18-643 Lecture 11:
Memory Bound Designs

James C. Hoe
Department of ECE
Carnegie Mellon University

18-643-F23-1L11-S1, James C. Hoe, CMU/ECE/CALCM, ©2023

CarnegieMellon

Housekeeping

e Your goal today: see examples of customizing
memory paths to algorithms, and vice versa

e Notices

— Handout #5: lab 2, due noon, 10/9

— Project status report due each Friday
e Readings (see lecture schedule online)

— Kung, “Memory requirements for balanced
computer architectures,” ISCA 1986.

— Williams, et al., “Roofline: an insightful . . .,” 2008

18-643-F23-1L11-S2, James C. Hoe, CMU/ECE/CALCM, ©2023

Topic 1: Arithmetic Intensity

18-643-F23-1L11-S3, James C. Hoe, CMU/ECE/CALCM, ©2023

CarnegieMellon

o Arithmetic Intensity

e An algorithm has a cost in terms of operation count
= # operations / FLOPS

e An algorithm also has a cost in terms of number of
bytes communicated (Id/st or send/receive)

— runti rnecompute-bound

— runtimegy_poung = # bytes / BW
e Which one dominates depends on

— ratio of FLOPS and BW of platform
— ratio of ops and bytes of algorithm

e Average Arithmetic Intensity (Al)
— how many ops performed per byte accessed
— # operations / # bytes

18-643-F23-1L11-S4, James C. Hoe, CMU/ECE/CALCM, ©2023

CarnegieMellon

Roofline Performance Model
[Williams&Patterson, 2006]

//V//
o*\b ’
Q ‘,00//
= &,
© O QQJ /
g Q // perfcompute—boundzFLOPS
L 8- __________ T —
g £
T 4]
2 2 / runtime > max (# op/FLOPS, # byte/BW}
o— /
O © / > #top-max(1/FLOPS, 1/(Al-BW)}
<%| /
/
/ perf = min(FLOPS, Al-BW)
X >

Al of application

18-643-F23-111-S5, James C. Hoe, CMU/ECE/CALCM, ©2023

CarnegieMellon

Al and Algorithms

harder to speed up
& harder to scale up

easier

| Sparse

Matrix

(SpMV)
Structured
Grids
(Stencils,
PDEs)

Methods

Dense I\-.Jr-body

Matrix

(FFTs) (BLAS3) (Particle
Structured Methods)
Grids
(Lattice
Methods)

[Figure from P&H CO&D,
COPYRIGHT 2009 Elsevier.
ALL RIGHTS RESERVED.]

18-643-F23-1L11-S6, James C. Hoe, CMU/ECE/CALCM, ©2023

Simple Al Example: MMM

for (1i=0; i<N; i++)
for (jJ=0; J<N; J++)
for (k=0; k<N; k++)
C[i] [J1+=A[i] [k]*B[k][3];

« N?data-parallel dot-product’s
— operation count: N3 float-mult and N3 float-add
e External memory access (assume 4-byte floats)
— assume N is large s.t. 1 row/col too large for on-chip
— 2N3 4-byte reads (of A and B) from DRAM
— ...N? 4-byte writes (of C) to DRAM.. ...
e Arithmetic Intensity ~ 2N3/(4-2N3)=1/4
GTX1080: 8 TFLOPS vs 320GByte/sec

18-643-F23-1L11-S7, James C. Hoe, CMU/ECE/CALCM, ©2023

CarnegieMellon

Less Simple Al Example: MMM

for (10=0; 1i0<N; 1i0+=N,)

for (j0=0; jO<N; jO+=N,)

for (k0O=0; kO<N; kO+=N.) ({

for (1i=10;i<iO+N,;i++)
for (J=3j0;jJ<JO+N,;j++)

for (k=k0 ; k<kO+N, ; k++)
Cl[i] [J]+=A[1] [k]*B[k][]]~
}

e Imagine a ‘N/N.'x"‘N/N,” MATRIX of N, xN, matrices

— inner-triple is straightforward matrix-matrix mult

— outer-triple is MATRIX-MATRIX mult
e Toimprove Al, hold N_xN, sub-matrices on-chip for

data-reuse

18-643-F23-1L11-S8, James C. Hoe, CMU/ECE/CALCM, ©2023

Al of blocked MMM Kernel (N, xN,)

for (1=10;i<iO+N,;i++)
for (J=30;J<jO+N,;Jj++) {
t=C[i][]];
for (k=kO;k<kO+N,;k++)
t+=A[i] [k]*B[k] []];
Clil[]j]=t;
}
e Operation count: N, 3 float-mult and N, .* float-add

e When A, B fit in scratchpad (2xN,°x4 bytes)
— 2xN, 3 4-byte on-chip reads (A, B) (fast)
— 2xN, 2 4-byte off-chip DRAM read A, B (slow)
— 2xN, 2 4-byte off-chip DRAM read/write of C (sldw)

e Arithmetic Intensity = 2N, 3/(4-4N,%)=N, /8
18-643-F23-L11-59, James C. Hoe, CMU/ECE/CALCM, ©2023 _Y_’

_

* The Performance Balancing Act

, on-chip
off-chip SRAM
DRAM

1. Kernels’ op/sec requires some byte/sec—a
function of algorithm and kernel size

2. On-chip SRAM “filters” kernel byte/sec down to
DRAM byte/sec — a function of SRAM capacity

3. DRAM system offers some aggregate byte/sec
—a function of access pattern (algorithm)

18-643-F23-L11-S10, James C. Hoe, CMU/ECE/CALCM, ©2023

in-fabric |
kernels

CarnegieMellon

Some Hints on Lab 3

e Lab 3 kernel’s op/sec just need to be fast enough
to match memory-bound (op/byte x byte/sec)

e Lab 3 emphasis on improving memory-bound

— size tiles and order outer loops for data reuse
(don’t forget the batch loop!)

Mindful of buffer sizes and degree reuse
— use memory resources efficiently (fit bigger tiles)

— layout data in DRAM for sequential read (don’t
forget to widen the read path)

e Use DFX to tune the 2 layers differently

18-643-F23-L11-S11, James C. Hoe, CMU/ECE/CALCM, ©2023

Topic 2:
Data Layout and Access Pattern

18-643-F23-L11-S12, James C. Hoe, CMU/ECE/CALCM, ©2023

CarnegieMellon

Data Layout and Access Pattern:
2D-FFT

e Row-column algorithm:

2D-DFT,,.,,= (DFT,, ®1,)(I, ® DFT,,)

\ J \)
Y Y

Column Stage Row Stage

Dataset:
(Logical abstraction
of the 2D dataset)

18-643-F23-L11-S13, James C. Hoe, CMU/ECE/CALCM, ©2023

CarnegieMellon

Inefficient DRAM Access Patterns

e Row-wise traversal -> Sequential accesses

e Column-wise traversal -> Large strided accesses

row-major 2D array

DDR2-800 Bandwidth on DE4 (per channel)
Bandwidth [GB/s]
7

E—
o

Row buffer
size

N w S 8,] o))

=

.06 0.13 0.25 0.5 1 2 4 8 16 32
Packet Size [KB]

9Jeds waw Jeaul|

>
N

Gather-Scatter

18-643-F23-L11-S14, James C. Hoe, CMU/ECE/CALCM, ©2023

CarnegieMellon

Tiled Layout and Access Patterns

row-major “blocked”

|
DDR2-800 Bandwidth on DE4 (per channel)
Bandwidth [GB/s]
7

4L

-~
N
<>
—

o

==
Vi

in row-buffer What if you only have
sized chunks (k/2)-n on-chip buffer?

18-643-F23-L11-S15, James C. Hoe, CMU/ECE/CALCM, ©2023

o [N w e wn ()}

0.03 0.06 0.13 0.25 0.5 1 2 4 8 16 32
Packet Size [KB]

22eds waw Jeaul|

-
=
N

CarnegieMellon

Design Generator w/ Tensor Formalism

column stage row stage
A

A

A\

2D-DFT,,«,, = (bFTn ®1,)(1, ® DFT,) row-column algorithm

A 2 . .
=[] (L) (I, ®DFT,)L,2) symmetric algorithm

symmetric algorithm
with tiling

! 1 [\

= \ I 7 /

write tiles transpose - : i i
. POSE LET hrocessing linearize read tiles
olumn-wise and re-tile on-chip row-wise

on-chip

[Akin, et al., FCCM 2012]

mes C. Hoe, CMU/ECE/CALCM, ©2023

CarnegieMellon

Topic 3: Irregular

18-643-F23-L11-S17, James C. Hoe, CMU/ECE/CALCM, ©2023

CarnegieMellon

-
—~

Irregular: Breadth First Search

Large graph has more than millions of nodes
with may be handful edges per node

18-643-F23-L11-S18, James C. Hoe, CMU/ECE/CALCM, ©2023

CarnegieMellon

Breadth-First Search (Pseudo Code)

foreach (node n in graph) n.dist=;

worklist = {root}; root.dist=0;

foreach (node n in worklist) {
foreach (neighbor of n) ({
if (n.dist + 1 < neighbor.dist) {
neighbor.dist = n.dist + 1; . 9)
add neighbor to worklist; \\e\\sm-

(see http://iss.ices.utexas.edu/?p=projects/galois/
18-643-F23-L11-519, James C. Hoe, CMU/ECE/CALCM, ©2023 be n C h m a rkS/b rea d_fi rSt_Sea rc h)

CarnegieMellon

Real Code with CSR Memory Accesses

while (wl.mHowmany) { // worklist not empty

// repeat for each node on frontier

int curr=wl.mList[wl.mDeq]; // SO
int myDist=graph->mPerNode|[curr] .dist; // Sl
int numEdges=graph->mPerNode[curr] . fanout; // Sl
int scan=graph->mPerNode[curr] .edges; // Sl
{ ... dequeue from worklist ...}

while (numEdges--) ({
// repeat for each neighbor

int dest=graph->mPerEdge[scan] .dest; // S2
int destDist=graph->mPerNode[dest] .dist; // S3
if ((myDist+l)<destDist) ({ // sS4
graph->mPerNode[dest] .dist=myDist+1; // sS4
{ ...enqueue dest to worklist...} // S5

}

scan++;

}

18-643-F23-L11-S20, James C. Hoe, CMU/ECE/CALCM, ©2023

Compressed Sparse Row (CSR)
Adjacency Matrix

array of all non-0 elements
in row-order
(holds col/dest index)

v dest— |
z 0 1 2 3 \ array indexed by row/src idx

| (holds offset into element array)
g e e : 00 12 23 35 1 entry per-node
L0000 o L—A—I—1—

8Ig Vo e
2011011) Sis {1 - 1 entry
i i~ 12~ B. 1“4 F

31010110 _c: 11 3]10]1 3.‘2 per-edge

|

|

|

|

|

|

18-643-F23-L11-S21, James C. Hoe, CMU/ECE/CALCM, ©2023

Large graph has millions or more nodes
each with may be handful edges per node

18-643-F23-1L11-522, James C. Hoe, CMU/ECE/CALCM,

CarnegieMellon

Elastic HW Processing Pipeline

— —— —— — —

—
— —

\Worklist[]
/ \
b \

per—no}je array

- /
il / s |
7

fetch next
node’s index

S1

fetch per-node
struct

S2

fetch neighbor
per-edge struct

e ; Perredge array
= 7
53 fetch neighbor ‘ W 4 y // dest[]

distance

G4 corditionally . 00)((\5
update neighbor neighbor \ d“‘\ﬂ)
ith new distance to Worklis (0\)(\

BFS Irregular Access Pattern

e |rregular and graph dependent
— SO read worklist: spatial locality, non-temporal
— S1 read node array (self): no locality
— S2 read edge array: some spatial locality, non-temporal
— S3 read node array (neighbor): no locality
— S4 write node array (neighbor): temporal with S3
— S5 write worklist: spatial locality, non-temporal
e S3 most problematic of all
— S1 and S3 lack locality but S3 repeated per neighbor
— same number of S2 and S3 but S2 has spatial locality

\
— BTW, S3 and S4 could have RAW hazard (’3\\\(\%

R

B : L . A
BTW, all read/write granularity is multi-word \\e\\).

18-643-F23-L11-S23, James C. Hoe, CMU/ECE/CALCM, ©2023

fetch
self idx

How can “Caching” Help?

fetch
self node

fetch
edges

fetch
neighbor

update
neighbor

CarnegieMellon

update
worklist

il

e Custom cache for only neighbor distance in pode
array (read in S3 written in S4)

e RAW hazard interlock
same neighbor (stall S3 until conflict-fre

e Coalesces neighbor updates

en nodes in pipel)

to multi-word DRAM block)
Organized and operated unlike an ABC cache!!

18-643-F23-L11-S24, James C. Hoe, CMU/ECE/CALCM, ©2023

e have

ect partial writes

How can HBM BW help?

e HBM gives you 512GB/sec
— data partitioned 32 ways

— 100s nsec latency
— 32 byte per fetch

e Partition graph data into
32 banks s.t. maximizing

non-conflict concurrent accesses across channel

e Per channel, prefetch many 10s of outstanding

CarnegieMellon

CHO
RMFIFO Controller

11

CH7
Controller

read requests to cover latency (Little’s Law)

e Re-index nodes in graph s.t. maximizing spatial

locality of each 32B fetch

18-643-F23-1L11-S25, James C. Hoe, CMU/ECE/CALCM, ©2023

CarnegieMellon

Complexity of Sparse Algorithms

e Graph processing expressible using linear algebra
primitives: SpMV, SpMSpV, SpMM, . ..

Simplicity of form belies performance difficulties

e Basic challenges in large data set, low arithmetic
intensity, and irregular access pattern

e graph-dependent behavior requires multiple
implementations of same primitive depending on:

— size and sparsity
— structured?
— compressed format: CSR, CSC, COQ, ...

Each combination a different optimal design

18-643-F23-L11-S26, James C. Hoe, CMU/ECE/CALCM, ©2023

CarnegieMellon

Parting Thoughts

e When scaling data size and performance, memory
design quickly become the PROBLEM

— capacity, bandwidth, latency
e FPGAs specialization is an asset

— balance memory throughput and compute
throughput

— have data to the right place at the right time
— alter algorithm to memory constraints

e Designing “memorypath” as important as
designing “datapath”

18-643-F23-L11-S27, James C. Hoe, CMU/ECE/CALCM, ©2023

