
18-643-F23-L11-S1, James C. Hoe, CMU/ECE/CALCM, ©2023

18-643 Lecture 11:
Memory Bound Designs

James C. Hoe
Department of ECE

Carnegie Mellon University

18-643-F23-L11-S2, James C. Hoe, CMU/ECE/CALCM, ©2023

Housekeeping

• Your goal today: see examples of customizing
memory paths to algorithms, and vice versa

• Notices
– Handout #5: lab 2, due noon, 10/9
– Project status report due each Friday

• Readings (see lecture schedule online)
– Kung, “Memory requirements for balanced

computer architectures,” ISCA 1986.
– Williams, et al., “Roofline: an insightful . . .,” 2008

18-643-F23-L11-S3, James C. Hoe, CMU/ECE/CALCM, ©2023

Topic 1: Arithmetic Intensity

18-643-F23-L11-S4, James C. Hoe, CMU/ECE/CALCM, ©2023

Arithmetic Intensity
• An algorithm has a cost in terms of operation count

– runtimecompute-bound = # operations / FLOPS

• An algorithm also has a cost in terms of number of
bytes communicated (ld/st or send/receive)
– runtimeBW-bound = # bytes / BW

• Which one dominates depends on
– ratio of FLOPS and BW of platform
– ratio of ops and bytes of algorithm

• Average Arithmetic Intensity (AI)
– how many ops performed per byte accessed
– # operations / # bytes

18-643-F23-L11-S5, James C. Hoe, CMU/ECE/CALCM, ©2023

Roofline Performance Model
[Williams&Patterson, 2006]

At
ta

in
ed

 P
er

fo
rm

an
ce

of

 a
 sy

st
em

 (o
p/

se
c)

AI of application

perfcompute-bound=FLOPS

runtime > max (# op/FLOPS, # byte/BW}
> #opmax(1/FLOPS, 1/(AIBW)}

perf = min(FLOPS, AIBW)

18-643-F23-L11-S6, James C. Hoe, CMU/ECE/CALCM, ©2023

AI and Algorithms

[Figure from P&H CO&D,
COPYRIGHT 2009 Elsevier.

ALL RIGHTS RESERVED.]

harder to speed up
& harder to scale up easier

18-643-F23-L11-S7, James C. Hoe, CMU/ECE/CALCM, ©2023

Simple AI Example: MMM

• N2 data-parallel dot-product’s
– operation count: N3 float-mult and N3 float-add

• External memory access (assume 4-byte floats)
– assume N is large s.t. 1 row/col too large for on-chip
– 2N3 4-byte reads (of A and B) from DRAM
– . . . N2 4-byte writes (of C) to DRAM . . .

• Arithmetic Intensity  2N3/(42N3)=1/4
GTX1080: 8 TFLOPS vs 320GByte/sec

for(i=0; i<N; i++)
for(j=0; j<N; j++)

for(k=0; k<N; k++)
C[i][j]+=A[i][k]*B[k][j];

18-643-F23-L11-S8, James C. Hoe, CMU/ECE/CALCM, ©2023

for(i0=0; i0<N; i0+=Nb)
for(j0=0; j0<N; j0+=Nb)

for(k0=0; k0<N; k0+=Nb) {
for(i=i0;i<i0+Nb;i++)
for(j=j0;j<j0+Nb;j++)
for(k=k0;k<k0+Nb;k++)

C[i][j]+=A[i][k]*B[k][j];
}

Less Simple AI Example: MMM

• Imagine a ‘N/Nb’x’‘N/Nb’ MATRIX of NbxNb matrices
– inner-triple is straightforward matrix-matrix mult
– outer-triple is MATRIX-MATRIX mult

• To improve AI, hold NbxNb sub-matrices on-chip for
data-reuse

18-643-F23-L11-S9, James C. Hoe, CMU/ECE/CALCM, ©2023

AI of blocked MMM Kernel (NbxNb)
for(i=i0;i<i0+Nb;i++)
for(j=j0;j<j0+Nb;j++) {
t=C[i][j];
for(k=k0;k<k0+Nb;k++)

t+=A[i][k]*B[k][j];
C[i][j]=t;

}

• Operation count: Nb3 float-mult and Nb3 float-add
• When A, B fit in scratchpad (2xNb2x4 bytes)

– 2xNb3 4-byte on-chip reads (A, B) (fast)
– 2xNb2 4-byte off-chip DRAM read A, B (slow)
– 2xNb2 4-byte off-chip DRAM read/write of C (slow)

• Arithmetic Intensity = 2Nb3/(44Nb2)=Nb/8

18-643-F23-L11-S10, James C. Hoe, CMU/ECE/CALCM, ©2023

in-fabric
kernels

on-chip
SRAM

in-fabric
kernels

on-chip
SRAM

The Performance Balancing Act

1. Kernels’ op/sec requires some byte/sec  a
function of algorithm and kernel size

2. On-chip SRAM “filters” kernel byte/sec down to
DRAM byte/sec  a function of SRAM capacity

3. DRAM system offers some aggregate byte/sec
 a function of access pattern (algorithm)

off-chip
DRAM

in-fabric
kernels

on-chip
SRAM

18-643-F23-L11-S11, James C. Hoe, CMU/ECE/CALCM, ©2023

Some Hints on Lab 3

• Lab 3 kernel’s op/sec just need to be fast enough
to match memory-bound (op/byte  byte/sec)

• Lab 3 emphasis on improving memory-bound
– size tiles and order outer loops for data reuse

(don’t forget the batch loop!)
Mindful of buffer sizes and degree reuse

– use memory resources efficiently (fit bigger tiles)
– layout data in DRAM for sequential read (don’t

forget to widen the read path)

• Use DFX to tune the 2 layers differently

18-643-F23-L11-S12, James C. Hoe, CMU/ECE/CALCM, ©2023

Topic 2:
Data Layout and Access Pattern

18-643-F23-L11-S13, James C. Hoe, CMU/ECE/CALCM, ©2023

Data Layout and Access Pattern:
2D-FFT

• Row-column algorithm:

Row StageColumn Stage

Dataset:
(Logical abstraction
of the 2D dataset)

… …

2D-

18-643-F23-L11-S14, James C. Hoe, CMU/ECE/CALCM, ©2023

Inefficient DRAM Access Patterns

• Row-wise traversal -> Sequential accesses
• Column-wise traversal -> Large strided accesses

n

n

linear m
em

 space

0

n2

…

…

row-major 2D array

Row buffer
size

Gather-Scatter

18-643-F23-L11-S15, James C. Hoe, CMU/ECE/CALCM, ©2023

Tiled Layout and Access Patterns

n

n

…

…

0

n2

in row-buffer
sized chunks

…

k

k

k2

Row buffer
size

linear m
em

 space

row-major “blocked”

What if you only have
(k/2)n on-chip buffer?

18-643-F23-L11-S16, James C. Hoe, CMU/ECE/CALCM, ©2023

Design Generator w/ Tensor Formalism

read tiles
row-wise

linearize
on-chip

FFT processingtranspose
and re-tile

on-chip

write tiles
column-wise

row-column algorithm

symmetric algorithm

symmetric algorithm
with tiling

row stagecolumn stage

2D-

[Akin, et al., FCCM 2012]

18-643-F23-L11-S17, James C. Hoe, CMU/ECE/CALCM, ©2023

Topic 3: Irregular

18-643-F23-L11-S18, James C. Hoe, CMU/ECE/CALCM, ©2023

Irregular: Breadth First Search
0

1

2

4

3
root

Large graph has more than millions of nodes
with may be handful edges per node

18-643-F23-L11-S19, James C. Hoe, CMU/ECE/CALCM, ©2023

Breadth-First Search (Pseudo Code)
foreach (node n in graph) n.dist=;

worklist = {root}; root.dist=0;

foreach (node n in worklist) {
foreach (neighbor of n) {
if (n.dist + 1 < neighbor.dist) {

neighbor.dist = n.dist + 1;
add neighbor to worklist;

}
}

}

(see http://iss.ices.utexas.edu/?p=projects/galois/
benchmarks/bread_first_search)

18-643-F23-L11-S20, James C. Hoe, CMU/ECE/CALCM, ©2023

Real Code with CSR Memory Accesses
while(wl.mHowmany) { // worklist not empty

// repeat for each node on frontier

int curr=wl.mList[wl.mDeq]; // S0

int myDist=graph->mPerNode[curr].dist; // S1

int numEdges=graph->mPerNode[curr].fanout; // S1

int scan=graph->mPerNode[curr].edges; // S1

{ ... dequeue from worklist ...}

while (numEdges--) {

// repeat for each neighbor

int dest=graph->mPerEdge[scan].dest; // S2

int destDist=graph->mPerNode[dest].dist; // S3

if ((myDist+1)<destDist) { // S4

graph->mPerNode[dest].dist=myDist+1; // S4

{ ...enqueue dest to worklist...} // S5

}

scan++;

}

}

18-643-F23-L11-S21, James C. Hoe, CMU/ECE/CALCM, ©2023

Compressed Sparse Row (CSR)
Adjacency Matrix

0100
1010
0001
1010

3210

de
ns

e

array of all non-0 elements
in row-order
(holds col/dest index)

array indexed by row/src idx
(holds offset into element array)

31 2031

5320

destsrc

Large graph has millions or more nodes
each with may be handful edges per node

1 entry per-node

1 entry
per-edge

0

23

1

sp
ar

se
0 1 2 3 4 5

0 1 2 3

3

2

1

0

18-643-F23-L11-S22, James C. Hoe, CMU/ECE/CALCM, ©2023

Elastic HW Processing Pipeline

fetch next
node’s index

{dist, fanout, edges} []

dest[]

Worklist[]

fetch per-node
struct

fetch neighbor
per-edge struct

fetch neighbor
distance

conditionally
update neighbor

with new distance

add updated
neighbor

to Worklist

write-ack

S0

S1

S2

S3

S4 S5

per-node array

per-edge array

18-643-F23-L11-S23, James C. Hoe, CMU/ECE/CALCM, ©2023

BFS Irregular Access Pattern
• Irregular and graph dependent

– S0 read worklist: spatial locality, non-temporal
– S1 read node array (self): no locality
– S2 read edge array: some spatial locality, non-temporal
– S3 read node array (neighbor): no locality
– S4 write node array (neighbor): temporal with S3
– S5 write worklist: spatial locality, non-temporal

• S3 most problematic of all
– S1 and S3 lack locality but S3 repeated per neighbor
– same number of S2 and S3 but S2 has spatial locality
– BTW, S3 and S4 could have RAW hazard
– BTW, all read/write granularity is multi-word

18-643-F23-L11-S24, James C. Hoe, CMU/ECE/CALCM, ©2023

How can “Caching” Help?
fetch

self idx
fetch

self node
fetch
edges

fetch
neighbor

update
neighbor

update
worklist

memory

• Custom cache for only neighbor distance in node
array (read in S3 written in S4)

• RAW hazard interlock when nodes in pipeline have
same neighbor (stall S3 until conflict-free)

• Coalesces neighbor updates (collect partial writes
to multi-word DRAM block)

Organized and operated unlike an ABC cache!!

18-643-F23-L11-S25, James C. Hoe, CMU/ECE/CALCM, ©2023

How can HBM BW help?
• HBM gives you 512GB/sec

– data partitioned 32 ways
– 100s nsec latency
– 32 byte per fetch

• Partition graph data into
32 banks s.t. maximizing
non-conflict concurrent accesses across channel

• Per channel, prefetch many 10s of outstanding
read requests to cover latency (Little’s Law)

• Re-index nodes in graph s.t. maximizing spatial
locality of each 32B fetch

18-643-F23-L11-S26, James C. Hoe, CMU/ECE/CALCM, ©2023

Complexity of Sparse Algorithms

• Graph processing expressible using linear algebra
primitives: SpMV, SpMSpV, SpMM, . . .

Simplicity of form belies performance difficulties
• Basic challenges in large data set, low arithmetic

intensity, and irregular access pattern
• graph-dependent behavior requires multiple

implementations of same primitive depending on:
– size and sparsity
– structured?
– compressed format: CSR, CSC, COO, . . .

Each combination a different optimal design

18-643-F23-L11-S27, James C. Hoe, CMU/ECE/CALCM, ©2023

Parting Thoughts
• When scaling data size and performance, memory

design quickly become the PROBLEM
– capacity, bandwidth, latency

• FPGAs specialization is an asset
– balance memory throughput and compute

throughput
– have data to the right place at the right time
– alter algorithm to memory constraints

• Designing “memorypath” as important as
designing “datapath”

