
18-643-F23-L04-S1, James C. Hoe, CMU/ECE/CALCM, ©2023

18-643 Lecture 4:
FPGAs with Purpose

James C. Hoe
Department of ECE

Carnegie Mellon University

18-643-F23-L04-S2, James C. Hoe, CMU/ECE/CALCM, ©2023

Housekeeping
• Your goal today: appreciate modern “FPGAs” as

heterogenous and purposefully architected
• Notices

– Handout #4: Lab 1, due noon, 9/25, noon
– Ultra96 pick up in HH-1301 btw 10~12 and 2~4.
– Recitation starts this week, W 6:00~7:00

• Readings (see lecture schedule online)
– Skim [Chromczak20] and [Ahmed16]
– Skim [Caulfield16]

18-643-F23-L04-S3, James C. Hoe, CMU/ECE/CALCM, ©2023

Differing Tradeoff and Sweetspots

Versatility

Efficiency
(“good” per “cost”)

Ease
CPU

FPGA
CGRA/
GPU

committed:
- data type
- operations
- exploitable
parallelism

ASIC

18-643-F23-L04-S4, James C. Hoe, CMU/ECE/CALCM, ©2023

All Systems, All Heterogenous

Wrong to think ASIC “most” efficient!!

18-643-F23-L04-S5, James C. Hoe, CMU/ECE/CALCM, ©2023

FPGA’s Differentiated Sweetspot

• Spatial data and compute
not CPU

• Highly concurrent
not multicore

• Finely controllable
not GPU

• Wire-cycle granularity actions
no software of any kind

• Reprogrammable
not ASIC

18-643-F23-L04-S6, James C. Hoe, CMU/ECE/CALCM, ©2023

2010: Xilinx Zynq SoC FPGA

18-643-F23-L04-S7, James C. Hoe, CMU/ECE/CALCM, ©2023

Die Area “Return on Investment”

[V
iv

ad
o

sc
re

en
sh

ot
 X

C7
z0

20
]

Soft-logic logic dominates die area, but compute/storage concentrated
in DSP and BRAMconsider what if 100% soft or 100% hard

18-643-F23-L04-S8, James C. Hoe, CMU/ECE/CALCM, ©2023

Xilinx Zynq SoC FPGA

[http://www.xilinx.com/products/silicon-devices/soc/zynq-ultrascale-mpsoc.html]

18-643-F23-L04-S9, James C. Hoe, CMU/ECE/CALCM, ©2023

Zynq SoC-FPGA Designer Mindset

Vivado IP Integrator Screenshot

18-643-F23-L04-S10, James C. Hoe, CMU/ECE/CALCM, ©2023

HW/SW Co-Design

• An application is partitioned for mapping to
– HW: everything SW is not good enough for
– SW: everything else

• SW is the heart and soul
– in control of HW
– enables product differentiation

• SW can be harder than HW (Is this surprising?)
– embodying most of the complexity
– often dominate actual development time/effort

18-643-F23-L04-S11, James C. Hoe, CMU/ECE/CALCM, ©2023

IP-Based Design

• Complexity wall
– designer productivity grows slower than Moore’s Law

on logic capacity
– diminishing return on scaling design team size

must stop designing individual gates
• Decompose design as a connection of IPs

– each IP fits in a manageable design complexity
Bonus, IPs can be reused across projects

 abstraction boundary
– IP integration fits in a manageable design complexity

18-643-F23-L04-S12, James C. Hoe, CMU/ECE/CALCM, ©2023

Systematic Interconnect

• More IPs, more elaborate IPs intractable to
design wires at bit- and cycle-granularity

• On-chip interconnect standards (e.g. AXI) with
address-mapped abstraction
– each target IPs assigned an address range
– initiator IPs issue read (or write) transactions to

pull (or push) data from (or to) addressed target IP
– physical realization abstracted from IPs

• Plug-and-play integration of interface-compatible
IPs

• Network-on-chip ("route data not wires")

18-643-F23-L04-S13, James C. Hoe, CMU/ECE/CALCM, ©2023

AXI Abstraction Unmasked

[Fig 3-2, Zynq-7000 All Programmable SoC Technical Reference Manual]

AXI
system

“bus”

CPU

Fabric
programmable logic (PL)
processing system (PS)

to off-chip
DRAM

18-643-F23-L04-S14, James C. Hoe, CMU/ECE/CALCM, ©2023

PS/PL Data Crossing Options

[Fig 3-2, Zynq-7000 All Programmable SoC Technical Reference Manual]

programmable logic (PL)
processing system (PS)

18-643-F23-L04-S15, James C. Hoe, CMU/ECE/CALCM, ©2023

Explicit HW-SW Application Co-Design

Vivado IP Integrator

Xilinx Software Development Kit (SDK)

Two-step process
• design SoC datapath
• program SoC behavior

18-643-F23-L04-S16, James C. Hoe, CMU/ECE/CALCM, ©2023

Vitis Software-Defined SoC
int main(int argc, char* argv[]) {

...

cl::Program program(context, devices, bins);

...

cl::Buffer buffer_a(context, CL_MEM_READ_ONLY,

size_in_bytes);

...

q.enqueueMigrateMemObjects({buffer_a,buffer_b},0);

...

q.enqueueTask(krnl_matrix_mult);

...

q.enqueueMigrateMemObjects({buffer_result},

CL_MIGRATE_MEM_OBJECT_HOST);

...

}

The result will be correct, but will it be good?

18-643-F23-L04-S17, James C. Hoe, CMU/ECE/CALCM, ©2023

2015: FPGAs in Datacenters

18-643-F23-L04-S18, James C. Hoe, CMU/ECE/CALCM, ©2023

MSR Catapult Bing Experiment
[Putnam et al., 2014]

• “Small” scale test (1632 servers) to accelerate
Bing ranking using FPGAs
– fit in 10% server cost and power budget
– algorithm updates in interval of weeks
– datacenter Reliability/Availability/Serviceability

Key Result: 2x throughput at 95th percentile latency
• Takeaway

– existential proof of datacenter application
– modern FPGAs large/capable enough
– Microsoft desperate enough to pivot from SW-only

18-643-F23-L04-S19, James C. Hoe, CMU/ECE/CALCM, ©2023

In every Microsoft datacenter server
[Caulfield, et al., 2016]

• Individually as SmartNIC (en/decrypt, virtualization)
• Individually as CPU off-load accelerator
• Collectively as a FPGA super-accelerator

– operate separately from host
– microseconds any FPGA to any FPGA

“bump-in-the-wire”

18-643-F23-L04-S20, James C. Hoe, CMU/ECE/CALCM, ©2023

Role-and-Shell

• Fixed “shell”: base NIC fxn & infrastructure wrapper
• Reloadable “roles”: network acceleration, local and

remote CPU offload, FPGA accelerator plane

1st-gen Stratix V Catapult

ov
er

he
ad

?

24% unused??

18-643-F23-L04-S21, James C. Hoe, CMU/ECE/CALCM, ©2023

Overlay Programming (think code)

N instructions
T iterations
RxC-element tile
E replicas

• ML programmers
– don’t have time to design hardware
– won’t wait 24-hrs to try a new algo

• HW designers bad at ML

spatial
SIMD
datapath

sequential
control

Pay doubly
interpretation
overhead,
okay?

18-643-F23-L04-S22, James C. Hoe, CMU/ECE/CALCM, ©2023

2020: Diverging FPGA Architectures

18-643-F23-L04-S23, James C. Hoe, CMU/ECE/CALCM, ©2023

What is FPGA architecture?

• If you asked in 2015

One is Xilinx, the other Intel. Which is which?

18-643-F23-L04-S24, James C. Hoe, CMU/ECE/CALCM, ©2023

Today’s FPGAs not RTL targets

[Xilinx Versal] [Intel Agilex]

[Xilinx Zynq]

[Achronix Speedster]

18-643-F23-L04-S25, James C. Hoe, CMU/ECE/CALCM, ©2023

Architecture follows Purpose
• FPGA vendors doing what markets want

– future “FPGA” not sea-of-gates for RTL netlist
– FPGAs wanted not because can’t afford ASICs

• Purposeful architectures for targeted use/app
– make select things easier/cheaper to do
– be very good at what it is intended to do

• Coping with architectural divergence
– soft-logic adds malleability to “architecture”
– 2.5/3D integration allows specialization off a

common denominator
– push reconvergence of abstraction up the stack

18-643-F23-L04-S26, James C. Hoe, CMU/ECE/CALCM, ©2023

Xilinx Versal Hardened NoC

ISFPGA 2019: “Network-on-Chip Programmable Platform in Versal™ ACAP Architecture”

Usage as AXI remains abstracted and automated

18-643-F23-L04-S27, James C. Hoe, CMU/ECE/CALCM, ©2023

Xilinx Versal AI Engines

HotChips 2018, “HW/SW Programmable Engine” If not RTL then what?

18-643-F23-L04-S29, James C. Hoe, CMU/ECE/CALCM, ©2023

Why CGRAs now?
What is being traded off?

ALU

program/
sequencing

mem

LUT

LUT

LUT

LUT

LUT

LUT

LUT

LUT

LUT

CPU-like:
- coarse operator
- programmed sequencing

FPGA-like:
- fine operators
- logic netlist
(no sequencing)

von Neuman Spatial

18-643-F23-L04-S30, James C. Hoe, CMU/ECE/CALCM, ©2023

Domain Specialized Programming Support

HotChips 2018, “HW/SW Programmable Engine”

18-643-F23-L04-S31, James C. Hoe, CMU/ECE/CALCM, ©2023

Achronix

[www.achronix.com]

Versatility

Efficiency

Ease

18-643-F23-L04-S32, James C. Hoe, CMU/ECE/CALCM, ©2023

The Achronix Integrated 2D NoC
Enables High Bandwidth Designs

[achronix.com]

18-643-F23-L04-S33, James C. Hoe, CMU/ECE/CALCM, ©2023

Stratix-10 NX with AI Tensor Block

[Intel Stratix-10 NX FPGA, Technical Brief]

Versatility

Efficiency

Ease

up to 143 INT8 TOPS at ~1 TOPS/W

18-643-F23-L04-S34, James C. Hoe, CMU/ECE/CALCM, ©2023

From Humble Beginnings

[Fig 4, Alfke, et al., “It an FPGA!” IEEE Solid State Circuits Magazine, 2011]

18-643-F23-L04-S35, James C. Hoe, CMU/ECE/CALCM, ©2023

40 Years of Moore and More than Moore

dual ARM Cortex A72
dual ARM Cortex R5F

256KB ECC
Ethernet/CAN/USB/…

18-643-F23-L04-S36, James C. Hoe, CMU/ECE/CALCM, ©2023

Parting Thoughts

• SoC’ness complements FPGA’ness
– hardware performance that is flexible
– fast design turnaround (time-to-market)
– low NRE investments
– in-the-field update/upgrades

• FPGA “architecture” evolving rapidly
– heterogeneity+cheap transistors --> perf/Watt
– high-valued application leads to specialization
– different high-valued applications lead to

“speciation”

Don’t let what you see today limit your imagination

18-643-F23-L04-S37, James C. Hoe, CMU/ECE/CALCM, ©2023

Looking Ahead

• Lab 1 (wk3/4): first design with Vitis and DFX
– most important: know what is there

• Lab 2 (wk5/6): try out HLS
– most important: decide if you like it

• Lab 3 (wk7/8): hands-on with acceleration
– most important: have confidence it can work

• Project: we already started . . .

18-643-F23-L04-S38, James C. Hoe, CMU/ECE/CALCM, ©2023

Appendix
(Ask TA in recitation)

18-643-F23-L04-S39, James C. Hoe, CMU/ECE/CALCM, ©2023

Concept: Bus and Transactions

• All devices in system connected by a “bus”
– initiators: devices who initiate transactions
– targets: devices who respond to transactions

• Transaction based on a memory-like paradigm
– “address”, “data”, “reading vs. writing”
– initiator issues read/write transaction to an

address
– each target is assigned an address range to

respond in a “memory-like” way, i.e., returning
read-data or accepting write-data

AXI is the standard interface in Zynq

A B C D E
(logical

depiction)

18-643-F23-L04-S40, James C. Hoe, CMU/ECE/CALCM, ©2023

Concept: Split-Phase Bus Transactions

• Asynchronous request/response queues
– multiple outstanding transactions in flight
– in-order or out-of-order (need tags)

• No centralized arbitration; push request when not full
• No broadcast; only addressed target sees transaction

out there

data_w
addr

tag
r/w/cmd

push

data_r

tag
pop
empty?

full?
request queue (initiator) response queue

18-643-F23-L04-S41, James C. Hoe, CMU/ECE/CALCM, ©2023

Concept: Memory Mapped I/O
• Think of normal ld/st as how processor

“communicates” with memory
– ld/st address identifies a specific memory location
– ld/st data conveys information

• Can communicate with devices the same way
– assign an address to register of external device
– ld/st from the “mmap” address means

reading/writing the register
– BUT remember, it is not memory,

• additional side-effects
• not idempotent

FIFO

0xffff0000

18-643-F23-L04-S42, James C. Hoe, CMU/ECE/CALCM, ©2023

Fabric Module as AXI target

• ARM core issues ld/st instructions to addresses
corresponding to “mmapped” AXI device registers

aka programmed I/O or PIO
• Nothing is simpler
• Very slow (latency and bandwidth)
• Very high overhead

– ARM core blocks until ld response returns
– many 10s of cycles

best for infrequent, simple manipulation
of control/status registers

18-643-F23-L04-S43, James C. Hoe, CMU/ECE/CALCM, ©2023

Fabric Module as AXI Initiator

1. Fabric can also issue mmap read/write as initiator
2. AXI HP

– dedicated 64-bit DRAM read/write interfaces
fastest paths to DRAM (latency and bandwidth)

– no cache coherence
• if data shared, ARM core must flush cache

before handing off
• major performance hiccup from (1) flush

operation and (2) cold-cache restart
best for fabric-only data, DRAM-only data, or very

coarse-grained sharing of large data blocks

18-643-F23-L04-S44, James C. Hoe, CMU/ECE/CALCM, ©2023

Fabric Module as AXI Initiator (cont.)

3. “Accelerator Coherence Port”
– fabric issues memory read/write requests through

ARM cores’ cache coherence domain
– shortest latency on cache hits

• ARM core could even help by prefetching
• if not careful, ARM cores and fabric could also

interfere through cache pollution
– not necessarily best bandwidth (only one port)

best for fine-grained data
sharing between ARM cores and fabric

18-643-F23-L04-S45, James C. Hoe, CMU/ECE/CALCM, ©2023

DMA Controller

• AXI-target programming interface
– programmable from ARM core and fabric
– source and dest regions given as <base, size>
– source and dest could be memory (cache

coherent) or mmapped regions (e.g., ARM core
scratch-pad or mmapped accelerator interface)

• Need to move large blocks to “amortize” DMA
setup costs (PIO writes)

• Corollary: need to start moving well ahead of use

best for predictable, large block exchanges

