18-643 Lecture 5: "Performance" Metrics: Beyond Functional Correctness

James C. Hoe Department of ECE Carnegie Mellon University

18-643-F23-L05-S1, James C. Hoe, CMU/ECE/CALCM, ©2023

Housekeeping

Your goal today: review basic concepts and avoid common gotcha's

Digested from three 18-447 lectures

- Notices
 - Handout #4: Lab 1, due noon, Mon, 9/25
 - Ultra96 ready for pick up
 - Recitation starts this week, W 6~7, HH 1307
 - Prof. Hoe Office Hours, Thusdays 2:30am~4pm
- Readings (see lecture schedule online)
 - 18-447 Spring 2023 Lectures 5, 12 and 23

Performance (without "")

Performance is about time

- To the first order, **performance** $\propto 1$ / time
- Two <u>very different</u> kinds of performance!!
 - latency = <u>time</u> between start and finish of a task
 - throughput = number of tasks finished in a given unit of <u>time</u> (a rate measure)
- Either way, shorter the time, higher the performance, but not to be mixed up

Throughput ≠ 1/Latency

 If it takes T sec to do N tasks, throughput=N/T; latency₁=T/N?

- If it takes t sec to do 1 task, latency₁=t; throughput=1/t?
- When there is concurrency, throughput≠1/latency

(think bus vs F1 race car)

Little's Law

L=λ·W

a alla alla alla i

- L: number of customers
- $-\lambda$: arrival rate
- W: wait time

- In 643 language:
 - # overlapped tasks
 - throughput
 - latency
- In steadystate, fix any two, the third is decided

• HW system examples

in-order instruction pipeline: ILP and RAW hazard distance determine instruction throughput

)Fort Pitt Tunnel

 AXI DRAM read: latency and # outstanding requests determine achieved BW (until peak)

Overhead and Amortization

- Throughput becomes a function of N when there is a non-recurring start-up cost (aka overhead)
- E.g., using DMA to transfer on a bus
 - bus throughput_{raw} = 1 Byte / (10⁻⁹ sec) steadystate
 - 10⁻⁶ sec to setup a DMA
 - throuhgput_{effective} to send 1B, 1KB, 1MB, 1GB?
- For start-up-time=t_s and throughput_{raw}=1/t₁
 - throughput_{effective} = $N / (t_s + N \cdot t_1)$
 - if $t_s >> N \cdot t_1$, throughput_{effective} $\approx N/t_s$
 - if $t_s \ll N \cdot t_1$, throughput_{effective} $\approx 1/t_1$

we say t_s is "amortized" in the latter case

Latency Hiding

- What are you doing during the latency period?
- Latency = hands-on time + hands-off time
- In the DMA example
 - CPU is busy for the t_s to setup the DMA
 - CPU has to wait $N \cdot t_1$ for DMA to complete
 - CPU could be doing something else during N·t₁ to "hide" that latency

"Performance" is more than time

Moore's Law without Dennard Scaling

Power = Energy / time

- Energy (Joule) dissipated as heat when "charge" move from VDD to GND
 - takes a certain amount of energy per operation,
 e.g., addition, reg read/write, (dis)charge a node
 - to the first order, energy ∞ work

You care if on battery or pay the electric bill

- Power (Watt=Joule/s) is rate of energy dissipation
 - more op/sec \Rightarrow more Joules/sec
 - to the first order, power ∞ performance

Usually the problem is "thermal design power"

Power and Performance not Separable

- Easy to minimize power if don't care about performance
- Expect superlinear increase in power to increase performance
 - slower design is simpler
 - lower frequency needs
 lower voltage
- Corollary: Lower perf also use lower J/op (=slope from origin)
- Don't forget leakage power

all bets of

Scale Makes a Difference

- Perf/Watt and J/op are normalized measures
 - hides the scale of problem and platform
 - recall, Watt \propto perf^k for some k>1
- 10 GFLOPS/Watt at 1W is a very different design challenge than at 1KW or 1MW or 1GW
 - say 10 GFLOPS/Watt on a <GPGPU,problem>
 - now take 1000 GPUGPUs to the same problem
 - realized perf is < 1000x (less than perfect parallelism)
 - required power > 1000x (energy to move data & heat)
- Scaling down not always easier with real constraints *Pay attention to denominator of normalized metrics*
 18-643-F23-L05-S13, James C. Hoe, CMU/ECE/CALCM, ©2023

Design Tradeoff

Multi-Dimensional Optimizations

- HW design has many optimization dimensions
 - throughput and latency
 - area, resource utilization
 - power and energy
 - complexity, risk, social factors . . .
- Cannot optimize individual metrics without considering **tradeoff** between them, e.g.,
 - reasonable to spend more power for performance
 - converse also true (lower perf. for less power)
 - but never more power for lower performance

Pareto Optimality (2D example)

All points on front are optimal (can't do better) How to select between them?

Application-Defined Composite Metrics

- Define scalar function to reflect desiderata--incorporate dimensions and their relationships
- E.g., energy-delay-(cost) product
 - smaller the better
 - can't cheat by minimizing one ignoring others
 - what does it mean? why not energy³×delay²?
- Floors and ceilings
 - real-life designs more often about good enough than being optimal
 - e.g., meet a perf. floor under a power(cost)-ceiling (minimize design time, i.e., stop when you get there)

Is B really lowest power?

Which is Design Point is Best?

runtime

Parallelism, Speedup and Scalability

Parallelization and Efficiency

- For a given functionality, non-linear tradeoff between power and performance
 - slower design is simpler
 - lower frequency needs lower voltage
- \Rightarrow For the same throughput, replacing 1 module by 2 half-as-fast reduces total power and energy

Parallelism Defined

- T₁ (work measured in time):
 - time to do work with 1 PE
- T_{∞} (critical path):
 - time to do work with infinite PEs
 - T_{∞} bounded by dataflow dependence
- Average parallelism:

 $P_{avg} = T_1 / T_{\infty}$

• For a system with p PEs

 $T_p \ge max\{T_1/p, T_\infty\}$

• When P_{avg}>>p

$$T_p \approx T_1/p$$
, aka "linear speedup"

x = a + b; y = b * 2 z =(x-y) * (x+y)

"Ideal" Linear Parallel Speedup

• Ideally, parallel speedup is linear with p

Speedup = $\frac{time_{sequential}}{time_{parallel}}$

Strong vs. Weak Scaling

- Strong Scaling (assumed on last slide)
 - what is S_p as p increases for constant work, T₁
 run same workload faster on new larger system
 - harder to speedup as (1) p grows toward P_{avg} and
 (2) communication cost increases with p
- Weak Scaling
 - what is S_p as p increases for larger work, $T_1'=p \cdot T_1$ run a <u>larger</u> workload faster on new larger system
 - $S_{p} = time_{sequential}(p \cdot T_{1}) / time_{parallel}(p \cdot T_{1})$
- Which is easier depends on
 - how P_{avg} scales with work size T_1'
 - relative scaling of bottlenecks (storage, BW, etc)

Non-Ideal Speed Up

Parallelism Defined

- **T₁** (work measured in time):
 - time to do work with 1 PE
- T_{∞} (critical path):
 - time to do work with infinite PEs
 - $-T_{\infty}$ bounded by dataflow dependence
- Average parallelism:

• For a system with **p** PEs

 $T_p \ge max\{T_1/p, T_\infty\}$

- When P_{avg}>>p
 - $T_p \approx T_1/p$, aka "linear speedup"

x = a + b; y = b * 2 z =(x-y) * (x+y)

Amdahl's Law: a lesson on speedup

• If only a fraction **f** (of time) is speedup by **s**

- if f is small, s doesn't matter
- even when f is large, diminishing return on s;
 eventually "1-f" dominates

Non-Ideal Speed Up

Cheapest algo may not be the most scalable, s.t. time_{parallel-algo@p=1} = K·time_{sequential-algo} and K>1 and

```
Speedup = p/K
```

S

Non-Ideal Speed Up

Communication not free

- A processing element may spend extra time
 - in the act of sending or receiving data
 - waiting for data to be <u>transferred</u> from another
 PE
 - latency: data coming from far away
 - bandwidth: data coming thru finite channel
 - waiting for another PE to get to a particular point of the computation (a.k.a. <u>synchronization</u>)

How does communication cost grow with **T**₁? How does communication cost grow with **p**?

LogP Communication Cost Model

- <u>Latency</u>: transit time between sender and receiver as if lengthening critical path (T_m)
- <u>overhead</u>: time used up to setup a send or a receive (cycles not doing computation)

as if adding more work (T₁)

 gap: wait time in between successive send's or receive's due to limited transfer bandwidth

Parting Thoughts

- Need to understand performance to get performance!
- Good HW/FPGA designs involve many dimensions (each one nuanced)
 - optimizations involve making tradeoff
 - over simplifying is dangerous and misleading
 - must understand application needs

Power and energy is first-class!!

• Real-life designs have non-technical requirements