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Housekeeping

• Your goal today: see examples of customizing 
memory paths to algorithms, and vice versa 

• Notices 
– Handout #5: lab 2, due noon, 10/9
– Project status report due each Friday

• Readings (see lecture schedule online)
– Kung, “Memory requirements for balanced 

computer architectures,” ISCA 1986.
– Williams, et al., “Roofline: an insightful . . .,” 2008
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Topic 1: Arithmetic Intensity
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Arithmetic Intensity
• An algorithm has a cost in terms of operation count

– runtimecompute-bound = # operations / FLOPS

• An algorithm also has a cost in terms of number of 
bytes communicated (ld/st or send/receive)
– runtimeBW-bound = # bytes / BW

• Which one dominates depends on
– ratio of FLOPS and BW of platform
– ratio of ops and bytes of algorithm

• Average Arithmetic Intensity (AI)
– how many ops performed per byte accessed
– # operations / # bytes
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Roofline Performance Model 
[Williams&Patterson, 2006]
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perfcompute-bound=FLOPS 

runtime > max ( # op/FLOPS, # byte/BW}
> #opmax(1/FLOPS, 1/(AIBW)}

perf = min(FLOPS, AIBW)
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AI and Algorithms

[Figure from P&H CO&D, 
COPYRIGHT 2009 Elsevier. 

ALL RIGHTS RESERVED.]

harder to speed up 
& harder to scale up easier
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Simple AI Example: MMM

• N2 data-parallel dot-product’s
– operation count:  N3 float-mult and N3 float-add

• External memory access (assume 4-byte floats)
– assume N is large s.t. 1 row/col too large for on-chip
– 2N3 4-byte reads (of A and B) from DRAM
– . . . N2 4-byte writes (of C) to DRAM . . .

• Arithmetic Intensity  2N3/(42N3)=1/4
GTX1080: 8 TFLOPS vs 320GByte/sec

for(i=0; i<N; i++)
for(j=0; j<N; j++)

for(k=0; k<N; k++)
C[i][j]+=A[i][k]*B[k][j];
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for(i0=0; i0<N; i0+=Nb)
for(j0=0; j0<N; j0+=Nb)

for(k0=0; k0<N; k0+=Nb) {
for(i=i0;i<i0+Nb;i++)
for(j=j0;j<j0+Nb;j++)
for(k=k0;k<k0+Nb;k++)

C[i][j]+=A[i][k]*B[k][j];
}

Less Simple AI Example: MMM

• Imagine a ‘N/Nb’x’‘N/Nb’ MATRIX of NbxNb matrices
– inner-triple is straightforward matrix-matrix mult
– outer-triple is MATRIX-MATRIX mult

• To improve AI, hold NbxNb sub-matrices on-chip for 
data-reuse 
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AI of blocked MMM Kernel (NbxNb)
for(i=i0;i<i0+Nb;i++)
for(j=j0;j<j0+Nb;j++) {
t=C[i][j];
for(k=k0;k<k0+Nb;k++)

t+=A[i][k]*B[k][j];
C[i][j]=t;

} 

• Operation count: Nb3 float-mult and Nb3 float-add
• When A, B fit in scratchpad (2xNb2x4 bytes) 

– 2xNb3 4-byte on-chip reads (A, B) (fast) 
– 2xNb2 4-byte off-chip DRAM read A, B (slow)
– 2xNb2 4-byte off-chip DRAM read/write of C (slow)  

• Arithmetic Intensity = 2Nb3/(44Nb2)=Nb/8 
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in-fabric
kernels

on-chip
SRAM

in-fabric
kernels

on-chip
SRAM

The Performance Balancing Act

1. Kernels’ op/sec requires some byte/sec  a 
function of algorithm and kernel size

2. On-chip SRAM “filters” kernel byte/sec down to 
DRAM byte/sec  a function of SRAM capacity

3. DRAM system offers some aggregate byte/sec
 a function of access pattern (algorithm)

off-chip
DRAM

in-fabric
kernels

on-chip
SRAM
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Some Hints on Lab 3

• Lab 3 kernel’s op/sec just need to be fast enough 
to match memory-bound (op/byte  byte/sec)

• Lab 3 emphasis on improving memory-bound
– size tiles and order outer loops for data reuse 

(don’t forget the batch loop!)
Mindful of buffer sizes and degree reuse

– use memory resources efficiently (fit bigger tiles)
– layout data in DRAM for sequential read (don’t 

forget to widen the read path)

• Use DFX to tune the 2 layers differently
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Topic 2:
Data Layout and Access Pattern
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Data Layout and Access Pattern: 
2D-FFT

• Row-column algorithm:

Row StageColumn Stage

Dataset:
(Logical abstraction
of the 2D dataset)

… …

2D-
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Inefficient DRAM Access Patterns

• Row-wise traversal -> Sequential accesses
• Column-wise traversal -> Large strided accesses

n

n

linear m
em

 space

0

n2

…

…

row-major 2D array

Row buffer
size

Gather-Scatter
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Tiled Layout and Access Patterns 
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…

…
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in row-buffer
sized chunks 

…
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Row buffer
size

linear m
em

 space

row-major  “blocked”

What if you only have 
(k/2)n on-chip buffer?
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Design Generator w/ Tensor Formalism

read tiles
row-wise

linearize
on-chip

FFT processingtranspose
and re-tile

on-chip

write tiles
column-wise

row-column algorithm

symmetric algorithm

symmetric algorithm 
with tiling

row stagecolumn stage

2D-

[Akin, et al., FCCM 2012]
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Topic 3: Irregular
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Irregular: Breadth First Search 
0

1

2

4

3
root

Large graph has more than millions of nodes 
with may be handful edges per node
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Breadth-First Search (Pseudo Code)
foreach (node n in graph) n.dist=;

worklist = {root}; root.dist=0;

foreach (node n in worklist) { 
foreach (neighbor of n) {
if (n.dist + 1 < neighbor.dist) {

neighbor.dist = n.dist + 1; 
add neighbor to worklist; 

} 
} 

}

(see http://iss.ices.utexas.edu/?p=projects/galois/ 
benchmarks/bread_first_search)
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Real Code with CSR Memory Accesses
while(wl.mHowmany) { // worklist not empty

// repeat for each node on frontier

int curr=wl.mList[wl.mDeq];              // S0

int myDist=graph->mPerNode[curr].dist;  // S1

int numEdges=graph->mPerNode[curr].fanout;  // S1

int scan=graph->mPerNode[curr].edges; // S1

{ ... dequeue from worklist ...}

while (numEdges--) {

// repeat for each neighbor

int dest=graph->mPerEdge[scan].dest;  // S2

int destDist=graph->mPerNode[dest].dist; // S3

if ((myDist+1)<destDist) { // S4

graph->mPerNode[dest].dist=myDist+1; // S4

{ ...enqueue dest to worklist...} // S5

}

scan++;

}

}
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Compressed Sparse Row (CSR) 
Adjacency Matrix
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(holds col/dest index)

array indexed by row/src idx
(holds offset into element array)
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Large graph has millions or more nodes 
each with may be handful edges per node
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Elastic HW Processing Pipeline

fetch next
node’s index 

{dist, fanout, edges} [ ]

dest[ ]

Worklist[ ]

fetch per-node
struct

fetch neighbor
per-edge struct

fetch neighbor 
distance

conditionally 
update neighbor

with new distance 

add updated 
neighbor 

to Worklist

write-ack

S0

S1

S2

S3

S4 S5

per-node array 

per-edge array 
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BFS Irregular Access Pattern
• Irregular and graph dependent

– S0 read worklist: spatial locality, non-temporal
– S1 read node array (self): no locality
– S2 read edge array: some spatial locality, non-temporal
– S3 read node array (neighbor): no locality
– S4 write node array (neighbor): temporal with S3
– S5 write worklist: spatial locality, non-temporal

• S3 most problematic of all
– S1 and S3 lack locality but S3 repeated per neighbor
– same number of S2 and S3 but S2 has spatial locality
– BTW, S3 and S4 could have RAW hazard
– BTW, all read/write granularity is multi-word
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How can “Caching” Help?
fetch 

self idx
fetch

self node
fetch 
edges

fetch 
neighbor

update 
neighbor

update 
worklist

memory

• Custom cache for only neighbor distance in node 
array (read in S3 written in S4)

• RAW hazard interlock when nodes in pipeline have 
same neighbor (stall S3 until conflict-free)

• Coalesces neighbor updates (collect partial writes 
to multi-word DRAM block)

Organized and operated unlike an ABC cache!!
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How can HBM BW help?
• HBM gives you 512GB/sec

– data partitioned 32 ways
– 100s nsec latency
– 32 byte per fetch

• Partition graph data into
32 banks s.t. maximizing 
non-conflict concurrent accesses across channel

• Per channel, prefetch many 10s of outstanding 
read requests to cover latency (Little’s Law)

• Re-index nodes in graph s.t. maximizing spatial 
locality of each 32B fetch
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Complexity of Sparse Algorithms

• Graph processing expressible using linear algebra 
primitives: SpMV, SpMSpV, SpMM, . . .

Simplicity of form belies performance difficulties
• Basic challenges in large data set, low arithmetic 

intensity, and irregular access pattern
• graph-dependent behavior requires multiple 

implementations of same primitive depending on:
– size and sparsity
– structured?
– compressed format: CSR, CSC, COO, . . .

Each combination a different optimal design
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Parting Thoughts
• When scaling data size and performance, memory 

design quickly become the PROBLEM
– capacity, bandwidth, latency

• FPGAs specialization is an asset
– balance memory throughput and compute 

throughput
– have data to the right place at the right time
– alter algorithm to memory constraints

• Designing “memorypath” as important as 
designing “datapath”


