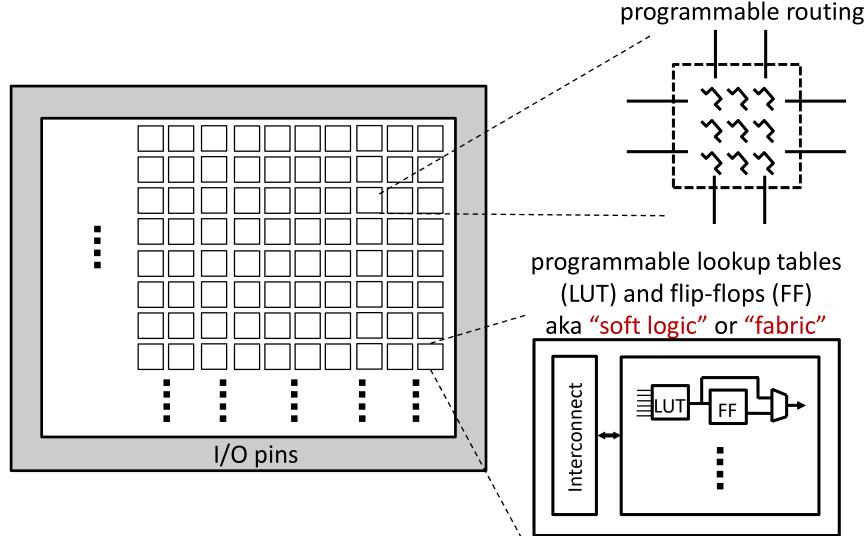
18-643 Lecture 3: FPGA on Moore's Law

James C. Hoe Department of ECE Carnegie Mellon University

18-643-F23-L03-S1, James C. Hoe, CMU/ECE/CALCM, ©2023


Housekeeping

- Your goal today: get caught up on 3 decades of progress (upto 2010'ish)
- Notices
 - Complete survey on Canvas, past due
 - Handout #2: lab 0, due noon, 9/11

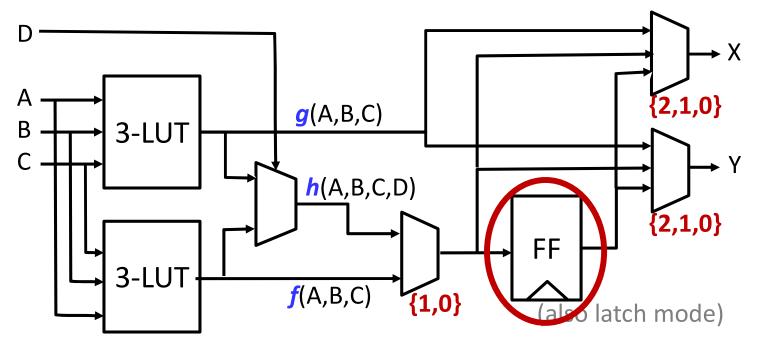
Use Piazza and watch TA step-by-step video!!

- Handout #3: Term Project Intro
- Readings (see lecture schedule online)
 - skim [Boutros, et al., 2021]
 - for next time: skim [Ahmed, et al., 2016] and
 [Chromczak, et al., 2020]

Where we stopped last time: FPGA as Universal Fabric

Fast-forward through Moore's Law

Part Number	Logic Capacity (gates)	Config- urable Logic Blocks	User I/Os	Config- uration Program (bits)
XC2064	1200	64	58	12038
XC2018	1800	100	74	17878


XC2064/XC2018 Logic Cell Arrays: Product Specification

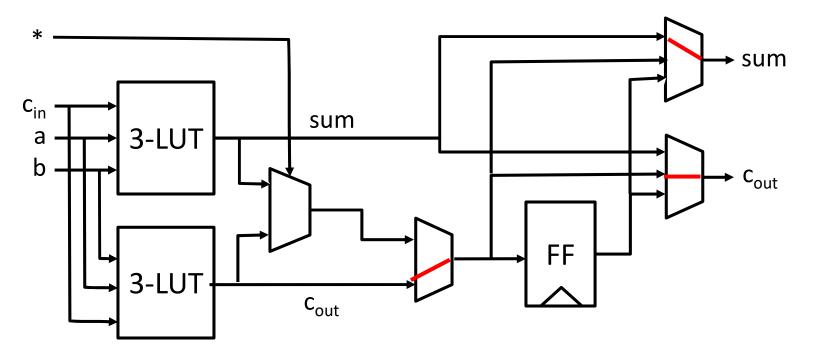
	Kintex UltraScale	Kintex UltraScale+	Virtex UltraScale	Virtex UltraScale+	Zynq UltraScale+	
MPSoC Processing System					1	
System Logic Cells (K)	318-1,451	356-1,143	783-5,541	862-3,780	103-1,143	o
Block Memory (Mb)	12.7-75.9	12.7-34.6	44.3-132.9	23.6-94.5	4.5-34.6	בי רו
UltraRAM (Mb)		0-36		90-360	0-36	ed
HBM DRAM (GB)				0-8		Ĕ
DSP (Slices)	768-5,520	1,368-3,528	600-2,880	2,280-12,288	240-3,528	l
DSP Performance (GMAC/s)	8,180	6,287	4,268	21,897	6,287	LQ
Transceivers	12-64	16-76	36-120	32-128	0-72	
Max. Transceiver Speed (Gb/s)	16.3	32.75	30.5	32.75	32.75	ha
Max. Serial Bandwidth (full duplex) (Gb/s)	2,086	3,268	5,616	8,384	3,268	
Integrated Blocks for PCIe®	1-6	0-5	2-6	2-6	0-5	hat
Memory Interface Performance (Mb/s)	2,400	2,666	2,400	2,666	2,666	ع ل
I/O Pins	312-832	280-668	338-1,456	208-832	82-668	>
I/O Voltage (V)	1.0-3.3	1.0-3.3	1.0-3.3	1.0-1.8	1.0-3.3	1

[Table 1, UltraScale Architecture and Product Datasheet: Overview]

30 Years of Becoming Hardwired

LUT-based Configurable Logic Block (simplified sketch)

- 2 fxns (*f* & *g*) of 3 inputs OR 1 fxn (*h*) of 4 inputs
- hardwired FFs (too expensive/slow to fake)
- Just 10s of these in the earliest FPGAs

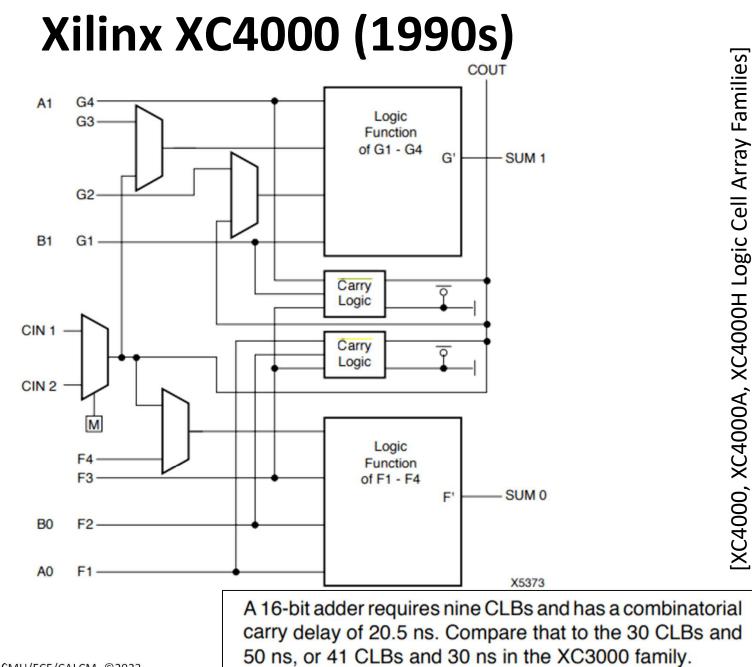


Why Hardwired Logic

- LUTs already can do everything (digital)
- Revisit: why hardwired flip-flop in CLB?
 - would take 4 LUTs to make 1 M-S flip-flop
 - LUT-built FF have atrocious setup/hold time
 - almost all designs affected in cost and speed
- Makes sense to hardwire a functionality
 - needed by everyone (or by the big customers)
 - <u>expected</u> benefit outweigh displaced LUT area, i.e.,
 - much more expensive/slow in LUTs
 - easy/cheap to ignore when not in use

Hardwiring is a great thing if it is usable and is used

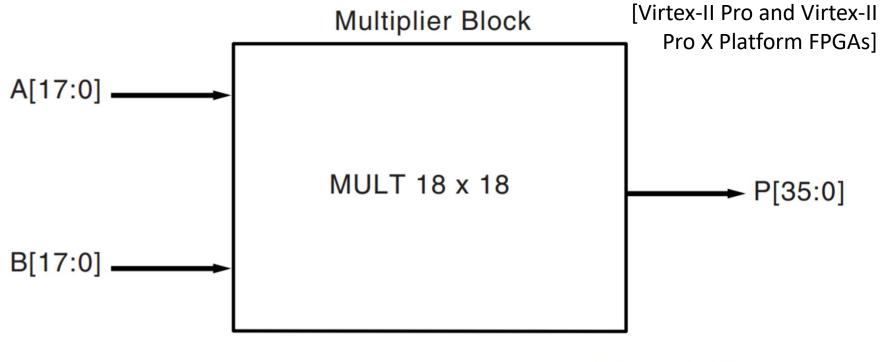
E.g., Special Support for Addition


- A full-adder fits perfectly in 1 CLB with 2x3LUTs
- But carry propagation slow---flow through several configurable connections and two switch blocks
- Addition is pretty important to most designs

Specialized Logic for Fast Carry

- Cost = 1 (real) wire and 1 mux
- Huge win in adder performance (32-bit@33MHz) If arithmetic is so important, why not put in

real adders? How about multipliers?

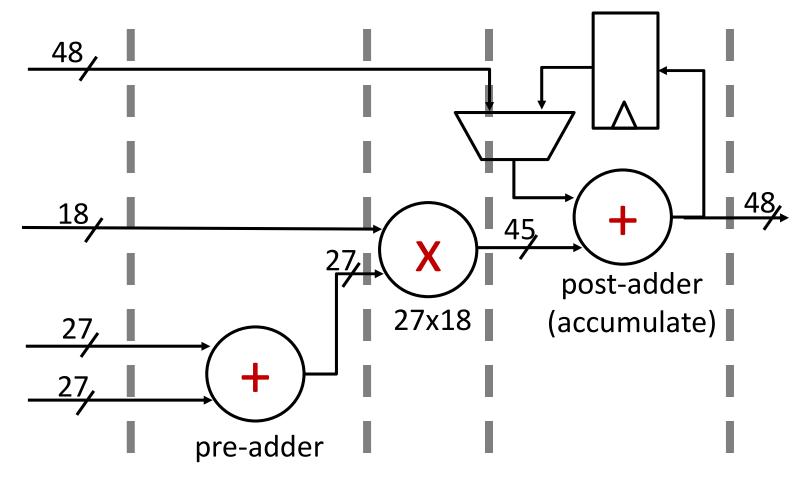


Hard Multipliers (2000s)

- Motivating forces
 - DSP became an important domain
 - very expensive and slow to multiply in LUTs
 - dies large enough to spare some area
- Virtex-II hardwired multiplier "macro" blocks
 - 18-bit inputs, full 36-bit product
 - explicit instantiation or inferable from RTL
 - relatively cheap (since native implementation)
 - Still no hard adders

Adders came later as a part of MAC in DSP slices In the meanwhile, multiply faster/cheaper than add!!

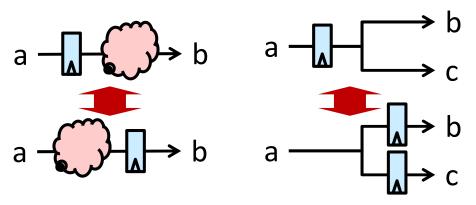
An Early Multiplier Blocks Xilinx Virtex-II, circa 2000

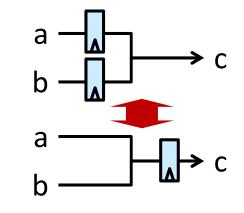


DS031_40_100400

Figure 54: Multiplier Block

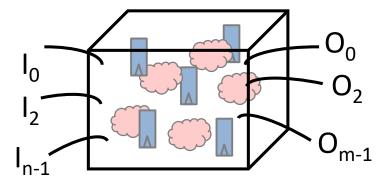
Where are these hard DSP slices? How to get to them?

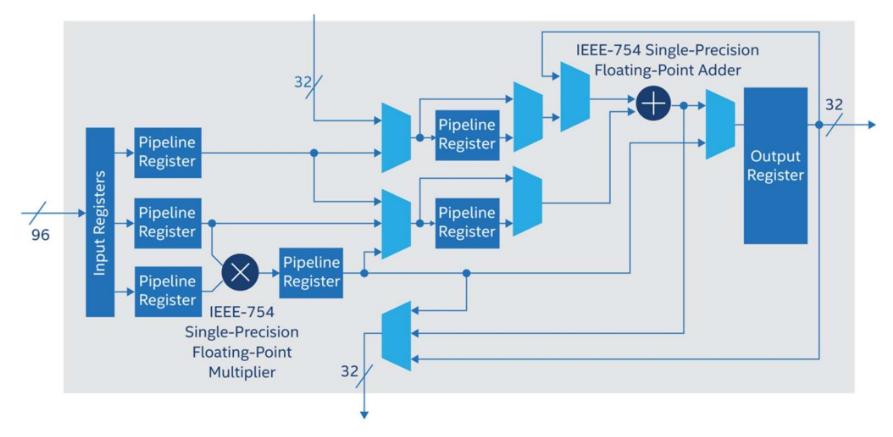

Ultrascale DSP48E2



optional pipeline stages inferable from RTL and retiming

Aside: Register Retiming


• Local transformations

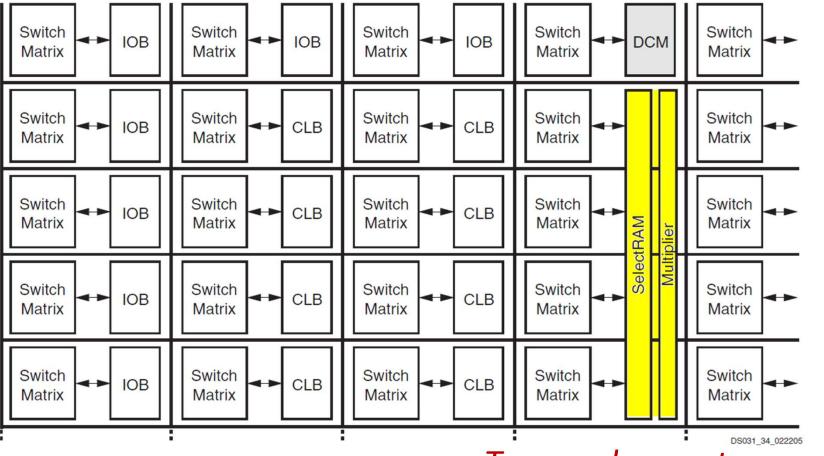

- Preserves I/O relationships
- Tools use retiming
 - balance critical paths
 - absorb FFs into hard macros

Pipelined multiply 🗲

always@(posedge clk) begin a1<=a; b1<=b; a2<=a1; b2<=b1; c<=a2*b2; end

Stratix/Arria-10 IEEE-754 DSPs

Intel® Stratix® 10 Device DSP Block: Single-Precision Floating Point


[Intel Stratix-10 FPGA Features]

Memory

- Flip-flops relatively scarce (only 1-bit per CLB)
- Need more storage when applications moved beyond FSM controllers and glue logic
- Option A: LUTs repurposable as 16x1-bit SRAMs
- Option B: 4Kb (now 32Kb) 2-ported SRAM blocks
 - very compact, very fast because native in silicon
 - explicit instantiation or inferable from RTL (tool can even decide which SRAM option to use)
 - configurable and combinable to a wide range of sizes and aspect ratios

Where are they? How to connect up to them?

MACROs: a disturbance in the force . . .

Too much vs not enough?

Benefit of using macro outweigh cost of getting to one?

[Figure 48: Virtex-II Platform FPGAs: Complete Data Sheet]

FPGA fabric not true blank slate

- FPGA Macros (especially RAM and DSP)
 - coarse functions and structures
 - some powerful but arbitrarily specific features
 - penalty is too huge to not get it right
- Inferable from RTL but . . .
 - hard macros only does what it does
 - tools cannot recognize all "functional equivalent" descriptions
 - good idea to check inference report

Straight out-of-the-box ASIC RTL likely suboptimal, sometimes not-mappable

Example: Flip-Flops Inference

- Use asynch set or reset
 - \Rightarrow not all FFs have async reset; prevents DSP retiming
- Use both set and reset

 \Rightarrow no FF has this; emulated externally with LUTs

- Use set and reset operationally
 - \Rightarrow set/reset cannot use special global lines
- Active-low set/reset and enables
 - \Rightarrow need LUTs to turn active-high

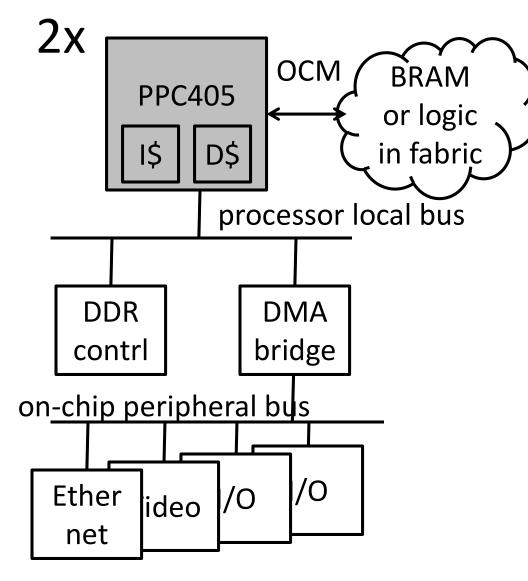
How could you know this?

- BRAM cannot be used if combinational read
- Shift registers can be made out of LUTs
 BUT! no set/reset and can't read middle bits
- Registers will retime into multiplier and DSP (if no asynch reset)
- Use "initial" for power-on reset
- Timing analysis doesn't do "latches"
- Many, many more like this. . .

Always want to RTMF!

Processor Cores

- Not everything needs to be in hardware; not everything improves when made into hardware
- Augment fabric with simple embedded CPUs
 - provide universality of functionality
 - easy handling of irregular, sequential operations
 - easy handling anything that doesn't need to be fast
- Interests developed in early 2000s when FPGA applications grew to systems with DRAM, video, and Ethernets, etc.


Hard or soft core?

Hardcore vs Softcore

- First came PowerPC hardcores on Virtex-II
 - you got 2 whether you needed it or not
 - new tool promote IP-based system building
 - entirely soft-logic built surroundings: busses and IPs (DRAM controller, Ethernet, video,)
- Microblaze softcores took over in later rounds
 - Xilinx proprietary ISA (runs OS, gcc and all that)
 - configurable for cost-performance tradeoff
 - available in RTL to some folks
 - by this time, softcore footprint and performance
 was acceptable
 Several 3rd-party softcores exit

Several 3rd-party softcores existed in that era, e.g., LEON SPARC

Embedding PowerPC in Fabric

- everything else is soft
- two hierarchies of soft-logic busses

(slow and slower)

- special on-chip memory (OCM) port allows ld/st directly into fabric
- CoreGen Library of IPs to hang off the busses

[Xilinx Vertex II, early 2000]

Hardcores Return in Virtex7 (~2010)

- This time in a complete, full-speed, fully-capable, two-core Cortex-A9 system
- Latest Ultrascale uses
 64-bit ARMv8 Cortex A53 + ARM R5 + Mali
 GPU
- Why ARMs?

[Figure 3-1, Zynq-7000 All Programmable SoC Technical Reference Manual]

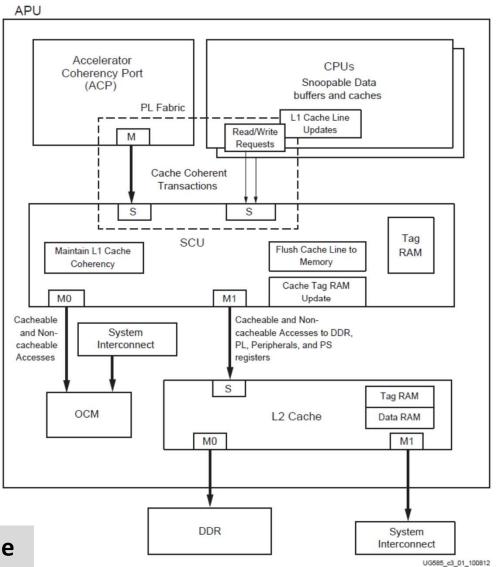
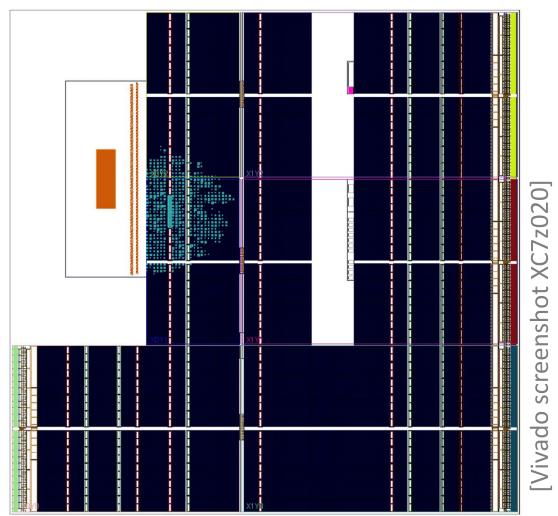


Figure 3-1: APU Block Diagram

Hardcore vs Softcore

• Table 4.2: The Zynq Book

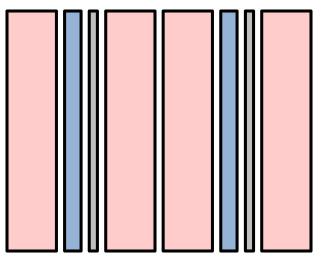
Processor	Configuration	DMIPs	
MicroBlaze	area optimized (3-stage)	196	
900LUT/700FF/ 2BRAM	perf. optimized (5-stage) with branch optimizations	228	
to 3800LUT/3200FF/ 6DSP/21BRAM	perf. optimized (5-stage) without branch optimizations	259 ??fro	m book
ARM Cortex-A9	1GHz; both cores combined	5000	


• Table 4.3: The Zynq Book

Processor	Configuration	CoreMark
MicroBlaze	125MHz; 5-stage (Virtex-5)	238
ARM Cortex-A9	1GHz; both cores combined	5927
ARM Cortex-A9	800MHz; both cores combined	4737

18-643-F23-L03-S25, James C. Hoe, CMU/ECE/CALCM, ©2023 PC405 about 1/5 of ARM in Figure 4.3 of The Zynq Book

Die Area "Return on Investment"



Soft-logic logic dominates die area, but compute/storage concentrated in DSP and BRAM—consider what if 100% soft or 100% hard 18-643-F23-L03-S26, James C. Hoe, CMU/ECE/CALCM, ©2023

Xilinx ASMBL Architecture

(Application Specific Modular Block Arch.)

- Xilinx fabric assembled from composable tall-andthin strip types, CLB, BRAM, DSP, I/O, etc.
- Derivative products at the cost of just new masks
 - vary capacity by composing more or less strips
 - domain-specialization by varying ratios of strips e.g., {DSP+IP} vs logic for

DSP vs ASIC replacement market

variations handled by parameterization in design tool algorithms

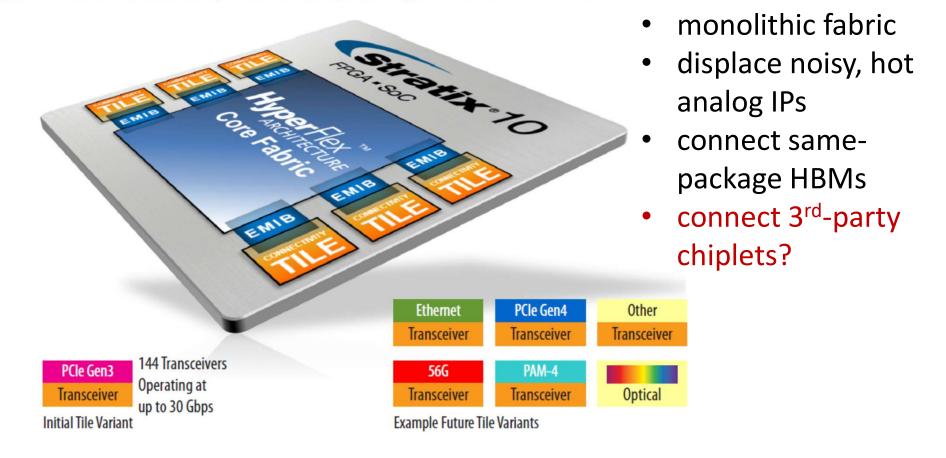
Stacked Silicon Interconnect (SSI)

- 2.5D stacking: multiple dies on passive interposer
 - lower latency, higher bandwidth, lower power than crossing package

ASMBL Optimized FPGA Slice

- much better yield than equivalent capacity monolithic device
- mix dies for domain-specialization
- possible to insert customer proprietary dies?

Silicon Interposer >10K routing connections between slices ~1ns latency


[Figure 1, Stacked & Loaded: Xilinx SSI, 28-Gbps I/O Yield Amazing FPGAs, Xcell, Q1 2011]

FPGA Slices Side-by-Side

Silicon Interposer

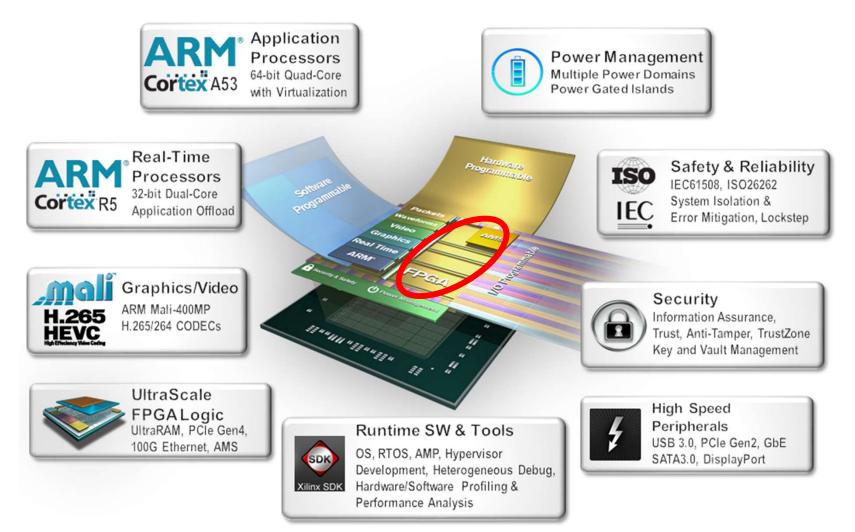
Intel's take on 2.5D with EMIB

Figure 8. Enhanced Flexibility and Scalability with Separate Transceiver Tiles

[Figure 8, Enabling Next-Generation Platforms Using Altera's 3D System-in-Package Technology]

Reviewing Hard IPs Added Over Time

- 1990s
 - fast carry
 - LUT RAM
 - block RAM
- 2000s
 - programmable clock generator
 - PowerPC core
 - gigabit transceiver
 - multiplier and DSP splices
 - Ethernet and PCI-E


- 2010s
 - system monitor
 - ADC
 - power management
 - ARM cores and GPU
 - DRAM controller
 - floating point arithmetic
 - "UltraRAM" hierarchy (up to 500Mbits)
 - HBM controllers
- 2020s *next lecture*

Chicken or Egg First?

- 1990s: glue logic, embedded cntrl, interface logic
 - reduce chip-count, increase reliability
 - rapid roll-out of "new" products
- 2000s: DSP and HPC
 - strong need for performance
 - abundant parallelism and regularity
 - low-volume, high-valued
- 2010s: communications and networking
 - throughput performance
 - fast-changing designs and standards
 - price insensitive
 - \$value in field updates and upgrades

18-643-F23-L03-S31, James C. Hoe, CMU/ECE/CALCM, ©2023

SoC with reconfigurable fabric (2010s)

[http://www.xilinx.com/products/silicon-devices/soc/zynq-ultrascale-mpsoc.html]

Xilinx Vertex Ultrascale Offerings

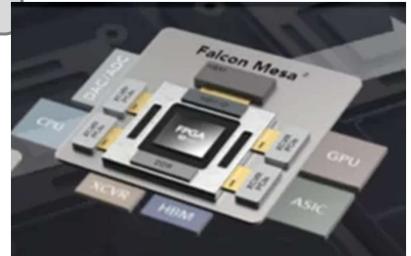
	Device Name	XCVU065	XCVU080	XCVU095	XCVU125	XCVU160	XCVU190	XCVU440
Logic Resources	System Logic Cells (K)	783	975	1,176	1,567	2,027	2,350	5,541
0	CLB Flip-Flops	716,160	891,424	1,075,200	1,432,320	1,852,800	2,148,480	5,065,920
	CLB LUTs	358,080	445,712	537,600	716,160	926,400	1,074,240	2,532,960
	Maximum Distributed RAM (Kb)	4,830	3,980	4,800	9,660	12,690	14,490	28,710
Memory Resources	Block RAM/FIFO w/ECC (36Kb each)	1,260	1,421	1,728	2,520	3,276	3,780	2,520
Memory Resources	Block RAM/FIFO (18Kb each)	2,520	2,842	3,456	5,040	6,552	7,560	5,040
	Total Block RAM (Mb)	44.3	50.0	60.8	88.6	115.2	132.9	88.6
	CMT (1 MMCM, 2 PLLs)	10	16	16	20	28	30	30
Clock Resources	I/O DLL	40	64	64	80	120	120	120
	Transceiver Fractional PLL	5	8	8	10	13	15	0
	Maximum Single-Ended HP I/Os	468	780	780	780	650	650	1,404
I/O Resources	Maximum Differential HP I/O Pairs	216	360	360	360	300	300	648
I/O Resources	Maximum Single-Ended HR I/Os	52	52	52	52	52	52	52
	Maximum Differential HR I/O Pairs	24	24	24	24	24	24	24
	DSP Slices	600	672	768	1,200	1,560	1,800	2,880
	System Monitor	1	1	1	2	3	3	3
	PCIe [®] Gen1/2/3	2	4	4	4	4	6	6
Integrated IP Resources	Interlaken	3	6	6	6	8	9	0
Resources	100G Ethernet	3	4	4	6	9	9	3
	GTH 16.3Gb/s Transceivers	20	32	32	40	52	60	48
	GTY 30.5Gb/s Transceivers	20	32	32	40	52	60	0
	Commercial	-	-	-	-	-	-	-1
Speed Grades	Extended	-1H -2 -3	-2 -3					
	Industrial	-1 -2	-1 -2	-1 -2	-1 -2	-1 -2	-1 -2	-1 -2

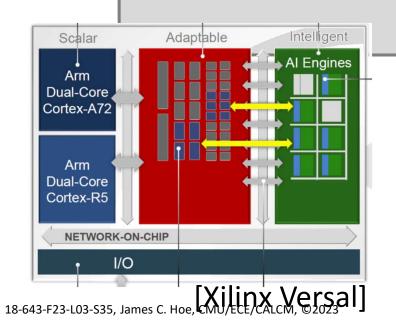
[UltraScale FPGA Product Tables and Product Selection Guide (XMP102)]

Intel Agilex-10 Offerings


PRO	DUCTLINE	AGF 006	AGF 008	AGF 012	AGF 014	AGF 019	AGF 022	AGF 023	AGF 027							
	Logic elements (LEs)	573,480	764,640	1,178,525	1,437,240	1,918,975	2,208,075	2,308,080	2,692,760							
	Adaptive logic modules (ALMs)	194,400	259,200	399,500	487,200	650,500	748,500	782,400	912,800							
	ALM registers	777,600	1,036,800	1,598,000	1,948,800	2,602,000	2,994,000	3,129,600	3,651,200							
	High-performance crypto blocks	0	0	0	0	2	0	2	0							
	eSRAM memory blocks	0	0	2	2	1	0	1	0							
	eSRAM memory size (Mb)	0	0	36	36	18	0	18	0							
	M20K memory blocks	2,844	3,792	5,900	7,110	8,500	10,900	10,464	13,272	84	240	384	240	384		
ces	M20K memory size (Mb)	56	74	115	139	166	212	204	259	2	4	4	4	4		
Resources	MLAB memory count	9,720	12,960	19,975	24,360	32,525	37,425	39,120	45,640	DDR4	4, QDR IV	-				
Res	MLAB memory size (Mb)	6	8	12	15	20	23	24	28	authentication, physically unclonable function (PUF), h, side-channel attack protection						
	I/O PLL	12	12	16	16	10	16	10	16	.50 GHz with 32 KB I/D cache, NEON coprocessor, 1 MB L2 m memory management unit, cache coherency unit, hard x3, UART x2, serial peripheral interface (SPI) x4, I2C x5, er x4						
	Variable-precision digital signal processing (DSP) blocks	1 <mark>,</mark> 640	2,296	3,743	4, <mark>5</mark> 10	1,354	6,250	1,640	8,528							
	18 x 19 multipliers	3,280	4,592	7,486	9,020	2,708	12,500	3,280	17,056	or bifu	urcateable 2x	PCIe 4.0 x8 (E	EP) or 4x 4.0 x	4 (RP)		
	Single-precision or half-precision tera floating point operations per second (TFLOPS)	2.5 / 5.0	3.5 / 6.9	6.0 / 12.0	6.8 / 13.6	2.0 / 4.0	9.4 / 18.8	2.5 / 5.0	12.8 / 25.6		it 32 Gbps (NRZ) /12 channels at 58 Gbps (PAM4) - RS /25/50/100/200/400 GbE FEC/PCS/MAC)					
	Maximum EMIF x72	2	2	4	4	2	4	2	4		100/200 Gbp					
	1		Resources				IEEE 1588 v PMA direct	2 support								
		E-Tile			Transceiver channel count : Up to 24 cha - RS & KP FEC ¹ Networking support : - 400GbE (4 x 100GbE hard IP blocks (10 IEEE 1588 v2 support PMA direct						nnels at 58 Gl	ops (PAM4)				
				P-Tile			PCIe hard IF SR-IOV 8PF VirtIO suppo Scalable IOV	/ 2kVF ort	6) or bifurcatea	able 2x I	PCIe 4.0 x8 (E	P) or 4x 4.0 x4	4 (RP)			

[Intel FPGA Product Catalog]


Today's Diverging Architectures


Are they FPGAs?

- spatial data/compute
 - highly concurrent
 - finely controllable
 - reprogrammable

[Achronix Speedster]

[Intel Agilex]

Parting Thoughts

- FPGAs steadily moved away from universal fabric
 - efficiency of hardwired logic (driven by application demands) complements flexibility of reconfig. logic
 - architected deliberately to play up this advantage
- Retain a high degree of regularity to ease design and manufacturing
 - fastest way to use up transistors from Moore's Law
 - power and performance advantage by just being first on new process
- Architectural evolution both push-and-pull with applications