, ...

Simplicity of form belies performance difficulties

- Basic challenges in large data set, low arithmetic intensity, and irregular access pattern
- graph-dependent behavior requires multiple implementations of same primitive depending on:
- size and sparsity
- structured?
- compressed format: CSR, CSC, COO, . . .

Each combination a different optimal design

Parting Thoughts

- When scaling data size and performance, memory design quickly become the PROBLEM
- capacity, bandwidth, latency
- FPGAs specialization is an asset
- balance memory throughput and compute throughput
- have data to the right place at the right time
- alter algorithm to memory constraints
- Designing "memorypath" as important as designing "datapath"

